

INSTITUTE of MATHEMATICS

ACADEMY of SCIENCES of the CZECH REPUBLIC

Tensor product of left *n*-invertible operators

B.P. Duggal Vladimír Müller

Preprint No. 16-2013 PRAHA 2013

TENSOR PRODUCT OF LEFT *n*-INVERTIBLE OPERATORS

B.P. DUGGAL AND VLADIMIR MÜLLER

ABSTRACT. A Banach space operator $T \in B(\mathcal{X})$ has a left *m*-inverse (resp., an essential left *m*-inverse) for some integer $m \geq 1$ if there exists an operator $S \in B(\mathcal{X})$ (resp., an operator $S \in B(\mathcal{X})$ and a compact operator $K \in B(\mathcal{X})$) such that $\sum_{i=0}^{m} (-1)^{i} {m \choose i} S^{m-i} T^{m-i} = 0$ (resp., $\sum_{i=0}^{m} (-1)^{i} {m \choose i} T^{m-i} S^{m-i} = K$). If T_i is left m_i -invertible (resp., essentially left m_i -invertible), then the tensor product $T_1 \otimes T_2$ is left $(m_1 + m_2 - 1)$ -invertible (resp., essentially left $(m_1 + m_2 - 1)$ -invertible). Furthermore, if T_1 is strictly left *m*-invertible (resp., strictly essentially left *m*-invertible), then $T_1 \otimes T_2$ is: (i) left (m + n - 1)-invertible (resp., essentially left (m + n - 1)-invertible) if and only if T_2 is left *n*-invertible (resp., strictly essentially left (m + n - 1)-invertible), if and only if T_2 is strictly left *n*-invertible (resp., strictly essentially left (m + n - 1)-invertible).

1. INTRODUCTION

Let $B(\mathcal{X})$ denote the algebra of bounded linear transformations, equivalently operators, on a Banach space \mathcal{X} into itself. An operator $T \in B(\mathcal{X})$ is left (resp., right) *m*-invertible, for some integer $m \geq 1$, by $S \in B(\mathcal{X})$ if

$$\sum_{i=0}^{m} (-1)^{i} \binom{m}{i} S^{m-i} T^{m-i} = 0 \quad (\text{resp.} \ \sum_{i=0}^{m} (-1)^{i} \binom{m}{i} T^{m-i} S^{m-i} = 0).$$

It is elementary to see that S is a left m-inverse of T if and only if (the adjoint operator) S^* is a right m-inverse of T^* . We say that $T \in B(\mathcal{X})$ is m-invertible if it has both a left m-inverse and a right m-inverse. Evidently, every left inverse (i.e., left 1-inverse) of T is a left m-inverse of T and every right inverse of T is a right m-inverse of T for every integer $m \geq 1$. Indeed, if T is left n-invertible for some positive integer n, then it is left m-invertible for every integer $m \geq n$. If T is left (right) m-invertible then it is left (resp., right) invertible, but a left (right) m-inverse of T is not necessarily a left (resp., right) inverse of T. Observe also that if T is left m-invertible by L and right n-invertible by R (for some integers $m, n \geq 1$),

²⁰¹⁰ Mathematics Subject Classification: Primary 47A80, 47A10; Secondary 47B47 . Key words and phrases: Banach space, left n-invertible operator, essentially left n-invertible operator, tensor product, left-right multiplication operator.

The second author was supported by grant No. 201/09/0473 of GACR and RVO:67985840.

then T is invertible by the operator $\sum_{i=0}^{m-1} (-1)^{m+1+i} {m \choose i} L^{m-1-i} T^{m-1-i} = \sum_{i=0}^{n-1} (-1)^{n+1+i} {n \choose i} T^{n-1-i} R^{n-1-i}$. The study of m-left and m-right invertible operators has its roots in the work of Przeworska-Rolewicz [16, 17], and has since been carried out by a number of authors, amongst them [4]. An interesting example of a left m-invertible Hilbert space operator is that of an m-isometric operator T for which $\sum_{i=0}^{m} (-1)^{i} {m \choose i} T^{*m-i} T^{m-i} = 0$, where T^* denotes the Hilbert space adjoint of T. A study of m-isometric operators has been carried out by Agler and Stankus in a series of papers [1, 2, 3]; more recently a generalisation of these operators to Banach spaces has been carried by Bayart [5], Bermudez et al [6, 7] and Hoffman et al [14].

Let $\mathcal{K}(\mathcal{X})$ denote the two sided ideal of compact operators in $B(\mathcal{X})$, and let $m \geq 1$ be an integer. We say in the following that $T \in B(\mathcal{X})$ is: essentially left m-invertible (resp., essentially right m-invertible) by $S \in$ $B(\mathcal{X})$ if there exists an operator $K_1 \in \mathcal{K}(\mathcal{X})$ (resp., $K_2 \in \mathcal{K}(\mathcal{X})$) such that $\sum_{i=0}^{m} (-1)^{i} \binom{m}{i} S^{m-i} T^{m-i} = K_1 \text{ (resp., } \sum_{i=0}^{m} (-1)^{i} \binom{m}{i} T^{m-i} S^{m-i} = K_2 \text{). } T$ is essentially *m*-invertible if it is both essentially left and right *m*-invertible. Recall from Müller [15, Page 154] that an essentially left invertible (i.e., essentially left 1-invertible) operator T is upper semi-Fredholm with the range $T(\mathcal{X})$ complemented and an essentially right invertible operator is lower semi-Fredholm with $T^{-1}(0)$ complemented. Trivially: If T is essentially left (resp., right) *m*-invertible by S then so is T + K for every compact K, an essentially left (rep., right) *m*-invertible operator is essentially left (resp., right) invertible, and every essentially left (rep., right) invertible operator is essentially left (rep., right) m-invertible (indeed, if S is an essential left (right) *m*-inverse of T then S is an essential *n*-inverse left (right) of T for all integers $n \geq m$). Observe however that S is an essential left (right) *m*-inverse of T does not imply S is an essential left (right) inverse of T.

Call an operator S a strict left *m*-inverse (resp., a strict essential left *m*-inverse) of T if S is a left *m*-inverse(resp., essential left *m*-inverse) of T but S is not a left *n*-inverse (resp., essential left *n*-inverse) of T for all integers n < m. Define strict right *m*-inverses and strict essential right *m*-inverses similarly. In the following, we consider operators T_1 and T_2 such that T_1 is left (resp., right) *m*-invertible and T_2 is left (resp., right) *n*-invertible, and prove that their tensor product $T_1 \otimes T_2$ is left (resp., right) (m + n - 1)-invertible. Furthermore, if T_1 is strictly left (similarly, right) *m*-invertible, then $T_1 \otimes T_2$ is: (i) left (resp., right) (m + n - 1)-invertible if and only

if T_2 is left (resp., right) *n*-invertible; (ii) strictly left (resp., right) (m + n - 1)-invertible, if and only if T_2 is strictly left (resp., right) *n*-invertible. These results have an essentially left (resp., right) *t*-invertible counterpart: If T_1 is essentially left (resp., right) *m*-invertible and T_2 is essential left (resp., essential right) *n*-invertible, then $T_1 \otimes T_2$ is essentially left (resp., right) (m + n - 1)-invertible. Furthermore, if T_1 is strictly essentially left (similarly, right) *m*-invertible, then $T_1 \otimes T_2$ is: (i) essentially left (resp., right) (m + n - 1)-invertible if and only if T_2 is essentially left (resp., right) (m + n - 1)-invertible if and only if T_2 is essentially left (resp., right) (m + n - 1)-invertible if and only if T_2 is essentially left (resp., right) *n*-invertible; (ii) strictly essentially left (resp., right) (m + n - 1)-invertible, if and only if T_2 is strictly essentially left (resp., right) *n*-invertible. This generalizes some results of Botelho *et. al.* [8, 9], Martinez *et al* [6, 7] and those of one of the authors on the tensor product of *m*-isometric operators [10, 11, 12]. We remark that these results have a natural interpretation for the left-right multiplication operator $\triangle_{ST} : J \to J$, $\triangle_{ST}(A) = SAT$, where $J \subset B(\mathcal{Y}, \mathcal{X})$ is an operator ideal.

2. Results

Given two complex infinite dimensional Banach spaces \mathcal{X} and \mathcal{Y} , let $\mathcal{X} \otimes \mathcal{Y}$ denote the completion, endowed with a reasonable uniform crossnorm, of the algebraic tensor product $\mathcal{X} \otimes \mathcal{Y}$ of \mathcal{X} and \mathcal{Y} ; let, for $A \in B(\mathcal{X})$ and $B \in B(\mathcal{Y})$, $A \otimes B \in B(\mathcal{X} \otimes \mathcal{Y})$ denote the tensor product operator defined by A and B. Evidently, an operator $T \in B(\mathcal{X})$ is left *m*-invertible by $S \in B(\mathcal{X})$ if and only if $T \otimes I \in B(\mathcal{X} \otimes \mathcal{Y})$ is left *m*-invertible by $S \otimes I \in$ $B(\mathcal{X} \otimes \mathcal{Y})$. Furthermore, T is strictly left *m*-invertible by S if and only if $T \otimes I$ is strictly left *m*-invertible by $S \otimes I$. Observe also that $T_1 \otimes T_2 =$ $(T_1 \otimes I)(I \otimes T_2) = (I \otimes T_2)(T_1 \otimes I)$. (Here, and in the sequel, we shall make a slight misuse of notation and use I to denote the identity operator on both \mathcal{X} and \mathcal{Y} .) Hence, given T_1 left *m*-invertible by S_1 and T_2 left *n*-invertible by S_2 , in considering the left *t*-invertibility of $T_1 \otimes T_2$ by $S_1 \otimes S_2$ we may assume without loss of generality that the positive integer *m* is less then or equal to the positive integer *n*. We state our theorems below for left invertibility; their analogues for right invertibility follow from a similar argument.

Theorem 2.1. The tensor product of a left m-invertible operator with a left n-invertible operator is a left (m + n - 1)-invertible operator.

A proof of the theorem may be obtained using a combinatorial argument similar to that in the papers [10, 11], or by using an argument similar to the one used to prove [12, Corollary 2.2] (see also [6]). However, we follow here an argument using double sequences satisfying certain properties. At the heart of this argument lies the following simple lemma, which along with leading to a proof of the theorem has a number of other interesting consequences. Let \mathcal{P}_d denote the set of all complex polynomials of degree $\leq d$.

Lemma 2.2. Let $m \in \mathbb{N}$, and let $(a_j)_{j=0}^{\infty}$ be a sequence of complex numbers. Then the following statements are equivalent:

(i) $\sum_{i=0}^{m} (-1)^{i} {m \choose i} a_{k+i} = 0$ for every integer $k \ge 0$;

(ii) there exists a polynomial $p \in \mathcal{P}_{m-1}$ such that $a_i = p(i)$ for every $i \ge 0$.

Proof. $(ii) \Longrightarrow (i)$: We prove the statement by induction on m. For m = 1, p is a constant and the statement is clear.

Suppose that $m \ge 2$ and the statement is true for m-1. Let deg p < m. Define q by q(t) = p(t+1) - p(t). Then q is a polynomial of degree deg q = deg p - 1 < m - 1. We have

$$\sum_{i=0}^{m} (-1)^{i} \binom{m}{i} p(k+i) = \sum_{i=0}^{m} (-1)^{i} \binom{m-1}{i} + \binom{m-1}{i-1} p(k+i)$$

$$= \sum_{i=0}^{m-1} (-1)^{i} \binom{m-1}{i} p(k+i) + \sum_{i=0}^{m-1} (-1)^{i+1} \binom{m-1}{i} p(k+i+1)$$

$$= \sum_{i=0}^{m-1} (-1)^{i} \binom{m-1}{i} (p(k+i) - p(k+i+1)) = -\sum_{i=0}^{m-1} (-1)^{i} \binom{m-1}{i} q(k+i) = 0$$

by the induction assumption.

(i) \implies (ii): Let \mathcal{V} be the vector space of all sequences (a_i) satisfying (i). Since each sequence in \mathcal{V} is uniquely determined by its members a_i , $0 \le i \le m-1$, dim $\mathcal{V} \le m$. Let $\mathcal{V}_0 = \{(p(i)) : p \in \mathcal{P}_{m-1}\}$. Since $\mathcal{V}_0 \subset \mathcal{V}$ and dim $\mathcal{V}_0 = m$, we have $\mathcal{V}_0 = \mathcal{V}$.

Remark 2.3. The argument of the proof of $(ii) \Rightarrow (i)$ of the proof of Lemma 2.2 works just as well with p(n+j) replaced by p(n+rj) for every $r \in \mathbf{N}$. Indeed, let $p \in \mathcal{P}_{m-1}, r \in \mathbf{N}$ and $k \ge 0$. Then $i \mapsto p(k+ri)$ is again a polynomial of degree $\le m-1$, so we have $\sum_{i=0}^{m} (-1)^{i} {m \choose i} p(k+ri) = 0$. In particular, if $0 \le c \le m-1, r \in \mathbf{N}$ and $k \ge 0$, then $\sum_{i=0}^{m} {m \choose i} (k+ri)^{c} = 0$.

Lemma 2.2 leads to the following characterization of left *m*-invertibility. Let \mathcal{X}^* denote space dual to \mathcal{X} . **Theorem 2.4.** Let $S, T \in B(\mathcal{X})$, $m \in \mathbb{N}$. The following statements are equivalent:

(i) S is a left m-inverse of T; (ii) for all $x \in \mathcal{X}$, $x^* \in \mathcal{X}^*$ and $k \ge 0$, $\sum_{i=0}^{m} (-1)^i \binom{m}{i} \langle S^{i+k} T^{i+k} x, x^* \rangle = 0;$

(iii) for all $x \in X$ and $x^* \in X^*$ there exists a polynomial $p \in \mathcal{P}_{m-1}$ such that

$$\langle S^i T^i x, x^* \rangle = p(i) \qquad (i \ge 0).$$

Proof. (ii) \Rightarrow (i): For all $x \in X$ and $x^* \in X^*$ we have

$$\sum_{i=0}^{m} (-1)^i \binom{m}{i} \langle S^i T^i x, x^* \rangle = 0.$$

So $\sum_{i=0}^{m} (-1)^{i} {m \choose i} S^{i} T^{i} = 0.$ (i) \Rightarrow (ii): Let $x \in X, x^{*} \in X^{*}$ and $k \ge 0$. We have $\sum_{i=0}^{m} (-1)^{i} {m \choose i} \langle S^{i+k} T^{i+k} x, x^{*} \rangle = \left\langle \sum_{i=0}^{m} (-1)^{i} {m \choose i} S^{i} T^{i} (T^{k} x), S^{*k} x^{*} \right\rangle = 0.$

(ii) \Leftrightarrow (iii) Let $x \in X$ and $x^* \in X^*$. Write $a_i = \langle S^i T^i x, x^* \rangle$ $(i \ge 0)$. The equivalence (ii) \Leftrightarrow (iii) then follows from the previous lemma.

The following two corollaries of Lemma 2.2 all but prove Theorem 2.1.

Corollary 2.5. If $(a_{i,j})_{i,j=0}^{\infty}$ is a double sequence of complex numbers satisfying

(1)
$$\sum_{i=0}^{m} (-1)^{i} {m \choose i} a_{k+i,\ell} = 0$$

and

(2)
$$\sum_{j=0}^{n} (-1)^{j} {n \choose j} a_{k,\ell+j} = 0,$$

then

(3)
$$\sum_{s=0}^{m+n-1} (-1)^s \binom{m+n-1}{s} a_{s,s} = 0.$$

Proof. Each double sequence $(a_{i,j})$ being uniquely determined by its terms $a_{i,j}, 0 \le i \le m-1$ and $0 \le j \le n-1$, if we let V denote the vector space of all double sequences $(a_{i,j})$ satisfying (1) and (2) above, then dimV \le mn.

For $0 \le c \le m-1$ and $0 \le d \le n-1$, define the double sequence $(b^{(c,d)})$ by $b_{i,j}^{(c,d)} = i^c j^d$. Then

$$\sum_{i=0}^{m} (-1)^{i} \binom{m}{i} b_{k+i,\ell}^{(c,d)} = \ell^{d} \sum_{i=0}^{m} (-1)^{i} \binom{m}{i} (k+i)^{c} = 0$$

for all non-negative integers k, ℓ . Thus $(b^{(c,d)})$ satisfies (1), similarly (2). Consequently, $(b^{(c,d)}) \in V$. Since these double sequences are linearly independent, and hence form a basis of V, to prove the corollary it would now suffice to prove that $b^{(c,d)}$ satisfy (3). But this follows from the fact that $b_{s,s}^{(c,d)} = s^{c+d}, 0 \leq c+d \leq m+n-2$, and

$$\sum_{s=0}^{m+n-1} (-1)^s \binom{m+n-1}{s} b_{s,s}^{(c,d)} = \sum_{s=0}^{m+n-1} (-1)^s \binom{m+n-1}{s} s^{c+d} = 0.$$

For a pair of operators $A, B \in B(\mathcal{X})$, let [A, B] = AB - BA.

Corollary 2.6. If $A_1 \in B(\mathcal{X})$ is left *m*-invertible by $B_1 \in B(\mathcal{X})$, $A_2 \in B(\mathcal{X})$ is left *n*-invertible by $B_2 \in B(\mathcal{X})$ and $[A_1, A_2] = 0 = [B_1, B_2]$, then A_1A_2 is left (m + n - 1)-invertible by B_1B_2 .

Proof. Fix $x \in \mathcal{X}$ and $x^* \in \mathcal{X}^*$, and let $a_{i,j} = \langle B_1^i B_2^j A_1^i A_2^j x, x^* \rangle$. Then, for all non-negative integers k and ℓ , the left *m*-invertibility of A_1 by B_1 implies that

$$\sum_{i=0}^{m} (-1)^{i} \binom{m}{i} a_{k+i,\ell} = \sum_{i=0}^{m} (-1)^{i} \binom{m}{i} \langle B_{1}^{i} A_{1}^{i} (A_{1}^{k} A_{2}^{\ell} x), (B_{2}^{*\ell} B_{1}^{*k} x^{*}) \rangle = 0,$$

i.e., $(a_{i,j})$ satisfies (1). Similarly, $(a_{i,j})$ satisfies (2), and hence also (3). Since $a_{s,s} = \langle (B_1B_2)^s (A_1A_2)^s x, x^* \rangle$,

$$\sum_{s=0}^{m+n-1} (-1)^s (\binom{m+n-1}{s}) \langle (B_1 B_2)^s (A_1 A_2)^s x, x^* \rangle = 0.$$

Our choice of vectors x and x^* having been arbitrary, we must have

$$\sum_{s=0}^{m+n-1} (-1)^s (\binom{m+n-1}{s}) (B_1 B_2)^s (A_1 A_2)^s = 0.$$

Proof of Theorem 2.1. If we set $A_1 = (T_1 \otimes I)$ and $A_2 = (I \otimes T_2)$, then $T_1 \in B(\mathcal{X})$ is left *m*-invertible by $S_1 \in B(\mathcal{X})$, $T_2 \in B(\mathcal{Y})$ is left *n*-invertible by $S_2 \in B(\mathcal{Y})$ and $T_1 \otimes T_2$ is left (m + n - 1)-invertible by $S_1 \otimes S_2$ if and only if A_1 is left *m*-invertible by $B_1 = (S_1 \otimes I)$, A_2 is left *n*-invertible by $B_2 = (I \otimes S_2)$ and A_1A_2 is left (m + n - 1)-invertible by B_1B_2 . Since $[A_1, A_2] = 0 = [B_1, B_2]$, the proof follows from Corollary 2.6.

Remark 2.7. Suppose that $T \in B(\mathcal{X})$ is left *m*-invertible by $S \in B(\mathcal{X})$. Fix $x \in \mathcal{X}$ and $x^* \in \mathcal{X}^*$, and let $a_n = \langle S^n T^n x, x^* \rangle$. Then it follows from Remark 2.3 that $\sum_{i=0}^m (-1)^i {m \choose i} a_{k+ri} = 0$ for all $r \in \mathbf{N}$ and integers $k \ge 0$. In particular,

$$\sum_{i=0}^{m} (-1)^{i} {m \choose i} S^{ri} T^{ri} = 0,$$

i.e., T^r is left m-invertible by S^r for all $r \in \mathbf{N}$.

(m, p)-isometries – A Remark. Recall that a Banach space operator $T \in B(\mathcal{X})$ is an (m, p)-isometry for some integer $m \ge 1$ and $p \in (0, \infty)$ if

$$\sum_{i=0}^{m} (-1)^{i} \binom{m}{i} ||T^{i}x||^{p} = 0, \ x \in \mathcal{X}.$$

Let T, S be commuting operators in $B(\mathcal{X})$ such that T is an (m, p)-isometry and S is an (n, p)-isometry. Define the double sequence $(a_{i,j})$ by $a_{i,j} = ||T^i S^j x||^p$, $x \in \mathcal{X}$. Then

$$\sum_{i=0}^{m} (-1)^{i} \binom{m}{i} a_{k+i,j} = 0 = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} a_{i,\ell+j}$$

for integers $k, \ell \geq 0$. Applying Corollary 2.5 we conclude that

$$\sum_{s=0}^{m+n-1} (-1)^s (\binom{m+n-1}{s}) || (TS)^s x ||^p = 0$$

for all $x \in \mathcal{X}$. We have proved:

Corollary 2.8. [6, Theorem 3.3] If $T, S \in B(\mathcal{X})$ are commuting operators such that T is an (m, p)-isometry and S is an (n, p)-isometry, then TS is an (m + n - 1, p)-isometry.

For an $x \in \mathcal{X}$ and an operator $T \in B(\mathcal{X})$, define the sequence (a_n) by $a_n = ||T^n x||^p$. If T is an (m, p)-isometry, then Remark 2.3 implies that $\sum_{i=0}^m (-1)^i {m \choose i} a_{k+ri} = 0$ for all $r \in \mathbf{N}$ and integers $k \ge 0$. In particular:

Corollary 2.9. [7, Theorem 3.1] If $T \in B(\mathcal{X})$ is an (m, p)-isometry, then is so T^r for each $r \in \mathbf{N}$.

Strict left invertibility If $T \in B(\mathcal{X})$ is left *m*-invertible and $S \in B(\mathcal{X})$ is a strict left *m*-inverse of *T*, then $\sum_{i=0}^{m} (-1)^{i} {m \choose i} S^{m-i} T^{m-i} = 0$ and $\sum_{i=0}^{p} (-1)^{i} {m \choose i} S^{p-i} T^{p-i} \neq 0$ for all p < m. The argument of the proof of [9,

Theorem 3.1] shows that if $S \in B(\mathcal{X})$ is a strict left *m*-inverse of $T \in B(\mathcal{X})$, then the set $\{I, ST, S^2T^2, \dots, S^{m-1}T^{m-1}\}$ is linearly independent. More generally:

Theorem 2.10. Let $S, T \in B(\mathcal{X}), m \in \mathbb{N}$, let S be a left m-inverse of T. The following statements are equivalent:

(i) S is a strict left m-inverse of T;

(ii) the operators $I, ST, S^2T^2, \ldots, S^{m-1}T^{m-1}$ are linearly independent;

(iii) there exists $x \in \mathcal{X}$ such that the vectors $x, STx, \ldots, S^{m-1}T^{m-1}x$ are linearly independent;

(iv) for every polynomial $p \in \mathcal{P}_{m-1}$ there exist $x \in \mathcal{X}$ and $x^* \in \mathcal{X}^*$ such that

$$\langle S^i T^i x, x^* \rangle = p(i) \qquad (i \ge 0);$$

(v) there exist $x \in \mathcal{X}$ and $x^* \in \mathcal{X}^*$ such that $\langle S^i T^i x, x^* \rangle = i^{m-1}$ $(i \ge 0)$.

Proof. (iii) \Rightarrow (ii) is clear.

(ii) \Rightarrow (i): Suppose that S is not a strict left *m*-inverse of T. By definition, the operators $I, ST, \ldots, S^{m-1}T^{m-1}$ are linearly dependent.

(i) \Rightarrow (iii): Suppose that for each $x \in \mathcal{X}$ the vectors $x, STx, \ldots, S^{m-1}T^{m-1}x$ are linearly dependent, i.e., there exists a nontrivial linear combination $\sum_{i=0}^{m-1} \alpha_i S^i T^i x = 0.$

Since also $\sum_{i=0}^{m} (-1)^{i} {m \choose i} S^{i} T^{i} x = 0$, as in [9] we can get that $\sum_{i=0}^{m-1} (-1)^{i} {m-1 \choose i} S^{i} T^{i} x = 0$. So

$$\sum_{i=0}^{m-1} (-1)^i \binom{m-1}{i} S^i T^i = 0,$$

a contradiction.

(iii) \Rightarrow (iv): Let $x \in \mathcal{X}$ and suppose that the vectors $x, STx, \ldots, S^{m-1}T^{m-1}x$ are linearly independent. Let $p \in \mathcal{P}_{m-1}$. Then there exists $x^* \in \mathcal{X}^*$ such that

$$\langle S^i T^i x, x^* \rangle = p(i) \qquad (0 \le i \le m-1)$$

By Theorem 2.4 this implies that $\langle S^i T^i x, x^* \rangle = p(i)$ for all $i \ge 0$.

 $(iv) \Rightarrow (v)$ is clear.

 $(v) \Rightarrow (iv)$: If $x \in X$ and $x^* \in X^*$ satisfy $\langle S^i T^i x, x^* \rangle = i^{m-1}$ for all $i \ge 0$, then (by Theorem 2.4) S is not a left (m-1)-inverse of T, so S is a strict left *m*-inverse of T.

The converse of Theorem 2.1, namely that if $S_1 \in B(\mathcal{X})$ is a left *t*-inverse of $T_1 \in B(\mathcal{X})$ and $T_1 \otimes T_2$ is left *s*-invertible by $S_1 \otimes S_2$ (for some $T_2, S_2 \in B(\mathcal{Y})$) then T_2 is left (s - t + 1)-invertible by S_2 , is not as straight forward. Recall that every left n_1 -inverse $S \in B(\mathcal{X})$ of an operator $T \in B(\mathcal{X})$ is a left *n*-inverse of T for every integer $n \ge n_1$. Hence, if S_1 is a left *t*-inverse of T_1 , then there is a least positive integer $m \le t$ such that S_1 is a strict left *m*-inverse of T_1 (and then $\{I, S_1T_1, \dots, S_1^{m-1}T_1^{m-1}\}$ is an independent set).

Theorem 2.11. Let $S_1, T_1 \in B(\mathcal{X}), S_2, T_2 \in B(\mathcal{Y}), m, n \in \mathbb{N}$. Suppose that S_1 is a strict left *m*-inverse of T_1 and S_2 is a strict left *n*-inverse of T_2 . Then $S_1 \otimes S_2$ is a strict left (m + n - 1)-inverse of $T_1 \otimes T_2$.

Proof. By Theorem 2.1, $S_1 \otimes S_2$ is a left (m + n - 1)-inverse of $T_1 \otimes T_2$.

By Theorem 2.10, there exist $x \in \mathcal{X}, x^* \in \mathcal{X}^*, y \in \mathcal{Y}$ and $y^* \in \mathcal{Y}^*$ such that

$$\langle S_1^i T_1^i x, x^* \rangle = i^{m-1} \qquad (i \ge 0)$$

and

$$\langle S_2^i T_2^i y, y^* \rangle = i^{n-1} \qquad (i \ge 0).$$

So

 $\langle (S_1 \otimes S_2)^i (T_1 \otimes T_2)^i (x \otimes y), x^* \otimes y^* \rangle = \langle S_1^i T_1^i x, x^* \rangle \cdot \langle S_2^i T_2^i y, y^* \rangle = i^{m+n-2}$

for all integers $i \ge 0$. This, again by Theorem 2.10, implies that $S_1 \otimes S_2$ is a strict left (m + n - 1)-inverse of $T_1 \otimes T_2$.

Theorem 2.12. Let $S_1, T_1 \in B(\mathcal{X})$ and $S_2, T_2 \in B(\mathcal{Y})$. If S_1 is a strict left m inverse of T_1 , then $S_1 \otimes S_2$ is a left s-inverse of $T_1 \otimes T_2$ if and only if S_2 is a left (s - m + 1)-inverse of T_2 .

Proof. If S_2 is a left (s - m + 1)-inverse of T_2 then $S_1 \otimes S_2$ is a left s-inverse of $T_1 \otimes T_2$ by Theorem 2.1.

Suppose that $S_1 \otimes S_2$ is a left *s*-inverse of $T_1 \otimes T_2$. Let $y \in Y$ and $y^* \in Y^*$. Write $f(i) = \langle S_2^i T_2^i y, y^* \rangle$ $(i \ge 0)$.

By Theorem 2.10, for each $p \in \mathcal{P}_{m-1}$ there exist $x \in \mathcal{X}$ and $x^* \in \mathcal{X}^*$ such that $\langle S_1^i T_1^i x, x^* \rangle = p(i)$ for all $i \geq 0$. So

$$p(i)f(i) = \langle S_1^i T_1^i x, x^* \rangle \cdot \langle S_2^i T_2^i y, y^* \rangle = \langle (S_1 \otimes S_2)^i (T_1 \otimes T_2)^i (x \otimes y), x^* \otimes y^* \rangle.$$

Hence $i \mapsto p(i)f(i)$ is a polynomial of degree $\leq s - 1$. For $p \equiv 1$ this means that f is a polynomial of degree $\leq s - 1$. For $p \equiv i^{m-1}$ we get $f \in \mathcal{P}_{s-m}$.

Since $y \in Y$ and $y^* \in Y^*$ were arbitrary, Theorem 2.4 implies that S_2 is a left (s - m + 1)-inverse of T_2 .

Example. If $m \ge 2$ and S is a strict left *m*-inverse of T, then S^2 is a left 2-inverse of T^2 . Thus S^2 is not a strict left 3-inverse of T^2 . Observe here that S and T do not commute.

Theorem 2.11, also Theorem 2.12, is not true if we assume only that S_1, S_2, T_1, T_2 are commuting operators (such that S_1S_2 is a left *s*-inverse of T_1T_2). Let \mathcal{X} be the ℓ_1 -space with the standard basis $e_{i,j}$ $(i, j \in \mathbf{N})$. Let the operators $T_1, T_2, S_1, S_2 \in B(X)$ be defined by

$$T_{1}e_{i,j} = \frac{i+j+1}{i+j}e_{i+1,j},$$

$$T_{2}e_{i,j} = \frac{i+j+1}{i+j}e_{i,j+1},$$

$$S_{1}e_{i,j} = e_{i-1,j} \quad \text{if } i \ge 2, \qquad S_{1}e_{1,j} = 0,$$

$$S_{2}e_{i,j} = e_{i,j-1} \quad \text{if } j \ge 2, \qquad S_{2}e_{i,1} = 0.$$

Clearly S_1, S_2, T_1, T_2 are mutually commuting operators. We have $S_1T_1e_{i,j} = \frac{i+j+1}{i+1}e_{i,j}$ and $S_1^2T_1^2e_{i,j} = \frac{i+j+2}{i+1}e_{i,j}$. So $(I - 2S_1T_1 + S_1^2T_1^2)e_{i,j} = 0$ for all $i, j \in \mathbb{N}$ and so S_1 is a (obviously strict) left 2-inverse of T_1 . Similarly, S_2 is a strict left 2-inverse of T_2 .

It is easy to verify that S_1S_2 is a left 2-inverse of T_1T_2 , so it is not a strict left 3-inverse.

Evidently, S_2 may not be a strict left (s-m+1)-inverse of T_2 in Theorem 2.12. For S_2 to be a strict left (s-m+1)-inverse one requires $S_1 \otimes S_2$ to be strict left *s*-inverse of $T_1 \otimes T_2$. The following theorem complements Theorem 2.11.

Theorem 2.13. Let $S_1, T_1 \in B(\mathcal{X})$ and $S_2, T_2 \in B(\mathcal{Y})$. Suppose that S_1 is a strict left *m* inverse of T_1 and $S_1 \otimes S_2$ is a left *s*-inverse of $T_1 \otimes T_2$. Then S_2 is a strict left (s - m + 1)-inverse of T_2 if and only if $S_1 \otimes S_2$ is a strict left *s*-inverse of $T_1 \otimes T_2$.

Proof. It is clear from the above that if $S_1 \otimes S_2$ is a left s-inverse of $T_1 \otimes T_2$, then S_2 is a left (s - m + 1)-inverse of T_2 . To prove that S_2 is a strict (s - m + 1)-inverse of T_2 if and only if $S_1 \otimes S_2$ is a strict left s-inverse of $T_1 \otimes T_2$, suppose (to start with) that $S_1 \otimes S_2$ is a strict left s-inverse of $T_1 \otimes T_2$ but S_2 is not a strict left (s - m + 1)-inverse of T_2 . Then there exists an integer $k, 1 \le k < s - m + 1$, such that S_2 is a left k-inverse of T_2 , and hence $S_1 \otimes S_2$ is a left (m + k - 1)-inverse of $T_1 \otimes T_2$ (see Theorem 2.1). Since m + k - 1 < s, we have a contradiction. If, instead, S_2 is a strict left (s - m + 1)-inverse of T_2 , then $S_1 \otimes S_2$ is a strict left s-inverse of $T_1 \otimes T_2$ (by Theorem 2.11). Essentially left *m*-invertible operators We prove next the analogues of Theorem 2.12 and 2.13 for the tensor product of essentially left *m*invertible operators. To this end we start by introducing a construction, known in the literature as the Sadovskii/Buoni, Harte, Wickstead construction [15, Page 159], which leads to a representation of the Calkin algebra as an algebra of operators on a suitable Banach space. Let $\ell^{\infty}(\mathcal{X})$ denote the Banach space of all bounded sequences $x = (x_n)_{n=1}^{\infty}$ of elements of \mathcal{X} endowed with the norm $||x||_{\infty} := \sup_{n \in \mathbb{N}} ||x_n||$, and write $T_{\infty}, T_{\infty}x := (Tx_n)_{n=1}^{\infty}$ for all $x = (x_n)_{n=1}^{\infty}$, for the operator induced by T on $\ell^{\infty}(\mathcal{X})$. The set $m(\mathcal{X})$ of all precompact sequences of elements of \mathcal{X} is a closed subspace of $\ell^{\infty}(\mathcal{X})$ which is invariant for T_{∞} . Let $\mathcal{X}_q := \ell^{\infty}(\mathcal{X})/m(\mathcal{X})$, and denote by T_q the operator T_{∞} on \mathcal{X}_q . The mapping $T \mapsto T_q$ is then a unital homomorphism from $B(\mathcal{X}) \to B(\mathcal{X}_q)$, with kernel the ideal $\mathcal{K}(\mathcal{X})$ of compact operators on \mathcal{X} , which induces a norm decreasing monomorphism from $B(\mathcal{X})/\mathcal{K}(\mathcal{X})$ to $B(\mathcal{X}_q)$ with the following properties (see [15, Section 17] for details):

(i) T is upper semi-Fredholm if and only if T_q is injective, if and only if T_q is bounded below;

(*ii*) $T_q = 0$ if and only if T is compact.

Furthermore, this is easily verified,

(*iii*) $(S \otimes T)_q = S_q \otimes T_q$ for every $S \in B(\mathcal{X})$ and $T \in B(\mathcal{Y})$.

As above, let $S_1, T_1 \in B(\mathcal{X})$ and $S_2, T_2 \in B(\mathcal{Y})$. If S_1 is an essential left *m*-inverse of T_1 , equivalently if $\sum_{i=0}^m (-1)^i {m \choose i} S_1^{m-i} T_1^{m-i} = K$ for some $K \in \mathcal{K}(\mathcal{X})$, then $\sum_{i=0}^m (-1)^i {m \choose i} (S_1)_q^{m-i} (T_1)_q^{m-i} = 0$, i.e., $(S_1)_q \in B(\mathcal{X}_q)$ is a left *m*-inverse of $(T_1)_q \in B(\mathcal{X}_q)$. The converse holds, and we have that ${}^{"}(S_1)_q \in B(\mathcal{X}_q)$ is a left *m*-inverse of $(T_1)_q \in B(\mathcal{X}_q)$ if and only if S_1 is an essential left *m*-inverse of T_1 . Again, $S_1 \otimes S_2$ is an essential left *s*-inverse of $T_1 \otimes T_2$ if and only if $(S_1)_q \otimes (S_2)_q$ is a left *s*-inverse of $(T_1)_q \otimes (T_2)_q$. Observing that the property of being "strict" transfers from an operator Tto T_q (and back), we have:

Theorem 2.14. Let $S_1, T_1 \in B(\mathcal{X})$ and $S_2, T_2 \in B(\mathcal{Y})$.

(i) If S_i , i = 1, 2, is an essential left m_i -inverse of T_i , then $S_1 \otimes S_2$ is an essential left $(m_1 + m_2 - 1)$ -inverse of $T_1 \otimes T_2$.

(ii) If S_1 is a strict essential left m-inverse of T_1 , then $S_1 \otimes S_2$ is an essential left s-inverse of $T_1 \otimes T_2$ if and only if S_2 is an essential left (s - m + 1)-inverse of T_2 .

(iii) If S_1 is a strict essential left *m*-inverse of T_1 and $S_1 \otimes S_2$ is an essential left *s*-inverse of $T_1 \otimes T_2$, then S_2 is a strict essential left (s - m + 1)-inverse of T_2 if and only if $S_1 \otimes S_2$ is a strict essential left *s*-inverse of $T_1 \otimes T_2$.

Elementary Operator $\triangle_{T_1T_2} = L_{T_1}R_{T_2}$ Given $T_1 \in B(\mathcal{X})$ and $T_2 \in B(\mathcal{Y})$, the elementary operator $\triangle_{T_1T_2} \in B(\mathcal{Y}, \mathcal{X})$ is defined by $\triangle_{T_1T_2}(A) = T_1AT_2$ for all $A \in B(\mathcal{Y}, \mathcal{X})$. Theorems 2.12, 2.13 and 2.14 have natural analogues for the operator $\triangle_{T_1T_2}$.

Recall from [13, Page 50] that a pair $\langle \mathcal{X}, \tilde{\mathcal{X}} \rangle$ of Banach spaces is a *dual* pairing if either $\tilde{\mathcal{X}} = \mathcal{X}^*$ or $\mathcal{X} = \tilde{\mathcal{X}}^*$. Let $x \otimes y', x \in \mathcal{X}$ and $y' \in \mathcal{Y}^*$, denote the rank one operator $\mathcal{Y} \to \mathcal{X}, y \to \langle y, y' \rangle x$. An operator ideal J between Banach spaces \mathcal{Y} and \mathcal{X} is a linear subspace of $B(\mathcal{Y}, \mathcal{X})$ equipped with a Banach norm α such that

(i) $x \otimes y' \in J$ and $\alpha(x \otimes y') = ||x||||y||$;

(ii) $\triangle_{ST}(A) = L_S R_T(A) = SAT$ and $\alpha(SAT) \le ||S||\alpha(A)||T||$

for all $x \in \mathcal{X}, y' \in \mathcal{Y}^*, A \in J, S \in B(\mathcal{X})$ and $T \in B(\mathcal{Y})$ [13, Page 51]. Thus defined, each J is a tensor product relative to the dual pairings $\langle \mathcal{X}, \mathcal{X}^* \rangle$ and $\langle \mathcal{Y}^*, \mathcal{Y} \rangle$ and the bilinear mappings

$$\begin{aligned} \mathcal{X} \times \mathcal{Y}^* &\to J, \ (x, y') \to x \otimes y', \\ B(\mathcal{X}) \times B(\mathcal{Y}^*) \to B(J), \ (S, T^*) \to S \otimes T^*, \end{aligned}$$

where $S \otimes T^*(A) = SAT$. The following theorem is now evident from Theorems 2.12, 2.13 and 2.14.

Theorem 2.15. Let $S_1, T_1 \in B(\mathcal{X})$ and $S_2, T_2 \in B(\mathcal{Y})$.

(i) If S_1 is a left m_1 -inverse (resp., essential left m_1 -inverse) of T_1 and S_2 is a right m_2 -inverse (resp., essential right m_2 -inverse) of T_2 , then $\Delta_{S_1S_2}$ is a left $(m_1 + m_2 - 1)$ -inverse (resp., essential left $(m_1 + m_2 - 1)$ -inverse) of $\Delta_{T_1T_2}$.

(ii) If S_1 is a strict left m-inverse (resp., strict essential left m-inverse) of T_1 , then $\triangle_{S_1S_2}$ is a left s-inverse (resp., an essential left s-inverse) of $\triangle_{T_1T_2}$ if and only if S_2 is a right (s - m + 1)-inverse (resp., an essential right (s - m + 1)-inverse) of T_2 .

(iii) If S_1 is a strict left m-inverse (resp., strict essential left m-inverse) of T_1 and $\triangle_{S_1S_2}$ is a left s-inverse (resp., an essential left s-inverse) of $\triangle_{T_1T_2}$, then S_2 is a strict right (s - m + 1)-inverse (resp., strict essential right (s-m+1)-inverse) of T_2 if and only if $\triangle_{S_1S_2}$ is a strict left s-inverse (resp., a strict essential left s-inverse) of $\triangle_{T_1T_2}$.

A limited version of Theorem 2.15 has been considered by Sid Ahmed [4, Theorems 3.1 and 3.2], and versions of the theorem for *m*-isometric operators on the ideal $C_2(\mathcal{H})$ of Hilbert-Schmidt class operators have been considered in [6, 8, 9, 10, 11].

References

- J. Agler, M. Stankus, n-isometric transformations of Hilbert space I, Integral Equat. Oper. Th. 21(4)(1995) 383-429.
- J. Agler, M. Stankus, n-isometric transformations of Hilbert space II, Integral Equat. Oper. Th. 23(1)(1995) 1–48.
- [3] J. Agler, M. Stankus, n-isometric transformations of Hilbert space III, Integral Equat. Oper. Th. 24(4)(1996), 379–421.
- [4] Ould Ahmed Mahmoud Sid Ahmed, Some properties of m-isometries and minvertible operators on Banach spaces, Acta Math. Scientia 32(B)(2)(2012), 520– 530.
- [5] Frédéric Bayart, *m-isometries on Banach spaces*, Math. Nachr. 284(2011), 2141– 2147. (DOI 10.1002/mana.200910029)
- [6] T. Bermudez, A. Martinón and J. A. Noda, Products of m-isometrise, Linear Alg. Appl. 438(2012), 80–86. (DOI:org/10.1016/laa.2012.07.011)
- [7] T. Bermudez, A. Martinón and J. A. Noda, *Powers of m-isometries*, Studia Math. 208(3)(2012), 249–255.
- [8] F. Botelho, J. Jamison, Isometric properties of elementary operators, Linear Alg. Appl. 432(1)(2010) 357–365.
- [9] F. Botelho, J. Jamison, B. Zheng, *Strict isometries of arbitrary order*, Linear Alg. Appl. 436(2012), 3303–3314. (DOI.org/10.1016/j.laa.2011.11.022)
- B. P. Duggal, Tensor product of n-isometries, Linear Alg. Appl. 437(2012), 307–318.
 (DOI:10.1016/j.laa.2012.02.017)
- [11] B. P. Duggal, Tensor product of n-isometries II, Functional Analysis, Approximation and Computation 4:1(2012), 27–32.
- [12] B. P. Duggal, Tensor product of n-isometries III, Functional Analysis, Approximation and Computation 4:2(2012), 61–67.
- [13] J. Eschmeier, Tensor products and elementary operators, J. reine angew. Math. 390(1988), 47–66.
- [14] P. Hoffman, M. Mackey and M. Ó Searcóid, On the second parameter of an (m, p)isometry, Integr. Equ. Oper. Theory 71(2011), 389–405.
- [15] V. Müller, Spectral Theory of Linear Operators, Operator Theory Advances and Applications, Volume 139, Birkhäuser Verlag(2003).
- [16] D. Przeworska-Rolewicz, Algebraic theory of right invertible operators, Studia Math. 48(1973), 129–144.
- [17] D. Przeworska-Rolewicz, Algebraic Analysis, Warszawa-Dordrecht– Polish Scientific Publishers and D. Reidel Publishers (1988).

8 Redwood Grove, Northfield Avenue, London W
5 4SZ, England, U.K.E-mail address: bpduggal@yahoo.co.uk

Institute of Mathematics AV ČR, Zitna 25, 11567 Prague 1, Czech Republic

E-mail address: muller@math.cas.cz