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“LARGE” WEAK ORBITS OF C0-SEMIGROUPS

VLADIMIR MÜLLER AND YURI TOMILOV

Abstract. We show the existence of ”large” weak orbits of C0-semigroups
with generators satisfying natural spectral assumptions. We give also
certain applications of our results to harmonic analysis and discuss re-
lated results.

1. Introduction and preliminaries

It is a well-known fact that the Fourier transform of an integrable function
may decay arbitrarily slowly at infinity. More precisely if f : R→ [0,∞) is
any function going to zero at infinity, then there exists f ∈ L1(R) such that
its Fourier transform ĝ satisfies

(1.1) |ĝ(ξ)| > g(ξ), ξ ∈ R.
Thus, loosely speaking, Fourier transforms of integrable functions are order
dense in C0(R), and the only restriction on the size of the Fourier trans-
forms is imposed by the Riemann-Lebesgue Lemma. This fact underlines
the heuristic principle that the Fourier transform is as large as it is allowed
to be by very basic constraints. For other illustrations of the principle see
e.g. the survey paper [5]. Note that if µ is a nonatomic finite measure on
R, then by classical Wiener’s theorem (see e.g. [23], and [22, Theorem 5.4]
for a simple proof)

1

T

∫ T

0
|µ̂(ξ)|2 dξ → 0, T →∞,

which is equivalent to

(1.2) µ̂(ξ)→ 0 as |ξ| → ∞
in density, that is (1.2) holds for ξ from a subset of R of density one. In this
situation we are not aware of results similar to (1.1) and we show below that
one can derive certain analogues of (1.1) for equivalence classes of a fixed
measure in the sense of density. (An interplay between Wiener’s theorem
and semigroup theory was studied in [3], see also [4],[12].)
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2 VLADIMIR MÜLLER AND YURI TOMILOV

The above issues of decay of Fourier transforms can be put in a more gen-
eral setting of orbits of C0-semigroups. It suffices to note that if (M(t))t>0
is a multiplication C0-semigroup on H = L2(dµ) given by

(1.3) (M(t)g)(s) = e−itsg(s), t > 0, s ∈ R,

and 〈·, ·〉 is the inner product on H, then, for any f, g ∈ H, the weak orbit
〈M(t)f, g〉 of the semigroup M is the Fourier transform of the function
fg ∈ L1(dµ).

In this paper, we treat weak orbits of C0-semigroups (T (t))t>0 on Banach
and Hilbert spaces. In particular, in the Hilbert space case, we show that
if T converges to zero in the weak operator topology then, under natural
spectral assumptions, its weak orbits are as large as it is possible, that is
any function going to zero at infinity can be dominated by a weak orbit
of the semigroup. If (T (t))t>0 is merely bounded then its weak orbits are
large when taken along large subsets of R+, e.g. those with density one. We
give also a version of these results for semigroups acting on reflexive Banach
spaces. Moreover, in most cases we are able to find weak orbits starting at
comparatively small set of smooth vectors of the semigroup generator. Thus,
in particular if (T (t))t>0 is weakly (or strongly) stable and the peripheral
spectrum of the generator is non-empty, then decay of the semigroup to zero
is far from being uniform in several natural senses. This fact is of value for
the study of decay properties of solutions to abstract Cauchy problems.

Similar results in the setting of discrete semigroups (Tn)n∈N were ob-
tained in [2]. However, the case of C0-semigroups contains several additional
difficulties with respect to [2]. One of them is that our argument depends
on the semigroup spectral structure and the spectral mapping theorem for
C0-semigroups does not, in general, hold. Thus, the study of the spectrum
of a semigroup in terms of the spectrum of its generator requires new tools.
Moreover, we consider large weak orbits in the sense of density, and this
issue was not addressed in [2]. Finally, we also treat smooth orbits and the
notion of smooth vectors seems to be meaningless in the case of discrete
semigroups.

Note that the results close in spirit were obtained in [17], [18], [20] and
[21]. The paper [21] is the closest to our considerations and shows the
existence of large weak semigroup orbits under assumptions similar to those
in this paper, see e.g. [21, Theorem 1]. However, the notions of an orbit
being large in [21] and in the present article differ. While we are interested
in domination of a fixed function by a weak semigroup orbit, [21] claims only
the existence of a large set where the weak orbit is large. Thus, in several
cases, our results give much more precise information on weak orbits. On
the other hand, the main result of [21] cannot be deduced from our results
(nor our results can be obtained from [21]) but it rather can be reproved by
our arguments.

Our main results are contained in Section 5 and Section 6. Several
straightforward applications of our semigroup results to the study of Fourier
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transforms are given in Section 7. Finally, possible generalizations and re-
lated matters are discussed in Section 8.

Our technique stems from [15]. It has been developed subsequently in [2],
[13]-[15]. For its detailed exposition see [16, Chapter V].

Several facts from the theory of C0-semigroups will be crucial for us. Let
X be a Banach space. For a C0-semigroup (T (t))t>0 on X with generator
A define the semigroup exponential growth bound by

ω0(T ) := lim
t→∞

ln‖T (t)‖
t

,

the spectral bound by

s(A) := sup{Reλ : λ ∈ σ(A)},
and pseudo-spectral bound (or abscissa of uniform boundedness of the re-
solvent of A) by

s0(A) := inf{ω > s(A) : R(λ,A) is uniformly bounded for Reλ > ω}.
It is well known (and easy to prove) that

(1.4) s(A) 6 s0(A) 6 ω0(T ).

There are various examples of C0-semigroups such that the above inequali-
ties are strict, see e.g. [1, Chapter 5.1], [10, Chapter 5.1] or [19, Chapter 1].
However, if X is a Hilbert space, then the Gearhart-Herbst-Pruess theorem
guarantees that

(1.5) ω0(T ) = s0(A),

thus the resolvent of A determines the exponential growth of T. For a dis-
cussion of relations between the three bounds see e.g. [1, Chapters 5.1-5.3]
or [19, Chapters 1-4].

Another useful fact concerns weak convergence of bounded C0-semigroups.
Recall that if X is a separable reflexive Banach space, and (T (t))t>0 is a
bounded C0-semigroup on X, with generator A such that the point spec-
trum of A on iR is empty, then T almost weakly converges to zero in the
sense that for any x ∈ X and x∗ ∈ X∗

(1.6) 〈T (t)x, x∗〉 → 0, t→∞,
for t from a subset of R+ of density 1, see e.g. [8] and [9] for more infor-
mation. This property will help us to deal with semigroups which do not
necessarily converge in any sense.

2. Notations

All Banach and Hilbert spaces in this paper will be complex. For a lin-
ear operator A we denote by σ(A), ∂σ(A), σπ(A), σp(A), and ρ(A) the spec-
trum, the topological boundary of the spectrum, the approximate spectrum,
the point spectrum, and the resolvent set of A, respectively. Moreover,
D(A), ImA, and KerA will stand for the domain, the range and the kernel
of A. If X is a Banach space, then by L(X) we denote the Banach algebra
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of all bounded linear operators on X. Let also C0(R) stand for the spaces of
continuous functions on R vanishing at ±∞, and denote by C∞(R) the set
of smooth functions on R.

Let m stand for the Lebesgue measure on the real line.

3. Smooth approximate eigenvectors for closed operators

First we need several spectral properties of semigroup generators re-
stricted to their sets of smooth vectors. We put our presentation in a little
bit more general framework of closed linear operators on Banach spaces since
we think the results will also be of use in other instances as well.

Let X be a Banach space. Let A : D(A) ⊂ X → X be a densely defined
linear operator with ρ(A) 6= ∅. Note that A is then automatically closed.
For k ∈ N consider the norm ‖ · ‖k defined on D(Ak) by

‖x‖k := ‖x‖+ ‖Ax‖+ · · ·+ ‖Akx‖.

Then (D(Ak), ‖ · ‖k) is a Banach space. Define

C∞(A) :=

∞⋂
n=1

D(An).

The (Frechet) space C∞(A) is called the set of smooth (or infinitely differ-
entiable) vectors of A. If A generates a C0-semigroup (T (t))t>0, then C∞(A)
is precisely the set of elements x ∈ X such that the orbit T (·)x is infinitely
differentiable on [0,∞).

The following lemma is well-known and can be found e.g. in [24, Corollary
3.3].

Lemma 3.1. For every k ∈ N the set C∞(A) is dense in (D(Ak), ‖ · ‖k).

We start with obtaining a C∞(A)-version of a well-known result on ap-
proximate eigenvectors of linear operators. To this aim we need several
auxiliary facts.

Lemma 3.2. Let λ ∈ ∂σ(A). Then A− λ is not onto.

Proof. Without loss of generality we may assume that λ = 0. Fix µ ∈ ρ(A)
and consider T := A(A − µ)−1. Then T = I + µ(A − µ)−1 is a bounded
linear operator. By the spectral mapping theorem for resolvents (see e.g.
[10, Chapter IV.1.13]), we have σ(T ) \ {1} = {1 + µ

z−µ : z ∈ σ(A)}. Thus

0 ∈ ∂σ(T ), and so T is not onto. Since ImT = ImA, the operator A is not
onto as well. �

Lemma 3.3. Let λ ∈ ∂σ(A) and let {λn : n > 1} ⊂ ρ(A) be such that
λn → λ, n→∞. For a fixed k ∈ N consider the operators (A−λn)−1, n ∈ N,
acting on the space (D(Ak), ‖ · ‖k). Then

lim
n→∞

‖(A− λn)−1‖k =∞.
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Proof. Without loss of generality we may assume that λ = 0. Suppose on
the contrary (passing to a subsequence if necessary) that

sup
n
‖(A− λn)−1‖k <∞.

Then
A(A− λn)−1 = I + λn(A− λn)−1 → I, n→∞,

in L(D(Ak), ‖ · ‖k). So, for n large enough, A(A − λn)−1 is invertible in
L (D(Ak), ‖ · ‖k) and then(

A(A− λn)−1
)k
D(Ak) = D(Ak).

Let x ∈ X. Then (A − λn)−kx ∈ D(Ak), and so there exists u ∈ D(Ak)
such that

(A− λn)−kAku =
(
A(A− λn)−1

)k
u = (A− λn)−kx.

Hence Aku = x. Thus AkD(Ak) = X. In particular, A is surjective, which
is a contradiction with Lemma 3.2. �

Lemma 3.4. Let λ ∈ ∂σ(A) and let {λn : n > 1} ⊂ ρ(A) be such that
λn → λ, n → ∞. Then for every k ∈ N there exists x ∈ D(Ak) such that
supn ‖(A− λn)−1x‖ =∞.

Proof. Let k ∈ N be fixed. Without loss of generality we may assume that
λ = 0. Suppose on the contrary that supn ‖(A − λn)−1x‖ < ∞ for each
x ∈ D(Ak).

We show by induction on j, 1 6 j 6 k, that supn ‖Aj(A− λn)−1x‖ <∞.
We have

Aj(A− λn)−1x = Aj−1x+ λnA
j−1(A− λn)−1x,

and so supn ‖Aj(A− λn)−1x‖ <∞ by the induction assumption. Hence

sup
n
‖(A− λn)−1x‖k = sup

n

(
‖(A− λn)−1x‖+ ‖A(A− λn)−1x‖+ · · ·

+ ‖Ak(A− λn)−1x‖
)

< ∞.
By the Banach-Steinhaus theorem, supn ‖(A − λn)−1‖k < ∞, a contradic-
tion. �

The next statement ensures the existence of an approximate eigenvector
for A consisting of smooth vectors.

Proposition 3.5. Let λ ∈ ∂σ(A), let k ∈ N and ε ∈ (0, 1). Then there
exists x ∈ C∞(A) such that ‖x‖ = 1 and ‖(A − λ)jx‖ < ε for every j ∈
N, 1 6 j 6 k.

Proof. Without loss of generality we my assume that λ = 0. Choose λn ∈
ρ(A), n ∈ N, such that λn → 0, n → ∞. By Lemma 3.4, there exists
u ∈ D(Ak) such that supn ‖(A−λn)−1u‖ =∞. By passing to a subsequence
if necessary we may assume that ‖(A− λn)−1u‖ → ∞, n→∞.
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For n ∈ N set xn = (A−λn)−1u
‖(A−λn)−1u‖ . Then ‖xn‖ = 1. We show by induction

on j, 1 6 j 6 k, that limn→∞ ‖Ajxn‖ = 0. We have

Axn =
u

‖(A− λn)−1u‖
+ λnxn

and ‖Axn‖ → 0, n→∞.
Similarly, for j = 1, . . . , k we have

Ajxn =
Aj−1u

‖(A− λn)−1u‖
+ λnA

j−1xn

and ‖Ajxn‖ → 0 by the induction assumption.
For n sufficiently large, we have xn ∈ D(Ak), ‖xn‖ = 1 and ‖Ajxn‖ <

ε/2 (j = 1, . . . , k). Since C∞(A) is dense in (D(Ak), ‖ · ‖k), there exists
x′ ∈ C∞(A) such that ‖x′ − xn‖k < ε/4.

Set x = x′

‖x′‖ . Then x ∈ C∞(A) and ‖x‖ = 1. Moreover for every j,

1 6 j 6 k, we have

‖Ajx‖ =
‖Ajx′‖
‖x′‖

6
‖Ajxn‖+ ‖Aj(x′ − xn)‖

‖x′‖
6

3ε/4

1− ε/4
< ε.

�

Now we show that if λ is an approximate eigenvalue for A which is not
an eigenvalue, then we can find a ”smooth” approximate eigenvector corre-
sponding to λ in any given subspace of finite codimension.

Proposition 3.6. Let λ ∈ σπ(A) \ σp(A). Let M ⊂ X be a closed subspace
of finite codimension, let k ∈ N and ε > 0. Then there exists x ∈M∩C∞(A)
such that ‖x‖ = 1 and ‖(A− λ)jx‖ < ε for j = 1, . . . , k.

Proof. Without loss of generality we may assume that λ = 0. Write l =
codimM and let M0 = M ∩ C∞(A). If u1, . . . , ul+1 ∈ C∞(A) are linearly

independent then there exists a nontrivial linear combination u =
∑l+1

j=1 αjuj
such that u ∈M , and so u ∈M0. Thus dim (C∞(A)/M0) 6 l.

Let F ⊂ C∞(A) be a subspace such that F ∩M0 = {0} and F + M0 =

C∞(A). Then dimF 6 l. We have F +M ⊃ F +M0 = C∞(A) = X. Since
dimF 6 l = codimM , we have F ∩M = {0} and X = F ⊕M . Let P be
the projection satisfying KerP = M and PX = F .

By Proposition 3.5, there exists a sequence {xn : n > 1} ⊂ C∞(A) such
that ‖xn‖ = 1 for all n and ‖Ajxn‖ → 0, j = 1, . . . , k. Write

xn = mn + fn, n ∈ N,

where fn = Pxn ∈ F and mn = (I − P )xn ∈ M ∩ C∞(A) = M0. Since
‖fn‖ 6 ‖P‖ for all n, we may assume (passing to a subsequence if necessary)
that fn → f, n→∞, and f ∈ F. Since A �F is bounded, we have

Afn → Af and Amn = Axn −Afn → −Af, n→∞.
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Similarly, for every j, 1 6 j 6 k,

Ajfn → Ajf and Ajmn → −Ajf, n→∞.
Suppose on the contrary that there exists ε > 0 such that

∑k
j=1 ‖Aju‖ >

ε‖u‖ for all u ∈M∩C∞(A). Since
∑k

j=1 ‖Aj(mn−mn′)‖ → 0 as n, n′ →∞,

the sequence {mn : n > 1} is Cauchy and hence convergent. Denote its limit
by m.

We have mn ∈ D(A), mn → m and Amn → −Af, n → ∞, and, since
A is a closed operator, m ∈ D(A) and Am = −Af . Thus A(m + f) = 0.
Moreover,

‖m+ f‖ = lim
n→∞

‖mn + fn‖ = lim
n→∞

‖xn‖ = 1.

This contradicts the assumption that 0 /∈ σp(A). �

4. Smooth approximate eigenvectors for semigroups

In this section we show that smooth approximate eigenvectors of semi-
group generators are approximate eigenvectors for semigroup as well, and
moreover, under natural spectral assumptions, any subspace of finite codi-
mension contains smooth approximate eigenvectors for semigroup.

Proposition 4.1. Let (T (t)t>0 be a C0-semigroup on a Banach space X,
with generator A. Let λ ∈ σπ(A) \ σp(A), let M ⊂ X be a subspace of finite
codimension and ε > 0. Then for any t0 > 0 and n0 ∈ N there exists
x ∈M ∩ C∞(A), ‖x‖ = 1, such that

‖T (t)x− eλtx‖ < ε, t ∈ [0, t0],

and
‖(A− λ)jx‖ < ε, 1 6 j 6 n0.

Proof. Let ε0 ∈ (0, ε) satisfy

ε0t0(max{‖T (t)‖ : 0 6 t 6 t0} ·max{et0Reλ, 1} < ε.

By Proposition 3.6, there exists x ∈M ∩ C∞(A) such that ‖x‖ = 1 and

‖(A− λ)jx‖ < ε0, 1 6 j 6 j0.

Let 0 6 t 6 t0. Then

‖T (t)x− eλtx‖ =
∥∥∥∫ t

0
eλ(t−s)T (s)(λ−A)xds

∥∥∥
6 tmax{1, eReλt0} ·max{‖T (s)‖ : 0 6 s 6 t0} · ‖(λ−A)x‖
< ε.

�

We will also need a generalization of Proposition 4.1 to the situation when
an approximate eigenvector for semigroup is not “induced” by the spectrum
of the generator. This generalization will rely on a property of approximate
eigenvectors, which is of independent interest.
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Proposition 4.2. Let (T (t))t>0 be a C0-semigroup on a Banach space X,
with generator A. Let σ(A) ∩ (s0(A) + iR) = ∅. Then there exist sequences
{µn : n > 1} ⊂ C and {un : n > 1} ⊂ D(A) such that

a) Reµn → s0(A), n→∞, Reµn < s0(A),
b) ‖un‖ = 1 for all n ∈ N, ‖(µn − A)un‖ → 0, n → ∞, and for every

y∗ ∈ D(A∗),
〈un, y∗〉 → 0, n→∞.

In particular, un → 0, n→∞, weakly if X is reflexive.

Proof. If s(A) = s0(A) then there exists a sequence {µn : n > 1} ⊂ σ(A)
such that Reµn → s0(A), n→∞. Then |Imµn| → ∞ since otherwise there
is a limit point µ of {µn : n > 1}, which belongs to σ(A) and satisfies
Reµ = s0(A), a contradiction.

If s(A) < s0(A), then there exists a sequence {µn : n > 1} ⊂ ρ(A) such
that Reµn → s0(A), and ‖(µn − A)−1‖ → ∞, n → ∞. Again |Imµn| → ∞
since otherwise there is a limit point µ of {µn : n > 1} with Reµ = s0(A).
Necessarily µ ∈ σ(A), a contradiction.

In both cases there exists a sequence {µn : n > 1} with Reµn → s0(A),
|µn| → ∞ and unit vectors un ∈ D(A), n > 1, such that ‖(µn − A)un‖ →
0, n→∞.

We show that
〈un, y∗〉 → 0, n→∞,

for each y∗ ∈ D(A∗). Let y∗ ∈ D(A∗) ⊂ X∗, ‖y∗‖ = 1. Find y ∈ D(A) with
〈y, y∗〉 > 1

2 . Let M = Ker y∗. Write un = mn + αny for some mn ∈ M ,
αn ∈ C. Then the sequences {mn : n > 1} and {αn : n > 1} are bounded.
Furthermore,

〈(µn −A)un, y
∗〉 → 0, n→∞,

and

〈(µn −A)un, y
∗〉 = 〈(µn −A)mn, y

∗〉+ αn〈(µn −A)y, y∗〉
= αnµn〈y, y∗〉 − 〈mn, A

∗y∗〉 − αn〈Ay, y∗〉.
Since the last two terms are uniformly bounded and |µn| → ∞, n→∞, we
have αn → 0, n→∞. So 〈un, y∗〉 → 0, n→∞.

If X is reflexive then D(A∗) is dense in X∗, and we have un → 0, n→∞,
weakly. �

Remark 4.3. Note that if X is not reflexive then it is not true in general that
a sequence {un : n > 1} as above converges weakly to zero. For example if
X = l1 then weak and strong convergences in X coincide, hence {un : n > 1}
does not converge weakly in X since ‖un‖ = 1, n > 1, and the set D(A∗)
separates elements of X.

Now we are ready to show that, under natural spectral assumptions, the
semigroup possesses an approximate eigenvalue with real part equal to the
pseudo-spectrum bound. Moreover, the corresponding approximate eigen-
vectors can be found in any subspace of finite codimension.
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Proposition 4.4. Let (T (t))t>0 be a C0-semigroup on a reflexive Banach
space X, with generator A. Suppose that σp(A) ∩ (s0(A) + iR) = ∅. Let
M ⊂ X be a subspace of finite codimension. Then for any t0 > 0 and ε > 0
there exist µ ∈ C with Reµ = s0(A) and x ∈M , ‖x‖ = 1, such that

‖T (t)x− eµtx‖ < ε, 0 6 t 6 t0.

Proof. Suppose first that there exists µ ∈ σ(A) with Reµ = s0(A). Then
µ ∈ ∂σ(A) \ σp(A) ⊂ σπ(A) \ σp(A).

By Lemma 3.6, there exists x ∈ D(A) ∩M such that ‖x‖ = 1 and

‖T (t)x− eµtx‖ =
∥∥∥∫ t

0
eµ(t−s)T (s)(µ−A)xds

∥∥∥ < ε

for all t, 0 6 t 6 t0.
Suppose that σ(A) ∩ (s0(A) + iR) = ∅. By Proposition 4.2, there exist

sequences {µn : n > 1} ⊂ C and {un : n > 1} ⊂ D(A) such that

Reµn → s0(A), Reµn < s0(A),

‖un‖ = 1, n ∈ N, un → 0, n→∞ weakly,

‖(µn −A)un‖ → 0, n→∞.
Let ε > 0 and t0 > 0 be fixed and K := sup{‖T (t)‖ : 0 6 t 6 t0}. As

in Lemma 3.6, there exists a finite-dimensional subspace F ⊂ D(A) such
that X = M ⊕ F . Let P be the projection onto F with KerP = M . Then
‖Pun‖ → 0, so ‖(I − Pn)un‖ → 1, n→∞, and∥∥∥un − un − Pun

‖un − Pun‖

∥∥∥→ 0, n→∞.

Choose n0 ∈ N such that∥∥∥un0 −
un0 − Pun0

‖un0 − Pun0‖

∥∥∥ 6 min
{ ε

4K
,

ε

4es0(A)t0

}
,

et0(s0(A)−Reµn0 ) <
ε

4
,

and

‖(µn0 −A)un0‖ <
ε

4 max{‖T (t)‖ : 0 6 t 6 t0} · t0 ·max{1, et0s0(A)}
.

Set

µ = s0(A) + iImµn0 and x =
un0 − Pun0

‖un0 − Pun0‖
.

Let 0 6 t 6 t0. We have

‖T (t)un0 − eµn0 tun0‖ =
∥∥∥∫ t

0
eµn(t−s)T (s)(µn0 −A)un0ds

∥∥∥ < ε/4

and

‖T (t)x− eµtx‖ 6 ‖T (t)x− T (t)un0‖+ ‖T (t)un0 − eµn0 tun0‖
+ ‖eµn0 tun0 − eµtun0‖+ ‖eµtun0 − eµtx‖
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6 K‖x− un0‖+ ε/4 + et(s0(A)−Reµn0 ) + ets0(A)‖x− un0‖
< ε.

�

5. Lower bounds for weak orbits

In this section, we first prove that if the spectrum of the generator meets
the imaginary axis then any function tending to zero at infinity can be
dominated by a certain smooth weak orbit of the corresponding semigroup.
For shorthand, we say that a C0-semigroup (T (t))t>0 is weakly stable if it
converges to zero as t→∞ in the weak operator topology.

Theorem 5.1. Let (T (t)t>0 be a weakly stable C0-semigroup on a Hilbert
space H, with generator A. Suppose that 0 ∈ σ(A). Let f : [0,∞)→ (0,∞)
be a bounded function such that limt→∞ f(t) = 0 and let ε > 0. Then there
exists x ∈ C∞(A) such that ‖x‖ < sup{f(t) : t > 0}+ ε and

Re〈T (t)x, x〉 > f(t)

for all t > 0.

Proof. Without loss of generality we can assume that f is non-increasing.
Indeed, we may replace f by f̃ defined by f̃(t) = sup{f(s) : s > t}. We may
also assume that f(0) = 1 − ε, and to show that there exists x ∈ H with
‖x‖ = 1 satisfying the required property.

Since (T (t))t>0 is weakly stable, it is bounded by the uniform boundedness
principle. Let K = sup{‖T (t)‖ : 0 6 t <∞}.

If 0 ∈ σp(A), then there exists x ∈ D(A) with ‖x‖ = 1 and Ax = 0. Then
x ∈ C∞(A), T (t)x = x and Re〈T (t)x, x〉 = 1 > f(t) for all t.

Thus we can assume that 0 ∈ σπ(A) \ σp(A). By [15, Lemma 1] (or by
[16, Lemma 11, p. 355]), there exist positive numbers ck, k ∈ N, such that∑∞

k=1 c
2
k = 1 and

∞∑
k=j+1

c2k > 3Kcj

for all j > 1.
Choose positive numbers δj , j > 1, such that

(5.1) δj <
1− f(0)

2j
and δj <

K

j22j+2
·min{ck : k = 1, 2, . . . , j + 1}.

Find t0 such that f(t0) <
∑∞

j=2 c
2
j−3Kc1. Choose x1 ∈ C∞(A) such that

‖T (t)x1 − x1‖ < δ1, 0 6 t 6 t0.

Find t1 > t0 such that f(t1) <
∑∞

j=3 c
2
j − 3Kc2.

We construct inductively an increasing sequence {tk : k > 1} of positive
numbers and unit vectors {xk : k > 1} ⊂ C∞(A) in the following way. Let
k > 2 and suppose that xj ∈ C∞(A), tj > 0, have already been constructed
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for j = 1, . . . , k − 1. Using Proposition 4.1, we can find xk ∈ C∞(A) such
that ‖xk‖ = 1 and

‖T (t)xk − xk‖ < δk, 0 6 t 6 tk−1;(5.2)

‖Ajxk‖ 6 δk j = 1, . . . , k;(5.3)

xk ⊥ xj , j = 1, . . . , k − 1.(5.4)

Moreover, since the set L := {T (t)xj : 0 6 t 6 tk−1, 1 6 j 6 k − 1} is
compact, there exists a finite δk/2-net L0 ⊂ L.

As the subspace M := L⊥0 has a finite codimension, by choosing xk in
addition to (5.2)–(5.4) such that xk ∈M we can also assume

|〈T (t)xj , xk〉| < δk, t 6 tk−1, 1 6 j 6 k − 1.

Using the weak stability of (T (t))t>0, find tk > max(tk−1, k) such that

|〈T (t)xj , xs〉| < δk t > tk, 1 6 j, s 6 k,

and

f(tk) <

∞∑
j=k+2

c2j − 3Kck+1.

Suppose that the vectors xj ∈ H and positive numbers tj have been
constructed in the above described way. Set

x =
∞∑
k=1

ckxk.

Then ‖x‖ = (
∑∞

k=1 c
2
k)

1/2 = 1. Fix an arbitrary j ∈ N. We have ‖Ajckxk‖ 6
δk for k > j, so the series

∑∞
k=1 ckA

jxk is convergent by (5.1). Since Aj is a
closed operator, we have x ∈ D(Aj). Hence, since j was arbitrary, we have
x ∈ C∞(A).

For 0 6 t 6 t0 we obtain

Re 〈T (t)x, x〉 = Re
∞∑
s=1

〈T (t)csxs, x〉

=

∞∑
s=1

csRe
(
〈xs, x〉 − 〈xs − T (t)xs, x〉

)
>

∞∑
s=1

c2s −
∞∑
s=1

csδs > 1−
∞∑
s=1

δs > f(0) > f(t).

Let k > 1, tk−1 < t 6 tk. Then

Re 〈T (t)x, x〉 = Re
〈 k∑
s=1

csT (t)xs, x
〉

+ Re
〈 ∞∑
s=k+1

csT (t)xs, x
〉

= Re
〈k−1∑
s=1

csT (t)xs,

k−1∑
j=1

cjxj

〉
+ Re

〈k−1∑
s=1

csT (t)xs, ckxk

〉
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+ Re
〈
ckT (t)xk,

k∑
j=1

cjxj

〉
+ Re

〈 k∑
s=1

csT (t)xs,
∞∑

j=k+1

cjxj

〉
+ Re

〈 ∞∑
s=k+1

csxs, x
〉
− Re

〈 ∞∑
s=k+1

cs(xs − T (t)xs), x
〉

> −
k−1∑
j=1

k−1∑
s=1

cscjδk−1 − ckK
∥∥∥k−1∑
s=1

csxs

∥∥∥−Kck∥∥∥ k∑
j=1

cjxj

∥∥∥
−

k∑
s=1

∞∑
j=k+1

cscjδj +
∞∑

s=k+1

c2s −
∞∑

s=k+1

csδs

> −

(
k−1∑
s=1

cs

)2

δk−1 − 2Kck − k
∞∑

j=k+1

δj +

∞∑
s=k+1

c2s −
∞∑

s=k+1

δs

>
∞∑

s=k+1

c2s − 2Kck − (k − 1)2δk−1 − 2k

∞∑
j=k+1

δj

>
∞∑

s=k+1

c2s − 3Kck > f(tk−1) > f(t).

�

Corollary 5.2. Let (T (t)t>0 be a weakly stable C0-semigroup on a Hilbert
space H, with generator A. Suppose that σ(A) ∩ iR 6= ∅. Let f : [0,∞) →
(0,∞) be a bounded function such that limt→∞ f(t) = 0 and let ε > 0. Then
there exists x ∈ C∞(A) such that ‖x‖ < sup{f(t) : t > 0}+ ε and

|〈T (t)x, x〉| > f(t)

for all t > 0.

Proof. There exists λ ∈ σ(A) such that Reλ = 0. Consider the rescaled
semigroup (e−λtT (t))t>0 and apply the previous theorem.

�

The statement of Corollary (5.2) remains true if we replace the assumption
σ(A) ∩ iR 6= ∅ by a weaker assumption that ω0(T ) = 0. However, we have
no additional information about the “smoothness” of vector x then.

Theorem 5.3. Let (T (t)t>0 be a weakly stable C0-semigroup on a Hilbert
space H, with generator A. Suppose that ω0(T ) = 0. Let f : [0,∞)→ (0,∞)
be a bounded function such that limt→∞ f(t) = 0 and let ε > 0. Then there
exists x ∈ H such that ‖x‖ < sup{f(s) : s > 0}+ ε and

(5.5) |〈T (t)x, x〉| > f(t)

for all t > 0.
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Proof. The proof is similar to that of Theorem 5.1. We use the fact that
ω0 = s0(A) and Proposition 4.4 instead of Proposition 4.1. (In this case
we cannot guarantee the existence of a smooth approximate eigenvector of
(T (t))t>0 corresponding to an approximate eigenvalue with real part equal
to s0(A).) The only difference is that the vectors xk and x do not have to
be taken from C∞(A) now and we do not have to take care of terms like
Ajxk. �

Remark 5.4. To show that it is indeed not possible, in general, to formulate
Theorem 5.3 for smooth elements, consider the following example. Let

Ω :=
{
λ ∈ C : Reλ 6 −|Imλ|−1

}
.

Let X = L2(Ω, dµ) with two-dimensional Lebesgue measure µ, and let
(T (t))t>0 be a C0-semigroup on X defined by

(T (t)f)(s) = (eλtf)(s), t > 0, f ∈ L2(Ω, dµ).

Its generator A is given by

(Af)(z) = zf(z), z ∈ Ω,

with maximal domain. Then s(A) = ω0(T ) = 0. However, it is easy to show
that ‖T (t)A−1‖ = O(1/t) as t → ∞, and so the domination properties like
(5.5) for smooth vectors cannot be true.

6. Lower bounds for weak orbits on large sets

In this section we drop the assumption of weak stability of the semigroup
and obtain certain counterparts of the results in the previous section in this
more general setting.

Let B ⊂ [0,∞) be a measurable set. Denote by DensB and DensB the
density and upper density of B, respectively, defined by

DensB := lim
t→∞

t−1m(B ∩ [0, t])

(if the limit exists) and

DensB := lim sup
t→∞

t−1m(B ∩ [0, t]),

where m stands for Lebesgue measure.
The next lemma, which will be instrumental in Theorem 6.2 below, can

be found e.g. in [8, Theorem 2.5] and [9, Theorem 3.2 and Remark 1, p.
388-389].

Lemma 6.1. Let (T (t))t>0 be a bounded C0-semigroup on a separable Hilbert
space H, with generator A. Suppose that σp(A)∩ iR = {∅}. Then there exists
a subset B ⊂ R with dens(B) = 1 such that T converges in the weak operator
topology to zero as t ∈ B, t→∞.

Now we are able to formulate our first result for domination properties of
not necessarily weakly stable semigroups.
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Theorem 6.2. Let (T (t))t>0 be a bounded C0-semigroup on a Hilbert space
H with generator A. Let f : [0,∞) → (0,∞) be a function such that
limt→∞ f(t) = 0.

(i) If σ(A) ∩ iR 6= ∅, then there exist x ∈ C∞(A), ‖x‖ = 1, and B ⊂ R
with DensB = 1 such that

|〈T (t)x, x〉| > f(t)

for all t ∈ B.
(ii) If ω0(T ) = 0, then there exist x ∈ H, ‖x‖ = 1, and B ⊂ R with

DensB = 1 such that

|〈T (t)x, x〉| > f(t)

for all t ∈ B.

Proof. Without loss of generality we may assume that sup{f(t) : t > 0} < 1

(otherwise replace f by f̃ defined by f̃(t) = max{f(t), 1/2}, which differ
from f only on a subset of density zero).

We may also assume that H is separable. Indeed, in case (i), let λ ∈
σ(A) ∩ iR. Then λ ∈ σπ(A) and there exist a sequence {un : n > 1} of unit
vectors in H such that ‖(A − λ)un‖ → 0. Set H0 =

∨
n,t>0 T (t)un. Since

(T (t))t>0 is strongly continuous, H0 is a separable subspace of H invariant
with respect to T . Write T0 = T |H0. Clearly (T0(t))t>0 is a C0-semigroup
on H0. Let A0 be the generator of the semigroup T0(t). Clearly λ ∈ σ(A0).

In case (ii), for each rational positive number r and each k ∈ N there
exists a unit vector ur,k ∈ H such that ‖T (r)ur,k‖ > ‖T (r)‖ · k−1k . Let
H0 =

∨
r,k,t>0 T (t)ur,k. Again H0 is a separable subspace of H invariant

with respect to T . The restriction T0 = T |H0 satisfies ω0(T0) = ω0(T ) = 0.
So in both cases we may assume that the semigroup is acting on a sepa-

rable Hilbert space.
If σp(A) ∩ iR 6= ∅, then there exist λ ∈ iR and a unit vector x ∈ H0 with

Ax = λx. Then |〈T (t)x, x〉| = |eλt| = 1 > f(t) for all t > 0.
So we may assume that σp(A0) ∩ iR = ∅. By Lemma 6.1, there exists a

subset B ⊂ R with DensB = 1 such that

lim
t→∞,t∈B

〈T (t)x, y〉 = 0

for all x, y ∈ H0.
Now the statements (i) and (ii) can be proved as Theorem 5.3 and Corol-

lary 5.2 (that is Theorem 5.1), respectively, with the only difference that we
consider only the values t from the set B.

�

We proceed now with proving counterparts of Corollary 5.2 and Theorem
5.3 for not necessarily weakly stable semigroups on Banach spaces. To this
aim, we will need a very useful lemma providing a substitute for “orthogonal
complements” in general Banach spaces. Since [15] it became a more or less
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standard tool in construction of specific weak orbits, for its proof see e.g.
[16, Lemma 37.6].

Lemma 6.3. Let E be a finite-dimensional subspace of a Banach space
X, and let ε > 0. Then there exists a closed subspace Y ⊂ X of finite
codimension such that

‖e+ y‖ > (1− ε)
2

max{‖e‖, ‖y‖}

for all e ∈ E and y ∈ Y.

Theorem 6.4. Let (T (t))t>0 be a C0-semigroup on a Banach space X with
generator A, let σ(A) ∩ {z : Re z > 0} 6= ∅. Let f : (0,∞) → (0,∞) be a
function such that limt→∞ f(t) = 0. Then there exist x ∈ C∞(A), x∗ ∈ X∗
and a set B ⊂ R such that ‖x‖ 6 1, ‖x∗‖ 6 1, DensB = 1 and

|〈T (t)x, x∗〉| > f(t)

for all t ∈ B.

Proof. As usual, we may assume that f is non-increasing and f(0) < 1.
Since σ(A) ∩ {z : Rez > 0} 6= ∅, there exists λ ∈ ∂σ(A) with Reλ > 0.

Without loss of generality we may assume that λ = 0 (if λ 6= 0 then we can
consider the semigroup e−λtT (t)).

If 0 ∈ σp(A) then there exists x ∈ X such that ‖x‖ = 1 and Ax = x.
Then x ∈ C∞(A). Choose x∗ ∈ X∗ such that ‖x∗‖ = 1 = 〈x, x∗〉. Then
T (t)x = x for all t and |〈T (t)x, x∗〉| = 1 > f(t) for all t.

So we may also assume that 0 ∈ σπ(A) \ σp(A).
For k ∈ N set

βk =
1

9 · 8k · k!
.

Choose an increasing sequence {tk : k > 1} ⊂ (0,∞) such that tk >
ktk−1, k > 2, and

f(tk) <
βk+1

28(k + 1)
.

Set

εk =
βk
14k

, k ∈ N.

Choose x1 ∈ C∞(A), ‖x1‖ = 1 such that

‖T (t)x1 − x1‖ <
1

42
, 0 6 t 6 t1,

‖Ax1‖ 6 1
2 and x∗1 ∈ X∗, ‖x∗1‖ = 1 such that 〈x1, x∗1〉 = 1.

We construct inductively vectors xk ∈ C∞(A), x∗k ∈ X∗ in the follow-
ing way: suppose that k > 2 and that the vectors x1, . . . , xk−1 ∈ C∞(A),
x∗1, . . . , x

∗
k−1 ∈ X∗ have already been constructed. Let Lk := {T (t)xj : 1 6

j 6 k − 1, 0 6 t 6 tk}. The set Lk is compact, so there exists a finite
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εk/3-net L0
k ⊂ Lk. Let Fk =

∨
L0
k. Then dimFk < ∞ and by Lemma 6.3

there exists a subspace Mk ⊂ X with codimMk <∞ such that

‖f +m‖ > ‖m‖
3

for all f ∈ Fk and m ∈Mk.
Similarly, the set Sk = {T (t)∗x∗j : 1 6 j 6 k−1, 0 6 t 6 tk} is compact, so

there exists a finite εk-net S0
k ⊂ Sk. Then Mk ∩

⋂
y∗∈S0

k
ker y∗ is a subspace

of finite codimension. By Proposition 4.1, there exists

xk ∈ C∞(A) ∩Mk ∩
⋂

y∗∈S0
k

ker y∗

such that ‖xk‖ = 1,

(6.1) ‖T (t)xk − xk‖ <
1

21k · 2k
, t 6 tk,

and

(6.2) ‖Ajxk‖ 6 εk, 1 6 j 6 k.

Moreover,

(6.3) |〈T (t)xk, x
∗
l 〉| 6 εk, 1 6 l 6 k − 1, t 6 tk.

For f ∈ Fk and α ∈ C we have ‖f +αxk‖ > |α|3 . Define x∗k ∈ (Fk∨{xk})∗ by
x∗k|Fk

= 0 and 〈xk, x∗k〉 = 1. So ‖x∗k‖ 6 3 and by the Hahn-Banach theorem
we can extend x∗k to a functional (denoted by the same symbol x∗k) with the
same norm on the whole space X. So ‖x∗k‖ 6 3 and 〈xk, x∗k〉 = 1.

By the construction,

|〈T (t)xl, x
∗
k〉| 6 εk 1 6 l 6 k − 1, 1 6 t 6 tk.

The vectors x ∈ X and x∗ ∈ X∗ will be constructed as linear combinations
of the the vectors xk and x∗k, respectively.

Let α1 = β
1/2
1 . We construct positive numbers α2, α3, . . . inductively. Let

k > 2 and suppose that α1, α2, . . . , αk−1 have already been constructed. Set

uk =
∑k−1

i=1 αixi and v∗k =
∑k−1

i=1 αix
∗
i . For s = k, k + 1, . . . , 2k let

Ck,s =
{
t : tk−1 < t 6 tk,

∣∣〈T (t)uk, v
∗
k〉+

βks

2k

∣∣ < βk
4k

}
.

Clearly the sets Ck,k, Ck,k+1, . . . , Ck,2k are disjoint, so there exists s0, k 6
s0 6 2k such that m(Ck,s0) 6 tk−tk−1

k+1 . Let Bk = (tk−1, tk] \ Ck,s0 . Then

m(Bk) >
(tk − tk−1)k

k + 1
.

Let

αk =

(
βks0
2k

)1/2

.

Then βk
2 6 α

2
k 6 βk.
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Suppose that the numbers αk, k ∈ N, have been constructed in the way
described above. Set

x =
∞∑
k=1

αkxk, x∗ =
∞∑
k=1

αkx
∗
k and B =

∞⋃
k=2

Bk.

We have

‖x‖ 6
∞∑
k=1

αk‖xk‖ 6
∞∑
k=1

β
1/2
k < 1

and similarly,

‖x∗‖ 6
∞∑
k=1

αk‖x∗k‖ 6 3
∞∑
k=1

β
1/2
k < 1.

We have

DensB > lim sup
k→∞

∑k
j=2m(Bj)

tk
> lim sup

k→∞

m(Bk)

tk

>
tk − tk−1

tk
· k

k + 1
> lim sup

k→∞
(1− k−1) k

k + 1
= 1.

Let k > 2 and tk−1 < t 6 tk and t ∈ Bk. Then, by (6.1)–(6.3),

|〈T (t)x, x∗〉| >
∣∣∣〈T (t)uk, v

∗
k〉+

〈 ∞∑
j=k

α2
jT (t)xj , x

∗
j

〉∣∣∣(6.4)

−
∑

j 6=s,max{j,s}>k

αjαs|〈T (t)xj , x
∗
s〉|

>
∣∣∣〈T (t)uk, v

∗
k〉+ α2

k

∣∣∣− ∞∑
j=k

α2
j |〈T (t)xj − xj , x∗j 〉|

−
∑

j 6=s,max{j,s}>k

αjαsεk.

Since t ∈ Bk, we have
∣∣〈T (t)uk, v

∗
k〉+ α2

k

∣∣ > βk
4k . So (6.4) yields

|〈T (t)x, x∗〉| > βk
4k
− 3

∞∑
j=k

βj
21j2j

− εk

>
βk
k

(1

4
− 1

7
− 1

14

)
=

βk
28k

> f(tk−1) > f(t).

It remains to show that x ∈ C∞(A). For each j ∈ N the sum
∑∞

k=1 αkA
jxk

converges by the choice of αk and (6.2). Since Ak is closed, we have
x ∈ D(Aj). Since j ∈ N was arbitrary, we have x ∈ C∞(A). �

If X is reflexive then it is sufficient to assume s0(A) > 0. However, we
are not able to choose a smooth “dominating” weak orbit then.
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Theorem 6.5. Let (T (t))t>0 be a C0-semigroup on a reflexive Banach space
X, with generator A. Let f : [0,∞) → (0,∞) be a function such that
limt→∞ f(t) = 0. If s0(A) > 0 then there exist x ∈ X, x∗ ∈ X∗, ‖x‖ 6 1,
‖x∗‖ 6 1, and a set B ⊂ R with DensB = 1 such that

|〈T (t)x, x∗〉| > f(t)

for all t ∈ B.

Proof. The proof is similar to the proof of Theorem 6.4 where as in the proof
of Theorem 5.3 we use Proposition 4.4 instead of Proposition 4.1. �

Results similar to Theorems 6.2 and 6.4 are true for power bounded oper-
ators with essentially the same proof up to a change of notation. We restrict
ourselves to formulating a discrete analogue of Theorem 6.2 and leave its
proof as well as formulations of analogues of Theorem 6.4 to the interested
reader.

As in the case of the real semiaxis, the density of a set B ⊂ N is defined
as

DensB := lim
n→∞

card{x ∈ B : x 6 n}
n

,

if the limit exists.

Theorem 6.6. Let T be a power bounded operator on a Hilbert space H
with spectral radius equal to 1. Let (an)∞n=0 be a sequence of positive numbers
satisfying an → 0, n→∞. Then there exist x ∈ H, ‖x‖ 6 1 and B ⊂ N with
DensB = 1 such that

|〈Tnx, x〉| > an

for all n ∈ B.

7. Applications to Fourier transforms

As an illustration we show how theorems proved in the previous sections
can be applied to the study of decay of Fourier transforms.

If µ is a positive Borel measure on R then for f ∈ L1(dµ) we define its
Fourier transform by

(7.1) f̂(t) :=

∫
R
e−istf(s) dµ(s).

If µ is finite, then the Fourier transform µ̂ of µ is defined as the Fourier
transform of the function f ≡ 1.

We say that a positive Borel measure µ is Laplace transformable if there
exists ω ∈ R such that

(7.2)

∫ ∞
0

e−ωsdµ(s) <∞.

Let ωµ be the infimum of those ω for which (7.2) holds. So if µ is finite then
it is Laplace transformable and ωµ 6 0. If µ is Laplace transformable then
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its Laplace transform Lµ given by

(7.3) Lµ(λ) :=

∫ ∞
0

e−λsdµ(s)

is well defined for λ with Reλ > ωµ, and moreover Lµ is analytic in Cµ :=
{λ ∈ C : Reλ > ωµ}. Measures µ such that

(7.4) Lµ(ω + iβ)→ 0, |β| → ∞,
for some ω > ωµ, will play an important role.

Remark 7.1. Note that if (7.4) holds for some ω0 > ωµ then it holds for all
ω > ωµ. Indeed, for a fixed ω0 > ωµ choose a, b > ωµ such that b > ω0 > a.
If

S := {λ ∈ C : a < Reλ < b, |Imλ| < 1},
then the sequence of analytic functions (Lnµ)n∈Z defined by

Lnµ(λ) := Lµ(λ+ in), n ∈ Z, λ ∈ S,
is uniformly bounded in S and converge to zero on {ω0+is : |s| < 1} ⊂ S, as
|n| → ∞. Hence, by Vitali’s theorem, (Lnµ)n∈Z converges to zero as |n| → ∞
uniformly on compact subsets of S. Therefore, Lµ(ω + iβ) → 0, |β| → ∞,
for every ω ∈ (a, b). Since the choice of a ∈ (ωµ, ω0) and b ∈ (ω0,∞) was
arbitrary, our claim follows. For similar statement and argument, see [7,
Theorem 2.4].

The following lemma is probably well-known, however we are short of a
precise reference. For ω ∈ R denote eω(s) = e−ωs, s > 0.

Lemma 7.2. The set Ω = {eω : ω > ωµ} is total in Lp(R, dµ), p > 1.

Proof. Assume that Ω is not total in Lp(R, dµ). If q is the conjugate expo-
nent, then there exists g ∈ Lq(R, dµ), g 6= 0, such that

(7.5) F (λ) =

∫ ∞
0

e−λsg(s) dµ(s) = 0, λ > ωµ.

Since F is analytic in Cµ, F is identically zero in Cµ. In particular, if ω > ωµ
is fixed, then the finite (complex) measure eωg · µ satisfies

(7.6) êω ḡ · µ = ϕ̂ · µ = 0,

where ϕ = eω ḡ. So ϕ · µ = 0 by the uniqueness theorem for Fourier trans-
forms of bounded measures. Assume that µ is non-zero. We can suppose
that that ϕ is real and fix any function from the equivalence class of ϕ de-
noted by the same symbol. By assumption ϕ 6= 0 so that µ({s : ϕ(s) 6=
0}) > 0. Let without loss of generality µ({s : ϕ(s) > 0}) > 0. Then there
exists n ∈ N such that µ({s : ϕ(s) > 1/n}) > 0. But then

0 =

∫
{s:ϕ(s)>1/n}

ϕ(s)dµ(s) > (1/n)µ({s : ϕ(s) > 1/n}),

a contradiction. �
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Theorem 7.3. Let µ be a Laplace transformable (in particular, finite) pos-
itive Borel measure on R.

(i) If Lµ(ω + ·) ∈ C0(R) for some/all ω > ωµ, then for every bounded
function f : R → [0,∞) satisfying lim|t|→∞ f(t) = 0 there exists a

positive g ∈ L1(R, dµ) such that ĝ ∈ C∞(R) and

(7.7) |ĝ(t)| > f(t), t ∈ R.

(ii) in the general case, for every function f : R → [0,∞) satisfying
lim|t|→∞ f(t) = 0 there exist a positive g ∈ L1(R, dµ) and B ⊂
R,Dens (B) = 1, such that ĝ ∈ C∞(R) and

(7.8) |ĝ(t)| > f(t), t ∈ B.

Proof. Without loss of generality we can assume that that f(t) = f(−t), t >
0. (Otherwise, replace f by f̃ defined by f̃(t) = max(f(t), f(−t)), t > 0.)

Let H = L2(R, dµ). Consider the multiplication, unitary C0-semigroup
(M(t))t>0 on H defined by

(M(t)g)(s) = e−itsg(s), g ∈ H, t > 0.

The generator G of (M(t))t>0 is given by

(Gg)(s) = −isg(s), s ∈ R,

with maximal domain. Moreover,

C∞(G) =
{
h ∈ L2(R, dµ) : skh ∈ L2(R, dµ) for every k ∈ N ∪ {0}

}(7.9)

=
{
h ∈ L2(R, dµ) : sk|h|2 ∈ L1(R, dµ) for every k ∈ N ∪ {0}

}
.

To prove (i) note that by our assumption and Remark 7.1, µ̂(ω + i·) ∈
C0(R) for all ω > ωµ. Hence 〈M(t)g0, g0〉 → 0, t → ∞, for g0 from Ω =
{eω : ω > ωµ}. Since by Lemma 7.2 the set Ω is total in L2(R, dµ), this
implies that M converges to zero in the weak operator topology. Moreover,
σ(G) ⊂ iR, and is nonempty. By Corollary 5.2 there exists g ∈ C∞(G) such
that

(7.10) 〈M(t)g, g〉 = |̂g|2(t) > f(t), t > 0.

By (7.9), |̂g|2 is smooth. Since (M(t))t>0 is unitary, (7.10) holds also for
negative t.

The proof of (ii) is similar but one uses Theorem 6.2, (i) instead of Corol-
lary 5.2. �

Remark 7.4. If 0 ∈ suppµ then using Theorem 5.1 one can show that given
f : R → [0,∞) with lim|t|→∞ f(t) = 0 there exists a positive g ∈ L1(R, dµ)
with smooth Fourier transform such that

Re ĝ(t) > f(t), t ∈ R.
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Remark 7.5. Theorem 7.3 implies, in particular, that given a Borel set E ⊂ R
of finite and positive Lebesgue measure and a function f on R vanishing at
±∞ there exists g ∈ L1(E) such that (7.7) holds. Therefore, we are able to
find g ∈ L1(R) with smooth Fourier transform dominating f and such that
g has arbitrarily “small” essential support.

Remark 7.6. Note that if µ is a finite positive Borel measure then the as-
sumption Lµ(ω0 + ·) ∈ C0(R) for some ω0 > 0 is equivalent to µ̂ ∈ C0(R).
Indeed, if µ̂ ∈ C0(R), then, since simple functions are dense in L1(R, dµ),

f̂ ∈ C0(R) for every f ∈ L1(R, dµ). In particular, this holds for f = eω0 ,
hence êω0 = Lµ(ω0 + ·) ∈ C0(R). On the other hand, if Lµ(ω0 + ·) ∈ C0(R)
for some ω0 > 0, then Lµ(ω+ ·) ∈ C0(R) for all ω > 0 by Remark 7.1. Since
the set {eω : ω > 0} is total in L1(R, dµ) by Lemma 7.2 and 1 ∈ L1(R, dµ),
one has µ̂ ∈ C0(R).

Recall that, as it was shown in [2, Example 8], there exists a measure ν on
the unit circle with ν̂(n) 6→ 0, |n| → ∞, and a sequence {an : n > 0} ⊂ R+

such that there is no function f ∈ L1(dµ) with |f̂(n)| > an, n > 0. By
adjusting [2, Example 8] to the real line case, one can show that if µ is finite
positive Borel measure on R then the assumption Lµ(ω + ·) ∈ C0(R), that
is µ̂ ∈ C0(R) by the above, cannot in general be omitted in Theorem 7.3,(i).

Now we consider a little bit different situation when our auxiliary multi-
plication semigroup is isometric but not unitary. Let C+ denote the upper
halfplane, and let H2(C+) be the Hardy space on C+.

Theorem 7.7. For every bounded function f : R → [0,∞) such that
lim|t|→∞ f(t) = 0 and every ε > 0 there exists a positive g ∈ L1(R) sat-
isfying the following conditions:

(i) Re ĝ(t) > f(t), t ∈ R;

(ii)

∫
R

ln|g(s)|
1 + s2

ds > −∞;

(iii) ĝ ∈ C∞(R).

Proof. As in the proof of Theorem 7.3 we can assume that f(t) = f(−t), t >
0.

Let H = H2(C+). We identify elements from H with their boundary
values. Consider the C0-semigroup (M(t))t>0 on H defined by

(M(t)h)(s) = eitsh(s), h ∈ H2(C+), t > 0, s ∈ R.

Let G be the generator of M . Since

D(G) = {h ∈ H2(C+) : ish ∈ H2(C+)},
(Gf)(s) = ish(s), s ∈ R,

we have

C∞(G) =
{
h ∈ H2(C+) : skh ∈ H2(C+) for every k ∈ N ∪ {0}

}
(7.11)
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⊂
{
h ∈ H2(C+) : sk|h|2 ∈ L1(R) for every k ∈ N ∪ {0}

}
.

Clearly, (M(t))t>0 is weakly stable, isometric and

σ(G) = {λ ∈ C : Reλ 6 0}.

By applying Theorem 5.1 to the semigroup (M(t))t>0 we get h ∈ C∞(G)
such that

Re 〈M(t)h, h〉 = Re |̂h|2(−t) > f(t), t > 0.

Thus if g(s) := |h|2(−s), s ∈ R, then (i) is satisfied for t > 0. Since g is
positive, Re ĝ(t) = Re ĝ(−t), t > 0, so that (i) holds for all t ∈ R. Since√
g(−s) = |h|(s), s ∈ R, is modulus of a H2(C+)-function, the condition (ii)

holds as well by [11, Theorem 4.4.4]. Finally, by (7.11), ĝ is smooth, i.e.
(iii) is true. �

8. Final remarks and problems

In this section we would like to draw one’s attention to another property
dealing with large weak orbits. Given a family {Tn : n ∈ N} of bounded
linear operators on a complex Hilbert space H we are looking for elements
x and y from H such that the weak orbit 〈Tnx, y〉, n ∈ N, almost matches
the sequence of norms ‖Tn‖, n ∈ N. Recall the following two results on the
existence of large orbits in this sense, see e.g. [16, Theorem 37.17] and [16,
Theorem 39.8] for their proofs.

Theorem 8.1. Let H be a Hilbert space and {Tn}n∈N ⊂ L(H). Then

(i) if {αn : n > 1} ⊂ (0,∞) satisfy
∑

n α
2
n < ∞, and if ε > 0, then

there exist x ∈ H, ‖x‖ 6 (
∑

n α
2
n)1/2 + ε such that

‖Tnx‖ > an‖Tn‖, n ∈ N;

(ii) if {αn : n > 1} ⊂ (0,∞) satisfy
∑

n αn < ∞, then there exist
x, y ∈ H such that

|〈Tnx, y〉| > αn‖Tn‖, n ∈ N.

The above result is corollary of a deep result on a so-called ”plank-
problem” due to K. Ball [6] concerning points where the sequence of unit
norms functionals is large.

Theorem 8.2. Let H be a (complex) Hilbert space, and let {fn : n > 1} ⊂ H
be a sequence of unit vectors. Let {an : n > 1} ⊂ (0,∞) be such that∑

n a
2
n 6 1. Then for every ε > 0 there exists x ∈ H, ‖x‖ = 1, such that

|〈x, fn〉| > an, n ∈ N.

Unfortunately, the corresponding result for vector-valued functions is not
known and it is not even clear how to formulate it in a right way. Thus the
following problem seems to be quite interesting.
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Problem. Let (T (t))t>0 be a C0-semigroup on a Hilbert space H, and let
f : [0,∞)→ (0,∞) be a function such that f ∈ L1(R+). Are there x and y
in H such that

(8.1) |〈T (t)x, y〉| > f(t)‖T (t)‖
for all t ∈ R?

The following statement illustrates the problem in a particular situation.

Theorem 8.3. Let (T (t))t>0 be a C0-semigroup on a Hilbert space H, with
bounded generator A, and let ε > 0. Then there exist x, y ∈ H such that

|〈T (t)x, y〉| > ‖T (t)‖
(t+ 1)2+ε

for all t > 0.

Proof. We can assume that ε 6 1
6 .

Let A be the generator of the semigroup (T (t))t>0. Let

s := max{2, 8‖A‖
√

2 + ε−1}.
So for 0 6 t 6 s−1 we have

(8.2) ‖T (t)− I‖ = ‖etA − I‖ 6 et‖A‖ − 1 6 2t‖A‖ 6 1

4
√

2 + ε−1
,

where we use the estimate ea 6 1 + 2a for 0 6 a 6 1. Thus ‖T (t)‖ 6
1 + ‖T (t)− I‖ 6 3

2 .

For n ∈ N set βn = n−
1+ε
2 . Then

∞∑
n=1

β2n = 1 +
∞∑
n=2

n−(1+ε) < 1 +

∫ ∞
1

u−(1+ε)du = 1 + ε−1.

For n ∈ N set tn = s−1
(

1 +
∑n−1

j=1 βj

)
. In particular, t1 = s−1. By

Theorem 8.1, (i), there exists x ∈ H such that ‖T (tn)x‖ > βn‖T (tn)‖ for all
n ∈ N. Moreover, ‖x‖2 6 1 + ε−1. We can clearly assume that ‖x‖ > 2.

Furthermore, by Theorem 8.2, there exists y ∈ H such that for all n ∈ N
|〈T (tn)x, y〉| > βn‖T (tn)x‖, and |〈x, y〉| > ‖x‖.

Moreover, ‖y‖2 6 2 + ε−1.
We show that x, y satisfy

(8.3) |〈T (t)x, y〉| > ‖T (t)‖
s3(t+ 1)2+6ε

for all t > 0.
For 0 6 t 6 s−1, by (8.2), we have

|〈T (t)x, y〉| > |〈x, y〉| − |〈(I − T (t))x, y〉|
> ‖x‖ − ‖I − T (t)‖ · ‖x‖ · ‖y‖

> ‖x‖
(

1− 2t‖A‖
√

2 + ε−1
)
>

3

4
‖x‖
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> ‖T (t)‖ > ‖T (t)‖
s3(t+ 1)2+6ε

.

Let n ∈ N and tn 6 t < tn+1. Set h = t−tn. Then h 6 tn+1−tn = βns
−1.

We have

|〈T (t)x, y〉| > |〈T (tn)x, y〉| − |〈(T (tn)− T (t))x, y〉|
> βn‖T (tn)x‖ − ‖I − T (h)‖ · ‖T (tn)x‖ · ‖y‖
> ‖T (tn)x‖(βn − 2h‖A‖ · ‖y‖)

> ‖T (tn)x‖
(
βn −

βn‖y‖
4
√

2 + ε−1

)
>

3βn
4
‖T (tn)x‖ > 3β2n

4
‖T (tn)‖.

Furthermore,

t > tn = s−1
(

1 +

n−1∑
j=1

j−
1+ε
2

)
> s−1

(
1 +

∫ n

1
u−

1+ε
2 du

)
> s−1(1 + 2(n

1−ε
2 − 1))

= s−1(2n
1−ε
2 − 1).

So

n 6
(st+ 1

2

) 2
1−ε

and

βn >
(st+ 1

2

) 2
1−ε
·−(1+ε)

2
>
( 2

st+ 1

) 1+ε
1−ε
>

2

(st+ 1)1+3ε
.

Hence

|〈T (t)x, y〉| > 3β2n
4
‖T (tn)‖ > 3

(st+ 1)2+6ε
‖T (tn)‖

>
3‖T (t)‖

s3(t+ 1)2+6ε‖T (h)‖
>

‖T (t)‖
s3(t+ 1)2+6ε

.

Thus, (8.3) holds.
Replacing y by s3y and ε by ε/6 we get the required statement. �
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Basel, 2001.

[2] C. Badea and V. Müller, On weak orbits of operators, Topology Appl. 156 (2009),
1381–1385.

[3] M. E. Ballotti, Convergence rates for Wiener’s theorem for contraction semigroups,
Houston J. Math. 11 (1985), 435–445.

[4] M. E. Ballotti and J. Goldstein, A. Wiener’s theorem and semigroups of opera-
tors, Infinite-dimensional systems (Retzhof, 1983), Lecture Notes in Math., 1076,
Springer, 1984, pp. 16–22.



WEAK ORBITS OF C0 SEMIGROUPS 25

[5] W. Bloom, Estimates for the Fourier transform, Math. Sci. 10 (1985), 65-81.
[6] K. Ball, The complex plank problem, Bull. London Math. Soc. 33 (2001), 433–442.
[7] R. Chill and Yu. Tomilov, Operators L1(R+) → X and the norm continuity problem

for semigroups, Journal of Functional Analysis, 256 (2009), 352–384.
[8] T. Eisner, B. Farkas, R, Nagel and A. Sereny, Weakly and almost weakly stable

C0-semigroups, Int. J. Dyn. Syst. Differ. Equ. 1 (2007), 44–57.
[9] F. Hiai, Weakly mixing properties of semigroups of linear operators, Kodai Math. J.

1 (1978), 376–393.
[10] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations,

Graduate Texts in Mathematics, 194, Springer, New York, 2000.
[11] J. B. Garnett, Bounded analytic functions, revised first edition, Graduate Texts in

Mathematics, 236, Springer, New York, 2007.
[12] J. Goldstein, Asymptotics for bounded semigroups on Hilbert space, Aspects of posi-

tivity in functional analysis, North-Holland Math. Stud., 122, North-Holland, Am-
sterdam, 1986, pp. 49–62.

[13] V. Müller, Power bounded operators and supercyclic vectors, Proc. Amer. Math. Soc.
131 (2003) 3807–3812.

[14] V. Müller, Power bounded operators and supercyclic vectors II, Proc. Amer. Math.
Soc. 133 (2005) 2997–3004.

[15] V. Müller, Orbits, weak orbits and local capacity of operators, Integral Equations
Operator Theory 41 (2001), 230–253.

[16] V. Müller, Spectral theory of linear operators and spectral systems in Banach
algebras, Second edition. Operator Theory: Advances and Applications, 139,
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