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Abstract

We study the equations describing the steady flow of a compressible radiative
gas with newtonian rheology. Under suitable assumptions on the data which in-
clude the physically relevant situations (i.e. the pressure law for monoatomic gas,
the heat conductivity growing with square root of the temperature) we show the
existence of a variational entropy solution to the corresponding system of partial
differential equations. Under additional restrictions we also show the existence of a
weak solution to this problem.

Keywords: radiative gas; variational entropy solution; weak solution; compensated com-
pactness

MS Classification: T6N10, 35Q30

1 Introduction

We consider the following system of partial differential equations in a bounded domain
QCR?

(1.1) div (pu) =0
(1.2) div (pu ® u) —divS + Vp = of —sp
(1.3) div (oFu) = of - u — div (pu) + div (Su) — divq — sg

together with the steady radiative transport equation in Q x 8% x (0, c0)

(1.4) M+ w-Vyl =8
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Here p(x) > 0 denotes the density of the gas, u(x) the velocity. Next unknowns are
absolute temperature J(x) > 0 appearing in the system implicitly and the radiative
intensity I(x,w,r) > 0 depending also on the direction vector w € S§? and the frequency
v € (0,00). By 8 C R® we denote the unit sphere, )\ is a positive constant.

We assume the stress tensor S to have the following form

(1.5) S = §*(W, Vu) = p*(9) |Vu + (Vu)" — ;div ull | + £%(9)div ul,

where p®, £¢ are given functions with properties which will be specified later on. The
pressure p is given by the generalized law for monoatomic gas (cf. [26], [27]), namely

(1.6) p(o, V) = (v —1)ge(o, V)

with e being the specific internal energy and v > 1 the heat capacity ratio. The external
forces are denoted by f. By F we denote the specific total (nonradiative) energy which is
given as a sum of specific kinetic and internal energies

1
(1.7) E(o,u,9) = §|ul2+6(9,?9)-
The heat flux q fulfills the Fourier law
(1.8) q(v) = —k(9)VY

with a given function x whose properties will be stated later on. The right-hand side of
the steady transport equation (1.4) is given by

(1.9) S(x,w,v) =S, + 8y = 0a(B—1)+0,(I—-1).

Here 0,(v,1),0,(v,9) and B(v, ) are again given functions with properties stated later

on. By I we denote the following integral mean

(1.10) I(x,v) ! /521(-,% ) dw.

T 4r

Finally, the terms describing the effects of radiation are given by

(1.11) s(x) = /S /OOO S(x,w, v) dv dw,

and

(1.12) sp(x) = %/52 /000 wS(x,w,v)drdw

with ¢ denoting the speed of light. We will also use the following notation for the radiation
energy

(1.13) By (x) = %/S /Ooo I(x,, 1) dv dw.
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The foundations of the previous system have been extensively described by Pomran-
ing [29] and Mihalas and Weibel-Mihalas [23] in the full framework of special relativity
(oversimplified in our present considerations). System (1.1) (1.4) has been recently inves-
tigated (in the inviscid case) by Lowrie, Morel and Hittinger in [21], Buet and Després [1]
with a special attention to asymptotic regimes, and by Dubroca and Feugeas in [2], Lin
in [19] and Lin, Coulombel and Goudon in [20] for various numerical aspects. Concerning
the existence of solutions for evolutionary problem, a proof of local-in-time existence and
blow-up of solutions (in the inviscid case) has been recently proposed by Zhong and Jiang
[30] (see also the recent papers by Jiang and Wang [16] [17] for a 1D related “Euler-
Boltzmann” model), moreover, a simplified version of the system has been investigated
by Golse and Perthame [14].

In [4]-[6], the authors derived a one-dimensional version of non-steady version of sys-
tem (1.1)—(1.4) and studied existence, uniqueness and large time behavior of the system.

Let us now return to theormodynamical assumptions of our model. The Gibbs relation

(1.14) 114@0)—é%(Dewﬂg_%pwﬂﬂl)(%))

gives the specific entropy up to an additive constant. Using (1.1)—(1.3) it is easy to verify
that the specific entropy formally fulfills the entropy equality

S: Vi 1
(1.15) div(psu) + div(%) = 79Vu ~4 792V + 5(11 “Sp — Sp).
Note further that relation (1.14) is equivalent with the so—called Maxwell relation
de(p,v) 1

(1.16) Ip(e 19))

assuming p, e are sufficiently smooth. Relations (1.6) and (1.16) yield the following form
of the pressure

(117) o) =v7rr (-4

Y71

with P being a nonnegative function. We will further assume

P e ([0, 00)) N C2((0, o))
P0)=0, P'(z)>0VYz>0, P'(0)=py

P
(1.18) lim £ _ Doy > 0
z—oc 27
P(z) — 2P’
0 1P~z (Z)§c<oon>0.

(v—1)z

We recall some properties of functions p(p, ), e(o,9) and s(p,9) which are conse-
quences of assumptions (1.6), (1.14) (1.18). We have for a fixed constant K

cro0 < p(0,9) < copl), for o < Kg7 T

97T for o< Km?ﬁ
o’ for o > K019ﬁ.

1.19
(1.19) c30” <plo.V) <y



Moreover,

dp(o, )

(1.20) do
p=do" +pn(0,9), d>0, with

>0 in (0,00)?

Opm(0,7)
do

>0 in (0,00)%

For the internal energy defined by (1.6) we obtain

1
Dol " <e(0,9) <cs(0" +9) in (0,00)

(1.21) v 90, 0)
do

0<cg(0" " +19) in (0,00)%

The specific entropy defined by the Gibbs relation (1.14) satisfies

0s(e,9) _ 1 (_ple.¥)  Oe(ed) _ _19p(e?)
00 9 0? 0o 0> 0

ds(0,9) _ 10e(o,9) 1 97T 0 o o o
= - = P i 0.
oY 9 oY =1 e s Ty s )T

Finally, the specific entropy fulfills

(1.22)

15(0,9)] < cz(1+|lng|+[Ind|) in (0,00)?
(1.23) s(0,9)] < cs(141Ingl) in (0,00) x (1,00)
' s(o,9) > c9>0 in (0,1) x (1, 00)
s(0,9) > co(l +1n0) in (0,1) x (0,1).

System of equations (1.1) (1.4) is supplemented with the following boundary condi-
tions at OS2

(1.24) u=0
(1.25) —q(¥) -n+ L)Y — 6g) =
(1.26) I'=0 forw-n<0,

where n denotes the outer unit normal to 02, ©y > 0 is a given function at the boundary
02 and L(19) is a given function with properties specified later. Finally, we prescribe the
total mass of the gas

(1.27) / odx = M > 0.
Q

We impose the following conditions on functions appearing in the system (1.1) (1.4).
We assume that L and x are continuous functions with

(128) 0< C11 S L(ﬁ) S C19



(129) 013(1 + ,(9m) S li(ﬂ) S 614(1 + 19m)

for some m > 0. We pay special attention to dependence of the viscosity coefficients on
temperature. We assume that u® and £ are continuous functions with
c15(1 +9%) <p (V) < el +0%)

(1.30) 0 <&*W) < eq7(1 +99)

for some « € (0,1]. In the special case @ = 1 we have

c15(1+9) <p'(0) = p(d) < erg(1+0)
0 <&'(W) = €M) < er(1+9).

Recall that case @ = 1 (for fluid without radiation) has been usually considered in previous
works in this field, i.e. [26], [27]. The case of general « € (0,1) is more complicated and
we have to use a slightly different approach in deriving a priori estimates.

Moreover we assume that o,, o0, and B are continuous functions with

(1.31)

(1.32) 0 < 0,(v,9),05(r,9) < min{cys, 199}
(1.33) o.(v,9),0,(v,9) < h(v), he L'Y0,00)N L>(0,0)
(1.34) 0q(1,9),04(v, ), B(r,9) < ¢9

for all v > 0, ¥ > 0. Relations (1.32)—(1.34) represent a hypothesis neglecting the effects
of radiation at large frequencies v and low temperatures .
Next we present notions of solutions to system (1.1) (1.4).

Definition 1.1. The quadruple (g, u, 9, I) is called a weak solution to system (1.1) (1.4),
ifop>0ae inQ, pc€ LA’@%?’(Q), Joodx =M. ue Wy P(2) for some p € (1,2], ¥ > 0

ae. in Q, 9 € WW(Q) N L¥(Q), T € Lo(Q x S? x (0, 00)), moreover o|u]> € L7 (Q),
oud € L'(Q), S*(¢¥, Vu)u € L' (), 9"V € L}(Q) and

(1.35) / ou-Vipdx =0 Ve C=(Q)
Q

/ (—o(u @ 1) : Voo — plo, 9)div @ + S*(8, Vaa) : Vi + 55 - ) dlx
Q

(1.36)
= /ng-<pdx Vo € C5°(Q)
1 2
/ - (—g lu|” + pe(o, 79)) u-Vydx = / (of - uyp + p(o,V)u - Vi) dx
Q 2 Q
(1.37) _ / ((5°(9, Vu)u) - Vi + £(9) VD - Vi — sp¢)) dx
Q
— / L(0) (¥ — Og)ypdS Vi € C*(Q)
Joq

(1.38) M+w-VI=S inQ x 8% x (0,00) in the sense of distributions.



Definition 1.2. The quadruple (g,u,9,I) is called a variational entropy solution to
system (1.1)-(1.4),if o > 0 a.e. in Q, 0 € L7(Q), [,odx = M, u € W,?(Q) for some

€ (1,2],9 > 0ae. in Q9 e WH(Q) NL™Q), TeL*Nx8*x (0,00)), moreover
olul> € LY(Q), o9 € L}(Q), 971S°(Y, Vu)u € L(Q), ¥" L € L1(Q), 9~! € L'(9Q), the
equalities (1.35), (1.36) and (1.38) are satisfied in the same sense as in Definition 1.1 and
instead of (1.37) we have the entropy inequality

/ (S”(ﬁ,Vu) . Vu M(ﬁ)!WIQ)dejL/a LU) g ds

W, 192 v,
(1.39) < / (/4(19)% — os(p,Nu- Vi — %(u “Sp — @F)¢) dx
Q
LNy dS
+/(er (D)o

for all nonnegative ¢ € C*(Q) together with the global total energy balance

(1.40) / L(?9)(79—@0)dS+AC/Ede+/ / / Iw-ndS—/gf-udx.
o9 Q 29,w-n>0 J82 Jo Q

We introduce an important notion of the renormalized solution to the continuity equa-
tion

p

Definition 1.3. Let u € W,)”(R?) and g € L} (R?) solve

loc loc
div (pu) = 0 in D'(R?).
Then the pair (g, u) is called a renormalized solution to the continuity equation, if
(1.41) div (b(o)u) + (ob'(0) — b())divu =0 in D'(R?)
for all b € C'([0,00)) N WH>(0, 00) with 20/ (z) € L>(0, 00).
The main result of this paper is

Theorem 1.1. Let Q € C? be a bounded domain in R, £ € L®(Q), Oy > Ky > 0 a.e. at
0Q, Oy € L'(Q), M > 0. Moreover, let

a € (0,1]
3 l—a 1 [41-a) (1—a«)?
b | -
7>max{2’ " 6a +2\/ 30 T 9 )
(1.42) 1+a 4(1-a) v(1 = a)?

> 1-—
" max{ “ 73 T2y =3 73(y—-1)2a—9y(1-a)

11—« 1—|—a+7(1—a)}
6(y —Da—1" 3(y—1) '
Then there exists a variational entropy solution to system (1.1) (1.34) in the sense of

Definition 1.2. Moreover, the pair (o,u) is a renormalized solution to the continuity
equation in the sense of Definition 1.3.




If additionally

5 24+«
1.43 ry>max{§: 3a }
(1.43) m>max{1 By-1)1—-a) By—1)(1—-a)+2 (1—04)(7(2—3@)4—04)}
| ’ 3y—-5 3(y—1) " (692 — 9y +5) — 2y

then this solution is a weak solution in the sense of Definition 1.1.

Recall that system (1.1)—(1.4) (without the radiation terms sg and sp, but with ad-
ditional term modelling the radiation ~ 9% in the pressure), i.e. the heat conducting
compressible Newtonian fluid, has been recently considered in [11] for v = 5/3, i.e. for
the model of the monoatomic gas. The same problem as in this paper was considered
in the evolutionary case in [3]; unfortunately, even though the authors consider the evo-
lutionary model for the radiative transport equation in the form similar to (1.4), due to
technical reasons, they had to assume the pressure law of the form p(o,9) = po(o, 9) +c?,
where pg is the pressure from our paper and the last term represents another model of
radiation. In our paper for the steady system, we may remove this term and get the
corresponding result only for the radiation as in (1.4).

Similarly as the results in the steady case below, the approach to treat the compressible
equations goes back to the pioneering seminal work of P.L. Lions [22]. The reader may
consult also [9] or [28] and references quoted there for more details.

In the steady isentropic case (i.e. p = p(p) ~ "), the first result can be found in
[22]; there, the existence of a weak solution was shown for v > g Based on the method
developed by E. Feireisl, an alternative proof is given in [28] and introduces a technique
allowing to treat also the case v < % provided the a priori estimates are available. After
a series of improvements of the a priori estimates, in [12] the authors gave an existence
result for the homogeneous Dirichlet conditions for v > 4/3. A new technique, which
improved the existence for any v > 1 in case of space-periodic boundary conditions was
introduced in [18]; a generalization of this method allowing to treat also the slip boundary
conditions can be found in [15].

In the last few years, a significant progress has been also done in the steady problem
for the heat conducting fluid. The first result for large data goes again back to P.L. Lions
[22], however, only under additional a priori assumption that g is bounded in LP(Q) for
p sufficiently large. The heat conducting fluid with only ¢ € L'(2) a priori was studied
for the first time in [24] for p(p,v) = 0¥ + I with v > 3 and m > :::—j with Navier
(slip) boundary conditions for the velocity. In this case, one can get p € L*>(Q2) and u,
Y € WHP(Q), Vp < co. In the next paper [25], the authors showed the existence of a weak
solution for v > % with both slip and no-slip boundary conditions for velocity. In these two
papers, the viscosities were independent of the temperature which corresponds to o = 0.
In [26], [27] the authors observed that for &« = 1 much better a priori estimates are available
and showed the existence of an entropy variational solution for > , M > max { T 2 }

3(y—1)

(based on the estimates for the density via Bogovskii-type estlmates) and for v > ”‘ﬁ

2 2 7(4y-1)
(y—1)? 9 4y2—3y—2
Frehse, Steinhauer and Weigant). These solutions are weak ones (i.e. fulfill also the weak

formulation of the total energy) provided v > % and m > 1 (Bogovskii-type estimates)

m > max{g, = (for estimates of the density based on the technlque of



and v > %, m > max{1, %37%4} (Frehse-Steinahuer-Weigant-type estimates). Note that in
our paper, for a < 1, we are able to use only the Bogovskii-type estimates. The problem
how to adapt the technique of the local estimates of the pressure to the case a < 1 is one
of the interesting open problems.

2 Approximative system

We will use four-level approximative system with parameters N — oo (denoting the
dimension of space of the Galerkin approximations), n — 07 (denoting the mollification
and truncation of the stress tensor), ¢ — 07 (denoting the elliptic regularization of the
continuity equation) and 6 — 0T (denoting the artificial pressure constant). This kind
of approximation is standard in this area. Let us first recall that we have (see e.g. [26,
Lemma 2))

Lemma 2.1. Let u € W,2(Q), ¥ > 0 and S®(9, Vu) satisfies (1.5) with (1.30). Then
(2.1) / S*(0,u) : Vu dx > C |lul|7, .
0

We proceed with introducing the approximative scheme and prove existence of solu-
tions to this system. For this reason, let us fix N € N and n,&,0 > 0, and denote

(2.2) XY =span {w',..,w"} Cc W, *(Q)

with {w'}>°, being an orthonormal basis of W,?(Q) such that w' € W?4(Q) for all
q € [1,00). We look for (p,u,9, )" such that o € W?9(Q), u € XV, 9 € W*4(Q) and
I € L>®(2x8? % (0,00)) with g € [1,00) arbitrary, where the following set of equations
holds:

1 1 . _
/ (5@(11 . Vu) W — 5Q(u X u) cVw! + 82(79’ vu) . VWZ) dx
(2.3) Q
—/ (p(@,0)+6(g5+g2))divwidx:/ (of -w' — 55 - w') dx
Q

0
foralli=1,..., N,

(2.4) c0—¢eAp+div(pou) =ch ae. in Q
e+

—div ((Hn(ﬁ) + 307 4697 — w) + div (ge(o, 9)u)
1
(2.5) = S2(9, V) : Vu + 60" — p(o, 9)divu + 62 [Vof* (30" 2+ 2)

—(sgp —sp-u) ae. inQ

and

(2.6) MA+w-VI=S,

!For simplicity of notation we skip denoting dependence on parameters N,n,¢,d.



with $ and B large enough,

o _ () 2. £5(9)
(2.7) S, (¥, Vu) = Tt o Vu+ (Vu) 3dlv ull| + T e

div ull,

and where h = %, g, & and kK, are suitable regularizations of 1, £* and k, that conserve

properties (1.29) and (1.30) and converge uniformly on compact subsets of [0, 00) to u®,
£* and k, respectively. We add to system (2.3) (2.6) boundary conditions at 952

do
(2.8) o ="
(2.9) (k5 (9) + 697 + s9~< :; 79% + (L + 89PN —06F) +eln 9 = 0.

Here OF is a strictly positive smooth approximation of .

Theorem 2.2. Let N € N, n,e,0 > 0, let moreover 3 and B be large enough, € suffi-
ciently small with respect to 6. Then under assumptions of Theorem 1.1 and assumptions
made above in this section, there exists a solution to system (2.3) (2.9) such that o €
W21(Q),Vqg < 00,0>0in Q, [odx =Mue Xy, 0 € W»(Q),Yq < 00,9 > C(N) >0
and I € L®(Q x 8% x (0,0)).

The proof is basically analogous to proof of a similar theorem in [26], thus we will
present only the main ideas and give more details in the proof of a priori estimates and
solvability to (2.6). We consider mapping

(2.10) T Xy x W2(Q) = Xy x W29(Q),
where
(2.11) T(v.z) = (ur),

defined in the following way. For a given v we first find p as a (unique) solution to
o —eAp+div(gov) =ch in Q

do
Z8 0
on 0 ato

(2.12)

and for given z we find I as a solution to

M+ (04(v,e*) + o5(v,e*)) [ +w - VI =
(2.13) = 0,(v,e*)B(v,e*) + o,(v,e*)] in QxS x (0,00)
I=0 at o w-n<0.

Finally, we find u as a solution to

4 1 o1 ‘
/ Sg(ez’ V'll) cVwlidx = / (—Q(V & V) cVw! — —Q(V . VV) . Wl) dx
J Q) JQ 2 2

+/ ((po.e*) +6(0” + 0*))divw' + of - W' —sp - W') dx
Q

(2.14)



for all 7 = 1,..., N, and r as a solution to

—div ((ry(e%) + 06 + 8e7%) (e + ) Vr) = —div (0e(0, ¢*))
(215) +Sg(627 VV) : VV + (Sefz _ p(@; ez)divv + (55 |VQ|2 (ﬂgﬂﬂ + 2)
—(sg —sp-v) ae. inQ

with boundary condition at 0f2
0
(2.16) (k,(e*) + 6e*P + de %) (e + ez)a—:; + (L + 6e*B=D)(e* — OF) 4 er = 0.

Note that possible fixed points of 7 correspond to r = In4 in the approximative system
(2.3)—(2.6).

We use the following version of the Schauder fixed point theorem to prove existence
of fixed points of T.

Theorem 2.3. Let T: X — X be a continuous, compact mapping and let X be a Banach
space. Let for any t € [0,1] the fized points tTu = u be bounded. Then T possesses at
least one fized point in X.

Proof. The proof can be found e.g. in [8, Theorem 9.2.4]. O

For fixed v € Xy, we can find unique solution to the approximative continuity equation
(2.12). We have

Lemma 2.4. Let ¢ > 0, h = % Let v.€ Xy. Then there exists unique solution to

(2.12) such that o € W*P(Q) for all p < oo, [, 0dx =M and o0 > 0 in Q. Moreover, the
mapping S: v v o is continuous and compact from Xy to W%P(£2).

Proof. For proof of this lemma see e.g. [28]. O

One of the parts which deserve more detailed explanation is the radiative transport
equation. First we need some compactness of the averages over sphere S? to pass to the
limit in the radiative terms. For that purpose we recall the result of Golse et al. [13,
Theorem 4].

Lemma 2.5. Let I € LP(Q x 8% x (0,00)) and w - VI € LP( x §? x (0,00)) for some
1 <p<oo. Then

~ 1
(2.17) I= —/ I(,w,-)dw
82
belongs to the space LP((0,00); W*P(Q)) for any 0 < s < min{}l—j, 1— %}, and

(2.18) G ) lwen) < CUHC ) paxs) + 10 Val (5 V)l ras2))-

We have

10



Lemma 2.6. Let z € LP(QQ) for some p > 1. Then there exists a solution to (2.13) such
that T € L®(Q x 82 x (0,00)). Moreover, I >0, and

)\// dewdx—// Iw-V¢dwdx+/ /Iw-nwdwdS
(2.19) QJs? QJs? {x€0Q;w-n>0} J S

:/Q/SQSwdwdx

for any ¢ € C1(Q).

Proof. The existence of a solution is achieved by elliptic approximation, i.e. we add term
—aAl to the left-hand side of the equation with a Neumann boundary condition to get

My + (04(v, %) + o5(v,e%)) I, + w - VI, — aAl,
= 0,(v,e*)B(v,e?) + o,(v,e*), in QxS x (0,00)
(2.20) I, =0 at 0Q,w-n<0

oI, =0 at 0Q,w-n>0.
on

Standard elliptic theory (more precisely, the Fredholm theory) yields the existence of a
solution to the approximated radiative transfer equation (2.20), at least for a sequence
a, — 07. Next step is deriving a priori estimates independent of a and passing with «
to zero. We proceed as follows. Multiplying (2.20); by I°~! with b > 1, integrating over
S? and using Holder inequality we get

(2.21)

1
)\/ Igdw+aa/ I(’;dw—l—g/ w.V(Ig)dw—a/ Ig—lAfadwgaaB/ I dw.
52 82 2 S? 52

Next we integrate over ) to get

// Ibdwdx+// a,,]bdwdx+a
(2.22) §? §?

o, BI"™ ldw dx,
0JS2

D / |V(L§)‘2dwdx
aJs

where we have used also integration by parts and boundary conditions (2.20), and (2.20)3.
Finally, integrating dv over (0, oc) and using (1.33), Holder’s and Young’s inequalities we
get

b 4(b - 1) 212 b
(2.23) ||Ia||Lb(st2><(0,oo)) + ab—szLl HL2(Q><$2><(0,0<:)) <O Q) ||h||Lb(07<>0)
and thus in particular
(224) ||I(1||Lb(ﬂ><52><(0,oc)) S C()\J QJ h)

with the constant C independent of b; whence

(225) ||Ia||L°°(Qx52x(0,oo)) < C.

11



To pass to the limit with a;, — 07 in equation (2.20) it is enough to use b = 2. For the
limit I we also have

(2.26) ||I||Loc(Qx52x(o,oo)) <0,

and moreover, using (1.32) (1.34), we get

(2.27) Isellre@) + |IsFllre@ < C,
and

1 1
el e <
( ) 19SE Loo(Q) + 19SF Lo(Q)

Note that the constants C' in (2.25)—(2.28) are independent of any approximation param-
eters.

The non-negativity of I is a direct consequence of the maximum principle for (2.20),
the uniqueness follows from the linearity and limit passage in (2.22). Finally, to show
(2.19), we multiply (2.20); by a smooth function 1) € C'(Q), perform the integration by
parts and pass with a,, = 0%. At this step we apply Lemma 2.5 to ensure the existence
of the trace of I at 0. The lemma is proved. O

For the operator 7 it holds

Lemma 2.7. Under the assumptions of Theorem 2.2, for q > 3, the operator T is a
continuous and compact operator from Xy x W*P(Q) into itself.

Proof. The proof is a straightforward application of a Lax—Milgram theorem as the right-
hand sides of the equations (2.14), (2.15) as well as the boundary terms in (2.16) are
sufficiently smooth and of lower order. The continuity of the operator is standard. [l

Finally we have to prove the following

Lemma 2.8. Let assumptions of Theorem 2.2 be satisfied. Let ¢ > 3. Then there exists
C > 0 such that all solutions to

(2.29) t7(u,r) = (u,r)
Fulfill
(2.30) Tally o + llrllg + 191l < €

where ¥ = €" and C is independent of t € [0, 1].

As the proof is analogous to the one presented in [26] in the case of model without
radiation we just summarize the basic ideas and point out the differences related to
radiative terms in the equations. We proceed as follows:

e Test the approximative momentum equation (2.3) by u which is a suitable combi-
nation of w':

(2.31) /QS?}(ﬁ, u) : Vudx = t/

((p(g, 9) +6(0° + 0°))divu + of —sp - u) dx.
Q
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Integrate the approximative internal energy balance (2.5) over 2 and use boundary
condition (2.9) as well as (2.31):

/ ( (L + 57937])(79 —0))+eln 19) ds

(2.32) +(1—1) /S Vudx+55t/ (%g —|—2g)d
Q
:t/gz(gf-u—irséﬁé

1hgﬁfl + 2e0ho — sg + 519’1) dx.
Derive the entropy version of the approximative energy balance, i.e. divide (2.5) by
¥, and integrate over {2

(2.33)
B e+ V|V 1 ' Y
Q(mn(ﬁ)Jr(W 00 ) e dx (0Sn(q9,u).Vu+5q9 )dx

+/ %(t(LMﬁBl)@g—glnﬁ) dS+t55/l|Vg\2( B0’ % +2) dx
o0

gt/ (L—|-5193_1)d5+t——/ o’ + 97 (sp —sp-u)) dx + Cte.
0 2p-1

Combine arising identities together with the approximative continuity equation (2.4)
(tested by suitable powers of p) and properties of p(g,1),e(o,9) and s(g,9). To
handle the radiative terms we use (2.27) and (2.28) and we end up with:

(2.34)
9|V’ 1 )
/Q( J(9) 460 +9) LB dx+t/ﬂ(58n(z9,u):Vu+5z9 *) dx
u) :

+(1—z&)/Q (0, Vudx+%55t/ (%g +29)dx
1
+t56/05|VQ|2(596 2 +2)dx

977
+/ (t(L19+(379B) 4|l +t—0L) ds < Ct(1+ ‘/(Qf-u+ ]u\)dx‘).
N 19 Q

Estimate (2.34) immediately yields:
(2.35) lally, + [19lls5 + 191l 5 + llells + Ml < €
with the constant C independent of ¢ (and of N and n).

Use properties of space X and regularity results for elliptic equations to get:

(2.36) [[ully,, + [lelly,, < C(N).

Finally use Kirchhoff transform in (2.5) to end up with:

(2.37) ||T||2,q + ||19||2,q < C(N).

13



3 First limit passages

We pass subsequently with N — oo, 7 = 07 and ¢ — 07. As these limit passages (except
for the strong convergence of the density in the last case) are relatively easy, we will
only shortly comment on certain difficulties and rather concentrate ourselves on the more
complex passage 6 — 07 in the last two sections.

3.1 Limit passage N — o0

From (2.34), (2.25) and the standard regularity results for the elliptic problem (2.4) we
get uniform estimates

lanlly, + lowlls + 10nllsp + 1081 + 9571 + 198 ] o0

(3.1) >
+ 5 IVON[, + llonllap + 1]l 057 (0,00) < C(E:0):

Therefore we can extract subsequences from gy, , uy,, Uy, and Iy, converging weakly to
0, u, ¥ and I, respectively, in spaces given by estimates (3.1). This allows us to pass to
the limit with NV — oo in the approximative system and get

1 1
/ (59(11 -Vu) - — §g(u ®u): Ve +S)(J,u) : ch) dx
Q

(3.2)
—/Q(p(g,ﬁ)+6(gﬁ+92))divsodx=/Q(Qf*P—SF"P) dx

for all @ € W,*(Q),
(3.3) eo—cAp+div(gu) =eh a.e. in

with boundary condition

3.4 — =0 at ,
2191 o0
Y
/ ((mn(ﬁ) + 098 + 5191)%V19 : Vip — ge(p,9)u - Vw) dx
Q

+ / (L+ 69" ") (0 —0F) +elnv) ¢dS
(3.5) J 60
- / (S5 (9, u) : Vu+ 607" — p(o, 9)divu+ be [Vol” (80" +2)) ¢ dx
0
—/(SE—SF 'u)de
0

for all ¢ € C*(Q), and
(3.6) M+w-VI=S inQ x &% x (0,00) in the sense of distributions.

The most difficult step in this limit passage is to show that Sy (Jx, uy) : Vuy — Sp(d,u) :
Vu in L'(Q). This is a consequence of the fact that we are able to use u as a test function
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in (3.2) and uy as a test function in (2.3). Combining these two facts and using the Vitali
theorem we also get the strong convergence of Vuy in L?(Q). We apply Lemma 2.5 to
pass to the limit in the radiative transport equation and in the radiative terms in the
momentum and internal energy equations. Indeed, we have

(3.7) / / In(-,w,v) dwdy—>/ / I(-,w,v)dwdr strongly in LP(Q)
0o Js2 0o Js2
and
(3.8) / / wln(-,w,v)dwdr —>/ / wl(-,w,v)dwdr strongly in LP(Q)
0o Js? 0o Js2

for any p < oco. Even though to pass to the limit in equalities above we needed only
weak convergence of sp and sp, to get also the entropy inequality we need the strong
convergence. Using also (3.5) and (3.6) we show

£+ 9 |VI)?

1
/ (—S”‘(79, u) : Vu + 8972 + (k,(09) + 697 + §97") >wdx
Ja

o v ?
< / ((/@,(19) + 508 + 619’1)8 ;; v V197.9V1/) — 0s(0,9)u - Vw) dx

L+ 698!
+/ (JrTq(z?—@g)%—elnﬁ)@/)dS
oN

(3.9) Q
+/QE(SE—SF-11)¢C1X+FE

for all nonnegative 1) € C'(Q), where F, = o(¢) as ¢ — 0*.

3.2 Limit passage n — 07

As estimates (3.1) remain valid, we can also use them to pass to the limit with n — 0.
We again find subsequences converging in proper spaces and pass to the limit in the
approximative momentum equation to get

/Q (%g(u -Vu) - — %Q(u ®@u): Ve +S*(J,u): V(p) dx

(3.10)
—/Q (p(0, ) +6(0” + 0%))divpdx = /Q (of - —sp - ) dx

1,788 . . . . .
for all o € W, *#72 (). We also pass to the limit in the approximative continuity equation

and get

(3.11) €/S2(Q¢+VQ-V@/)) dx—/ﬂgu-vwdx—sh/ﬂwdx
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for all ¢ € Wl’%(Q). Next, passing to the limit in the entropy inequality reads

2
/ (%Saw’ u) s Vut 602 + (k(9) + 097 + 601 ; . ng' )wdx
Q
: / ((s0) + 607 4 50 XTIV (o - )
9 9
(3.12) ? L+ 5Bt
+/ (=0~ 00) +elv)yds
o0 79
1
+/ —(sg —sp-u)pdx + F.
00

for all nonnegative 1y € C'(Q) with F, having the same properties as above. It is also
easy to pass to the limit in the radiative transfer equation

(3.13) M+w-VI=S inQ x8%x (0,00) in the sense of distributions.

However, the situation in the energy equation is more complicated. We are not able
to recover strong convergence of the velocity gradients and therefore we cannot pass
to the limit in the internal energy balance. Therefore we switch to the total energy
balance, which we get by summing the approximative internal energy balance and the
approximative momentum equation tested by u,? with smooth 7). Note that this was
not possible in the previous step as u,?) was not a proper test function. Summing above
mentioned equations helps us to get rid of the problematic term fﬂ S?"(ﬁn, u,) : Vuyy dx
which is now replaced by fQ Sy (g, uy)uy, - Vi dx. Altogether we end up with

9 1
/ ((/4,(19) + 0098 + 5191)%V19 : Vi — (59 lu)® + oe(o,9))u - V@b) dx
0

+/ ((L+5z93—1)(z9—90)+51m9)¢d5:/gf-uwdx
N Q

(3.14) +/Q ((=S*(9,u)u +p(o,9)u+6(0° + 0*)u) - Vb + 69 ') dx

1 51y 1 Py b — e3P dx
+5/Qﬂ_1(aﬁhg v+ o0’u- Vo 5ﬂgw)d

+5/ (2ehoy + 0’u - Vip — 220°1)) dx — / sp dx
0 Q

for all ¢ € C1(Q).

3.3 Limit passage ¢ — 07

Using the entropy inequality (3.14) and the estimate for the radiative transport equation
(2.26) we can deduce
(3.15)

1 _1
58702, c) : Ve dx 4 (1015 + [10:]17, + vaE ’)
Q

_ B
07+ 1900+ WEelsieiomy < (1| [ 8]+ ).

2 2
I
2
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Here we have to deal with the fact that we cannot use Korn’s inequality on the first term
on the left-hand side and thus we do not control W'2-norm of u, anymore. However,
using procedure which is in detail described in the limit passage § — 0" we are able to
control at least W'? norm of u, for some p < 2. Indeed, for

6B
3.16 =
(3.16) P 3B+1-a

we have

. - ) 380s')
fulty = [ 190 dx < ( / 9ot v ) e

(3.17)

<o [ otuax| )" < o(r Va0 el )

which implies

(3.18) IVu|, <C(1 +||@e||°p 3)

4p’ -3

and consequently

_1q2
1905 + 018, + ||V @)+ o220, + 1192

B
+ (|95 0

(3.19)
+ ||IE||OO,Q><82><(O,0<:) < C( + ||Q€||2p v )

4p’ -3

Note that p' > % and thus the procedure works.

About density, we do not have any information independent of €, except for the L!-
norm. Thus we proceed in a standard way and use Bogovskii operator type estimates,
i.e. we use in the momentum equation (3.10) test function ® such that

1
divd = s~ V8 — @/ ggsfl)ﬁ dx in Q
Q

(3.20) €
d =0 at o
with
(3.21) ||<I> 5 1; <C ||Q5|| 1< s <o0.

We skip the details now as similar procedure will be used later on, see also [26]. We end

up with (i.e. we may take s = g)

(3.22) lodlls < C
Now we are able to choose subsequences (denoted again (g, u., 9., I.)) such that
3 /
u. —u in W7 (Q), u. —>u inLq(Q),q<3p,,
-Pp
0. — 0 In L35(Q), eVo. — 0 in L?(Q),
J. =9 in WH(Q), J. -9 in LY(Q), q < 3B,
(3.23) 9. =9 in LUOQ), ¢ < 2B, Ind, —=Ind in W2(Q),
InY, - Ind in L), ¢ < 6, InY. - Ind in LY(0N), ¢ < 4,
_ 1 1 _1 1
ve2 =972 in LYQ), ¢ <6, Ue2 =972 in LY0N), g < 4

I. —~*T in L>=(2 x 8% x (0,00)).

17



Now we pass to the limit with £ — 07. We have the continuity equation
(3.24) / ou-Vipdx =0
Ja

for all ¢ € Wl’m(ﬂ). Note that the estimates above do not guarantee the strong
convergence of o. — o in L'(Q2). However, using a similar procedure as in the case § — 0"
(we comment on the simplifications for ¢ — 0" at the corresponding places in Section 5)
we can show that g. — ¢ in L'(Q2), hence g. — ¢ in L4(Q) for all ¢ < gﬂ. Thus the limit
passage in the momentum equation yields

/Q (—o(u®u) : Ve +S*W,u) : Vo — (p(0,9) + 5(0” + 0°))div ) dx

(3.25)
= /Q(Qf'QO_SF"P)dX

for all ¢ € Wolg(Q) the total energy balance reads
/ ((H(ﬁ) +60P £ 50)VY Ve — (%p ul? + oe(o,9))u - w) dx
0
+/ (L + 69571 (9 — ©y)pdS = / of - uy dx

(3.26) o9 0

4 [ (820wt (ple0) + (0" + ) - T+ 60710) e

Q
1
+/Q (3(5270"+ &*)u- Vo - s) ax

for all ¢» € C'(Q2). We may also pass to the limit in the entropy inequality to get

( IVI

:Vu+ 00 % + (k(9) + 9P + 591
Vi Vi
9

— (= @0))wd5 +/ %(9}7‘ —sp-u)ydx
0

Joas

(3.27) )+ 698 4+ 697 — 0s(0,9)u - Vw) dx

L+5193 1

\\QJH

for all nonnegative ¢ € Cl(Q). Finally we also easily recover the radiative transfer
equation

(3.28) M+w-VI=5 inQ x 8% x (0,00) in the sense of distributions.

4 A priori estimates independent of §

We start with the entropy inequality (3.27), where we use 1) = 1 as a test function. We
get

9 2
/ (19 S*(¥5,u5) : Vug + 09572 + (k(95) + 097 + 695") !Vg;! ) dx
1 1)

(4.1) B
L+ 69 1

+/ &@OdSS/ (L+(5195B_1)d5+/ (SE—SF 115)d
s Us o0 a Vs
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We also use the total energy balance (3.26) with the same test function

(4.2) u/ ﬂﬁ5+6ﬁf)¢9::/m(L+6ﬁf])@odS+l/(gﬁ-u5+5051—sE)dx
o0 o0

Q

Estimating the right-hand side of (4.2) we get

(4.3) 19511500 + 6 195112 o §0(1+6/Qz951dx+ ‘/Qg(;f.u,;dx‘).

Summing (4.1) with a version of (4.3) reads

9 2
/(ﬂS%%Jm Vm+ﬁﬁa+mw0+6%ﬁwwyﬂvglym
1

L+ o9B1
+/ R L XERL 19511, B, + 6 19115 5
o0 Us

1
S/ (L+5195Bl)d5+/ (SE—SF ll(s)dX
20 U5

+c(1+5(/91951dx)’3‘+53 [et w7

We can estimate easily all terms except for the last one, so we have (recall (1.31))

1 2
/ <_Sa(795, us) : Vus + 519(;2 + (k(95) + 5795’ + 519(;1) |V7925| ) dx
o \Us 7

L+ 69B—1 1 B-1 _
(4.5) +1AQ————:L—90¢9+5Bnﬂuna)+6nﬂn$ﬁz

196 B-1
1 B
SC(1+||u5||1+5B /Q5f'll5dX )
Q

The last term can be estimated
B_1 B-1 B-—1
[ ot usix] T < Ol ] losl B
0 4p—3

B-1
(4.6) B-1 |Vu_(;|2 o l—ol B
<Cllosll 5 | [ ra-dx | o] 2
4p—3 9] 5 2-p

We have information about the middle term on the left-hand side of (4.5), Young’s in-
equality then yields

Vs
/ (195804(195,u5) Vu(s+579§2—|—(/<;(195)+519§+51951)| 025| )dx
L+ 605"
ST 0ydS + 67 |0 5lio
4D e L “|Nmn+||m3m

< O (1wl + 75 ol 57 103 < 521

‘)(B 1) (B—1)(1—a)
Wsllan ™).

< C(1+ sl + 675 flosll 57
3
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for B > p La 5. Friedrichs’ inequality implies

2
E)
2

B
(43) 19l < C(103l1 0+ || V05

and thus going back to (4.7)

1 Vi |?
/ (58 (95, 5) : Vg + 8052 + ((05) + 69 +50, ) dx
o \Us Vs

L+ 6981
(4.9) +/{99i@0d5+53 1951 3 + 6 1911

Vs
2];5 1) (B 113)(1 a)
<1+ sl + 7 losll 57 (I0sllnt™ + |97

2(B-1)(1—a)

B(B+1) ))
)

and finally
! Vs |2
/ (19 S* (1967115) Vus + 5’(95_2 + (/{(196) + 51933 + 6,(96—1)| 926| ) dx
)
L+ 09"
(4.10) + | 2% g,dS5 + 6% ||196||139+5||195||Bm
89 Vs

e _emao1)
(1+||u5||1+53+a losl 5 + SRS | T )

4p—3

C(1 4+ |lusll, + F(Q(s, §)) =: A(us, 05,9).

We use estimate (4.10) to derive the bound on the L” norm of the velocity. Denote

) 1—a
(4.11) PR RN S k[
Im+1—a« 2—p
and therefore
P _ Pd < 90471 2d 2 93md B
(4.12) IVusl|; /Q|Vu(;\ x < (/975 |Vuy| x) (/975 X)

3m(2—p)

S A(uéa 06, 6)% ||79(5||3’m2
We have
7)

1950l < C (195110 + [ V95
S C(‘/ osU5 - de‘ + 6%14(“5; 957(5)% + A(u5: 95;6)%)
Q

(4.13)

We now distinguish two cases. First, let m > 2. Plugging (4.13) into (4.12) and using
(4.11)

(414)  Vugll, < A(us, 05,0)% (1+ A(us, 05,0)* + [ Vgl o] . ) =

and thus using [[us|, < C||Vu,||, and (4.10)

(4.15) Vsl < C(1+llosll s )= (1+ Flos,8) ™
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and consequently

1

(1 + F(Qa,(?))m.

Y

(4.16) 9]l < C(1+ llosll 22, )

For m < 2 we proceed similarly. We have

1 1
(417) | Vugll, < Alus, 05,0)% (1 + Alug, 05,6)7 + Vsl llosl] o)
and thus we immediately get the restriction
(4.18) m>1—q.

Proceeding as above we get instead of (4.15) and (4.16)

(4.19) I9usll, < C(1+ llosll 5+ Flos,0))),
and
(4.20) Wl < C(1+ llosl "+ Flos, )% + Flos,0) llosll s, ).

Next we need to control the dependence of norms of g5 on d. Therefore we return to
the momentum equation (3.25) and use as test function

S— ]‘ S—
div@zgg' DE _ Qg Y9 ax ae. in Q

(4.21) Q[ Jo

$=0 at o2
with
(4.22) 1[I % < Closll2}:
especially we choose s — 1 = %, i.e.
(4.23) @175 < Clloslls -

This yields

/ p(0s, 795)Q5dX+5/ p1 4 Qg)dx:—/gg(u(;@)u(g):V@dx
0 0

(4.24) / S¥(Vs,us) : Ve dx — [ gsf - ®dx + / sp-®dx
1
+@ (p(g,;,z%)—ké(g?—k@?)) dX/ gng:Il+...+I5.
Q Q

Before estimating the terms on the right hand side we present the key interpolation
inequality (C' = C(M), see (1.27))

B+13—p

"B 3p
(4.25) ||Q§||4p3%3 < C||Q6||5+1
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We estimate terms on the right hand side of (4.24). First, for m > 2 we have

2
1< ol _sese, 17wl sl
(4.26) @+)(0tp) P 2(i-0) g+13—p N
< Clloslloe™ (14 llosll sy * ) (1+ F(o5,0)7),

while for m < 2

E+1) e+ 20-a) g41 2-p )
(4-27) |Il| SCHQ(;H/;_HP (1+||Qc5||ﬂ+al ' +F(06;6) )
Next for ;;"f’p <fB+1land m>2

|| < {[Ds]]5,,, IVl [V
(4.28) " renbop .
< Cllosllgey (T +1osllzer ™ ) (1 + F(es.9))

while for m < 2, additionally assuming

1
(4.29) m> -

3
we get

Lot 4o
(4.30) L] < Cllosllgyy (14 llosllzy ™ + Flos 6) ).

Easily

(4.31) L] + [1a] < C'llosll gy -

Finally we divide the last term into two parts. First term yields

1-n
(4.32) 6/ QadX/(g§+@§)dX <G (/ Qf“)
Q Q Q

for certain n € (0,1), so it can be absorbed into the left hand side. The second term gives

/p(g(;,q%)dx <C (/ 0y dx + / 0595 dx)
(4.33) o Ja Ja

1 y—1

< C(lloslht + lloydslly 1195l ™) < €/p(@a,?9a)d><+0(1+ 195|517
Q

The first term can be absorbed into the left hand side and the other is estimated using
(4.16). We collect all the estimates and search for the largest exponent of [[g;]|5,, on the
right-hand side. It is not difficult to see that for § and B sufficiently large we get

1— o
(4.34) S lloslls ™ < ¢,

where fy(a) = O(1) for § — oo. Hence we return to (4.10) and conclude that for suitable
B

(4.35) F(05,0) < C,
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so from (4.15) and (4.19)
(430 I, <001+ ool 5 )

and from (4.16) and (4.20)

Q\»—'

(4.37) 195113 < C(1+ llosll s,

):

p—3

where m > max{1 — a, 2},

Interpolating between L'(Q2) and L*7(Q) we get for sy > 45’—2

7p8'710£

(4.38) [uslly, < CL+losllsy ™" ).

We need a priori estimates of the density independent of §. Therefore similarly as before
we use in the momentum equation (3.25) test function ® such that

_ 1 s )
dived = Q(S R — Qg Mdx ae. in Q

(4.39) b [e]

=0 at o
with
(4.40) 1@l le < Clloslls,
We get
(4.41)

/p(@g,l%) ’de+ 6/ ,3+ (s—1)y 2+(sfl)’Y) dx = —/ 95(u5 X 115) V& dx
Q Q
+ [ o5 us) s Vet [ ol dx [ (oles 05) + 80 + ) e

ng'@dX—F/SF'(I)dX_J1+J2+J3+J4+J5.
JQ JQ

We estimate all terms on the right hand side. Starting with .J;

2
[A] <CIVe|| o losll,, [Tuslly,
(4.4.2) 1 11 93—p _s7 l-a
< Cllosll (1+||95||sfp ),

where
1 2 1 2
4.43 —+-<-+-
( ) sy p~— s 3
Assuming
3 1
(4.44) b5 ¢y




we end up with
(4.45) [ I <elleslly) + Cle)

and the first term can be absorbed in the left hand side. Next we proceed with the second
term

o] < CNVI_o |[Fs]]3, [1usll,
s—1
3-p_s7 1-a 3—p_sy 1 o
(4.46) <C ||Q6||Syfl)7 (1 + ||Q6||s§/p -1 «a )(1 + ||Q5||s§yp v-1a )

3—p sy 1

s—1 3p sv-1la
< Clloslls ™7 (1 + llosllsy =)

with
«Q 1 1

4.47 — 4 - < -,

( ) 3m + p s
Thus assuming

3—p sy 1

4.48 — - <

( ) 3p sy—1la 7
we can again use Young’s inequality to get

(4.49) 1| < ellesllyy + Cle)

and absorb the first term in the left-hand side. The second part of the integral J; can be
easily estimated using interpolation between L'(Q) and L#+(=17(Q)

(4.50) 5/ o dx/(g§+ 0?) dx < 05(/
Q Q

_ 1—n
Q§+(S 1)y dX)
Q

for some 1 € (0,1). The first part is slightly more complicated. However, assuming
(s—1)y <1, ie [, 92571)7 dx < C' we have?

1

C/ p(0s,s) dx < C’(/ g?dx) :

0 1 (.5*%)7 1

+C/ 1 (g;+(-971)7195)m19;+(s—m dx < C((/ o7 dx) s
{ Q

05<Ko9y ™'}

(4.51) L e
+(/ e Q;+(3*1)7196 dX) Fe=Dr (/ L0 dx) 1+(571)7>

J{os<Kod] '} {os<Ko] 1}

< 6/ Qfss1)7p(@5,195)dx+0(5)/195 dx.

Q 0
However,
3—p sy 1
(4.52) / D5 dx < C[ldl,,, < C(1+ lloslley ™7 7),
Ja

21t is also possible to consider the case (s — 1)y > 1 which plays a role for v large, but we will not do
it here.
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SO assuming

(4.53)

we can proceed as above. The fourth and the fifth term are easy to estimate,

(4.54) [ Ja] < Cl1@]|_o_Tlosll,, < Clles I8+ < elosllT + Ce),
and
(4.55) | J5] < e Isrlle < Cllos 1877 < e losll2? + Ce).

Summing up all the estimates we finally get

We now summarize our conditions on m, 7, s and «. First recall that we have

1+a}
3 )

The other most restrictive conditions are (4.43), (4.44), (4.47) and (4.48). Condition
(4.47) leads to 1 < s < 2 and m > HTO‘ The other conditions can be rewritten as

(4.57) m > max {1 - a,

1 ,
(4.58) 5+ < - ,

(4.59)

(4.60)

Note that (4.58) is less restrictive for s as small as possible (s — 1), while the other
ones for s as large as possible (s — 2). To optimize the value of s is technically difficult
and it does not lead to much better results than those with s formally equal to 1. Thus
we analyze (4.58) (4.60) with s = 1 and strict inequalities, as well as with (4.57). Passing
with m — oo we get

3 1 1+ 5a++v1+ 100 — 1102
v > =, y>14 —, v > i
2 6 §1e"

This leads to restrictions

3 2
v > = for - <a<1
2 3
(4.61)
1+ 50+ 1+ 10a — 11a? 2
> 5 f0r0<a<§.
«
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Returning to (4.58)—(4.60) we get, in addition to (4.57)

3

(1= a) (1-a) (I —a)*y

(462)  m>S"h MR LTS " a1 (1 —a)
Note that in the physically relevant case o = % we have

(4.63) v > 7+T\/ﬁ ~ 1.768

and

(464) m 2 max {% 2(277— 3)" 672 — Y4’y +6 }

Now we can extract suitable subsequences to get

3
u; —~u in Wy P(Q), u; > u in Lq(Q),q<3—p,
-p
05 — o0 in L*(Q),
(465) 196 N in Wl’T(Q), r = min {27 3m } 7
m+1
Us =9 in LYQ),q < 3m, Us — 9 in LY(0R), ¢ < 2m,

Is —~*T in L®(Q x 8% x (0,0¢))

with p defined in (4.11).

At this moment we pass to the limit with 6 — 0 and by g(p,u,?) we denote the
weak limit of sequence ¢(os,us,95). We have the continuity equation (however, at this
moment, not in the renormalized sense)

(4.66) / ou-Viydx =0
Q
for all p € C'(Q). The limit passage in the momentum equation yields

/Q (—Q(u ®u): Ve + S0, u) : Vo — p(o, 9)div go) dx

(4.67)
_/Q(Qf'QO_SF"P) dx

for all ¢ € C*(Q), ¢ = 0 at 9. Here we use also the fact that

4.68 lim & || g% = 0
(4.68) Jim & losl[5 = 0,
which is a consequence of

s—1
(4.69) Slesllfiis ) < C.
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We pass to the limit in the entropy inequality to get

(4.70)

1 vi)|?
/Q(Esaw,u):wmw)' 192| )1/)dx
< /Q (/ﬁ;(ﬁ)@ — Qs(g,ﬁ)u-vw) dx

+/BQ (%(?9—90))ll)dS—l—/Q%(SE_SF'u)de

for all nonnegative ¢p € C'(€2). On the left-hand side we use nonnegativity of some

terms

, while on the right hand side we use derived a priori estimates and interpolation

inequalities. We can easily pass to the limit in the radiative transfer equation

(4.71)

M+w-VI=S inQxS8%x(0,00) in the sense of distributions,

and in the global balance of total energy (i.e. (3.26) with special choice ¢ = 1)

(4.72)

/m L( — ©y)dS = /(gf-u— sp) dx.

Q

However, to pass to the limit also in the energy balance, information (4.65) is not

suffici

ent. There are three additional terms which we have to control:

1) The convective term

2) St

(4.73) / 05 |115’2 s - VT/) dx
Q

2m
m+a—1"

Here we need g5 — ¢ in L(Q) for a certain ¢ > 2;%3, ie. sy > —Qp{3 =

ress tensor

(4.74) /QSO‘(Q%, us)uy - Vipdx

This leads (after some computations) to restriction m > 1.

3) Pressure and energy

(4.75) /(Qg + 95195)U5 dx

)
The first part gives restriction s > 4553 = Sm‘i"era, while the second part yields
sy > ¢ for 15 + o=+ %;pp = 1. This leads to sy > 5-C%— which is less restrictive for

m > 1 than the condition from the convective term.

Passing with m — oo we have two conditions, namely s > g and sy > 2. Plugging

these
(4.61)

(4.76)

conditions into (4.58) (4.60) (recall discussion below (4.60)) we get additionally to

5 24+ a
V> 5 v >
3o

27



which come from (4.58) for s > £ and (4.60) for sy > 2. The other conditions are less
restrictive. Next we take m finite and similarly as above get in addition to (4.62)

By—1)(1—-a)+2

m > 1 m >
) 3 -1 ’
(4.77) LB -ni-a) (%1 - 2)z)(*y(2 —3a)+ o)
3y—5 a(67? —9y+5) — 2y’

where the second condition comes from (4.47) with condition on sv, the third from (4.58)
with the condition on s and the last one from (4.60) with the condition on s. The other
conditions are less restrictive. Note that for o = ]5 we have the restriction as before while
for m we get additional restrictions from (4.77).

To finish the proof, we need to prove strong convergence of the density.

5 Strong convergence of the density for § — 0

Before starting to deal with the strong convergence, we recall several basic results which
will be used throughout the proof. We have (see [28, Lemma 3.3])

Lemma 5.1 (Renormalized continuity equation). Assume that

be C([0,00)) N C*(0,00)),

(5.1) Sli%lJr(Sbl(S) —b(s)) € R,

V(s)| < Cs*, se(loc), A< g ~1.

Letu e W,P(Q), o€ L), a > z%’ 0> 0 a.e. in ), be such that

/ ou-Viydx =0
R3

for all v € CP(R?) with o, u extended by zero outside of Q. Then the pair (o,u) is a
renormalized solution to the continuity equation, i.e. we have for all b(-) as specified in

(5.1)
(5.2) [ (= blyu- 0+ (a4 (0) = b(e)divu) ax = 0

for all ¢ € C§°(R?).

We introduce the operators

vao = 7 F )]
(5.3) €l &E;
(REDy = (V& VA o = 7! [ F@)(O)]
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with F the Fourier transform, and denote

- RV = 7 [ Fw)E)]
| R A =7 [SFA)©)

We recall some properties of these operators which will be used later on. For the proof,
see [11, Theorem 10.26]

Lemma 5.2 (Continuity properties of Vo VA™! and VA™!). Operator R is a continuous
operator from LP(R®) to LP(R?) for any 1 < p < oc.
Operator VA~ is a continuous linear operator from the space L'(R*) N L*(R?) to

L*(R?) + L®(R?) and from L*(R?) to L%(R‘ri) for any 1 < p < 3.

Next we recall two results on commutators, the proof can be found in [11, Theorems
10.27-10.28]:

Lemma 5.3 (Commutators I). Let U, — U in LP(R?), v. — v in LI(R3), where

(5.5) %+é:§<1

Then

(5.6) veR[U.] — R[v.]U. = vR[U] — R[v]U
in L*(R3).

Lemma 5.4 (Commutators I1). Let w € W' (R?), z € LP(R?), 1 <r <3, 1< p< oo,
%—f- % — % < % < 1. Then for all such s we have

(57) ||R[’LUZ] - U)/}?’[Z]”a,s,]]@:3 S C ||'LU 1,r,R3 ”Z||p,R3 )
where%z%—%%—%—%

Here the spaces W**(Q2) for a noninteger are the Sobolev—Slobodetskii spaces.
We introduce cut-off functions

(5.8) Ty(z) = kT(%) 2> 0,k €N,

where T € C*([0, 00)) is function with following properties

zfor 0 <2z<1,
(5.9) T(z) = 2 for z > 3,
concave on (0, 00).

Our first aim is to prove the following identity

3

= p(0,9) Ty (0) — (gu”(ﬁ) + 5“(0)) Ty (0)divu.

P02 ITa(0) — (fuaw) i faw)) Te(g)div u
(5.10)
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Lemma 5.5. Under the assumptions on «,y and m made above, equality (5.10) holds for
any k € N.

Proof. We follow an analogous procedure as for the case o = 1 without radiation, see
[26]. In the momentum equation (3.25) we use as a test function

(5.11) p(x) = (VAT [10Tj(05)]

and in the limit equation (4.67)

(5.12) p(x) = (VAT [klm] )

with ¢ € C§°(€2). After routine computations we get
/ C Q(s, 195) + 5@5 + 5@5)Tk(£)5) Sa(795, 115) : R[lQTk(Q5)]> dX
= / ((x) (115 : <R[1995u6]Tk(95) - R[lﬁTk(Qé)]Qéu6)> dx
Q

—/QC(X)Q(;f VA ' [10T}(05)] dx + / C(x)sp - VA [1aT;(0s)] dx

(5.13) @
[ (0les,05) + 025+ 50)VE(x) - A 1aTi00)] dx

+/ng@(19,5,115) : V((x) ® VAT 10T, (05)] dx

— | ostus @ w5) : V() © VA 10T 05) dx.
and

| €0 (b Tle) — 570w+ RITi(a]) dx

/ ¢(x) (- (RilaouTi(e) ~ R{1aTi(2)]ou) ) dx
- —/QC(x)gf-VA [10Tk(0)] dx+/QC(x)sp-VA1[1QT(Q)] dx

B /QWVC(X) VA 16T, (0)] dx
/QSQ( u) 1 V((x) ® VAT [1oTk(0)] dx
_ /Q olu®u): V{(x)® VA?IUQT(Q)] dx,

where we have used R[1qosu;s] = R[1qou] = 0 as a consequence of div (gsus) = div (pu) =
0 in D'(2). Using Lemma 5.3 with

= Tk(Q(;) — Tk(Q) in L1 (Q),tl < 0
3psy
3p+sv(3—p)

(5.15)

Us = osus — pu  in L (Q),tg <
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we have

(5.16) R[Laosus|Tk(0s) — R[1aTk(0s)]0sus — R[1gou|Tk(0) — R[10Tk(0)]ou
in L4(Q) for ¢ < ts. F0r7>§andm>( ) 3” and
since uy — uin L' for t < 72, we verify

/ C(x 115 R[laosus|Ty(05) — RUQTk(Qé)]QéuJ)) dx
(5.17)

5 / ¢(x) (- (RtaoulTi(o) ~ R1Te(o)]on) ) dx.
Comparing (5.13) and (5.14) we easily end up with
/C @)—Maﬁﬂﬂwﬁdx
(5.18)
_ / () (S2(0.w) - R[1aTi(0)] — §°(9,u) : R10Ti(2)] ) dx

Q
Next we have
(5.19)

C(X)Sa(ﬂ, ) R[lQTk dX = lim / C 19(5 —|— fa(’&(s))dlv u,;Tk(g(;) dx
Q d—0+

+ Jim / (o) (R[C () (0 )(Vu5+(Vu5) ™)
—C(x)p® (D5)R : [Vu5+(Vu(;)T])dx

as well as a similar expression for the limit term. We employ Lemma 5.4 with

3
p*(95) ~ 1499, we Wh(Q), r:min{Z,mTa}

(5.20) w=((x)
zi = 0;(ug); + 0;(us)j, 7 =1,2,3, z€ LP(Q)

and conclude that

(5.21) R [C(x)u®(95)(Vus + (Vug)")] = C(x)p*(W05)R : [Vus + (Vug)T]

is bounded in W**(Q) with s < 3p+3;ffpr3 and a =3(1 + 1 — % — 1). Thus the expression
in (5.21) converges strongly to

(5.22) R [((x)p*()(Vu+ (Vu))] = C(x)p* ()R : [Vu+ (Vu)T]

in some L(Q2), ¢ > 1. Since Ti(05) — Tk(0) in all LP(Q2), p < oo, the proof of Lemma 5.5
is finished. O

Remark 5.1. Note that a similar procedure is used to get the strong convergence of the
density in the limit passage ¢ — 07; however, due to higher integrability we may take
o instead of Ti(p.) and the proof is much simpler. Moreover, we get for free that the
renormalized continuity equation is fulfilled (see Lemma 5.1) for the limit pair (u, 9) which
also significantly simplifies the following steps.

3Note that s > 1 for m > HT”‘
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Recall that we are not able to apply Lemma 5.1. Therefore we introduce the oscillation
defect, measure

(5.23) 0scq[05 — 0](Q) = sup (Hm sup/ Tk (05) — Ti(0)|* dX)-
k>1 N 5ot J@

We have

Lemma 5.6. Let QQ C R3 be an open set and let

o =0 inL'(Q)
(5.24) u; —~u in LP(Q)
Vu; — Vu in LP(Q), p> 1

3

Let moreover
(5.25) 0scqf0s = 0](Q2) < 0

for q > B, where (05, us) solve the renormalized continuity equation (5.2). Then the limit
functions are renormalized solutions to the continuity equation in the sense of Definition
1.5.

Proof. See [11, Lemma 3.8] in the evolutionary case, the adaptation to the steady case is
easy. 0

To apply Lemma 5.6, we need to show (5.25); all the other assumptions are satisfied.
First, we recall [26, Lemma 18] proved in the case a = 1; generalization for o € (0, 1) is
straightforward

Lemma 5.7. Under assumptions made in Section 1 it holds

(5.26)
fimsup [ d|Teles) ~ (o) dx < [ (b IT0) - e 0) Tu(o)) dx
§—0+ Q Q
: d v+1
— < , — .
imsup [ 7o)~ Telo) ™ dxe < [ 1 (e DTl - (e 0) Tilo)) dx
We have

Lemma 5.8. Let (05,u5,95) be as above and moreover let m > Iaty(20) © Then there

3(v=1)
eists ¢ > -E5 such that (5.25) holds.

Proof. Denoting

(5.27) Gr(t,x,2) = d|Ty(2) — Te(o(t. x))[",
we apply Lemma 5.26

(5.28) G5+ 0) < p(o, V)T (o) — p(o, V) Ti(0)

and using (5.10)

(5.29) Gl < (gmw) +&(9)) (Telo)diva — Ti(g)divu)
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for all £ € N. Now easily

/(1 +9%) 1Gy(t, x, 0) dx < C'sup||div usl|, lim sup || 7% (05) — Tr()|| =
Q >0 §—0+ p—1

< Climsup [|T(05) — Tr(0)l| = -
6—0t !

(5.30)

Finally, we have

/|Tk 05) — Ti(0)|" dx</|Tk 05) — Te(0)|” (1 +9%) 31 (1 4+ 9*) 7+ dx

(5.31)
<C/|Tk (05) — Te(o)|"" (1 492! dx+0/ (1 +9%) 7%= dx.

We can control the second integral if

3 1
(5.32) i 3m, e ¢< m(y +1)
vy+1—g¢q 3m+ «
and as we need ¢ > = we get in view of (4.11)
1 1-—
(5.33) m s retrl=a)
3(y = 1)
cf. [26]. The proof is finished. O

Now we are in position to finish the proof of the strong convergence of g;. Using the
renormalized continuity equation (5.2) with

(5.34) bo) = g/l 2 a

we get

(5.35) / Te(o)divu dx = 0.
Q

Since we also have

(5.36) / Ty (05)div s dx = 0,
Q

i.e.

(5.37) / Tr(o)divudx = 0,
Q

identity (5.10) yields
(5.38)

0,9)Tk(e) — p(o, ) Tk(@)) dx = /

g (Tk(g) — T(g)) divudx.

T e
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As limg o0 [| T (0) — oll1 = limg 00 || T (0) — 0] = 0, we have

(5.39) lim [[Ti(o) ~ Tl = 0.
Therefore
(5.40) gg)QL+W(M@0ﬂMm—p@ﬁYH@»dX=0

Using Lemma 5.7

5.41 lim lim su T, — 1T, T dx = 0;

(5.41) Jim timsup [ Ty (o) - Ta(e)

whence

(5.42) lim lim sup / [Ty (05) — Tr(0)|* dx = 0,
k=oo 550+ Ja

where ¢ is the same exponent as in LLemma 5.8. Since
(5.43) llos — olly < llos — Ti(0s)l, + | Tk (05) — Ti(o)l;, + 1| Tk (0) — oll; .
we finally conclude

(5.44) 0 — o0 in L'(Q), and thus
' 0os — o in LY(Q)) Vg < sy.

This finishes the proof of Theorem 1.1.
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