INSTITUTE of MATHEMATICS

ACADEMY of SCIENCES of the CZECH REPUBLIC

On joint numerical radius II

Roman Drnovšek
Vladimír Müller

Preprint No. 20-2012
PRAHA 2012

ON JOINT NUMERICAL RADIUS II

ROMAN DRNOVŠEK AND VLADIMIR MÜLLER

Abstract

Let T_{1}, \ldots, T_{n} be operators on a Hilbert space H. We continue the study of the question whether it is possible to find a unit vector $x \in H$ such that $\left|\left\langle T_{j} x, x\right\rangle\right|$ is large for all j. Thus we are looking for a generalization of the well-known inequality $w(T) \geq \frac{\|T\|}{2}$ for the numerical radius $w(T)$ of a single operator T.

1. Introduction

Let H be a complex Hilbert space. Denote by $B(H)$ the set of all bounded linear operators on H. The numerical range of an operator $T \in B(H)$ is defined by

$$
W(T)=\{\langle T x, x\rangle: x \in H,\|x\|=1\}
$$

and the numerical radius by

$$
w(T)=\sup \{|\langle T x, x\rangle|: x \in H,\|x\|=1\}=\sup \{|\lambda|: \lambda \in W(T)\} .
$$

It is well known that the numerical range $W(T)$ is a convex subset of the complex plane and $w(T) \geq \frac{\|T\|}{2}$ for all T. In other words, given a non-zero operator $T \in B(H)$ and a number $\varepsilon>0$, there exists a unit vector $x \in H$ such that $|\langle T x, x\rangle|>(1-\varepsilon) \frac{\|T\|}{2}$.

If $\operatorname{dim} H<\infty$ then the numerical range $W(T)$ is compact, and so there exists a unit vector $x \in H$ such that $|\langle T x, x\rangle| \geq \frac{\|T\|}{2}$.

In [M2] the following question was studied: Given $T_{1}, \ldots, T_{n} \in B(H)$, does there exist a unit vector $x \in H$ such that $\left|\left\langle T_{j} x, x\right\rangle\right|$ is "large" for all $j=1, \ldots, n$?
It is easy to see that it is possible to assume that $\operatorname{dim} H<\infty$. Moreover, considering the real and imaginary parts of each operator T_{j} it is possible to reduce the question (at least up to a constant) to the case of n-tuples of selfadjoint operators.

In [M2] there were obtained sharp estimates in cases $n=2,3$. If T_{1}, T_{2} is a pair of selfadjoint operators on a finite-dimensional Hilbert space, then there exists a unit vector x such that $\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{1}{3}\left\|T_{j}\right\| \quad(j=1,2)$. For triples of selfadjoint operators the corresponding best estimate is $\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{1}{5}\left\|T_{j}\right\|$.

For $n \geq 4$ the question is essentially more difficult, among other reasons because the joint numerical range $W\left(T_{1}, \ldots, T_{n}\right)$ is no longer a convex set. In [M2] there were obtained only some estimates: if $T_{1}, \ldots, T_{n} \in B(H)$ then there exists a unit vector $x \in H$ such that $\left|\left\langle T_{j} x, x\right\rangle\right| \geq$ $\frac{\text { const }}{n^{3}} \cdot\left\|T_{j}\right\|$ for all j.

If T_{1}, \ldots, T_{n} are commuting selfadjoint operators, then there exists a unit vector $x \in H$ with $\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{\text { const }}{n^{2}} \cdot\left\|T_{j}\right\|$ for all j.

[^0]The purpose of this note is to improve the above estimates. We improve the estimate in the general case to $\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{\text { const }}{n^{2}} \cdot\left\|T_{j}\right\|$ and in the case of commuting selfadjoint operators to $\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{\text { const }}{n \sqrt{n}} \cdot\left\|T_{j}\right\|$. Note that in [M2] it is conjectured that the best lower estimates are $\frac{1}{2 n-1}\left\|T_{j}\right\|$. So it is still a gap between these two lower estimates.

Similar estimates can be obtained also for other types of numerical ranges - for the essential numerical range and the algebraic numerical range.

At the end of the paper we also give a short proof of the inequality between the norm and the joint numerical radius of an n-tuple of operators. This estimate was given in $[\mathrm{P}]$, where the joint numerical radius is called the Euclidean operator radius.

2. General case

Let H be a Hilbert space and $T_{1}, \ldots, T_{n} \in B(H)$. Recall that the joint numerical range $W\left(T_{1}, \ldots, T_{n}\right)$ is defined by

$$
W\left(T_{1}, \ldots, T_{n}\right)=\left\{\left(\left\langle T_{1} x, x\right\rangle, \ldots,\left\langle T_{n} x, x\right\rangle\right): x \in H,\|x\|=1\right\} .
$$

We study first the situation in 2-dimensional spaces. The estimates will be then used in general case.

Let S be the unit sphere in $\mathbb{C}^{2}, S=\left\{(\lambda, \mu) \in \mathbb{C}^{2}:|\lambda|^{2}+|\mu|^{2}=1\right\}$. Let m be the Lebesgue measure on S. Recall that $m(S)=2 \pi^{2}$.

Lemma 1. Let $a \in[-1,1]$ and $\varepsilon>0$. Let $L_{a, \varepsilon}=\left\{(\lambda, \mu) \in S:-\varepsilon<|\lambda|^{2}+a|\mu|^{2}<\varepsilon\right\}$. Then $m\left(L_{a, \varepsilon}\right)<4 \pi^{2} \varepsilon$.
Proof. Note that for $a>0$ we have $L_{a, \varepsilon} \subset L_{0, \varepsilon}$, so it is enough to consider the case when $a \leq 0$.
Write $\lambda=r \cos \alpha+i r \sin \alpha, \mu=\sqrt{1-r^{2}} \cos \beta+i \sqrt{1-r^{2}} \sin \beta$ with $0 \leq \alpha<2 \pi, 0 \leq \beta<2 \pi$, $0 \leq r \leq 1$. An elementary calculation gives $d m=r d r d \alpha d \beta$.

We distinguish two cases:
A. $-\varepsilon \leq a \leq 0$.

Then $(\lambda, \mu) \in L_{a, \varepsilon}$ if and only if $0 \leq r^{2}<\frac{\varepsilon-a}{1-a}$. So

$$
m\left(L_{a, \varepsilon}\right)=\int_{0}^{\sqrt{\frac{\varepsilon-a}{1-a}}} r d r \int_{0}^{2 \pi} d \alpha \int_{0}^{2 \pi} d \beta=4 \pi^{2}\left[\frac{r^{2}}{2}\right]_{0}^{\sqrt{\frac{\varepsilon-a}{1-a}}}=2 \pi^{2} \frac{\varepsilon-a}{1-a}<4 \pi^{2} \varepsilon .
$$

B. $-1 \leq a<-\varepsilon$.

Then $(\lambda, \mu) \in L_{a, \varepsilon}$ if and only if $\frac{-\varepsilon-a}{1-a}<r^{2}<\frac{\varepsilon-a}{1-a}$. So

$$
m\left(L_{a, \varepsilon}\right)=\int_{\sqrt{\frac{-\varepsilon-a}{1-a}}}^{\sqrt{\frac{\varepsilon-a}{1-a}}} d r \int_{0}^{2 \pi} d \alpha \int_{0}^{2 \pi} d \beta=2 \pi^{2}\left(\frac{\varepsilon-a}{1-a}-\frac{-\varepsilon-a}{1-a}\right)=2 \pi^{2} \frac{2 \varepsilon}{1-a}<4 \pi^{2} \varepsilon
$$

So $m\left(L_{a, \varepsilon}\right)<4 \pi^{2} \varepsilon$ for all $a \in[-1,1]$ and $\varepsilon>0$.
Proposition 2. Let $\operatorname{dim} H=2$, let $T_{1}, T_{2}, \cdots \in B(H)$ be a sequence of selfadjoint operators satisfying $\left\|T_{j}\right\|=1 \quad(j=1,2, \ldots)$. Let $\alpha_{j} \geq 0 \quad(j \in \mathbb{N})$ satisfy $\sum_{j=1}^{\infty} \alpha_{j}=1$. Then there exists a unit vector $x \in H$ such that

$$
\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{\alpha_{j}}{2} \quad(j=1,2, \ldots)
$$

Proof. Let S_{H} be the unit sphere in H. We may assume that $\alpha_{j}>0$ for all j. For each j there exist an orthonormal basis $\left\{e_{j}, f_{j}\right\}$ in H and $a_{j} \in[-1,1]$ such that $T_{j} e_{j}= \pm e_{j}$ and $T_{j} f_{j}=a_{j} f_{j}$. If $T_{j} e_{j}=e_{j}$ and $x=\alpha e_{j}+\beta f_{j} \in S_{H}$ we have $\left|\left\langle T_{j} x, x\right\rangle\right|=\left.\left||\alpha|^{2}+a_{j}\right| \beta\right|^{2} \mid$. So $\left|\left\langle T_{j} x, x\right\rangle\right|<\alpha_{j} / 2$ if and only if $(\lambda, \mu) \in L_{a_{j}, \alpha_{j} / 2}$ (we use the notation from the previous lemma). Similarly, if $T_{j} e_{j}=-e_{j}$ then $\left|\left\langle T_{j} x, x\right\rangle\right|=\left.\left|-|\alpha|^{2}+a_{j}\right| \beta\right|^{2} \mid$ and $\left|\left\langle T_{j} x, x\right\rangle\right|<\alpha_{j} / 2$ if and only if $(\lambda, \mu) \in L_{-a_{j}, \alpha_{j} / 2}$. By Lemma 1, we have in both cases $m\left(\left\{x \in S_{H}:\left|\left\langle T_{j} x, x\right\rangle\right|<\alpha_{j} / 2\right\}\right)<2 \pi^{2} \alpha_{j}$. Thus

$$
\sum_{j=1}^{\infty} m\left(\left\{x \in S_{H}:\left|\left\langle T_{j} x, x\right\rangle\right|<\alpha_{j} / 2\right\}\right)<\sum_{j=1}^{\infty} 2 \pi^{2} \alpha_{j}=2 \pi^{2}=m\left(S_{H}\right)
$$

So there exists a unit vector $x \in S_{H} \backslash \bigcup_{j=1}^{\infty}\left\{x \in S_{H}:\left|\left\langle T_{j} x, x\right\rangle\right|<\alpha_{j} / 2\right\}$. Clearly this x satisfies

$$
\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{\alpha_{j}}{2} \quad(j=1,2, \ldots)
$$

Theorem 3. Let H be a Hilbert space, let $T_{1}, T_{2}, \cdots \in B(H)$. Let $\alpha_{j} \geq 0$ satisfy $\sum_{j=1}^{\infty} \alpha_{j}^{1 / 2}<1$. Then there exist a unit vector $x \in H$ such that

$$
\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{\alpha_{j}}{4}\left\|T_{j}\right\| \quad(j=1,2, \ldots)
$$

If the operators T_{1}, T_{2}, \ldots are selfadjoint, then there exist a unit vector $x \in H$ such that

$$
\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{\alpha_{j}}{2}\left\|T_{j}\right\| \quad(j=1,2, \ldots)
$$

Proof. We prove first the second statement. Let $T_{j}^{*}=T_{j}$ for all j and $\sum_{j=1}^{\infty} \alpha_{j}^{1 / 2}<1$. By [M1], Theorem 39.8, there exist vectors $u, v \in H$ such that

$$
\left|\left\langle T_{j} u, v\right\rangle\right| \geq \alpha_{j}^{1 / 2}\left\|T_{j}\right\| \quad(j=1,2, \ldots)
$$

Moreover, it is clear from the proof (cf. [M1], Theorem 37.17) that the vectors u, v can be taken of norm 1.

If the vectors u, v are linearly dependent then

$$
\left|\left\langle T_{j} u, u\right\rangle\right|=\left|\left\langle T_{j} u, v\right\rangle\right| \geq \alpha_{j}^{1 / 2}\left\|T_{j}\right\| \geq \alpha_{j}\left\|T_{j}\right\| .
$$

Suppose that u, v are linearly independent. Let H_{0} be the 2-dimensional subspace generated by u, v and let P be the orthogonal projection onto H_{0}. Then the operators $P T_{j} \mid H_{0} \in B\left(H_{0}\right)$ are selfadjoint and $\left\|P T_{j}\left|H_{0}\left\|\geq\left|\left\langle T_{j} u, v\right\rangle\right| \geq \alpha_{j}^{1 / 2}\right\| T_{j} \|\right.\right.$. By Proposition 2 , there exists a unit vector $x \in H_{0} \subset H$ such that

$$
\left|\left\langle T_{j} x, x\right\rangle\right|=\left|\left\langle P T_{j} x, x\right\rangle\right| \geq \frac{\alpha_{j}^{1 / 2}}{2}\left\|P T_{j} \mid H_{0}\right\| \geq \frac{\alpha_{j}}{2}\left\|T_{j}\right\|
$$

for all j.

Let $T_{1}, T_{2}, \cdots \in B(H)$ be now general operators. We may assume that $T_{j} \neq 0$ for all j. Choose numbers $\alpha_{j}^{\prime}>\alpha_{j}$ such that $\sum_{j=1}^{\infty} \alpha_{j}^{\prime 1 / 2}<1$. Since the numerical radius of T_{j} satisfies $w\left(T_{j}\right) \geq \frac{\left\|T_{j}\right\|}{2}$, there exists $\lambda_{j} \in W\left(T_{j}\right)$ with $\left|\lambda_{j}\right| \geq \frac{\alpha_{j}\left\|T_{j}\right\|}{2 \alpha_{j}^{j}}$. Consider the selfadjoint operators

$$
S_{j}=\operatorname{Re} \frac{T_{j}}{\lambda_{j}}=\frac{1}{2}\left(\frac{T_{j}}{\lambda_{j}}+\frac{T_{j}^{*}}{\bar{\lambda}_{j}}\right) .
$$

Then $1 \in W\left(S_{j}\right)$ and so $\left\|S_{j}\right\| \geq 1$. By the previous statement there exists a unit vector $x \in H$ such that

$$
\left|\left\langle S_{j} x, x\right\rangle\right| \geq \frac{\alpha_{j}^{\prime}}{2}\left\|S_{j}\right\|
$$

for all j. Then

$$
\left|\left\langle T_{j} x, x\right\rangle\right| \geq\left|\lambda_{j}\right| \cdot\left|\operatorname{Re}\left\langle\lambda_{j}^{-1} T_{j} x, x\right\rangle\right|=\left|\lambda_{j}\right| \cdot\left|\left\langle S_{j}, x, x\right\rangle\right|>\frac{\alpha_{j}}{2 \alpha_{j}^{\prime}}\left\|T_{j}\right\| \cdot \frac{\alpha_{j}^{\prime}}{2}\left\|S_{j}\right\| \geq \frac{\alpha_{j}}{4}\left\|T_{j}\right\|
$$

for all $j \in \mathbb{N}$.
Corollary 4. Let $\operatorname{dim} H<\infty, n \in \mathbb{N}$, let $T_{1}, \ldots, T_{n} \in B(H)$. Then there exists a unit vector $x \in H$ such that

$$
\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{\left\|T_{j}\right\|}{4 n^{2}} \quad(j=1, \ldots, n) .
$$

If the operators $T_{1}, \ldots, T_{n} \in B(H)$ are selfadjoint, then there exists a unit vector $x \in H$ such that

$$
\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{\left\|T_{j}\right\|}{2 n^{2}} \quad(j=1, \ldots, n)
$$

Proof. It follows from the previous Theorem and the compactness of the unit sphere in H.

3. Convex case

The following lemma is an improvement of Lemma 13 of [M2].
Lemma 5. Let $n \in \mathbb{N}$ and let $K \subset[-1,1]^{n}$ be a convex set. Let $u_{j}=\left(u_{j 1}, \ldots, u_{j n}\right) \in K$ satisfy $u_{j j}=1 \quad(j=1, \ldots, n)$. Then there exists $v=\left(v_{1}, \ldots, v_{n}\right) \in K$ such that

$$
\left|v_{j}\right| \geq \frac{1}{2 n \sqrt{n}} \quad(j=1, \ldots, n)
$$

Proof. Let $M=\left\{\left(m_{1}, \ldots, m_{n}\right) \in[0,1]^{n}: \sum_{j=1}^{n} m_{j} \leq 1\right\}$. Clearly M is a compact convex set.
Define the width of M by

$$
\operatorname{width}(M)=\inf \left\{\sup _{v \in M}\langle v, f\rangle-\inf _{v \in M}\langle v, f\rangle: f \in \mathbb{R}^{n},\|f\|=1\right\}
$$

Then width $(M)=\frac{1}{\sqrt{n}}$. Indeed, for $f=\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right) \in \mathbb{R}^{n}$ we have $\|f\|=1$ and $\sup _{v \in M}\langle v, f\rangle=$ $\frac{1}{\sqrt{n}}, \inf _{v \in M}\langle v, f\rangle=0$. So width $(M) \leq \frac{1}{\sqrt{n}}$.

On the other hand, let $f=\left(f_{1}, \ldots, f_{n}\right) \in \mathbb{R}^{n},\|f\|=\left(\sum_{j=1}^{n} f_{j}^{2}\right)^{1 / 2}=1$. Let $J_{1}=\{j \in$ $\left.\{1, \ldots, n\}: f_{j} \geq 0\right\}$ and $J_{2}=\{1, \ldots, n\} \backslash J_{1}$.

Then

$$
\sup _{v \in M}\langle v, f\rangle=\sup _{v \in M} \sum_{j \in J_{1}} v_{j} f_{j}=\max _{j \in J_{1}} f_{j}
$$

and

$$
\inf _{v \in M}\langle v, f\rangle=\inf _{v \in M} \sum_{j \in J_{2}} v_{j} f_{j}=\min _{j \in J_{2}} f_{j}
$$

and so

$$
\sup _{v \in M}\langle v, f\rangle-\inf _{v \in M}\langle v, f\rangle=\max _{j \in J_{1}} f_{j}+\max _{j \in J_{2}}\left(-f_{j}\right) \geq \max _{j}\left|f_{j}\right| \geq \frac{1}{\sqrt{n}}
$$

Hence width $(M)=\frac{1}{\sqrt{n}}$.
For $j=1, \ldots, n$ let $L_{j}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}:\left|\sum_{k=1}^{n} t_{k} u_{k j}\right|<\frac{1}{2 n \sqrt{n}}\right\}$. Since $\left(\sum_{k=1}^{n}\left|u_{k j}\right|^{2}\right)^{1 / 2} \geq$ $\left|u_{j j}\right|=1$, we have width $\left(L_{j}\right) \leq \frac{1}{n \sqrt{n}}$. For each $\varepsilon>0$ we have

$$
\sum_{j=1}^{n} \operatorname{width}\left((1-\varepsilon) L_{j}\right)<\operatorname{width}(M)
$$

so by the plank theorem [B] there exists $t^{(\varepsilon)}=\left(t_{1}^{(\varepsilon)}, \ldots, t_{n}^{(\varepsilon)}\right) \in M \backslash \bigcup_{j=1}^{n}(1-\varepsilon) L_{j}$. By a compactness argument, there exists $t=\left(t_{1}, \ldots, t_{n}\right) \in M \backslash \bigcup_{j=1}^{n} L_{j}$, i.e.,

$$
\sum_{k=1}^{n}\left|t_{k} u_{k j}\right| \geq \frac{1}{2 n \sqrt{n}}
$$

for all $j=1, \ldots, n$.
Let $s=\frac{t}{\sum_{j=1}^{n} t_{j}}$. Then $\sum_{k=1}^{n} s_{k}=1$ and for each $j=1, \ldots, n$ we have

$$
\left|\sum_{k=1}^{n} s_{k} u_{k j}\right|=\frac{\left|\sum_{k=1}^{n} t_{k} u_{k j}\right|}{\sum_{k=1}^{n} t_{k}} \geq \frac{1}{2 n \sqrt{n}}
$$

So $v=\sum_{k=1}^{n} s_{k} u_{k} \in K$ and

$$
\left|v_{j}\right| \geq \frac{1}{2 n \sqrt{n}} \quad(j=1, \ldots, n)
$$

Corollary 6. Let $\operatorname{dim} H<\infty$ and let $T_{1}, \ldots, T_{n} \in B(H)$ be commuting selfadjoint operators. Then there exists a unit vector $x \in H$ such that

$$
\left|\left\langle T_{j} x, x\right\rangle\right| \geq \frac{\left\|T_{j}\right\|}{2 n \sqrt{n}} \quad(j=1, \ldots, n)
$$

Proof. Without loss of generality we may assume that $\left\|T_{j}\right\|=1$ and $1 \in \sigma\left(T_{j}\right)$ for all j. The joint numerical range $W\left(T_{1}, \ldots, T_{n}\right)=$ conv $\sigma\left(T_{1}, \ldots, T_{n}\right)$ is a closed convex subset of $[-1,1]^{n}$. For each $j=1, \ldots, n$ there exists a unit vector $x_{j} \in H$ with $\left\langle T_{j} x_{j}, x_{j}\right\rangle=1$, so there exists $\lambda_{j}=\left(\lambda_{j 1}, \ldots, \lambda_{j n}\right) \in W\left(T_{1}, \ldots, T_{n}\right)$ with $\left|\lambda_{j j}\right|=1$.

By Lemma 5, there exists $v \in W\left(T_{1}, \ldots, T_{n}\right)$ with $\left|v_{j}\right| \geq \frac{\left\|T_{j}\right\|}{2 n \sqrt{n}} \quad(j=1, \ldots, n)$.
Lemma 5 can be also applied for other types of convex numerical ranges.

Let H be an infinite-dimensional Hilbert space and let $T_{1}, \ldots, T_{n} \in B(H)$. Recall that the joint essential numerical range $W_{e}\left(T_{1}, \ldots, T_{n}\right)$ is the set of all $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}$ such that there exists an orthonormal sequence $\left(x_{k}\right) \subset H$ with

$$
\lambda_{j}=\lim _{k \rightarrow \infty}\left\langle T_{j} x_{k}, x_{k}\right\rangle .
$$

The joint essential numerical range is always a closed convex set, see [LP].
For a single selfadjoint operator $S \in B(H)$ we have $\sup \left\{|\mu|: \mu \in W_{e}(S)\right\}=\|S\|_{e}$, the essential norm of S. So an easy application of Lemma 5 gives

Theorem 7. Let H be an infinite-dimensional Hilbert space, let $T_{1}, \ldots, T_{n} \in B(H)$. Then there exists an orthonormal sequence $\left(x_{k}\right) \subset H$ such that $a_{j}:=\lim _{k \rightarrow \infty}\left\langle T_{j} x_{k}, x_{k}\right\rangle$ exists and

$$
\left|a_{j}\right| \geq \frac{\left\|T_{j}\right\|_{e}}{4 n \sqrt{n}}
$$

for all $j=1, \ldots, n$.
If the operators T_{j} are selfadjoint then there exists an orthonormal sequence $\left(x_{k}\right) \subset H$ with

$$
\left|a_{j}\right| \geq \frac{\left\|T_{j}\right\|_{e}}{2 n \sqrt{n}}
$$

for all $j=1, \ldots, n$.
Proof. We prove first the second statement. Let $T_{j}^{*}=T_{j}$ for all j. Without loss of generality we may assume that $\left\|T_{j}\right\|_{e}=1$ for all j and $1 \in W_{e}\left(T_{j}\right)$. Since the set $W_{e}\left(T_{1}, \ldots, T_{n}\right)$ is convex, by Lemma 5 there exists an element $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in W_{e}\left(T_{1}, \ldots, T_{n}\right)$ satisfying $\left|\lambda_{j}\right| \geq \frac{1}{2 n \sqrt{n}}$ for all $j=1, \ldots, n$.

Let now $T_{1}, \ldots, T_{n} \in B(H)$ be arbitrary operators; we may assume that $\left\|T_{j}\right\|_{e} \neq 0$ for all j. For each j there exists $\lambda_{j} \in W_{e}\left(T_{j}\right)$ with $\left|\lambda_{j}\right| \geq \frac{\left\|T_{j}\right\|_{e}}{2}$. Let $S_{j}=\operatorname{Re} \frac{T_{j}}{\lambda_{j}}=\frac{1}{2}\left(\frac{T_{j}}{\lambda_{j}}+\frac{T_{j}^{*}}{\lambda_{j}}\right)$. Then $S_{j}^{*}=S_{j}$ and $1 \in W_{e}\left(S_{j}\right)$. By the previous statement, there exists an orthonormal sequence $\left(x_{k}\right) \subset H$ with $\lim _{k \rightarrow \infty}\left|\left\langle S_{j} x_{k}, x_{k}\right\rangle\right| \geq \frac{1}{2 n \sqrt{n}}\left\|S_{j}\right\|_{e} \geq \frac{1}{2 n \sqrt{n}}$ for all j. Hence

$$
\liminf _{k \rightarrow \infty}\left|\left\langle T_{j} x_{k}, x_{k}\right\rangle\right| \geq\left|\lambda_{j}\right| \cdot \liminf _{k \rightarrow \infty}\left|\operatorname{Re}\left\langle\lambda_{j}^{-1} T_{j} x_{k}, x_{k}\right\rangle\right|=\left|\lambda_{j}\right| \cdot \lim _{k \rightarrow \infty}\left|\left\langle S_{j} x_{k}, x_{k}\right\rangle\right| \geq \frac{\left\|T_{j}\right\|_{e}}{4 n \sqrt{n}}
$$

Taking a subsequence of $\left(x_{k}\right)$ if necessary we can assume that all the sequences in the above formula converge.

Another situation where the results can be applied is the algebraic numerical range.
Let \mathcal{A} be a unital Banach algebra, let $a_{1}, \ldots, a_{n} \in \mathcal{A}$. The algebraic numerical range is defined by

$$
V\left(a_{1}, \ldots, a_{n}, \mathcal{A}\right)=\left\{\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right): f \in \mathcal{A}^{*},\|f\|=1=f\left(1_{\mathcal{A}}\right)\right\}
$$

where $1_{\mathcal{A}}$ denotes the unit in \mathcal{A}.
It is well known that $V\left(a_{1}, \ldots, a_{n}, \mathcal{A}\right)$ is always a closed convex subset of \mathbb{C}^{n}. For a single element $a_{1} \in \mathcal{A}$ we have

$$
\sup \left\{|\mu|: \mu \in V\left(a_{1}, \mathcal{A}\right)\right\} \geq \frac{\left\|a_{1}\right\|}{e}
$$

(where $e=2.71 \ldots$), see [BD], p. 34 .

Corollary 8. Let \mathcal{A} be a unital Banach algebra, let $a_{1}, \ldots, a_{n} \in \mathcal{A}$. Then there exists $f \in \mathcal{A}^{*}$, $\|f\|=1=f\left(1_{\mathcal{A}}\right)$ such that

$$
\left|f\left(a_{j}\right)\right| \geq \frac{\left\|a_{j}\right\|}{2 e n \sqrt{n}} \quad(j=1, \ldots, n)
$$

Proof. For $j=1, \ldots, n$ there exists $f_{j} \in \mathcal{A}^{*}$ with $\left\|f_{j}\right\|=1=f_{j}\left(1_{\mathcal{A}}\right),\left|f_{j}\left(a_{j}\right)\right| \geq \frac{\left\|a_{j}\right\|}{e}$. Let α_{j} be the complex unit such that $f_{j}\left(\alpha_{j} a_{j}\right) \geq \frac{\left\|a_{j}\right\|}{e}$. The numerical range $V\left(\alpha_{1} a_{1}, \ldots \alpha_{n} a_{n}, \mathcal{A}\right)$ is a convex set, and so is the set $K:=\left\{\left(\operatorname{Re} \lambda_{1}, \ldots, \operatorname{Re} \lambda_{n}\right):\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in V\left(\alpha_{1} a_{1}, \ldots, \alpha_{n} a_{n}, \mathcal{A}\right)\right\}$. By Lemma 5, there exists $\mu \in K \subset \mathbb{R}^{n}$ with $\left|\mu_{j}\right| \geq \frac{\left\|a_{j}\right\|}{2 e n \sqrt{n}}$ for all j. So there exists $\lambda \in$ $V\left(a_{1}, \ldots, a_{n}, \mathcal{A}\right)$ with $\left|\lambda_{j}\right| \geq \frac{\left\|a_{j}\right\|}{2 e n \sqrt{n}} \quad(j=1, \ldots, n)$.

4. Joint numerical radius

Let $T=\left(T_{1}, \ldots, T_{n}\right) \in B(H)^{n}$. The norm of T is defined as

$$
\|T\|=\sup \left\{\left(\sum_{i=1}^{n}\left\|T_{i} x\right\|^{2}\right)^{1 / 2}: x \in H,\|x\|=1\right\} .
$$

The joint numerical radius of T is defined by

$$
w(T)=\sup \left\{\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}\right)^{1 / 2}:\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in W(T)\right\} .
$$

The latter unitary invariant of T is called the Euclidean operator radius (and denoted $w_{e}(T)$) by Popescu [P]. We provide a short proof of the following theorem given in [P], Proposition 1.21.

Theorem 9. Let $T=\left(T_{1}, \ldots, T_{n}\right) \in B(H)^{n}$. Then

$$
w(T) \geq \frac{\|T\|}{2 \sqrt{n}}
$$

Moreover, the estimate is sharp.
Proof. Without loss of generality we may assume that $\|T\|=1$. For each $\varepsilon>0$ there exists a unit vector $x \in H$ such that $\left(\sum_{i=1}^{n}\left\|T_{i} x\right\|^{2}\right)^{1 / 2}>1-\varepsilon$. So there exists $j_{0} \in\{1, \ldots, n\}$ such that $\left\|T_{j_{0}} x\right\|^{2}>\frac{(1-\varepsilon)^{2}}{n}$. It follows that

$$
w\left(T_{j_{0}}\right) \geq \frac{1}{2}\left\|T_{j_{0}}\right\| \geq \frac{1}{2}\left\|T_{j_{0}} x\right\|>\frac{1-\varepsilon}{2 \sqrt{n}}
$$

Consequently, $w(T)>\frac{1-\varepsilon}{2 \sqrt{n}}$. Since $\varepsilon>0$ was arbitrary, we have $w(T) \geq \frac{1}{2 \sqrt{n}}$.
To show that the estimate is sharp, let H be the $(n+1)$-dimensional Hilbert space with an orthonormal basis $e_{0}, e_{1}, \ldots, e_{n}$. Define $T=\left(T_{1}, \ldots, T_{n}\right) \in B(H)^{n}$ by

$$
T_{j} e_{0}=\frac{e_{j}}{\sqrt{n}}, \quad T_{j} e_{i}=0 \quad(i, j=1, \ldots, n)
$$

Then $\|T\| \geq\left(\sum_{j=1}^{n}\left\|T_{j} e_{0}\right\|^{2}\right)^{1 / 2}=1$ (in fact it is easy to show that $\|T\|=1$).

Let $x=\sum_{i=0}^{n} \alpha_{i} e_{i} \in H$ be a unit vector. So $\sum_{i=0}^{n}\left|\alpha_{i}\right|^{2}=1$. We have

$$
\sum_{j=1}^{n}\left|\left\langle T_{j} x, x\right\rangle\right|^{2}=\sum_{j=1}^{n}\left(\frac{\left|\alpha_{0} \alpha_{j}\right|}{\sqrt{n}}\right)^{2}=\frac{\left|\alpha_{0}\right|^{2}\left(1-\left|\alpha_{0}\right|^{2}\right)}{n}
$$

So

$$
\sup \left\{\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}:\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in W(T)\right\}=\frac{1}{n} \sup \left\{\left|\alpha_{0}\right|^{2}\left(1-\left|\alpha_{0}\right|^{2}\right): \alpha_{0} \in \mathbb{C},\left|\alpha_{0}\right| \leq 1\right\}=\frac{1}{4 n} .
$$

Hence $w(T)=\frac{1}{2 \sqrt{n}}$.

References

[B] T. Bang, A solution of the "plank problem", Proc. Amer. Math. Soc. 2 (1951), 990-993.
[BD] F.F. Bonsall, J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note series, 2 Cambridge University Press, London-New York 1971.
[LP] C.K. Li, Y.T. Poon, The joint essential numerical range of operators: convexity and related results, Studia Math. 194 (2009), 91-104.
[M1] V. Müller, Spectral Theory of Linear Operators, Operator Theory, Advances and Applications, vol. 139, Birkhäuser, Basel-Boston-Berlin 2007.
[M2] V. Müller, On joint numerical radius, Proc. Amer. Math. Soc., to appear.
[P] G. Popescu, Unitary invariants in multivariable operator theory, Mem. Amer. Math. Soc. 200 (2009), no. 941.

Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

E-mail address: roman.drnovsek@fmf.uni-lj.si
Mathematical Institute AV ČR, Zitna 25, 11567 Praha 1, Czech Republic
E-mail address: muller@math.cas.cz

[^0]: 1991 Mathematics Subject Classification. Primary 47A12, Secondary 47A13.
 Key words and phrases. Joint numerical range, numerical radius.
 The first author was supported by the Slovenian Research Agency, and the second author was supported by grants 201/09/0473 of GA ČR, IAA100190903 of GA AV ČR and RVO: 67985840.

