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1 Summary of present knowledge.

The occurrence of hysteresis is common in many fields of science, e.g., in ferromagnetism,
ferroelectricity, micromagnetics, superconductivity, solid-solid phase transitions, and elasto-
plasticity, to name only a few. Dynamical systems exhibiting hysteresis are characterized by
an input-output behavior that can no longer be represented by a relation in form of a simple
function or of a multivalued graph. Instead, such systems carry a memory of earlier states
that is reflected by complicated nested loops in the input-output behavior. Figure 1 shows a
typical diagram of the dependence between the magnetic field h and magnetization m in a
ferromagnetic material.
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Figure 1: Hysteresis in ferromagnetism.

Despite its steadily increasing importance for industrial applications, the analysis of nonequi-
librium systems with hysteresis is an area in which few researchers work systematically. The
thermodynamics of hysteresis requires a very large (usually infinite-dimensional) state space of
memory configurations having only limited regularity. In particular, the presence of memory
has the consequence that the input-output behavior of hysteretic nonlinearities is of an in-
trinsically nondifferentiable nature and nonlocal in time. These facts render the mathematical
treatment of partial differential equations containing hysteretic nonlinearities extremely diffi-
cult: nondifferentiability and nonlocality in time entail a loss of compactness, so that

– standard techniques for the derivation of a priori estimates do not apply,

– for limit processes with hysteresis nonlinearities the usual approach using weak convergence
in Lp - spaces does not work; instead, uniform convergence with respect to the time variable is
mandatory.

As a consequence, new techniques have to be designed to recover the compactness necessary
for existence proofs, which is a challenging mathematical task. Following the pioneering works
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by L. Prandtl [26], F. Preisach [27], and A. Yu. Ishlinskii [9], in the first half of the last
century, the mathematical modeling and treatment of hysteresis phenomena was initiated by
the group around M. A. Krasnosel’skii in the early sixties, which culminated in the monograph
[10]. Krasnosel’skii and his co-workers introduced the notion of hysteresis operators that turned
out to be a very fruitful new mathematical concept. Later, these studies were continued and
extended by other mathematicians, see the monographs [2, 13, 30]. We also mention the
contributions [4, 22, 23, 28] by physicists and engineers.

We consider a special class of problems exhibiting hysteresis, namely oscillatory elastoplastic
processes. It is well known that plastic deformations lead to energy dissipation and material
fatigue. The effects of energy exchange between heat and mechanical energy, thermal stresses,
and material fatigue therefore have to be taken into account.

The existing mathematical literature on the dynamics of elastoplastic processes with hysteresis
appears to be very scarce, while there are many papers on quasistatic approaches; hence,
any new mathematical results on the dynamics will be innovative. In particular, methods for
estimating the lifetime of oscillating thermoelastoplastic structures under material fatigue are
of great importance in applications.

A classical hysteresis-type model for one-dimensional elastoplasticity was introduced by L.
Prandtl and A. Yu. Ishlinskii. In their model, the relation between (one-dimensional) strain ε
and stress σ is given in the form of the so-called Prandtl-Ishlinskii operator

σ = P[ε] =

∫

∞

0

ϕ(r)sr[ε] dr . (1.1) 1.2

Here, ϕ is a nonnegative weight function, and sr represents the one-dimensional elastic-ideally
plastic element or stop operator with the threshold r > 0 (see Figure 2 below). This model can
easily be generalized to higher dimensions. as the solution operator of the variational inequality

{

1

r
σr(t) ∈ Z ∀t ∈ [0, T ] ,

〈

∂t(ε − σr),
1

r
σr − σ̃

〉

≥ 0 a. e. ∀σ̃ ∈ Z ,
(1.2) 1.3

where Z is a convex closed set.
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σ

σ = ϕ1sr1
[ε]

σ = ϕ2sr2
[ε]

σ = ϕ1sr1
[ε] + ϕ2sr2

[ε]

ε

Figure 2: The stop operators and their combinations.

Although the Prandtl-Ishlinskii description of elastoplasticity as a superposition of infinitely
many stop operators having different thresholds is very imaginative and easily understood,
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engineers very often prefer classical engineering approaches like the three-dimensional von Mises
or Tresca models. One reason for their reluctance to use the Prandtl-Ishlinskii approach is the
disadvantage that the weight function ϕ is not known a priori and must be identified.

Recently, in a series of groundbreaking papers, a new theory of oscillating elastoplastic beams
and plates has been developed by the P. Krejč́ı and J. Sprekels. They demonstrated that
the three-dimensional single-yield von Mises criterion leads after a dimensional reduction to a
multi-yield Prandtl-Ishlinskii operator

• for which the weight function could be determined explicitly.

The new theory is based on the idea that a lower-dimensional observer does not see anymore
the sharp transition from the purely elastic to the purely plastic regime as in the von Mises
model.
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Figure 3. A plate section with grey plasticized zone.

Indeed, if a plate is subject to bending, small plasticized zones start forming at first near the
boundary, and then propagate to the interior, which still preserves a partial elasticity (see Figure
3). Hence, when the transversal variable is eliminated, this gradual plasticizing is expressed in
terms of the Prandtl-Ishlinskii superposition of single-yield stop operators that are successively
activated (see Figure 2).

2 The aim of the project and schedule, expected outputs

The main aim of this proposal is to develop in a concentrated effort a consistent thermodynamic
theory of oscillating thermoelastoplastic plates under material fatigue. The basic modeling
assumption consists in replacing the elastoplastic constitutive law (1.1) by

σ = B(m) ε +

∫

∞

0

ϕ(θ, r) srZ [ε] dr , (2.1) de6

where θ(x, t) > 0 is the absolute temperature, and where m(x, t) ≥ 0 represents the ac-
cumulated fatigue at the space point x during the time interval [0, t] . If the same scaling
hypothesis as in [3] for elastic plates is applied to the elastoplastic case, then, upon normalizing
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physical constants to unity (which has no bearing on the mathematical analysis), the resulting
prototypical system of partial differential equations is of the form

∂ttw − ∂tt∆w + D∗

2
σ = g , (2.2)

∂tU [θ, ε] + divq = 〈σ, ∂tε〉 , (2.3)

σ = B(m) ε +

∫

∞

0

ϕ(θ, r) srZ [ε] dr , (2.4)

ε = D2w , (2.5)

q = −κ∇θ . (2.6)

Here, (2.2)–(2.3) represent the balance laws of linear momentum and internal energy, (2.4)–
(2.6) are constitutive equations, and appropriate initial and boundary conditions have to be
prescribed. The main goal is to establish existence, uniqueness, and stability results for solutions
to the above system of PDEs with hysteresis operators, and to design new robust numerical
schemes for a reliable simulation. Extensions of the model to the Mindlin-Reissner plate theory
and to curved elastoplastic structures are to be carried out by analogy to the elastic cases
considered in [24, 25].

Notice that (2.5)–(2.9) is a highly nonlinearly coupled system of partial differential equations
of hyperbolic-parabolic type in which hysteretic nonlinearities occur at different places. The
treatment of this system constitutes an extremely difficult mathematical task.

The main aim is to expand the theory developed in [8] along the following lines:

1. Extension of the modeling process and of the existence theory to the oscillations of more
general mechanical structures (Mindlin-Reissner plates, plane arches, curved rods and
shells).

2. Inclusion of energy dissipation and material fatigue.

3. Development of a thermodynamically consistent vector Prandtl-Ishlinskii-type model for
thermoelastoplastic materials to account for the energy exchange between heat and me-
chanical energy in oscillating systems.

4. Study of the asymptotic behavior of elastoplastic structures with hysteresis, development of
efficient numerical methods for the solution of the resulting systems of partial differential
equations with hysteresis.

In the following, we give a rough outlook on the milestones of the proposal:

1st year:

Mathematical models for longitudinal or transversal oscillations will be derived and studied for
elastoplastic Mindlin-Reissner plates in the isothermal situation.

2nd-3rd year:

Inclusion of temperature dependence and fatigue into the models. Applications to plates and
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planar arches. Development of numerical methods and first simulations.

4th-5th year:

Extension of the models to thermoelastoplastic rods and shells. Inclusion of further physical
phenomena, e.g., the so-called shape memory effect. Further development of numerical methods
and simulations.

3 Relevance of the topic

Any modeling and mathematical progress along these lines is of immediate interdisciplinary
use, since the techniques to be developed cannot only be employed by engineers working in
elastoplasticity but also by scientists in other fields in which hysteresis occurs. In particular, in
the engineering community working in micromagnetics there is a long tradition to use hysteresis
operators of Prandtl-Ishlinskii or Preisach type, and since the applicant is in close contact with
this community since many years, it will directly profit from the proposed research.

4 Conceptual and methodical approaches

4.0.1 Modeling

Jointly with R. B. Guenther and J. Sprekels, P. Krejč́ı recently derived a new equation for
isothermal elastoplastic Kirchhoff plate oscillations in the form (see [8])

∂ttw − ∂tt∆w + D∗

2
σ = g , (4.1)

σ = Bε + P[ε] , (4.2)

ε = D2w . (4.3)

Here, D2 is the differential operator (∂xx, ∂yy, ∂xy) , and D∗

2
its formal adjoint. Moreover, ∆

is the Laplace operator, P represents a vectorial Prandtl-Ishlinskii operator of the form (1.1),
B is a matrix representing kinematic hardening, and g is a given distributed load. The term
−∂tt∆w represents the contribution to the momentum balance that is due to the rotational
inertia of the transversal fibers. The mass density is assumed constant and normalized to unity.

The evolution takes place in a two-dimensional domain (x, y) ∈ Ω representing the midsur-
face of the plate in reference configuration, and in a time interval t ∈ [0, T ] . The system is
complemented with suitable initial and boundary conditions.

It is well known that plastic deformations lead to energy dissipation and material fatigue. It
is therefore very important to look for models that account for the energy exchange between
heat and mechanical energy in oscillating mechanical systems, as well as for a possibly finite
lifetime due to material fatigue.

An extension to constitutive laws like (2.1) cannot be done in an arbitrary way, since general
thermodynamic principles have to be respected. Following the idea of [17] in the case without
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fatigue, we define the specific free energy F associated with the constitutive law (2.1) by

F [θ, ε] = cV θ(1 − log(θ/θc)) +
1

2
〈B(m) ε, ε〉 +

1

2

∫

∞

0

ϕ(θ, r) 〈srZ [ε], srZ [ε]〉 dr , (4.4) de7

with some reference temperature θc > 0 and the specific heat cV > 0 . The specific entropy S
then has the form

S[θ, ε] = cV log(θ/θc) −
1

2

∫

∞

0

∂θϕ(θ, r) 〈srZ [ε], srZ [ε]〉 dr , (4.5) de8

and the specific internal energy U becomes

U [θ, ε] = cV θ +
1

2
〈B(m) ε, ε〉 +

1

2

∫

∞

0

(ϕ(θ, r) − θ∂θϕ(θ, r)) 〈srZ [ε], srZ [ε]〉 dr . (4.6) de9

The problem consists in solving the system (2.2)–(2.6) under appropriate initial and boundary
conditions. Here, q is the heat flux, and κ > 0 is the heat conductivity (assumed constant).

In order that (2.2)–(2.6) be a complete system, we need a constitutive law for the fatigue
parameter m(x, t) . It can be derived from the Second Principle of Thermodynamics, expressed
by the Claudius-Duhem inequality

ψ(x, t) := ∂tS[θ, ε] + div
(q

θ

)

≥ 0 , (4.7) de10

where ψ(x, t) is the local (specific) entropy production rate. Formal computations yield

θ ψ = θ∂tS[θ, ε] + 〈σ, ∂tε〉 − ∂tU [θ, ε] −
q · ∇θ

θ

= −
1

2
〈B′(m)ε, ε〉 ∂tm+

∫

∞

0

ϕ(θ, r) 〈∂t(ε − srZ [ε]), srZ [ε]〉 dr−
q · ∇θ

θ
. (4.8)

It remains to prescribe the evolution of the parameter m representing fatigue. To this end,
we recall that in the paper [1], which deals with the so-called rainflow method of cyclic fatigue
accumulation, it was shown that the accumulated fatigue in the isothermal case can (up to a
suitable scaling) be identified with the dissipated energy. Mathematical consequences of this
hypothesis have been investigated in the case of the wave equation in [12]. We pursue this idea
also here in the nonisothermal case, and we assume a relation between m and ψ in the form

∂tm = C(θ)ψ (4.9) de17

with a proportionality factor C(θ) > 0 . The evolution equation for m then becomes
(

θ

C(θ)
+ 〈B′(m)ε, ε〉

)

∂tm = −
q · ∇θ

θ
+

∫

∞

0

ϕ(θ, r) 〈∂t(ε − srZ [ε]), srZ [ε]〉 dr . (4.10) de18

The right hand side of (4.10) is nonnegative by virtue of (1.2) and (2.6): indeed, since 0 ∈ Z
for all relevant cases under investigation, we can conclude from (1.2) the energy dissipation rule
for the stop operator in form of the chain rule inequality

d

dt

(

1

2
〈srZ [ε]), srZ [ε]〉

)

≤ 〈srZ [ε]), εt〉 , a.e. in (0, T ) . (4.11) crstop
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Assuming that m(x, 0) = 0 and B′(0) = 0 , we see that for small times we have ψ(x, t) ≥ 0
in agreement with the Clausius-Duhem inequality. Experiments show that under the influence
of fatigue, the elastic response becomes weaker. This observation suggests to assume that the
matrix B′(m) is negative semidefinite. Then, naturally, the coefficient in front of ∂tm in (4.10)
may vanish in finite time and the solution has to be expected to blow up as a result of material
failure.

4.0.2 Analytical Considerations

In this proposal, we plan to investigate the complex PDE systems that govern the oscillations of
thermoelastoplastic mechanical structures like plates, arches, rods, and shells. A prototypical
example is the system (2.2)–(2.6), which has to be coupled with (4.10) and suitable initial and
boundary conditions. The main directions will be

• existence, regularity, uniqueness, and continuous data dependence of solutions,

• development of numerical methods and numerical simulation.

The analysis of the problem will be based on specific properties of hysteresis operators, in
particular on the second-order energy inequality established by P. Krejč́ı in [11] and further
developed in the monograph [13]. To explain the connection between the “usual” energy in-
equality and the second-order energy inequality, we consider in the isothermal case the scalar
temperature-independent operator (1.1) and the associated internal energy operator

U [ε] =
1

2

∫

∞

0

ϕ(r) |sr[ε]|2 dr (4.12) ene1

analogous to (4.6). Since hysteretic processes are irreversible, the orientation of the hysteresis
loops is substantial. We see in Figures 1, 2 that both the clockwise and the counterclockwise
orientations may occur. In agreement with the terminology introduced in [2], the operator U
is a clockwise potential in the sense that

P[ε](t) ·
d

dt
ε(t) −

d

dt
U [ε](t) ≥ 0 (4.13) e8

for every absolutely continuous input ε and for a. e. t in a given time interval. This is a
consequence of the chain rule inequality (4.11) for the stop operator. The counterclockwise
counterpart corresponding to Figure 1 with a constitutive mapping m = P̃ [h] and a potential
Ũ would read

h(t) ·
d

dt
P̃ [h](t) −

d

dt
Ũ [h](t) ≥ 0 . (4.14) e8c

The left-hand side of (4.13) or (4.14) is the dissipation rate, defined as the difference between
the work rate and the potential increment. It is indeed nonnegative in agreement with the
Second Principle of Thermodynamics, similarly as the right-hand side of (4.10).

While the dissipation in (4.13) can be visualized by the area of hysteresis loops, the second-order
dissipation is related to their curvature, and is characterized by the inequality

d

dt
P[ε](t)

d2

dt2
ε(t) −

d

dt

(

1

2

d

dt
ε(t)

d

dt
P[ε](t)

)

≥ 0 (4.15) e11
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in the sense of distributions, as long as the loops are clockwise convex. The magnetic hysteresis
on Figure 1 exhibits counterclockwise convex loops of small amplitude. The Prandtl-Ishlinskii
operator P has the clockwise convexity property globally for all sizes of loops as in Figure 4.

There is an obvious formal similarity between (4.13) and (4.15) with one additional time deriva-
tive in each term, if we interpret the term

1

2

d

dt
ε(t)

d

dt
P[ε](t)

as a “second-order potential”. For strictly convex operators, a lower bound of the cubic order is
available, which makes it possible to derive strong a priori estimates for solutions to evolution
equations with hysteresis and to prove the stability of the systems.

4.0.3 Numerical Methods

Numerical simulations will have to accompany the theoretical and modeling studies in parallel,
in order to verify the models and to indicate where are necessary for a better agreement with
physical reality. However, “ready-made” PDE solvers can only be used to a limited extent.
The main reason for this is the complex memory storage and deletion exhibited by hysteretic
systems. Similarly as in [29], where the spatially one-dimensional problem of isothermal elasto-
plastic wave propagation was considered, not only time and space, but also the memory has to
be discretized.

In [29], optimal error estimates were derived for a combined semi-implicit discrete scheme on
a non-adaptive grid. This approach will be extended to the present situation. For adaptive
grids, it will be necessary to use interpolation to create a memory for newly added grid points.
It is an aim of the proposal to derive also for this situation local a posteriori error estimators,
which may be used to monitor the local grid refinement.

5 Expected results and their use

Robust mathematical models are necessary for a reliable prediction of the long-time behav-
ior of complex systems. As of today, a mathematically rigorous thermodynamic theory of
continua with temperature-dependent mechanical memory, taking fatigue under cyclic loading
into account, is to a large extent still missing. However, such a theory would be an important
starting point for efficient simulations. Also, theoretical stability results for thermodynamically
consistent systems of equations governing the physical processes in solids will also provide im-
portant information for the construction of numerical algorithms and for the derivation of error
estimates.

6 International cooperation

Active cooperation in modeling of hysteretic material behavior exists with M. Brokate (TU
Munich), J. Sprekels (WIAS Berlin), P. Colli, U. Stefanelli (Uni Pavia), K. Kuhnen (Uni
Saarbruecken), S. Zheng (Fudan Uni, Shanghai), E. Rocca (Uni Milan).
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7 Preparedness of the applicants and the hosting insti-

tution

P. Krejč́ı has been working systematically since 1986 in the modeling and analysis of nonequi-
librium hysteretic processes in (thermo-)elastoplastic, ferromagnetic, piezoelectric, and other
materials with rate-independent memory, as well as in phase transitions. His main contri-
butions are related to quantitative energy dissipation estimates in oscillating systems with
rate-independent memory.

Jana Kopfová and Michela Eleuteri have been working in the qualitative theory of partial
differential equations with hysteresis.
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pre [27] F. Preisach: Über die magnetische Nachwirkung, Z. Physik, 94 (1935), 277–302 (In German).

sci [28] The Science of Hysteresis, Vol. I, II, III (Eds. G. Bertotti and I. Mayergoyz). Elsevier/Academic
Press, Amsterdam, 2006.

ms [29] M. Siegfanz: Die eindimensionale Wellengleichung mit Hysterese (In German). PhD Thesis, Hum-
boldt University, Berlin, 2000.

v [30] A. Visintin: Differential Models of Hysteresis. Appl. Math. Sci., Vol. 111, Springer-Verlag, New
York, 1994.

10



Czech Science Foundation - Part D
The Applicant and Joint Applicants

Applicant: RNDr. Pavel Krejč́ı, CSc.
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(1) J. Kopfová, Semigroup Approach to the Question of Stability for a Partial Differential
Equation with Hysteresis, J. of Math. Anal. and Appl.223, 272–287, (1998), 1 citation, IF:
0.872
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