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Abstract

We study the notion of conservative translation between logics introduced by Feitosa
and D’Ottaviano [5]. We show that classical propositional logic (CPC) is universal in
the sense that every finitary logic over a countable set of formulas can be conservatively
translated into CPC. The translation is computable if the logic is decidable. More
generally, we show that one can take instead of CPC a broad class of logics (extensions of
a certain fragment of full Lambek calculus FL) including most nonclassical logics studied
in the literature, hence in a sense, (almost) any two reasonable logical systems can be
conservatively translated into each other. We also provide some counterexamples, in
particular the paraconsistent logic LP is not universal.

1 Introduction

There have been several proposals of a general concept of a translation or interpretation
between abstract logical systems, see e.g. [1, 8] for overviews. A minimalist approach was
taken by da Silva, D’Ottaviano and Sette [11]: a logic is given by any Tarski-style consequence
operator, and then a translation of one logic in another is an arbitrary mapping of formulas
to formulas preserving the consequence relation. Feitosa and D’Ottaviano [5] consider the
stronger notion of conservative translations, which preserve the consequence relation in both
directions. This avoids uninteresting examples of translations such as mapping all formulas
to a fixed tautology.

This notion of a conservative translation is still very general (perhaps too general): for
instance, translations are not required to respect the structure of formulas in any way, to be
computable, or to preserve any properties of the logic. For this reason, it is natural to expect
that there should exist a conservative translation between more or less any two reasonable
logical systems. Nevertheless, no result to such effect appears in the literature. Instead, there
are several papers devoted to proofs (often non-constructive) of the existence of conservative
translations between particular pairs of logics: [2, 3, 4].
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The main purpose of this paper is to demonstrate that for a quite large class of logics,
it is indeed possible to construct a conservative translation between any two of them. First,
we prove that an arbitrary finitary logic L in countably many formulas can be conservatively
translated into classical propositional logic (CPC), in either the single-conclusion or multiple-
conclusion setting. Our translation is constructed by an explicit inductive definition, and it is
computable whenever L is decidable. Moreover, the translation has the additional property
of being most general in the sense that every other translation of L to CPC is equivalent to
its substitution instance.

Let us define a logic L to be universal if every finitary logic in countably many formulas
can be conservatively translated into L, so that the result above can be restated by saying that
CPC is universal. We generalize this result by showing that every logic between the→,←,∧
fragment of the full Lambek calculus FL (see [6]) and the corresponding fragment of CPC
is universal, and similarly, any logic between BCK (the implication fragment of FLew) and
CPC�→ is universal. This establishes the universality of most of nonclassical logics studied
in the literature, as they typically extend (a suitable fragment of) FL in one way or another:
this includes e.g. intuitionistic and intermediate logics, various modal, substructural, fuzzy,
or relevant logics, both propositional and first-order.

As an additional example, we show that Kleene’s logic with truth constants is universal,
whereas the paraconsistent logic LP—based on the same algebra but with a different choice
of designated truth values—is not universal. We also completely characterize universal frag-
ments of CPC: a fragment CPC�B is universal if and only if implication is definable from
B. (In particular, we obtain a couple of nontrivial examples of logics into which CPC cannot
be conservatively translated, namely LP and the fragments CPC�↔,¬, CPC�∧,∨,⊥,>.)

The paper is organized as follows. In Section 2 we give basic definitions, and we construct
conservative translations into classical logic. In Section 3 we investigate the class of universal
logics, as detailed above. Section 4 consists of concluding remarks.

2 Translation to classical logic

In this section, we are going to construct conservative translations of (almost) arbitrary logics
into classical logic (Theorem 2.4). First we review the relevant definitions to fix the notation.

Definition 2.1 A pair L = 〈F,`〉 is a logic over a set of formulas F if ` ⊆ P(F )×F satisfies

(i) ϕ ` ϕ,

(ii) Γ ` ϕ implies Γ,Γ′ ` ϕ,

(iii) if Γ ` ϕ and ∆ ` ψ for all ψ ∈ Γ, then ∆ ` ϕ,

for every ϕ ∈ F and Γ,Γ′,∆ ⊆ F . A logic is finitary if

(iv) Γ ` ϕ implies Γ′ ` ϕ for some finite Γ′ ⊆ Γ.

2



When discussing algorithmic issues, we will tacitly assume that F is encoded as a recursively
enumerable subset of ω.

A logic L = 〈F,`〉 is a propositional logic if F is the set of formulas built inductively from
a set of variables and a set of finitary connectives (i.e., F is a free algebra in a particular
signature), and ` is structural (substitution-invariant):

(v) Γ ` ϕ implies σ(Γ) ` σ(ϕ) for every substitution σ,

where as usual, a substitution is a homomorphism of free algebras. Let CPC = 〈FCPC,`CPC〉
denote the usual consequence relation of classical propositional logic in countably infinitely
many variables.

Definition 2.2 A translation from a logic L0 = 〈F0,`0〉 to a logic L1 = 〈F1,`1〉 is a function
f : F0 → F1 such that

Γ `0 ϕ ⇒ f(Γ) `1 f(ϕ)

for every Γ ⊆ F0, ϕ ∈ F0. We will write this as f : L0 → L1. The translation f is conservative,
written as f : L0 →c L1, if

Γ `0 ϕ ⇔ f(Γ) `1 f(ϕ).

We write L0 ≤c L1 if there exists a conservative translation f : L0 →c L1.

The translations to classical logic we construct have an additional property which might
be of independent interest, hence we give it a name:

Definition 2.3 Let L0 = 〈F0,`0〉 be a logic, and L1 = 〈F1,`1〉 a propositional logic. A
translation f : L0 → L1 is most general if for every translation g : L0 → L1, there exists a
substitution σ such that g(ϕ) a`1 σ(f(ϕ)) for every ϕ ∈ F0.

Notice that if L0 ≤c L1 and L1 is finitary, then L0 is also finitary.
The main result of this section is:

Theorem 2.4 For every finitary logic L = 〈F,`〉 over a countable set of formulas F , there
exists a conservative most general translation f : L→c CPC.

If ` is decidable, then f is computable. In general, f is Turing equivalent to (the finitary
fragment of ) `.

We will prove Theorem 2.4 below as a corollary to its multiple-conclusion version. Apart
from being more general, the construction of the translations in the multiple-conclusion case
is more transparent and displays better the underlying symmetry, we thus find it preferable
to giving a direct proof for the single-conclusion case, which feels a bit ad hoc.

Definition 2.5 A pair L = 〈F,`〉 is a multiple-conclusion logic [10] if ` ⊆ P(F ) × P(F )
satisfies

(i) ϕ ` ϕ,

(ii) Γ ` ∆ implies Γ,Γ′ ` ∆,∆′,
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(iii) if Γ,Π ` Λ,∆ for every Π,Λ such that Π ∪ Λ = Ξ, then Γ ` ∆,

for every ϕ ∈ F and Γ,Γ′,∆,∆′,Ξ ⊆ F . A multiple-conclusion logic is finitary if

(iv) Γ ` ∆ implies Γ′ ` ∆′ for some finite Γ′ ⊆ Γ, ∆′ ⊆ ∆.

Note that if L is finitary, condition (iii) can be equivalently simplified to

(iii′) if Γ, ϕ ` ∆ and Γ ` ϕ,∆, then Γ ` ∆.

L is consistent if ∅ 0 ∅. Let CPCm = 〈FCPC,�CPC〉 denote the maximal structural
multiple-conclusion consequence relation for classical propositional logic: Γ �CPC ∆ iff there
is no 0–1 assignment v such that v(ϕ) = 1 for all ϕ ∈ Γ and v(ψ) = 0 for all ψ ∈ ∆. (In other
words, Γ �CPC ∆ iff there are finite subsets Γ′ ⊆ Γ, ∆′ ⊆ ∆ such that `CPC

∧
Γ′ →

∨
∆′.)

We generalize the notions of translations, conservative translations, propositional logics,
and most general translations to the multiple-conclusion setting in the obvious way.

Theorem 2.6 For every finitary consistent multiple-conclusion logic L = 〈F,`〉 over a count-
able set of formulas F , there exists a conservative most general translation f : L→c CPCm.

If ` is decidable, then f is computable. In general, f is Turing equivalent to `.

Proof: Let F = {αn : n ∈ ω} be a (not necessarily injective) enumeration. We will define
a sequence of formulas f(αn) := βn ∈ FCPC by induction on n. We denote by pn the nth
propositional variable of CPC. We abbreviate αX = {αi : i ∈ X}, and similarly for βX ;
moreover, we are going to use the identity n = {i ∈ ω : i < n}.

Assume by the induction hypothesis that βi have been already defined for all i < n in
such a way that

(1) αX ` αY ⇒ βX �CPC βY

for every X,Y ⊆ n. Define βn by

γn :=
∨

X,Y⊆n
αX`αn,αY

(∧
βX ∧ ¬

∨
βY

)
,

δn :=
∧

X,Y⊆n
αX ,αn`αY

(∧
βX →

∨
βY

)
,

βn := γn ∨ pn ∧ δn.

Notice that �CPC γn → δn: if αX ` αn, αY and αW , αn ` αZ , then αX , αW ` αY , αZ , hence

�CPC

∧
βX ∧

∧
βW →

∨
βY ∨

∨
βZ

by (1), i.e.,
�CPC

(∧
βX ∧ ¬

∨
βY

)
→

(∧
βW →

∨
βZ

)
.

It follows that it does not matter whether we read the definition of βn as γn ∨ (pn ∧ δn) or
(γn ∨ pn) ∧ δn.
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We claim that (1) holds for X,Y ⊆ n + 1. If X,Y ⊆ n, this follows from the induction
hypothesis. If n ∈ X ∩ Y , then trivially βX �CPC βY . Assume that αX ` αn, αY , where
X,Y ⊆ n. Then ∧

βX ∧ ¬
∨
βY �CPC γn �CPC βn,

hence by reasoning in CPC,
βX �CPC βY , βn.

The case αX , αn ` αY is handled similarly using the definition of δn.
Thus, f is well defined, and by (1) and finitarity of L, it is a translation of L to CPCm. In

order to show that f is conservative, assume that αW 0 αZ , we need to prove βW 2CPC βZ .
Obviously, W ∩ Z = ∅. By the cut rule (i.e., Definition 2.5 (iii), applied with Ξ = F ), we
may assume that W ∪ Z = ω. Let v be the valuation such that

v(pn) =

{
1, n ∈W,
0, n ∈ Z.

We will show v(βn) = v(pn) by induction on n, which implies βW 2CPC βZ .
Assume that n ∈ W . If X,Y ⊆ n are such that αX , αn ` αY , then we cannot have

simultaneously X ⊆ W and Y ⊆ Z. If i ∈ X r W , then v(βi) = 0 by the induction
hypothesis; similarly, if i ∈ Y rZ, then v(βi) = 1. Thus, v(

∧
βX) = 0 or v(

∨
βY ) = 1. Since

X,Y were arbitrary, we obtain v(βn) = v(δn) = 1.
If n ∈ Z, we obtain v(βn) = v(γn) = 0 by a similar argument.
Clearly, the explicit recursive definition of f can be realized by an algorithm with an

oracle for `. On the other hand, since f is a conservative translation into the decidable logic
CPCm, the relation ` is Turing reducible to f (or its graph, if we insist on oracles’ being
sets rather than functions).

It remains to show that f is a most general translation of L to CPCm. Let g : L→ CPCm,
and let σ be the substitution defined by σ(pn) = g(αn). We have to establish

(2) �CPC g(αn)↔ σ(βn)

for every n, and we proceed by induction on n. The definition of βn implies that (2) is
equivalent to

σ(γn) �CPC g(αn) �CPC σ(δn).

Using the definitions of γn, δn and the induction hypothesis, this is equivalent to∨
X,Y⊆n

αX`αn,αY

(∧
g(αX) ∧ ¬

∨
g(αY )

)
�CPC g(αn) �CPC

∧
X,Y⊆n

αX ,αn`αY

(∧
g(αX)→

∨
g(αY )

)
,

which in turn follows from the fact that g is a translation: for example, if X,Y ⊆ n are such
that αX ` αn, αY , then g(αX) �CPC g(αn), g(αY ), hence

∧
g(αX) ∧ ¬

∨
g(αY ) �CPC g(αn).

�
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Proof (of Theorem 2.4): Let L = 〈F,`〉 be a finitary logic over countable F , and define its
conservative multiple-conclusion extension Lm = 〈F,`m〉 by

Γ `m ∆ iff ∃ψ ∈ ∆ Γ ` ψ.

Let f : Lm →c CPCm be the conservative minimal translation from Theorem 2.6. Since
`CPC is the single-conclusion fragment of �CPC, f : L→c CPC. Moreover, if g : L→ CPC,
then g : Lm → CPCm, hence g is CPC-equivalent to σ ◦ f for some substitution σ. �

Remark 2.7 Even if L = CPC, the translation f from Theorem 2.4 is not (equivalent
to) the identity, since it has the additional property that f(Γ) `CPC

∨
i<n f(ϕi) implies

f(Γ) `CPC f(ϕi) for some i < n.

3 Universal logics

From now on, we only consider single-conclusion logics.

Definition 3.1 A logic L0 is universal if L ≤c L0 for every finitary logic L over countably
many formulas.

(In all cases where we establish universality below, it is possible to construct an f : L→c L0

Turing equivalent to `L, as in the case of CPC. However, we decided not to include this
condition in the definition.)

In the previous section, we proved that CPC is a universal logic. The main result of this
section, Theorem 3.10, is a generalization of our construction to a large class of nonclassical
logics in place of CPC.

Before we get to the main result, we discuss some examples showing that the question
of which logics CPC can be conservatively translated into is considerably more subtle than
which logics can be conservatively translated into CPC.

Corollary 3.2

(i) If L0 is universal and L0 ≤c L1, then L1 is universal.

(ii) L0 is universal iff CPC ≤c L0.

Example 3.3 Let A3 = 〈{0, ∗, 1},∧,∨, 0, 1,¬〉 be the 3-element bounded lattice endowed
with an operation ¬0 = 1, ¬1 = 0, ¬∗ = ∗. Recall that Kleene’s 3-valued logic K (with
truth constants) is the propositional logic using connectives ∧,∨,¬,>,⊥ whose consequence
relation is defined by A3 where 1 is the only designated value, and the paraconsistent logic of
paradox LP is defined similarly but with both 1, ∗ taken as designated. We have:

(i) K is universal.

(ii) LP is not universal.

(Notice that K without truth constants is trivially not universal, as it has no tautologies.)
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Proof: (i): Let f(ϕ) be a conjunctive normal form of ϕ, obeying the convention that no
variable and its negation can appear simultaneously in a clause, and we use >,⊥ for empty
conjunctions and disjunctions, respectively. We claim that f : CPC→c K. Since K ⊆ CPC
and ϕ a`CPC f(ϕ), we clearly have

f(Γ) `K f(ϕ) ⇒ Γ `CPC ϕ.

In order to show the converse implication, it suffices to prove that

Γ `CPC ϕ ⇒ Γ `K ϕ

holds whenever Γ∪{ϕ} is a set of clauses. Let v be a valuation in A3 such that v(Γ) = 1 and
v(ϕ) 6= 1. We modify v to make it a Boolean valuation v′ as follows. If l ∈ ϕ is a literal such
that v(l) = ∗, we put v′(l) = 0; we can do this for all such l simultaneously since ϕ does not
contain both l and ¬l. If p is a variable such that v(p) = ∗ and neither p nor ¬p appears in
ϕ, we pick v′(p) ∈ {0, 1} arbitrarily. After this modification, v′ is a classical valuation such
that v′(ϕ) = 0, and since all literals with value 1 kept their value, we still have v′(Γ) = 1.

(ii): Assume for contradiction f : CPC →c LP. Let {vi : i < n} be the list of all
valuations in A3 such that vi(f(⊥)) = 0 and vi(pj) = ∗ for every variable pj not occurring
in f(⊥). Put ϕi = pi for i < n, ϕn = ¬

∧
i<n pi. We have ϕ0, . . . , ϕn `CPC ⊥, which implies

f(ϕ0), . . . , f(ϕn) `LP f(⊥). Since vi(f(⊥)) = 0, we must have vi(f(ϕji)) = 0 for some ji ≤ n.
Put J = {ji : i < n}. We claim that

{f(ϕj) : j ∈ J} `LP f(⊥).

Indeed, if v(f(⊥)) = 0, there exists an i such that v and vi coincide on variables occurring
in f(⊥). We have vi(f(ϕj)) = 0 for some j ∈ J . If ≺ is the partial order induced by ∗ ≺ 0,
∗ ≺ 1, then functions definable in A3 are ≺-monotone, and vi � v, hence v(f(ϕj)) = 0. Thus,
by the conservativity of f ,

{ϕj : j ∈ J} `CPC ⊥ for some |J | ≤ n.

This contradicts the definition of ϕ0, . . . , ϕn. �

In order to get some insight which logics can or cannot be expected to be universal
depending on their available list of connectives, we characterize universal fragments of classical
logic below.

Definition 3.4 If L is a propositional logic, and B a set of connectives definable in L (i.e.,
L-formulas), we denote by L�B the fragment of L using only formulas built from B.

A clone on a set X is a set of finitary operations on X which is closed under composition
and contains all projections. If B is a set of operations on X, then we denote by [B] the clone
generated by B. Notice that if B is a set of Boolean functions, then definable functions in
CPC�B are exactly the functions from [B], hence clones on {0, 1} are in 1–1 correspondence
with fragments of CPC considered up to term equivalence.

The lattice of clones on {0, 1} was completely described by Post [9] (see also Lau [7] for a
modern exposition). We will in particular need to refer to the following clones:
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• The clone P0 of all 0-preserving functions (i.e., f(0, . . . , 0) = 0).

• The clone D of all self-dual functions (i.e., f(¬x1, . . . ,¬xn) = ¬f(x1, . . . , xn)).

• The clone A of all affine functions (f(x1, . . . , xn) =
∑

i∈I xi + c, where c ∈ {0, 1},
I ⊆ {1, . . . , n}, and + denotes addition modulo 2).

• The clone M of all monotone functions.

• The clone T∞1 of functions bounded below by a variable (there exists i such that xi ≤
f(x1, . . . , xn) for every ~x ∈ {0, 1}n).

The following lemma follows immediately from inspection of Post’s lattice, though we invite
the reader to give a direct proof:

Lemma 3.5 If B is a set of Boolean functions, then → /∈ [B] if and only if B is included in
P0, D, A, or M . �

Theorem 3.6 Let B be a set of Boolean functions. The fragment CPC�B is universal if and
only if → is definable from B.

Proof: Left-to-right: if → /∈ [B], then B is included in one of the clones mentioned in
Lemma 3.5. If B ⊆ P0 or B ⊆ D, then > /∈ [B]; in other words, CPC�B has no tautologies,
and therefore cannot be universal.

Let B ⊆ A. We claim that if ϕ,ψ ∈ A, then ϕ ≤ ψ only if ϕ = 0 or ψ = 1 or ϕ = ψ.
Write ϕ(~x) =

∑
i∈I xi + c, ψ(~x) =

∑
i∈J xi + d. If ψ 6= 1, there is a Boolean valuation v such

that v(ψ) = 0. If I * J , we can change the valuation of any xi such that i ∈ I r J to make
v(ϕ) = 1, contradicting ϕ ≤ ψ. Thus, ψ = 1 or I ⊆ J . Since ϕ ≤ ψ implies ¬ψ ≤ ¬ϕ, the
same argument gives ϕ = 0 or J ⊆ I. Finally, if I = J , then ψ = ϕ or ψ = ¬ϕ; in the latter
case, ϕ ≤ ψ can only hold if ϕ and ψ are constant 0 and 1, respectively.

In particular, there is no strictly increasing chain of length more than 3 of affine functions
ordered by entailment, hence we cannot conservatively translate CPC (even with just 2
variables) into CPC�B.

If B ⊆M , we will show CPC�B ≤c LP, hence CPC�B is not universal by Example 3.3.
Since M = [∧,∨,>,⊥], we may assume B = {∧,∨,>,⊥}. Let σ be the substitution such
that σ(p) = p ∧ ¬p. We claim

Γ `CPC�B
ϕ ⇔ σ(Γ) `LP σ(ϕ).

Notice that σ, being a substitution, is a bounded lattice homomorphism of the respective free
algebras. Let A2 denote the 2-element bounded lattice. The mapping π : A3 → A2 such that
π(1) = π(∗) = 1, π(0) = 0, is also a bounded lattice homomorphism, and it preserves (in both
directions) the sets of designated elements.

If v is a valuation in A3 such that v(σ(Γ)) ≥ ∗, v(σ(ϕ)) = 0, then v′ = π ◦ v ◦ σ is a
valuation in A2 such that v′(Γ) = 1 and v′(ϕ) = 0, hence Γ 0CPC ϕ.
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Conversely, if v′ is a valuation in A2 such that v′(Γ) = 1 and v′(ϕ) = 0, let v be the
valuation in A3 induced by

v(pi) =

{
∗ v′(pi) = 1,

0 v′(pi) = 0.

Then π ◦ v ◦ σ = v′, hence v(σ(Γ)) ≥ ∗, v(σ(ϕ)) = 0.
Right-to-left: we construct f : CPC→ CPC�→ as follows. First, we rename all proposi-

tional variables in the style of Hilbert’s hotel so that we obtain a spare variable q which does
not occur in any formulas. Then, for each formula ϕ not containing q, let f(ϕ) be an implica-
tional formula equivalent to ϕ ∨ q; it exists as [→] = T∞1 . (For a more explicit construction,
we can use the functional completeness of {→,⊥} to write ϕ(~p)↔ ψ(~p,⊥) for some ψ ∈ [→],
and then put f(ϕ) = (ψ(~p, q)→ q)→ q.) It is easy to see that f : CPC→c CPC�→. �

Remark 3.7 Note in particular that the affine fragments CPC�↔ or CPC�↔,¬ are strongly
regularly finitely algebraizable, i.e., as nice as it can get from the general point of view. On
the other hand, Kleene’s logic is not even equivalential. This shows that universality does
not have much to do with abstract algebraic properties of the logic. Consequently, if we want
to establish universality of a class of logics, we cannot rely only on their general properties,
at some point we have to resort to working with particular systems. We at least try to pick
as weak a base system as possible so that our result covers a broad class of logics including
most systems studied in the literature.

Definition 3.8 A residuated lattice is a structure 〈L,∧,∨, ·,→,←, 1〉 where 〈L,∧,∨〉 is a
lattice, 〈L, ·, 1〉 is a monoid, and

b ≤ a→ c ⇔ a · b ≤ c ⇔ a ≤ c← b

for every a, b, c ∈ L. (In particular, a · (a → b) ≤ b, (b ← a) · a ≤ b). An FL-algebra is
a residuated lattice L with a distinguished point 0 ∈ L. The full Lambek calculus FL is
the propositional logic using connectives ∧,∨, ·,→,←, 1, 0 such that `FL is complete with
respect to the class of logical matrices whose underlying algebras are FL-algebras L, with
{x ∈ L : x ≥ 1} taken as the set of designated elements. FLe is complete with respect
to commutative FL-algebras (x · y = y · x), and FLew with respect to 0-bounded integral
(0 ≤ x ≤ 1) commutative FL-algebras. In a sequent calculus formulation of FL, e corresponds
to the exchange rule, and w to the weakening rule. For more information about FL and its
extensions or fragments, we refer the reader to [6].

If Γ = 〈ϕ1, . . . , ϕk〉 is a sequence of formulas, we define

Γ→ ψ := ϕ1 → (ϕ2 → (ϕ3 → · · · (ϕk → ψ) · · ·)),
ψ ← Γ := (· · · ((ψ ← ϕ1)← ϕ2) · · · ← ϕk−1)← ϕk.

If k = 0, it is understood that Γ → ψ = ψ ← Γ = ψ. We also put
∏

Γ = ϕ1 · ϕ2 · . . . · ϕk

(
∏

Γ = 1 if k = 0), and ϕk = ϕ · ϕ · . . . · ϕ︸ ︷︷ ︸
k times

. Notice that in FL, Γ → ψ is equivalent to∏
Γ−1 → ψ, and ψ ← Γ is equivalent to ψ ←

∏
Γ−1, where Γ−1 denotes the reversal of the

sequence Γ.
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Remark 3.9 Let L be a finitary logic over countably many formulas F = {αn : n < ω}.
From the proofs of Theorems 2.4 and 2.6 we know that there is a conservative translation
f : L→c CPC such that f(αn) = βn is inductively defined to be equivalent to the formula

(3)
∧

X⊆n>k
αX ,αn`Lαk

(βX → βk) ∧
(
pn ∨

∨
Z⊆n

αZ`Lαn

∧
βZ

)
.

Theorem 3.10 A logic is universal whenever it conservatively extends a logic L0 such that

(i) FL�→,←,∧ ⊆ L0 ⊆ CPC�→,←,∧, or

(ii) FLe�→,∧ ⊆ L0 ⊆ CPC�→,∧, or

(iii) FLew�→ = BCK ⊆ L0 ⊆ CPC�→.

Proof: (i): Put π(p, q) = (p→ q)→ q. Using the notation from Definition 3.8, Remark 3.9,
and from the proof of Theorem 2.6, we put f(αn) = βn, where we define inductively

βn := (q → q) ∧
∧

αX ,αY ,αn`Lαk

((βY → βk)← βX) ∧
(( ∧

αZ`Lαn

(π(pn, q)← βZ)
)
→ π(pn, q)

)
.

The first big conjunction in βn is taken over all k < n and all repetition-free disjoint sequences
X and Y consisting of elements i < n such that αX , αY , αn `L αk, and similarly for the
second conjunction. If there are no Z ⊆ n such that αZ `L αn, then the last conjunct of βn

is understood to be just π(pn, q).
Since βn(q/⊥) is classically equivalent to (3), we obtain immediately

f(Γ) `CPC f(ϕ) ⇒ Γ `L ϕ.

In order to show
Γ `L ϕ ⇒ f(Γ) `FL f(ϕ),

it suffices to prove by induction on n that for every k < n and every sequence Z of elements
of n,

(4) αZ `L αk ⇒ `FL βZ → βk.

The statement is vacuously true for n = 0. Assume that it holds for n, we will prove it for
n+ 1.

Claim 1 Let 〈L,∧,∨, ·,→,←, 1〉 be a residuated lattice, and u ∈ L.

(i) Lu := {a ∈ L : au, ua ≤ a} is closed under →,←,∧ (as well as ·,∨, but we will not need
this).

(ii) If u = q → q for some q ∈ L, then 1 ≤ u, u2 ≤ u, and Lu contains u as well as all
elements of the form π(a, q).
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(iii) FL proves βi · βj → βi, βj · βi → βi, and βX → (q → q).

Proof: (i): Let a, b ∈ Lu.
We have u(a ∧ b) ≤ ua ≤ a and u(a ∧ b) ≤ ub ≤ b, hence u(a ∧ b) ≤ a ∧ b. The proof of

(a ∧ b)u ≤ a ∧ b is symmetric.
Since a(a→ b)u ≤ bu ≤ b, we have (a→ b)u ≤ a→ b. Similarly, au(a→ b) ≤ a(a→ b) ≤

b, hence u(a→ b) ≤ a→ b.
The case of a← b is symmetric.
(ii): 1 ≤ u is clear, and u2 ≤ u (which implies u ∈ Lu) is a special case of

(5) (a→ b)(b→ c) ≤ a→ c.

Put p = (a→ q)→ q. We have p(q → q) ≤ p from (5). Also, (a→ q)(q → q)p ≤ (a→ q)p ≤
q, hence (q → q)p ≤ p.

(iii): Consider a valuation v in a residuated lattice L, and put u = v(q) → v(q). By (i)
and (ii), v(βi) ∈ Lu, and clearly v(βj) ≤ u, hence v(βi)v(βj) ≤ v(βi) and v(βj)v(βi) ≤ v(βi).
Finally, v(

∏
βX−1) ≤ u|X| ≤ u by (ii). � (Claim 1)

If follows from the Claim that it is enough to prove (4) for repetition-free sequences Z not
containing k. The only interesting cases are those involving n: i.e., Z = X a n a Y or k = n.

Assume that αX , αn, αY `L αk. Then the definition of βn ensures `FL βn → ((βY →
βk)← βX), hence `FL βn ·

∏
βX−1 → (βY → βk), which in turn gives `FL

∏
βX−1 → (βn →

(βY → βk)) and `FL βX → (βn → (βY → βk)).
Assume that αZ `L αn. We have `FL βZ → (q → q) by the Claim. Whenever

αX , αn, αY `L αk, we have αX , αZ , αY `L αk by cut, hence `FL βX → (βZ → (βY →
βk)) by the induction hypothesis. By a similar argument as above, this is equivalent to
`FL βZ → ((βY → βk) ← βX). Finally, that βZ implies the last conjunct of βn follows from
`FL βZ → ((π(pn, q)← βZ)→ π(pn, q)).

(ii) follows immediately from (i), as (ϕ← ψ) = (ψ → ϕ) in FLe.
(iii): We define inductively

r0 := 0,

rn+1 := 1 + n2nrn,

εn :=
( ∏

αX ,αn`Lαk

(βrn
X → βk)

)
·
(( ∏

αZ`Lαn

(βZ → pn)
)
→ pn

)
,

βn := (εn → q)→ q,

where X,Z ⊆ n, k < n. (We can treat X,Z like sets, as we have exchange.) Notice that
fusion only appears in βn in premises of implications, hence βn can be equivalently rewritten
as a formula f(αn) using only →.

Since βn(q/⊥) is classically equivalent to (3), we have

f(Γ) `CPC f(ϕ) ⇒ Γ `L ϕ.
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By induction on n, we will show that

(6) αW `L αk ⇒ `FLew βrn
W → βk

holds for every k < n and every W ⊆ n. The statement is vacuously true for n = 0. Assume
that it holds for n, we will prove it for n+ 1. Since we have weakening, it suffices to consider
the cases k = n, W ⊆ n and k < n, W = X ∪ {n}, X ⊆ n.

Assume αX , αn `L αk. Using the definition and commutativity, we have `FLew βrn
X →

(εn → βk), which implies

`FLew βrn
X → ((βk → q)→ (εn → q)).

The definition of βk gives `FLew (εk → q)→ (βk → q) using commutativity, hence

`FLew βrn
X → ((εk → q)→ (εn → q)).

This implies `FLew βrn
X → (((εn → q)→ q)→ ((εk → q)→ q)), i.e., `FLew βrn

X → (βn → βk).
We obtain

`FLew β
rn+1

X → (βrn+1
n → βk)

by weakening, using rn ≤ rn+1.
Assume αW `L αn. We have `FLew βW → ((βW → pn)→ pn), hence

`FLew βW →
(( ∏

αZ`Lαn

(βZ → pn)
)
→ pn

)
by weakening. Whenever αX , αn `L αk, we have αX , αW `L αk by cut, hence

`FLew βrn
W → (βrn

X → βk)

by the induction hypothesis and weakening. Since there are at most n2n pairs 〈X, k〉 such
that X ⊆ n, k < n, and αX , αn `L αk, we have

`FLew βn2nrn
W →

∏
αX ,αn`Lαk

(βrn
X → βk).

Putting the pieces together, we have `FLew β
rn+1

W → εn, hence

`FLew β
rn+1

W → βn. �

Remark 3.11 Every consistent substitution-invariant extension of BCK (in the same lan-
guage) is contained in CPC�→. This is no longer true for FLe�→,∧, nevertheless one can
show that (i) and (ii) of Theorem 3.10 remain true when CPC is replaced with any consis-
tent substitution-invariant extension of FL�→,←,∧ or FLe�→,∧, respectively.
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4 Conclusion

Our results (Theorems 2.4 and 3.10 and Example 3.3) show that any countable finitary logic
can be conservatively translated into (among others):

• Classical propositional logic.

• Intuitionistic, minimal and intermediate logics.

• Modal logics (classical or intuitionistic), including variants such as temporal or epistemic
logics.

• Substructural logics, such as various extensions of FL or linear logic.

• Fuzzy and many-valued logics, such as MTL, BL and their extensions (e.g.,  Lukasiewicz
logic).

• Relevant logics, such as R.

• Kleene’s logic.

• First-order (or higher-order) extensions of the above logics.

• Implication fragments of many of the above logics.

This includes most of logical systems (fitting into the framework of Tarski-style consequence
relations) studied in the literature on non-classical logic. We have also discovered some
counterexamples, namely CPC cannot be conservatively translated into its monotone or
affine fragments, or into the paraconsistent logic LP.

While there are still some loose ends left (most importantly, we were unable to determine
whether the logic BCI = FLe�→ is universal, though it seems plausible), these results show
that the mere existence of a conservative translation of one logic into another without further
restrictions does not provide useful information on the relationship of the two logics, and a
more refined criterion is needed to formalize the intuitive notion of translatability.
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between logics, in: Models, Algebras, and Proofs (X. Caicedo and C. Montenegro, eds.),
Lecture Notes in Pure and Applied Mathematics vol. 203, Marcel Dekker, New York,
1999, pp. 435–448.

14

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

