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(m, q)-ISOMETRIES ON METRIC SPACES

TERESA BERMÚDEZ, ANTONIO MARTINÓN, AND VLADIMIR MÜLLER

Abstract. We show that there exist a linear m-isometry on a Hilbert space which is not continuous, and a

continuous m-isometry on a Hilbert space which is not affine. Further we define (m, q)-isometries on metric

spaces and prove their basic properties.

1. Introduction

The notion of an m-isometry in the setting of Hilbert spaces was introduced by J. Agler [2]: a bounded

linear operator T : H −→ H, on a Hilbert space H is an m-isometry (m ≥ 1 integer) if
m∑

k=0

(−1)m−k

(
m

k

)
T ∗kT k = 0 , (1.1)

where T ∗ denotes the adjoint operator of T . These operators were further studied extensively by Agler and

Stankus [4, 5, 6].

The m-isometric operators were studied by many authors. For example: in [8, 16, 17, 20, 21, 19, 23, 24,

29, 33] various results about m-isometries were given; in [9, 11, 22] the dynamics of m-isometries was studied;

in [7, 12, 18, 25, 30, 32] certain types of operators (composition, multiplication, shift) were considered and

some conditions under which these operators are m-isometries were given; in [15, 26, 35] some special spaces

were considered.

If H is finite-dimensional, then the situation is very simple: a linear operator T : H −→ H is an m-

isometry, but not an (m−1)-isometry, if and only if m is odd and T = A+Q, where A and Q are commuting

operators on H, A is an isometry and Q a linear nilpotent operator of order m+1
2 , [3, 14].

It is clear that (1.1) is equivalent to
m∑

k=0

(−1)m−k

(
m

k

)
‖T kx‖2 = 0 (x ∈ H) . (1.2)

Notice that it is possible to use (1.2) as the definition of m-isometries for operators on Banach spaces,

as Bayart [9] and Sid Ahmed [34] have observed. Moreover, Bayart [9] has noted that there is no reason
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why the exponent 2 in (1.2) should play a particular role. Then the following definition was introduced: a

bounded linear operator T : X −→ X, on a Banach space X is an (m, q)-isometry (m ≥ 1 integer, q ≥ 1

real) if

m∑
k=0

(−1)m−k

(
m

k

)
‖T kx‖q = 0 (x ∈ X) . (1.3)

Hoffmann and Mackey [27] considered the above definition with q > 0 real and studied the role of the second

parameter q. They proved that, for q > 0, there is a (2, q)-isometry which is not a (2, q′)-isometry for any

q′ 6= q.

In [12] it was introduced a notion of an m-isometric map on certain hyperspaces of a Banach space. In

this paper we study the notion of (m, q)-isometry for maps on a metric space: a map T : E −→ E, on a

metric space E with distance d, is called an (m, q)-isometry (m ≥ 1 integer, q > 0 real) if

m∑
k=0

(−1)m−k

(
m

k

)
d(T kx, T ky)q = 0 (x, y ∈ E) . (1.4)

Of course, if E is a Banach space and T is linear, then (1.4) is equivalent to (1.3).

The paper is organized as follows. In sections 2 and 3 we include a general theory of (m, q)-isometries on

metric spaces. Many results known in the Banach space setting are now established for metric spaces. For

example, for an (m, q)-isometry T : E −→ E we show that it is an (m + 1, q)-isometry and any power T r is

an (m, q)-isometry; moreover, if T is power bounded, then is an isometry.

In section 4 we study properties related to the continuity. First, (m, q)-isometries on metric spaces are

not necessarily continuous maps. Moreover, we prove that there is a Hilbert space Y and a linear unbounded

(2, 2)-isometry T : Y −→ Y , so for (m, q)-isometries linearity is not sufficient to guarantee the continuity.

Finally, we show that there exists a continuous non-affine (2, 2)-isometry T : `2 −→ `2 on the Hilbert space

`2. Recall that the Mazur-Ulam theorem affirms that if T : X −→ Y is a surjective isometry between two

real normed spaces X and Y , then T is affine. A natural question related with this topics is the following:

if T is a continuous and surjective (m, q)-isometry on a real normed space X, is then T affine? That is, does

a version of the Mazur-Ulam theorem for (m, q)-isometries hold?

In the last section we consider some distances associated with T : E −→ E and prove that T is an

(m, q)-isometry if and only if T is an isometry for certain semi-distance ρT .
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2. Definition and first properties

Throughout this paper, E denotes a metric space and d its distance, T : E −→ E a map, m ≥ 1 an

integer and q > 0 a real number, unless said otherwise.

We give the main definition of this paper:

Definition 2.1. Let E be a metric space. A map T : E −→ E is called an (m, q)-isometry (m ≥ 1 integer,

q > 0 real) if, for all x, y ∈ E,
m∑

k=0

(−1)m−k

(
m

k

)
d(T kx, T ky)q = 0 . (2.5)

For m ≥ 2, T is a strict (m, q)-isometry if it is an (m, q)-isometry, but is not an (m− 1, q)-isometry.

For any q, (1, q)-isometries coincide with isometries; that is, maps T satisfying d(Tx, Ty) = d(x, y), for

all x, y ∈ E. Every isometry is an (m, q)-isometry, for all m ≥ 1 and q > 0.

If X is a normed space with norm ‖ · ‖ and T : X −→ X is a linear operator, then T is an (m, q)-isometry

if and only if (1.3) holds. Clearly m-isometries on Hilbert spaces agree with (m, 2)-isometries. It is well

known that there exist strict (m, 2)-isometries on `2, for m = 2, 3, 4... [8, 12].

The following simple example shows that there exist strict (3, 2)-isometries.

Example 2.2. There exists a bijective (3, 2)-isometry which is not an isometry. Indeed, let H be the Hilbert

space with an orthonormal basis (en)n∈Z. Let T : H −→ H be the weighted bilateral shift defined by

Ten :=

√
(n + 1)2 + 1

n2 + 1
en (n ∈ Z) .

It is easy to verify that T is a strict (3, 2)-isometry.

The following remark contains a simple but very useful result.

Remark 2.3. Every (m, q)-isometry T is injective. Indeed, if Tx = Ty, then T kx = T ky for k = 2, ...,m

and from (2.5) we obtain x = y. Hence T is an injective map.

We have the following result about bijective (m, q)-isometries.

Proposition 2.4. If T is a bijective (m, q)-isometry, then T−1 is also an (m, q)-isometry.

Proof. Let x, y ∈ E. Let u, v ∈ E satisfy Tmu = x and Tmv = y; that is, u = T−mx and v = T−my. Since

T is an (m, q)-isometry, (2.5) implies
m∑

k=0

(−1)m−k

(
m

k

)
d(T−kx, T−ky)q =

m∑
k=0

(−1)m−k

(
m

m− k

)
d(Tm−ku, Tm−kv)q = 0 .
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Hence T−1 is an (m, q)-isometry. �

We introduce the following notation: given T : E −→ E, h ≥ 0 integer, q > 0 real and x, y ∈ E, we put

fT (h, q;x, y) :=
h∑

k=0

(−1)h−k

(
h

k

)
d(T kx, T ky)q .

Notice that fT (0, q;x, y) = d(x, y)q.

Clearly T is an (m, q)-isometry if and only if fT (m, q;x, y) = 0, for all x, y ∈ E.

The following result relate certain values of fT :

Proposition 2.5. For any integer h ≥ 1, real number q > 0 and x, y ∈ E,

fT (h, q;x, y) = fT (h− 1, q;Tx, Ty)− fT (h− 1, q;x, y) .

Proof. Fix x, y ∈ E. Then

fT (h, q;x, y) =
h∑

k=0

(−1)h−k

(
h

k

)
d(T kx, T ky)q =

= (−1)hd(x, y) +
h−1∑
k=1

(−1)h−k

(
h− 1

k

)
d(T kx, T ky)q

+
h−1∑
k=1

(−1)h−k

(
h− 1
k − 1

)
d(T kx, T ky)q + d(Thx, Thy)

= −fT (h− 1, q;x, y) + fT (h− 1, q;Tx, Ty) .

Hence fT (h− 1, q;x, y) + fT (h, q;x, y) = fT (h− 1, q;Tx, Ty). �

Corollary 2.6. If T is an (m, q)-isometry, then T is an (m + 1, q)-isometry.

3. Basic properties

The next results give some expressions for d(Tnx, Tny), where T is an (m, q)-isometry. Recall that for

integers n, k ≥ 0, (
n

k

)
=

n(n− 1) · · · (n− k + 1)
k!

,

so
(
n
k

)
= 0 if n < k.

We will use the following lemmas.
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Lemma 3.1. Let (ek)k≥0 and (dj)j≥0 be sequences of real numbers and let (ck,j)k,j≥0 be a double sequence

of real numbers. Then
n∑

k=0

ek

k∑
j=0

ck,jdj =
n∑

j=0

dj

n∑
k=j

ck,jek .

for any n = 0, 1, 2...

Proof. Note that both expressions are equal to∑
0≤j≤k≤n

djekck,j ,

so the proof is completed. �

Lemma 3.2. Let s, r be integers with 0 ≤ r < s. Then

r∑
h=0

(−1)h

(
s

h

)
= (−1)r

(
s− 1

r

)
. (3.6)

Proof. By induction:

(1) Case s = r + 1. We have

r∑
h=0

(−1)h

(
r + 1

h

)
= −(−1)r+1

(
r + 1
r + 1

)
= (−1)r ,

so (3.6) holds.

(2) Assume that (3.6) is true for certain s ≥ r + 1 and we prove that is also true for s + 1. Indeed,

r∑
h=0

(−1)h

(
s + 1

h

)
=
(

s + 1
0

)
−
((

s

0

)
+
(

s

1

))
+ · · ·+ (−1)r

((
s

r − 1

)
+
(

s

r

))
= (−1)r

(
s

r

)
.

This finishes the proof. �

Lemma 3.3. Let n, m, k be integers such that 0 ≤ k ≤ m− 1 < n. Then

m−1∑
j=k

(−1)j−k

(
n

j

)(
j

k

)
= (−1)m−k−1 n(n− 1) · · ·

︷ ︸︸ ︷
(n− k) · · · (n−m + 1)

k!(m− k − 1)!
, (3.7)

where
︷ ︸︸ ︷
(n− k) denotes that the factor (n− k) is omitted.

Proof. Notice that

A :=
m−1∑
j=k

(−1)j−k

(
n

j

)(
j

k

)
=

m−1∑
j=k

(−1)j−k n(n− 1) · · · (n− k + 1)(n− k)!
k!(n− j)!(j − k)!

=

=
n(n− 1) · · · (n− k + 1)

k!

m−k−1∑
j=0

(−1)j

(
n− k

j

)
.
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Applying (3.6) we obtain

A =
n(n− 1) · · · (n− k + 1)

k!
(−1)m−k−1

(
n− k − 1
m− k − 1

)
.

On the other hand,

B := (−1)m−k−1 n(n− 1) · · ·
︷ ︸︸ ︷
(n− k) · · · (n−m + 1)

k!(m− k − 1)!
=

= (−1)m−k−1 n(n− 1) · · · (n− k + 1)(n− k − 1)!
k!(m− k − 1)!(n−m)!

=

= (−1)m−k−1 n(n− 1) · · · (n− k + 1)
k!

(
n− k − 1
m− k − 1

)
.

Hence A = B and the proof is finished. �

Lemma 3.4. Let T : E −→ E be a map. Then, for every integer n ≥ 1, real number q > 0 and x, y ∈ E,

we have

d(Tnx, Tny)q =
n∑

k=0

(
n

k

)
fT (k, q;x, y) . (3.8)

Proof. Clearly (3.8) is true for n = 0 and n = 1. Assume that (3.8) is true for any 0, 1, ..., n. We shall prove

that is also true for n + 1. Fix x, y ∈ E and put f(h) = fT (h, q;x, y). We have

d(Tn+1x, Tn+1y)q = f(n + 1)−
n∑

k=0

(−1)n+1−k

(
n + 1

k

)
d(T kx, T ky)q

= f(n + 1)−
n∑

k=0

(−1)n+1−k

(
n + 1

k

) k∑
j=0

(
k

j

)
f(j) .

We apply Lemma 3.1 and obtain

d(Tn+1x, Tn+1y)q = f(n + 1)−
n∑

j=0

f(j)
n∑

k=j

(−1)n+1−k

(
n + 1

k

)(
k

j

)
=

= f(n + 1)−
n∑

j=0

(
n + 1

j

)
f(j)

n∑
k=j

(−1)n+1−k (n + 1− j)!
(k − j)!(n + 1− k)!

=

= f(n + 1)−
n∑

j=0

(
n + 1

j

)
f(j)

n∑
k=j

(−1)n+1−k

(
n + 1− j

k − j

)
=

n+1∑
j=0

(
n + 1

j

)
f(j)

which finishes the proof. �

Theorem 3.5. A map T is an (m, q)-isometry if and only if, for every integer n ≥ 1 and all x, y ∈ E, we

have

d(Tnx, Tny)q =
m−1∑
k=0

(
n

k

)
fT (k, q;x, y) . (3.9)



7

Proof. If T is an (m, q)-isometry, then fT (k, q;x, y) = 0 for all k ≥ m and x, y ∈ E. Hence we derive (3.9)

from (3.8).

On the other hand, if (3.9) holds for all n ≥ 1 and x, y ∈ E, then fT (k, q;x, y) = 0 for k ≥ m, by (3.8),

so T is an (m, q)-isometry. �

The following result is similar to [12, Theorem 2.1]. We give its proof based on Lemma 3.7.

Theorem 3.6. A map T is an (m, q)-isometry if and only if, for all x, y ∈ E and every integer n ≥ 0, we

have

d(Tnx, Tny)q =
m−1∑
k=0

(−1)m−k−1 n · · ·
︷ ︸︸ ︷
(n− k) · · · (n−m + 1)

k!(m− k − 1)!
d(T kx, T ky)q . (3.10)

Therefore for each k = 0, 1, ...,m− 1, the coefficient at d(T kx, T ky)q is a polynomial in n of degree ≤ m− 1.

Proof. Firstly, assume that T is an (m, q)-isometry. The equality (3.10) is clear if n < m. Assume

n ≥ m.

Fix x, y ∈ E. Put an := d(Tnx, Tny)q and f(j) := fT (j, q;x, y). Theorem 3.5 and Lemma 3.1 imply

an =
m−1∑
j=0

(
n

j

)
f(j) =

m−1∑
j=0

(
n

j

) j∑
k=0

(−1)j−k

(
j

k

)
ak =

m−1∑
k=0

ak

m−1∑
j=k

(−1)j−k

(
n

j

)(
j

k

)
.

¿From Lemma 3.3 we obtain (3.10).

Suppose that (3.10) holds for n ≥ 0 and all x, y ∈ E. In particular, for n = m we have that equality

(3.10) agrees with (2.5) and the proof is completed. �

Theorem 3.7. A map T is an (m, q)-isometry if and only if, for all x, y ∈ E, there exist real numbers

γ0(x, y), ..., γm−1(x, y) such that, for every integer number n ≥ 0, we have

d(Tnx, Tny)q =
m−1∑
k=0

γk(x, y)nk . (3.11)

Proof. Suppose that T is an (m, q)-isometry. Fix x, y ∈ E and set an := d(Tnx, Tny)q, for n = 0, 1, 2, 3....

As T is an (m, q)-isometry we obtain the recursive relation

m∑
h=0

(−1)h

(
m

h

)
an+m−h = (3.12)

an+m −
(

m

1

)
an+m−1 +

(
m

2

)
an+m−2 − · · ·+ (−1)m−1

(
m

m− 1

)
an−1 + (−1)nan = 0 .

It is well known that the solutions (an)n≥0 of (3.12) verify

an = γm−1(x, y)nm−1 + · · ·+ γ1(x, y)n + γ0(x, y) , (3.13)
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for some real numbers γ0(x, y), ..., γm−1(x, y) (see, for example, [1] and [28]), so (3.11) holds. Conversely, if

the sequence (an)n≥0 := (d(Tnx, Tny)q
n≥0 verifies (3.13), then it also verifies (3.12), so (3.11) holds. �

Proposition 3.8. Let T be an (m, q)-isometry. Then, for all x, y ∈ E, the sequence (d(Tnx, Tny))n≥0 is

eventually increasing; that is, there is a positive integer n0 such that

d(Tnx, Tny) ≤ d(Tn+1x, Tn+1y)

for all n ≥ n0. Moreover, if T is not an isometry, then

lim
n→∞

d(Tnx, Tny) = ∞ ,

for all x, y ∈ E with x 6= y.

Proof. If T is an isometry then the result is clear. Assume that T is not an isometry, so it is a strict (m, q)-

isometry for some m ≥ 2. The sequence (d(Tnx, Tny)q)n≥0 verifies (3.11) with positive leading coefficient

γm−1(x, y), where m− 1 ≥ 1, so d(Tnx, Tny) →∞ as n →∞ and the sequence is eventually increasing. �

It is possible that the sequence (d(Tnx, Tny))n≥0 is not increasing, as we show in the next example.

Example 3.9. Consider the norm ‖ · ‖2 on C2. The map T : C2 −→ C2 defined by T (x, y) := (x + y, y) is

a (3, 2)-isometry and we have

‖T (−1, 1)‖2 = 1 < 2 = ‖(−1, 1)‖2 .

Corollary 3.10. Let E be a bounded metric space. If T is an (m, q)-isometry, then T is an isometry.

Proposition 3.11. If T is a bijective (m, q)-isometry and m is even, then T is an (m− 1, q)-isometry

Proof. As T is a bijective (m, q)-isometry, T−1 is also an (m, q)-isometry (Proposition 2.4), hence the equation

(3.11) holds for n = 0,±1,±2... If the leading coefficient in (3.11) is γk with k odd, then

lim
n→∞

d(Tnx, Tny) = ∞ and lim
n→−∞

d(Tnx, Tny) = −∞ .

Since d(Tnx, Tny) ≥ 0, k is even, and so γm−1 = 0. Consequently, T is an (m− 1, q)-isometry. �

Definition 3.12. A map T is called power bounded if

sup{d(Tnx, Tny) : n = 0, 1, . . . } < ∞

for all x, y ∈ E.
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Proposition 3.13. Let T : E −→ E be an (m, q)-isometry. If T is power bounded, then T is an isometry.

Proof. Let x, y ∈ E and K = sup{d(Tnx, Tny) : n = 0, 1, . . . }. By (3.11) we have

0 ≤ sup
{m−1∑

k=0

γk(x, y)nk : n = 0, 1, . . .
}
≤ Kq

for all n. So γm−1(x, y) = · · · = γ1(x, y) = 0. Hence d(Tnx, Tny) = d(x, y) and T is an isometry. �

A product of (m, q)-isometries is not necessarily an (m, q)-isometry (see, for example, [13, Example 3.1]).

In [34, Theorem 2.2], Sid Ahmed proved that if X is a normed space and T and S commuting bounded linear

operators on X such that T is a 2-isometry and S is an m-isometry, then ST is an (m + 1)-isometry. This

result was improved in [13, Theorem 3.3]: if TS = ST , T is an (m, q)-isometry and S is an (n, q)-isometry,

then ST is an (m + n − 1, q)-isometry. Now we generalize it to metric spaces. As the proof is very similar

to [13, Theorem 3.3], we omit it.

Theorem 3.14. Let T : E −→ E be an (m, q)-isometry and S : E −→ E an (n, q)-isometry. If TS = ST ,

then TS is an (m + n− 1, q)-isometry.

It is clear that if T is an isometry, then T r is also an isometry. Patel in [31, Theorem 2.1] proves that

any power of a (2, 2)-isometry on a Hilbert space is again a (2, 2)-isometry. In [10] it was showed that any

power of a Banach space (m, q)-isometry is again an (m, q)-isometry. Now we give this result in the setting

of metric spaces. We omit the proof because of it is analogous to [10].

Theorem 3.15. Let T an (m, q)-isometry. Then any power T r is also an (m, q)-isometry.

In general the converse of Theorem 3.15 is false, see [10, Example 3.5]. However, if we assume that two

suitable different powers of T are (m, q)-isometries, then we obtain that T is (m, q)-isometry. Again we omit

the proof since is very similar to [10, Theorem 3.6].

Theorem 3.16. Let T be a map, r, s, m, l positive integers and q > 0 real. If T r is an (m, q)-isometry and

T s an (l, q)-isometry, then T t is an (h, q)-isometry, where t is the greatest common divisor of r and s, and

h the minimum of m and l.

In the following result we consider some particular cases of Theorem 3.16.

Corollary 3.17. Let T be a map, r, s,m positive integers and q > 0 real.

(1) If T is an (m, q)-isometry and T s is an isometry, then T is an isometry.
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(2) If T r and T r+1 are (m, q)-isometries, then T is an (m, q)-isometry.

(3) If T r is an (m, q)-isometry and T r+1 is an (n, q)-isometry with m < n, then T is an (m, q)-isometry.

(4) If T is a strict (m, q)-isometry, then any power T r of T is a strict (m, q)-isometry.

Proposition 3.18. For i = 1, 2, ..., n, let Ei be a metric space with distance di, and let Ti : Ei −→ Ei be a

map, mi ≥ 1 integer and q ≥ 1 real. Denote by E := E1 ×E2 × · · · ×En the product space endowed with the

product distance

d((x1, x2, ..., xn), (y1, y2, ..., yn)) :=

(
n∑

i=1

di(xi, yi)q

)1/q

.

Let T := T1 × T2 × · · · × Tn : E −→ E be defined by T (x1, x2, ..., xn) := (T1x1, T2x2, ..., Tnxn). If Ti is an

(mi, q)-isometry for i = 1, 2, ..., n, then T is an (m, q)-isometry, where m = max{m1,m2, ...,mn}.

Proof. Since Ti is an (mi, q)-isometry, it is also an (m, q)-isometry (i = 1, 2, ..., n). So for x := (x1, x2, ..., xn)

and y := (y1, y2, ..., yn) in E, we have
m∑

k=0

(−1)m−k

(
m

k

)
d(T kx, T ky)q =

=
m∑

k=0

(−1)m−k

(
m

k

)( n∑
i=1

di(xi, yi)q

)
=

=
n∑

i=1

(
m∑

k=0

(−1)m−k

(
m

k

)
di(xi, yi)q

)
= 0 .

Hence T is an (m, q)-isometry. �

4. Continuity of (m, q)-isometries

In the next example we show that (m, q)-isometries are in general neither continuous nor linear.

Example 4.1. Let E = R with the usual distance d(x, y) = |x− y|. Consider the map T : R −→ R, defined

by

Tx =


x− 1 if x < 0

0 if x = 0

x + 1 if x > 0

It is easy verify that T is a (2, 1)-isometry, but T is neither continuous nor linear.

Proposition 4.2. Let E be a complete metric space. If T is a continuous (m, q)-isometry, then T is injective

and its range R(T ) is closed.
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Proof. It is clear that T is injective (see Remark 2.3).

We prove that R(T ) is closed. Let (xn)n≥1 be a sequence in E such that the sequence (Txn)n≥1 is

convergent to some y ∈ E, hence (T kxn)n≥1 converges to T k−1y for k = 2, 3..., since T is continuous. By

definition we have

d(xr, xs)q =
m∑

k=1

(−1)m−k

(
m

k

)
d(T kxr, T

kxs)q ,

for r, s ≥ 1. As (T kxn)n≥1 is a Cauchy sequence for k = 1, 2, ...,m, we have that (xn)n≥1 is a Cauchy

sequence, hence it is convergent to some x ∈ M . Consequently, (Txn)n≥1 converges to Tx = y and y ∈ R(T ).

So R(T ) is closed. �

Proposition 4.3. Let E be a complete metric space. If T is a (2, q)-isometry, then the restriction T|R(T ) of

T to its range R(T ) is Lipschitz, so uniformly continuous.

Proof. For all x, y ∈ E we have

d(T 2x, T 2y)q ≤ d(T 2x, T 2y)q + d(x, y)q = 2d(Tx, Ty)q ,

hence

d(T 2x, T 2y) ≤ 21/qd(Tx, Ty) .

Consequently, T is Lipschitz on R(T ) with constant 21/q. �

Given a normed space X and an (m, q)-isometry T : X −→ X, it is natural to investigate the relations

between the linearity and continuity of T . The celebrated theorem of Mazur-Ulam affirms that if X, Y are

real normed spaces and T : X −→ Y is a surjective isometry (hence continuous) such that T0 = 0, then T

is linear. The situation in the realm of the (m, q)-isometries is more complicated. In the next example we

prove that there exists a linear (2, 2)-isometry on a Hilbert space which is not continuous. Later we give an

example of a continuous (2, 2)-isometry on `2 which is not linear, but it is not surjective. We do not know

if a version of the Mazur-Ulam theorem is valid for (m, q)-isometries whose range is an affine subspace (see

Open problem 1).

Example 4.4. There exists a Hilbert space Y and a linear unbounded (2, 2)-isometry T : Y −→ Y .

Let (H, ‖ · ‖0) be an infinite-dimensional Hilbert space and we consider

(K̃, ‖ · ‖1) := (H, ‖ · ‖0)⊕ (H, ‖ · ‖0) ,

where K̃ := H ×H = {(h, h′) : h, h′ ∈ H} and ‖(h, h′)‖1 := (‖h‖20 + ‖h′‖20)1/2, for any h, h′ ∈ H.
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Let Z : (H, ‖ · ‖0) → (H, ‖ · ‖0) be a linear unbounded mapping and define S : H −→ K̃ by Sh = (h, Zh)

for h ∈ H. Then S : (H, ‖ · ‖0) −→ (K̃, ‖ · ‖1) is a linear unbounded mapping and ‖Sh‖1 ≥ ‖h‖0, for h ∈ H.

Moreover, ‖Sh‖21 − ‖h‖20 = ‖Zh‖20, so h 7→ (‖Sh‖21 − ‖h‖20)1/2 defines a seminorm on H.

Let M := SH and K = M , the closure of M in (K̃, ‖ · ‖1). Then (K, ‖ · ‖1) is a Hilbert space.

For k ≥ 2 define a norm ‖ · ‖k on M by

‖Sh‖k = (k‖Sh‖21 − (k − 1)‖h‖20)1/2 =

(‖Sh‖21 + (k − 1)(‖Sh‖21 − ‖h‖20))1/2 = (‖Sh‖21 + (k − 1)‖Zh‖20)1/2.

Clearly ‖ · ‖k is a seminorm on M and

‖Sh‖1 ≤ ‖Sh‖k ≤
√

k‖Sh‖1 (h ∈ H).

So ‖ · ‖k is a norm equivalent to ‖ · ‖1 on M and can be extended continuously to K. Clearly (K, ‖ · ‖k‖) is

a Hilbert space for each k ≥ 1.

Let

Y := (H, ‖ · ‖0)⊕
∞⊕

k=1

(K, ‖ · ‖k) ;

that is, (h, k1, k2, ...) ∈ Y if h ∈ H, ki ∈ K (i = 1, 2, ...) and
∑
‖ki‖2i < ∞. Then Y is a Hilbert space with

the norm

‖(h, k1, k2, ...)‖ :=

(
‖h‖20 +

∞∑
i=1

‖ki‖2i

)1/2

.

Define T : Y −→ Y in the following way: for x = (h, k1, k2, . . . ) ∈ Y let

Tx = T (h, k1, k2, . . . ) := (0, Sh, k1, k2, . . . ).

So T 2x = (0, 0, Sh, k1, k2, . . . ). Clearly T is a linear unbounded mapping.

To show that T is a (2, 2)-isometry, we need to prove that

‖x‖2 − 2‖Tx‖2 + ‖T 2x‖2 = 0 (4.14)

for all x ∈ Y . For x = (h, k1, k2, . . . ) ∈ Y we have

‖x‖2 = ‖h‖20 +
∞∑

i=1

‖ki‖2i ,

hence

‖Tx‖2 = ‖Sh‖21 +
∞∑

i=1

‖ki‖2i+1
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and

‖T 2x‖2 = ‖Sh‖22 +
∞∑

i=1

‖ki‖2i+2.

So

‖x‖2 − 2‖Tx‖2 + ‖T 2x‖2 = (‖h‖20 − 2‖Sh‖21 + ‖Sh‖22) +
∞∑

i=1

(‖ki‖2i − 2‖ki‖2i+1 + ‖ki‖2i+2).

So it is sufficient to show that

‖h‖20 − 2‖Sh‖21 + ‖Sh‖22 = 0 (h ∈ H)

and

‖k‖2i − 2‖k‖2i+1 + ‖k‖2i+2 (i ≥ 1, k ∈ K).

For h ∈ H we have by definition ‖Sh‖22 = 2‖Sh‖21 − ‖h‖20, which proves the first equality.

Let i ≥ 1 and k ∈ K. Then there exists a sequence (xr) ⊂ H such that limr→∞ ‖Sxr − k‖1 = 0 (and so

limr→∞ ‖Sxr − k‖j = 0 for all j ≥ 1). Thus

‖k‖2i − 2‖k‖2i+1 + ‖k‖2i+2 = lim
r→∞

(‖Sxr‖2i − 2‖Sxr‖2i+1 + ‖Sxr‖2i+2)

= lim
r→∞

(i‖Sxr‖21 − (i− 1)‖xr‖20 − 2(i + 1)‖Sxr‖21 + 2i‖xr‖20 + (i + 2)‖Sxr‖21 − (i + 1)‖xr‖20) = 0.

Hence the equality (4.14) holds, and so T is a (2, 2)-isometry.

Example 4.5. There exists a non-affine continuous (2, 2)-isometry T : `2 −→ `2 on the space `2.

Let T : `2 −→ `2 be defined by

T (x1, x2, x3, ...) := (x1x2, 1, x1, x2, x3, ...) ,

so

T 2(x1, x2, x3, ...) := (x1x2, 1, x1x2, 1, x1, x2, x3, ...) .

We will show that, for all x, y ∈ `2,

‖x− y‖2 − 2‖Tx− Ty‖2 + ‖T 2x− T 2y‖2 = 0 . (4.15)

We have

‖x− y‖2 − 2‖Tx− Ty‖2 + ‖T 2x− T 2y‖2 =
∞∑

n=1

|xn − yn|2 − 2

(
|x1x2 − y1y2|2 +

∞∑
n=1

|xn − yn|2
)

+(
2|x1x2 − y1y2|2 +

∞∑
n=1

|xn − yn|2
)

= 0 .

Therefore, T verifies (4.15), so T is a (2, 2)-isometry. It is clear that T is continuous but not affine.
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We finish this section with the following problems:

Open problem 1. [Mazur-Ulam theorem for (m, q)-isometries] Let X be a real normed space and T : X −→

X a continuous (m, q)-isometry (m ≥ 1, q > 0 real) such that its range R(T ) is an affine subspace. Is then

T necessarily affine?

Open problem 2. Let X be a real normed space and T : X −→ X a surjective (m, q)-isometry (m ≥ 3,

q > 0 real). Is then T necessarily affine?

5. Distances associated to (m, q)-isometries

Every (m, q)-isometry T : E −→ E becomes an isometry for an adequate distance on E. The following

results are analogous to those of Bayart [9].

Proposition 5.1. Let T be an (m, q)-isometry. For x, y ∈ E define

ρT (x, y) := fT (m− 1, q;x, y)1/q .

Then ρT is a semi-distance and moreover,

ρT (x, y)q = (m− 1)! lim
n→∞

d(Tnx, Tny)q

nm−1
. (5.16)

Proof. Write for short f(k) := fT (k, q;x, y). By Corollary 3.9, we have

d(Tnx, Tny)q =
m−1∑
k=0

(
n

k

)
f(k) .

Notice that the coefficient
(
n
k

)
at f(k) is a polynomial in n of degree k and f(k) = 0 if k > m− 1. Therefore

f(m− 1) = lim
n→∞

d(Tnx, Tny)q(
n

m−1

) = (m− 1)! lim
n→∞

d(Tnx, Tny)q

nm−1
.

We show that ρT is a semi-metric. By (5.16) it is clear that ρ ≥ 0. Clearly ρ(x, x) = 0 and ρ(x, y) = ρ(y, x)

for all x, y ∈ E. It remains to show the triangular inequality. Let x, y, z ∈ E. Then

ρ(x, y) = fT (m− 1, q;x, y)1/q = [(m− 1)!]1/q lim
n→∞

d(Tnx, Tny)

n
m−1

q

≤

≤ [(m− 1)!]1/q lim
n→∞

d(Tnx, Tnz)

n
m−1

q

+ [(m− 1)!]1/q lim
n→∞

d(Tnz, Tny)

n
m−1

q

= ρ(x, z) + ρ(z, y) .

�
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Theorem 5.2. Let T : E → E be a mapping. Then T is an (m, q)-isometry if and only if T : (E, ρT ) −→

(E, ρT ) is an isometry.

Proof. By Proposition 2.5, T is an (m, q)-isometry if and only if fT (m− 1, q;x, y) = fT (m− 1, q;Tx, Ty), if

and only if ρT (Tx, Ty) = ρT (x, y). �

Given an (m, q)-isometry T , consider the semidistance ρT and the set

N(ρT ) := {(x, y) ∈ E × E : ρT (x, y) = 0} .

By Theorem 5.2, we have

(T × T )N(ρT ) := {(Tx, Ty) : (x, y) ∈ N(ρT )} ⊂ N(ρT ) .

If T is bijective, then we have (T × T )N(ρT ) = N(ρT ). Of course, ρT is a distance if and only if N(ρT ) =

{(x, x) : x ∈ E}.

Proposition 5.3. Let T be an (m, q)-isometry Lipschitz with constant c. Then

ρT ≤ (c− 1)m−1d .

Hence the topology generated by d is stronger than the topology generated by ρT .

Proof. For all k = 0, 1, 2, ...,m− 1 and x, y ∈ E, we have

d(T kx, T ky) ≤ cd(T k−1x, T k−1y) ≤ · · · ≤ ckd(x, y) ,

hence

ρT (x, y) = fT (m− 1, q;x, y) =
m−1∑
k=0

(−1)m−1−k

(
m− 1

k

)
d(T kx, T ky) ≤

≤

(
m−1∑
k=0

(−1)m−1−k

(
m− 1

k

)
ck

)
d(x, y) = (c− 1)m−1d(x, y).

This finishes the proof. �

Let T : E −→ E be a map. Suppose that q ≥ 1. Define on E the distances dT,1 and dT,2 in the following

way, for x, y ∈ E:

dT,1(x, y) :=

 ∑
0≤j≤m, j even

(
m

j

)
d(T jx, T jy)q

1/q

dT,2(x, y) :=

 ∑
0≤j≤m, j odd

(
m

j

)
d(T j−1x, T j−1y)q

1/q
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Notice that

|fT (m, q;x, y)| =
∣∣dT,1(x, y)q − dT,2(Tx, Ty)q

∣∣.
Consequently, we obtain the following result:

Theorem 5.4. Let T be a map. The following assertions are equivalent:

(1) T : (E, d) −→ (E, d) is an (m, q)-isometry

(2) T : (E, dT,1) −→ (E, dT,2) is an isometry
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