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FULLY COMPUTABLE ROBUST A POSTERIORI ERROR

BOUNDS FOR SINGULARLY PERTURBED

REACTION–DIFFUSION PROBLEMS

MARK AINSWORTH AND TOMÁŠ VEJCHODSKÝ

Abstract. A procedure for the construction of robust, upper bounds for
the error in the finite element approximation of singularly perturbed reaction
diffusion problems was presented in [2] which entailed the solution of an
infinite dimensional local boundary value problem. It is not possible to solve
this problem exactly and this fact was recognised in the above work where it
was indicated that the limitation would be addressed in a subsequent article.
We view the present work as fulfilling that promise and as completing the
investigation begun in [2] by removing the obligation to solve a local problem
exactly. The resulting new estimator is indeed fully computable and the first
to provide fully computable, robust upper bounds in the setting of singularly
perturbed problems discretised by the finite element method.

Dedicated to Professor Ivo Babuška on the occasion of his 85th birthday.

1. Introduction

Consider the Dirichlet problem

−∆u+ κ2u = f in Ω; u = 0 on ∂Ω (1)

where Ω ⊂ R
2 is a polygonal domain with boundary ∂Ω and κ is a non-negative

constant. If κ ≫ 1, then this problem is sometimes referred to as a singularly
perturbed reaction–diffusion problem [10]. Methods that are entirely satisfac-
tory for the approximate solution of unperturbed problems, i.e. κ = O(1), are
frequently found wanting in the singularly perturbed case, i.e. κ ≫ 1, in the
sense that their performance degenerates as κ grows [10]. A method whose
performance does not degenerate with κ is said to be robust.

The numerical approximation of singularly perturbed problems is frustrated
by the fact that the true solutions of such problems generally feature sharp
boundary layers, in addition to the usual corner and edge singularities present
in elliptic problems. One way in which to combat these features is to use an
adaptive finite element methods whereby elements are selectively refined where
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2 MARK AINSWORTH AND TOMÁŠ VEJCHODSKÝ

the solution is poorly resolved. The convergence of adaptive algorithms was
first investigated by Dörfler [5], subsequently refined by Morin et al. [7] and the
optimality of adaptive finite element methods was established by Stevenson [11].
A key ingredient in an adaptive finite element algorithm is the availability of a
robust a posteriori error indicator ηK for the error in energy measured over an
individual element K. The analysis of adaptive methods typically hinges on two
key properties of the indicator. Firstly, the sums of the local indicators should
provide a reliable upper bound for the total error |||e||| measured in the energy
norm, in the sense that there exists a positive constant C which is independent

of any mesh size and the parameter κ such that

|||e|||2 ≤ Cη2 = C
∑

K∈P

η2
K (2)

where P denotes the elements in the finite element partitioning of the domain Ω.
Secondly, the estimator should be efficient in the sense that there exists a pos-
itive constant c, again independent of any mesh size and the parameter κ, such
that

cη2
K ≤ |||e|||2eK (3)

where K̃ denotes the patch consisting of the element K together with neigh-
bouring elements sharing a common node with the element K. If the elements
satisfy the usual shape regularity condition, then by summing the latter esti-
mate over all elements we see that the estimator provides two-sided bounds on
the error

c

m
η2 ≤ |||e|||2 ≤ Cη2

where m denotes the largest number of elements in any of the patches K̃.
Explicit a posteriori error indicators for (1) were first derived by Verfürth [12]
and shown to provide robust two-sided estimates of the form (2) and (3).

Estimates (2) and (3) are sufficient to guarantee robust convergence of the
adaptive algorithm. However, the indicator is often called upon to provide a

stopping criterion for the adaptive procedure for which knowledge of the actual
value of the constant C appearing in the upper bound is required. Ideally, we
would like to have a fully computable upper bound of the form

|||e|||2 ≤ η =
∑

K∈P

η2
K . (4)

If the indicator η is known to provide an estimate for the error of this type,
then we shall say that η is an a posteriori error estimator.

Our objective in the present work is to derive a fully computable, robust local
a posteriori error estimators {ηK : K ∈ P} which together provide a true upper
bound of the form (4) and, in addition, provide a robust local lower bound of
the form (3) with a generic (unknown) positive constant c that is nevertheless
independent of any mesh size and the parameter κ. Such an estimator would
be suitable for both driving an adaptive refinement procedure and providing a
quantitative, guaranteed stopping criterion for the algorithm.

Ainsworth and Babuška [2] derived implicit a posteriori error estimators
for (1) that provide a robust local lower bound (3) and a guaranteed upper
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bound (4). However, the estimator defined in [2] is based on the assumption
that a local boundary value problem of the form (1) is solved exactly over each
element K. The obligation to solve a local problem exactly means that the
estimator in [2] is, strictly speaking, not actually fully computable. Of course,
this limitation was already recognised by [2] where it was indicated that the
issue would be fully addressed in a subsequent article. We view the present
work as fulfilling that promise and, as such, completing the investigation begun
in [2] by removing the obligation to solve a local problem exactly. The result-
ing new estimator is indeed fully computable and is the first to provide fully
computable, robust upper bounds in the setting of finite element discretisation
of singularly perturbed problems.

The challenge laid down in [2] was taken up by Grosman [6] who introduced
a finite dimensional approximation for the local boundary value problem and
showed that, up to unknown constants, the norm of the solution of the finite
dimensional approximation is equivalent to that of the solution of the infinite
dimensional problem. Unfortunately, the values of the constants could not
be established. Moreover, numerical examples presented in [6] show that the
resulting indicator fails to preserve the guaranteed upper bound property of the
estimator presented in [2] and as such falls short of meeting the challenge. A
computable upper bound for problem (1) discretised using a cell-centred finite
volume method was presented by Cheddadi et al. [4] based on the use of an
associated dual mesh.

The remainder of this paper is organized as follows. The basic assumptions
and construction of the a posteriori error estimator are presented in the next
three sections, followed by a section containing illustrations of the behaviour of
the estimator in particular cases. The analysis of the estimator and proofs of
the estimates conclude the paper.

2. Finite Element Approximation

2.1. Assumptions. We consider a family of partitions {P} of the domain Ω
into the union of non-overlapping, triangular elements such that the non-empty
intersection of a distinct pair of elements is a single common node or single
common edge. We denote the diameter of an element K by hK and let xK

and ρK denote the incentre and the inradius of element K, i.e. the centre and
the radius of the largest ball contained within K. The family of partitions is
assumed to be regular so that the bound

max
K∈P

hK

ρK
≤ C

where C is a positive constant, holds uniformly over the family. The patch
consisting of an element K and its neighbours is denoted by

K̃ = int
{⋃

K ′ : K ′ ∩K is non-empty
}
.

Thanks to the regularity assumption on the partitions, the number of elements
in any such patch is uniformly bounded over the family as is the number of

patches containing a particular element. Moreover, within each patch K̃, a local
quasi-uniformity condition chK ≤ hK′ ≤ ChK holds for positive constants c and
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C uniformly over the whole family of meshes. Similarly, the shape regularity of
the elements means that there exists a positive constant C0 such that

1

C0
ρK ≤ ρK′ ≤ C0ρK (5)

holds for all elements K ′ contained within the patch K̃, where C0 is again uni-
formly bounded over the entire family of partitions. These conditions are suffi-
ciently mild to permit the use of highly graded meshes such as those typically
produced by an adaptive solution algorithm but preclude the use of anisotropic
elements.

2.2. Finite Element Approximation. Let XP denote the set of continuous,
piecewise affine functions relative to the partition P, and define the finite el-
ement subspace VP = XP ∩ H1

0 (Ω). We approximate the solution of (1) by
seeking uP ∈ VP such that

B(uP , v) = F(v) ∀v ∈ VP (6)

where B : H1
0 (Ω) × H1

0 (Ω) → R and F : H1
0 (Ω) → R denote the bilinear and

linear forms respectively defined by

B(u, v) =

∫

Ω
(∇u · ∇v + κ2uv) dx; F(v) =

∫

Ω
fv dx. (7)

The corresponding forms defined over an individual element K ∈ P as opposed
to the whole of Ω are denoted by BK(·, ·) and FK(·) respectively. Likewise, the

global energy norm |||·||| is defined by |||v|||2 = B(v, v) while the corresponding
local quantity is denoted by |||·|||K . The same convention is adopted for other
norms such as the L2-norm ‖·‖.

3. A Posteriori Error Estimation

We now turn our attention to the construction of robust a posteriori estima-
tors for the error e = u−uP in the finite element approximation. This problem
was also considered in [2] where it was observed that one of the key ingredi-
ents in developing robust bounds is the construction of an appropriate set of
boundary flux functions {gK : K ∈ P} on each of the element edges satisfying
the consistency condition

gK + gK′ = 0 on ∂K ∩ ∂K ′. (8)

These functions were then used as Neumann boundary data for a local boundary
value problem of the form (1) with source term given by the local residual rP =
f +∆ uP −κ2 uP . The energy norms of the solutions of the local problems were
shown to provide a guaranteed, robust upper bound on the error in the finite
element approximation. Here, we adopt a similar approach with the important
difference that it will not be necessary to introduce the infinite dimensional
local boundary value problem. In fact, the estimator will be given explicitly in
terms of readily available quantities involving the residual rP and the difference
gK −nK · graduP|K between the post-processed boundary fluxes and the flux
in the finite element approximation.
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We begin by briefly recalling the procedure for the construction of the bound-
ary fluxes from [2] to which the reader is referred for further details.

3.1. Construction of Inter-element Fluxes. Let N denote the set of ele-
ment vertices in the partition P. For each n ∈ N, let θn ∈ XP denote the
Lagrange basis function characterized by the conditions θn(xm) = δnm for all
m ∈ N where δnm is the Kronecker symbol and let Pn denote the set of elements
having a vertex at xn. Similarly, let N(γ) ⊂ N denote the vertices of an element
edge γ and define a set of piecewise linear functions {ψm

γ , m ∈ N(γ)} on the
edge by the conditions

∫

γ
ψm

γ θn ds = δmn, m, n ∈ N(γ). (9)

These functions are used to define the fluxes {gK} on the interfaces as follows.
Each inter-element edge γ is assigned an arbitrary (but fixed) orientation by
choosing a unique normal vector n on the interface. We define a piecewise
constant function σK : ∂K → {+1,−1} by the rule σK = 1 on γ if nK = n on
γ and σK = −1 otherwise. The flux approximation on an interface γ of element
K is written in the form

gK =

〈
∂ uP

∂nK

〉
+ σK

∑

m∈N(γ)

αm
γ ψ

m
γ (10)

where 〈
∂ uP

∂nK

〉
=

1

2
nK ·

(
∇ uP

∣∣
K

+ ∇ uP

∣∣
K′

)

is the average of the finite element approximation to the flux from the ele-
ments K and K ′ sharing the edge γ. This construction ensures the consistency
condition (8) is automatically enforced.

If the coefficients {αm
γ , m ∈ N(γ)}, satisfy the conditions

∀n ∈ N : −
∑

γ⊂∂K

σK|γ

∑

m∈N(γ)

δnmα
m
γ = DK (θn) ∀K ⊂ Pn, (11)

where

DK(v) = FK(v) − BK(uP , v) +

∫

∂K

〈
∂ uP

∂nK

〉
v ds,

then {gK} are said to be equilibrated fluxes [3]. The conditions (11) represent
a linear algebraic system on the patch Pn. The system is analysed at length
in [3] and shown to be singular but solvable nevertheless.

Unfortunately, as shown in [2], these equilibrated fluxes give rise to an error
estimator which is not robust in the limit as κ→ ∞. Luckily, a simple remedy
is given in [2]: replace the Lagrange basis function θn appearing in the condi-
tions (11) with an appropriately modified function denoted by θ∗n (see below)
and solve the resulting equations (11) in a least squares sense.

We construct the function θ∗n as follows. Let K ∈ P be a triangular element
as shown in Figure 1 and suppose that the basis function θn corresponds to
vertex x3. We define an auxiliary point xP ∈ K by the expression xP =
δx1 + δx2 + (1 − 2δ)x3, where δ = 1

2 min(1, 1/(κρK)) and ρK is the inradius
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of element K. We form a sub-mesh of the element K using the point xP in
K as shown in Figure 1. The function θ∗n is defined to be the piecewise affine
function relative to the sub-mesh with θ∗n(xn) = 1 and vanishing at remaining
nodes (see Figure 1).

x1 x2

x3

xP

1

x1 x2

xP

θ∗n

Figure 1. Construction of the approximate minimum energy
extension θ∗n on a triangle. The auxiliary point xP has barycen-
tric coordinates (δ, δ, 1− 2δ), where δ = 1

2 min(1, 1/(κρK)). The
submesh induced by the point xP (left) and the piecewise linear
graph of θ∗n (right).

3.2. A Posteriori Error Estimation. Let P1(K) denote the space of piece-
wise affine functions defined over an element K, and let ΠK : L2(K) → P1(K)
denote the orthogonal projector with respect to the usual inner product on
L2(K).

Lemma 1. Let K ∈ P be any element, {gK} be a set of fluxes satisfying the

consistency condition (8) and ΣK denote the set of vector fields on element K
defined by

ΣK = {τ ∈ H(div,K) : nK · τ = gK on ∂K} . (12)

For all choices of {τK}K∈P such that τK ∈ ΣK , there holds

|||e|||2 ≤
∑

K∈P

{
ηK(τK) + min

(
hK

π
,
1

κ

)
‖f − ΠKf‖K

}2

(13)

where ηK : ΣK → R
+ is defined by the rule

ηK(τ )2 = ‖τ − graduP‖
2
K +

1

κ2
‖ΠKf − κ2 uP + div τ‖2

K .

Proof. The error e = u − uP ∈ H1
0 (Ω) in the finite element approximation

satisfies

B(e, v) = F(v) − B(uP , v) =
∑

K∈P

{∫

K
fv dx +

∫

∂K
gKv ds− BK(uP , v)

}

for each v ∈ H1
0 (Ω), where condition (8) has been used along with the fact that

the test function v has vanishing trace on the domain boundary. Let τ ∈ ΣK ,
then an application of the divergence theorem reveals that

∫

∂K
gKv ds =

∫

K
τ · grad v dx +

∫

K
v div τ dx.
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With the aid of this result, the term appearing in parentheses above may then
be written as a sum of the quantities

∫

K

(
ΠKf − κ2 uP + div τ

)
v dx +

∫

K
(τ − graduP) · grad v dx

and ∫

K
(f − ΠKf) v dx.

Straightforward applications of the Cauchy-Schwarz inequality may be used to
show that the former quantity is bounded by

‖ΠKf − κ2 uP + div τ‖K‖v‖K + ‖τ − graduP‖K‖grad v‖K

which is in turn bounded by ηK(τ ) |||v|||K by again using the Cauchy-Schwarz
inequality.

The remaining quantity is treated slightly differently depending on the mag-
nitude of κ. The Cauchy-Schwarz inequality may be used to derive the simple
bound∫

K
(f − ΠKf) v dx ≤ ‖f − ΠKf‖K‖v‖K ≤ κ−1‖f − ΠKf‖K |||v|||K .

On the other hand, the definition of ΠKf means that for any constant c ∈ R,
we have∫

K
(f − ΠKf) v dx =

∫

K
(f − ΠKf) (v − c) dx ≤ ‖f − ΠKf‖K‖v − c‖K ,

which we then bound with the aid of the Poincaré inequality [9]

inf
c∈R

‖v − c‖K ≤
hK

π
‖grad v‖K

to obtain the following alternative estimate
∫

K
(f − ΠKf) v dx ≤

hK

π
‖f − ΠKf‖K |||v|||K .

By combining this with the earlier estimate, we deduce that the following bound
holds ∫

K
(f − ΠKf) v dx ≤ min

(
hK

π
,
1

κ

)
‖f − ΠKf‖K |||v|||K .

In summary, we have shown that

B(e, v) ≤
∑

K∈P

{
ηK(τ ) + min

(
hK

π
,
1

κ

)
‖f − ΠKf‖K

}
|||v|||K

and the proof is completed with a final application of the Cauchy-Schwarz
inequality. �

Although our primary concern in the present paper is the case in which
κ is non-zero, the result in Lemma 1 is also applicable to the more usual case
considered in the literature when κ vanishes. Specifically, if the field τK satisfies
the additional constraint whereby ΠKf − κ2 uP + div τK vanishes, then it is
not difficult to modify the above proof to show that the estimate (13) then
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x

x

t

t

t

x

γ

γ

γ

1

1

1

2

2

2

3 3

3

Figure 2. Notation for vertices, edges and tangent vectors of
a general element K used in the construction of non-trivial flux
fields τ ∈ ΣK .

holds with ηK(τ ) reduced to ‖τK − graduP‖K and min(hK/π, κ
−1) reduced

to hK/π.
Lemma 1 is only of interest if one can establish that the sets ΣK are non-

empty. We present two alternative constructions for τ ∈ ΣK where K ∈ P is
an arbitrary element. For notational convenience, we assume that the vertices
and edges of the triangle K are labelled as shown in Figure 2. In particular,
we draw the reader’s attention to the fact that t1, t2 and t3 denote the actual

tangent vectors on the element edges rather than the unit tangent. We shall
continue to use n to denote the unit outward pointing normal.

3.3. Flux Construction #1. We construct a flux function in the form

τ
(1)
K = graduP|K +τL

K + τ
Q
K .

The vector field τL
K is defined by

τL
K =

1

2|K|

∑

n∈N (K)

̺(K)
n λn (14)

where |K| is the area of the element and

̺
(K)
1 = |γ3| (gK − nK · graduP)|γ3

(x1)t2

−|γ2| (gK − nK · graduP)|γ2
(x1)t3

̺
(K)
2 = |γ1| (gK − nK · graduP)|γ1

(x2)t3

−|γ3| (gK − nK · graduP)|γ3
(x2)t1

̺
(K)
3 = |γ2| (gK − nK · graduP)|γ2

(x3)t1

−|γ1| (gK − nK · graduP)|γ1
(x3)t2

(15)
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whilst τ
Q
K is defined by

τ
Q
K =

1

3

(
β1t1t

T
1 + β2t2t

T
2 + β3t3t

T
3

)
grad(ΠKf − κ2 uP)(xK) (16)

where xK denotes the centroid of element K, β1 = λ2λ3 etc. and λ1, λ2, λ3

denote the barycentric coordinates on the triangle K. It is easy to see that τ
Q
K

has vanishing normal components on each edge of element K whilst it is shown
in [1, Lemma 6] that τL

K satisfies nK · τL
K = gK − nK · graduP|K on ∂K and,

as consequence, τ
(1)
K ∈ ΣK .

Lemma 2. If K ∈ P is any element for which κρK ≤ 1/C0, where C0 is defined

in (5), then

ηK(τ
(1)
K ) ≤ C

{
|||e||| eK

+ hK‖f − Πf‖ eK

}
(17)

where the final term is defined by the following relation

‖f − Πf‖2
eK

=
∑

J⊂ eK

‖f − ΠJf‖
2
J . (18)

Proof. Observe that τL
K has constant divergence over the element K whilst

graduP|K has vanishing divergence over the element, and therefore

div τL
K =

1

|K|

∫

∂K
nK · τL

K ds =
1

|K|

∫

∂K
gK ds.

Equally well, a simple computation reveals that div(β1t1) = λ2 − λ3 etc. and
as a consequence,

−div τ
Q
K

= {(x1 − xK)λ1 + (x2 − xK)λ2 + (x3 − xK)λ3} · grad(ΠKf − κ2 uP)(xK)

= (x − xK) · grad(ΠKf − κ2 uP)(xK).

The fact that ΠKf−κ
2 uP is affine over the element may be exploited to rewrite

this quantity in the alternative form

−div τ
Q
K = (ΠKf − κ2 uP)(x) −

1

|K|

∫

K

(
ΠKf − κ2 uP

)
dx.

Moreover, the assumption κρK ≤ 1/C0 means that all elements K ′ sharing a
common edge or vertex with the element K satisfy κρK′ ≤ C0κρK ≤ 1, and as a
result, the functions θ∗ defined in Section 3.1 coincide with the standard piece-
wise linear nodal functions. This means that the equilibration condition (11) is
satisfied as an equality on element K and hence,

∫

∂K
gK ds = −

∫

K

(
f − κ2 uP

)
dx = −

∫

K

(
ΠKf − κ2 uP

)
dx

where the fact that ΠKf is a projection has been used to obtain the second
equality. Combining this with the earlier results, we conclude that

div τ
(1)
K + ΠKf − κ2 uP = 0 in K. (19)

This identity means that the second term appearing in ηK(τK) vanishes when
κρK ≤ 1/C0.
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We now turn our attention to the first term appearing in ηK(τK). Using the
first estimate on [1, Page 1795] gives

‖τL
K‖2

K ≤ C
∑

γ∈∂K

|γ| ‖gK − nK · graduP‖
2
γ , (20)

and hence, recalling that κρK ≤ 1/C0 and using the triangle inequality in
conjunction with estimates Lemma 5(2) and Lemma 6 of [2], we conclude that

‖τL
K‖K ≤ C

{
|||e||| eK

+ hK‖f − Πf‖ eK

}
.

Similarly, using the triangle inequality and the relations ‖β1‖K = C|K|1/2 and
|t1| = |γ1| ≤ hK etc., we find that

‖τQ
K‖K ≤ Ch2

K‖grad(ΠKf − κ2 uP)‖K ,

which, with the aid of an inverse estimate and the fact that graduP is constant,
gives

‖τQ
K‖K ≤ ChK‖ΠKf − κ2 uP‖K = ChK‖ΠKrP‖K

where rP = f + ∆ uP −κ2 uP . Applying the final estimate on [2, Page 343] and
again recalling that κρK ≤ 1/C0, we arrive at the conclusion

‖τQ
K‖K ≤ C {|||e|||K + hK‖f − ΠKf‖K} .

Applying the triangle inequality gives an estimate for ‖τ
(1)
K − graduP‖K in

terms of ‖τL
K‖K and ‖τQ

K‖K , which in conjunction with the foregoing results,

produces the desired estimate for ηK(τ
(1)
K ). �

xK

ρK

1

κ

t

n

1

2
ωL

1

2
ωR

TU

TL TR
Q

xL xA xB xRγ

xK

Figure 3. Sub-division of a triangle for the explicit construc-

tion of τ
(2)
K (left), and sub-mesh used within each sub-element

(right).

3.4. Flux Construction #2. We construct τ
(2)
K ∈ ΣK in the form

τ
(2)
K = graduP|K +τO

K (21)

where τO
K ∈ H(div,K) has normal components given by

nK · τO
K = RO

K = gK − nK · graduP|K . (22)

The vector field τO
K itself is defined in a piecewise fashion based on a subdivision

of the element K consisting of the three sub-triangles obtained by connecting
the incentre xK of the element to the vertices of K as shown in Figure 3 (left).
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It suffices to describe the construction of τO
K in the sub-triangle corresponding

to a particular edge γ ⊂ ∂K joining vertices xL and xR of the original element.
This sub-element is illustrated in Figure 3 (right) in the case when the element

size satisfies ρK ≥ 1/κ, in which case the sub-element is itself further sub-
divided into the union of triangles TL, TR, TU and a rectangle Q corresponding
to a line drawn parallel to, and at a distance 1/κ from, the edge γ. In the event
that ρK < 1/κ, the rectangle Q and the upper triangle TU vanishes and only
the sub-triangles TL and TR remain.

The vector field τO
K is then defined on the sub-element as follows using the

notation given in Figure 3:

τO
K(x) =





RO
K|γ(xL)λL(x)

(
n − t cot

1

2
ωL

)
+RO

K|γ(xA)λA(x)n, x ∈ TL,

RO
K|γ(xA + xt)(1 − κy)n, x ∈ Q,

RO
K|γ(xR)λR(x)

(
n + t cot

1

2
ωR

)
+RO

K|γ(xB)λB(x)n, x ∈ TR,

0 x ∈ TU

(23)
where λL, λA, λR, and λB are the usual barycentric coordinates in TL and TR, n

and t are unit vectors shown in Figure 3, and x = (x−xA)·t and y = (xA−x)·n
are the local Cartesian coordinates in Q. As before, in the case when ρK < 1/κ,
the expressions for the rectangle Q and the upper triangle TU are superfluous.
It is readily verified that the vector field τO

K has continuous (vanishing) normal
components on interfaces of the sub-mesh and that the normal component on

the element edge γ is given by RO
K|γ . Consequently, τ

(2)
K ∈ ΣK .

The following property of the flux constructed above will prove useful later:

Lemma 3. If K ∈ P is any element for which κρK ≥ 1/C0, then

ηK(τ
(2)
K ) ≤ C

{
|||e||| eK

+ κ−1‖f − Πf‖ eK

}
. (24)

Proof. An elementary calculation using the definition of τO
K reveals that

‖τO
K‖2

Q =
1

3
κ−1‖RO

K|γ‖
2
L2(xA,xB)

and

‖τO
K‖2

TL
=

1

6
|TL|

{
RO

K|γ(xL)2 csc2 1

2
ωL +RO

K|γ(xL)RO
K|γ(xA) +RO

K|γ(xA)2
}

≤ Cκ−1‖RO
K|γ‖

2
L2(xL,xA)

with a similar estimate for the contribution from TR. These estimates, along
with the triangle inequality, give

‖τ
(2)
K − graduP‖

2
K = ‖τO

K‖2
K ≤ Cκ−1

∑

γ⊂∂K

‖RO
K|γ‖

2
γ . (25)

Similarly, elementary computation reveals that

div τO
K|TL

=
1

|TL|

∫
xL

xA

RO
K dx, ‖div τO

K‖2
TL

≤ Cκ‖RO
K‖2

L2(xL,xA)
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and

div τO
K|Q = κRO

K|γ(xA + xt), ‖div τO
K‖2

Q = κ‖RO
K‖2

L2(xA,xB).

These relations together with similar formulas on TR imply

‖div τO
K‖2

K ≤ Cκ‖RO
K‖2

∂K . (26)

Observing that

‖ΠKf − κ2 uP + div τ
(2)
K ‖K ≤ ‖ΠKf − κ2 uP‖K + ‖div τO

K‖K (27)

= ‖ΠKrP‖K + ‖div τO
K‖K ,

where we recall that rP = f − κ2 uP +∆ uP , and using the previous inequality
along with the final estimate of [2, p. 343], we deduce that

κ−1‖ΠKf − κ2 uP + div τ
(2)
K ‖K ≤

C
{
κ−1 min(hK , κ

−1)−1 |||e|||K + κ−1‖f − ΠKf‖K + κ−1/2‖RO
K‖L2(∂K)

}
.

Combining this with the earlier estimate for ‖τO
K‖K gives

ηK(τ
(2)
K ) ≤

C
{
κ−1 min(hK , κ

−1)−1 |||e|||K + κ−1‖f − ΠKf‖K + κ−1/2‖RO
K‖L2(∂K)

}
.

Finally, using the triangle inequality and estimates [2, Lemma 5(2)] and [2,
Lemma 6] leads to

‖RO
K‖L2(∂K) ≤ Cmin(hK , κ

−1)−1/2 |||e||| eK
+ Cmin(hK , κ

−1)1/2‖f − Πf‖ eK
,

and inserting this estimate into the previous inequality and again using the fact
that κρK ≥ 1/C0 gives the claimed result. �

3.5. A Posteriori Error Estimator. Let τ
(1)
K , τ

(2)
K ∈ ΣK denote the vector

fields constructed above, and let EK ∈ R
2×2 denote the symmetric matrix

whose entries are given by

[EK ]ij =
(
τ

(i)
K − graduP , τ

(j)
K − graduP

)

K

+
1

κ2

(
ΠKf − κ2 uP + div τ

(i)
K ,ΠKf − κ2 uP + div τ

(j)
K

)

K
(28)

for 1 ≤ i, j ≤ 2.
We are now in a position to present our main result:

Theorem 1. Let EK , K ∈ P denote the matrix defined in (28). Then, there

exists τ ∗
K ∈ ΣK such that

ηK(τ ∗
K) =





1√
~1T E−1

K
~1

if EK is non-singular,

1

κ
‖ΠKf − κ2 uP‖K otherwise,

(29)
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where ~1 = [1, 1]T . Consequently, the error in the finite element approximation

is bounded by

|||e|||2 ≤
∑

K∈P

{
ηK(τ ∗

K) + min

(
hK

π
,
1

κ

)
‖f − ΠKf‖K

}2

. (30)

Moreover, there exists a positive constant C, independent of any mesh-size or

κ, such that

ηK(τ ∗
K) ≤ min

(
ηK(τ

(1)
K ), ηK(τ

(2)
K )

)
≤ C

{
|||e||| eK

+ min(hK , κ
−1)‖f − Πf‖ eK

}
.

(31)

The a posteriori error estimator suggested by this result involves the quantity
~1T E−1

K
~1 which is a real number that may be readily computed in terms of the

flux functions defined in the previous section and the local element residual.
In particular, we emphasise that it is not necessary to construct the field τ ∗

K
in the computer program since we only require the value of η(τ ∗

K) which is
given explicitly in terms of the matrix EK . Moreover, the computation of the
quantity involves only local computations over each element (the equilibrated
fluxes are also obtained using computations over local patches).

At first glance, the error estimator may appear slightly unusual in compar-
ison with standard existing error estimators, but may nevertheless be readily
used to obtain a guaranteed upper bound on the error in the finite element
approximation. Furthermore, the second estimate shows that the estimate is
robust in both the limit as the element size hK → 0 and as κ → ∞, provided
that the additional data oscillation terms involving the (generally higher order)
quantity ‖f − ΠKf‖K may be neglected.

Proof. Let K ∈ P. If the matrix EK is non-singular, then EK is symmetric,

positive definite. If α1, α2 ∈ R satisfy α1 + α2 = 1, then α1τ
(1)
K + α2τ

(2)
K ∈ ΣK

and Lemma 1 means that ηK(α1τ
(1)
K +α2τ

(2)
K ) may be used to provide an upper

bound on the error for all such choices of α1 and α2. It is easily verified in this
case that

ηK(α1τ
(1)
K + α2τ

(2)
K )2 = ~αT EK~α

where ~α = (α1, α2). Minimising the above quantity subject to the constraint

~αT~1 = 1 leads to the conclusion

min
α1+α2=1

ηK(α1τ
(1)
K + α2τ

(2)
K ) =

(
~1T E−1

K
~1
)−1/2

and we may choose τ ∗
K = α1τ

(1)
K +α2τ

(2)
K . The upper bound on the error in the

finite element approximation now follows directly from Lemma 1 in conjunction
with this choice of τ ∗

K . A simple consequence of this minimisation process
(choose α1 = 1 and α2 = 0, and apply Lemma 2) is that if κρK ≤ 1/C0, then

(
~1T E−1

K
~1
)−1/2

≤ ηK(τ
(1)
K ) ≤ C

{
|||e||| eK

+ hK‖f − Πf‖ eK

}
,

whilst if κρK > 1/C0, then (choose α1 = 0 and α2 = 1, and apply Lemma 3)
(
~1T E−1

K
~1
)−1/2

≤ ηK(τ
(2)
K ) ≤ C

{
|||e||| eK

+ κ−1‖f − Πf‖ eK

}
.
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If the matrix EK is singular, then Lemma 4 (proved below) shows that
gK = nK · graduP|K on ∂K and ΠKf − κ2 uP is constant over the element.

As a consequence graduP|K = τ
(1)
K = τ

(2)
K ∈ ΣK and we may choose τ ∗

K to be
the gradient of the finite element approximation itself. It is easy to see that

ηK(τ ∗
K) = κ−1‖ΠKf − κ2 uP‖K

and, thanks to Lemmas 2 and 3,

ηK(τ ∗
K) ≤ C

{
|||e||| eK

+ min(hK , κ
−1)‖f − Πf‖ eK

}
.

Combining the above estimates completes the proof. �

We conclude this section with a proof of the following result that was used
in the proof of Theorem 1:

Lemma 4. Let K ∈ P be any element. The matrix EK defined in (28) is

singular if and only if

(a) gK = nK · graduP|K on ∂K

(b) ΠKf − κ2 uP is constant in K.

Proof. If (a) does not hold then τL
K and τO

K are non-zero and therefore linearly

independent (by construction). In turn, this means that τ
(1)
K − graduP|K

and τ
(2)
K − graduP|K are linearly independent and it follows that for all ~α =

(α1, α2) ∈ R
2:

~αT EK~α ≥ ‖α1(τ
(1)
K − graduP|K) + α2(τ

(2)
K − graduP|K)‖2

K ≥ 0

with equality if and only if α1 = α2 = 0, and hence EK is symmetric, positive

definite. If (a) holds but (b) is violated, then τL
K = τO

K = 0 whilst τ
Q
K is

non-zero. Consequently,

~αT EK~α = α2
1‖τ

Q
K‖2

K + κ−2‖α1 div τ
Q
K + (α1 + α2)(ΠKf − κ2 uP)‖2

K ≥ 0

with equality if and only if α1 = α2 = 0, and EK is again symmetric, positive
definite. In view of the fact that a symmetric, positive definite matrix is non-
singular, these results show that if EK is singular, then both (a) and (b) must
hold. The proof of the reverse implication is simple: If both (a) and (b) hold,

then τL
K = τO

K = τ
Q
K = 0. As a result, τ

(1)
K and τ

(2)
K coincide and it immediately

follows from (28) that EK is singular. �

4. Numerical Examples

We illustrate the performance of the estimators described above in the case
of a problem with a smooth solution and a problem with a boundary layer.

Example 1. Consider the model problem (1) with data chosen to be f(x, y) =
cos(πx) cos(πy) on a square Ω = (−1/2, 1/2)2. The true solution is given by
u(x, y) = cos(πx) cos(πy)/(2π2 + κ2). Although the solution is smooth, it was
found in [2] that it was precisely this kind of solution that caused existing a
posteriori estimators to exhibit non-robust behaviour.
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−0.5 0 0.5
−0.5

0

0.5

Figure 4. The mesh
used in Example 1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 5. The mesh
used in Example 2.

Example 2. Consider the model problem (1) with data chosen to be f(x, y) = 1
on a circle Ω = {(x, y) : x2 + y2 < 1}. The circular domain was approximated
by the regular polyhedron with 16 edges and an initial mesh with 40 triangles
as depicted in Figure 5. The true solution can be expressed in terms of the
modified Bessel function I0 as u(x, y) = κ−2 (1 − I0(κr)/I0(κ)), κ 6= 0 with

r = (x2+y2)1/2, and exhibits a steep layer in the neighbourhood of the boundary
for larger values of κ, whilst u(x, y) → (1 − r2)/4 as κ→ 0.

We begin by considering the behaviour of the estimators in the case of Ex-
ample 1, as the parameter κ is varied on a fixed mesh consisting of 36 tri-
angles shown in Figure 4. The results obtained are shown in Figure 6 and
Table 1. It will be observed that all estimators provided a guaranteed upper
bound on the actual error as predicted in Lemma 1. Moreover, the estimator

{η(τ
(1)
K ) : K ∈ P} based on the first flux construction scheme is, as predicted

in Lemma 2 robust in the limit as κ becomes small but degenerates sharply as

κ grows. Conversely, the estimator {η(τ
(2)
K ) : K ∈ P} based on the second flux

construction scheme is robust in the limit as κ grows but degenerates sharply as
κ→ 0 (and is undefined when κ vanishes). It is apparent that neither estimator
can be used in isolation and expected to remain robust over the full range of κ.

Fortunately, Theorem 1 indicates that the minimum of these estimators can
be taken as the estimator, and moreover, that the resulting estimator will not
only be a guaranteed upper bound but will be robust over the full range of
κ. The numerical results confirm the correctness of this result. In addition,
Theorem 1 indicates that the estimator {η(τ ∗

K) : K ∈ P} will also be a robust
upper bound on the error that is at least as good as the one obtained taking
the minimum. The numerical results also bear out this prediction with the
optimised estimator providing a marginal improvement over the bulk of the
range of values of κ with, as expected, the greatest improvement occurring in
the transition where κh ≈ 1.

The corresponding results obtained for Example 2 are shown in Figure 7 and
Table 2 from which similar conclusions can be drawn.
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Figure 6. Variation of the error estimators (left) and their ef-
fectivity indices (right) versus κ on the fixed mesh shown in
Figure 4 for Example 1.

κ η(τ (1)) η(τ (2)) η(τ∗)
0 1.419 — 1.419
10−3 1.419 3.024 × 104 1.419
10−2 1.419 3.024 × 103 1.419
10−1 1.419 3.025 × 102 1.419
1 1.425 3.043 × 101 1.425
10 1.760 4.110 1.749
102 4.097 1.478 1.461
103 4.007 × 101 1.403 1.403
104 4.001 × 102 1.404 1.404
105 4.000 × 103 1.405 1.405
106 4.000 × 104 1.405 1.405

Table 1. Variation of effectivity indices for the error estimators
versus κ on the fixed mesh shown in Figure 4 for Example 1.
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Figure 7. Variation of the error estimators (left) and their ef-
fectivity indices (right) versus κ on the fixed mesh shown in
Figure 5 for Example 2.

In Figure 8, we present the results obtained when Example 1 is solved using
uniform mesh refinement procedure in the case where κ = 100. Again, it is ob-

served that neither of the estimators {η(τ
(1)
K ) : K ∈ P} and {η(τ

(2)
K ) : K ∈ P}
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κ η(τ (1)) η(τ (2)) η(τ∗)
0 1.047 — 1.047
10−3 1.047 4.863 × 103 1.047
10−2 1.047 4.863 × 102 1.047
10−1 1.047 4.867 × 101 1.047
1 1.054 5.629 1.054
10 1.587 3.001 1.548
102 5.281 1.069 1.064
103 5.665 × 101 1.002 1.002
104 5.735 × 102 1.000 1.000
105 5.743 × 103 1.000 1.000
106 5.743 × 104 1.000 1.000

Table 2. Variation of effectivity indices for the error estimators
versus κ on the fixed mesh shown in Figure 5 for Example 2.
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Figure 8. Behaviour of a posteriori error estimators (left) and
effectivity indices (right) versus number of degrees of freedom
NDOF obtained for uniform refinement of Example 1 starting
from mesh shown in Figure 4 in the case κ = 100.

is robust across the full range of mesh sizes. However, as predicted by The-
orem 1, the minimum of the two estimators is robust and delivers guaran-
teed upper bounds across the full range. Once again, the optimised estimator
{η(τ ∗

K) : K ∈ P} provides a robust, guaranteed upper bound that behaves
better across the ranges of values at which the transition in behaviour of the
pure estimators occurs.

The presence of the steep boundary layer in the true solution for Example
2 suggests the use of an adaptive refinement procedure will be beneficial for
this problem. We illustrate the behaviour of the estimators and investigate
their suitability for guiding an adaptive refinement algorithm by applying a
standard adaptive procedure. Starting from the mesh shown in Figure 5, all
elements on which the local error estimator exceeds 50% of the largest local
error estimator are refined at each step. The results obtained in the case when
κ = 100 are shown in Figures 9 and 10.
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Figure 9. Convergence curves obtained using adaptive refine-
ment procedure to solve Example 2 with κ = 100. Estimated
errors (dotted lines) and true errors (solid lines) are shown when
the adaptivity is driven by each of the estimators and by the true
error.
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Figure 10. Effectivity of estimators using adaptive refinement
procedure to solve Example 2 with κ = 100.

For comparison we run the adaptive algorithm guided by the true error (solid

line with dots) and the various estimators: ηK(τ
(1)
K ) (circles); ηK(τ

(2)
K ) (squares)

and ηK(τ ∗
K) (asterisks). A cursory examination suggests that the actual conver-

gence curves are relatively insensitive to the choice of estimator (or even the true
error) used to drive the adaptive refinements. However, a closer examination of
the figure shows that the estimator based on ηK(τ ∗

K) produces the best results,

with those obtained using the estimator ηK(τ
(2)
K ) running a close second. The

estimator based on ηK(τ
(1)
K ) produces noticeably poorer accuracy on meshes in

the transition region in which the robustness of the estimators changes. The
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Figure 11. Adaptive meshes obtained using adaptive refine-
ment procedure to solve Example 2 with κ = 100. Meshes arising
in the 3rd, 5th and 7th adaptive step are shown in the columns,
whilst rows 1–3 correspond to adaptivity driven by the true er-

ror, ηK(τ
(1)
K ), and ηK(τ ∗

K) respectively.

meshes produced by the adaptive refinement procedures are shown in Figure 11.

The meshes obtained using ηK(τ
(2)
K ) are virtually identical to those obtained

using ηK(τ ∗
K) and are therefore not shown. It will be observed that the meshes

produced using the estimator ηK(τ
(1)
K ) tend to exhibit a more diffuse refine-

ment in the boundary layer compared with those obtained using the true error
and the remaining estimators, which accounts for the poorer accuracy of the
resulting approximation.
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[8] P. Neittaanmäki and S. Repin, Reliable methods for computer simulation. Error con-

trol and a posteriori estimates, Elsevier, Amsterdam, 2004.
[9] L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains,

Arch. Rational Mech. Anal. 5 (1960) 286–292.
[10] H.-G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed

Differential Equations, vol. 24 of Series in Computational Mathematics, Springer-Verlag,
1996.

[11] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput.
Math. 7 (2007) 245–269.

[12] R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction-

diffusion equation, Numer. Math. 78 (1998) 479–493.

Mark Ainsworth, Department of Mathematics, Strathclyde University, 26 Rich-

mond St., Glasgow G1 1XH, Scotland.

E-mail address: M.Ainsworth@strath.ac.uk
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