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TENSOR PRODUCT OF LEFT n-INVERTIBLE
OPERATORS

B.P. DUGGAL AND VLADIMIR MÜLLER

Abstract. A Banach space operator T ∈ B(X ) has a left m-inverse
(resp., an essential left m-inverse) for some integer m ≥ 1 if there ex-
ists an operator S ∈ B(X ) (resp., an operator S ∈ B(X ) and a com-
pact operator K ∈ B(X )) such that

∑m
i=0 (−1)i( m

i )Sm−iTm−i = 0
(resp.,

∑m
i=0 (−1)i( m

i )Tm−iSm−i = K). If Ti is left mi-invertible (resp.,
essentially left mi-invertible), then the tensor product T1 ⊗ T2 is left
(m1 +m2−1)-invertible (resp., essentially left (m1 +m2−1)-invertible).
Furthermore, if T1 is strictly left m-invertible (resp., strictly essentially
left m-invertible), then T1 ⊗ T2 is: (i) left (m + n− 1)-invertible (resp.,
essentially left (m+n−1)-invertible) if and only if T2 is left n-invertible
(resp., essentially left n-invertible); (ii) strictly left (m+n−1)-invertible
(resp., strictly essentially left (m+n− 1)-invertible), if and only if T2 is
strictly left n-invertible (resp., strictly essentially left n-invertible).

1. Introduction

Let B(X ) denote the algebra of bounded linear transformations, equiv-

alently operators, on a Banach space X into itself. An operator T ∈ B(X )

is left (resp., right) m-invertible, for some integer m ≥ 1, by S ∈ B(X ) if
m∑
i=0

(−1)i( m
i )Sm−iTm−i = 0 (resp.

m∑
i=0

(−1)i( m
i )Tm−iSm−i = 0).

It is elementary to see that S is a left m-inverse of T if and only if (the

adjoint operator) S∗ is a right m-inverse of T ∗. We say that T ∈ B(X ) is

m-invertible if it has both a left m-inverse and a right m-inverse. Evidently,

every left inverse (i.e., left 1-inverse) of T is a left m-inverse of T and ev-

ery right inverse of T is a right m-inverse of T for every integer m ≥ 1.

Indeed, if T is left n-invertible for some positive integer n, then it is left

m-invertible for every integer m ≥ n. If T is left (right) m-invertible then

it is left (resp., right) invertible, but a left (right) m-inverse of T is not

necessarily a left (resp., right) inverse of T . Observe also that if T is left

m-invertible by L and right n-invertible by R (for some integers m,n ≥ 1),
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then T is invertible by the operator
∑m−1

i=0 (−1)m+1+i( m
i )Lm−1−iTm−1−i =∑n−1

i=0 (−1)n+1+i( n
i )T n−1−iRn−1−i. The study of m-left and m-right invert-

ible operators has its roots in the work of Przeworska-Rolewicz [16, 17], and

has since been carried out by a number of authors, amongst them [4]. An

interesting example of a left m-invertible Hilbert space operator is that of

an m-isometric operator T for which
∑m

i=0 (−1)i( m
i )T ∗m−iTm−i = 0, where

T ∗ denotes the Hilbert space adjoint of T . A study of m-isometric operators

has been carried out by Agler and Stankus in a series of papers [1, 2, 3];

more recently a generalisation of these operators to Banach spaces has been

carried by Bayart [5], Bermudez et al [6, 7] and Hoffman et al [14].

Let K(X ) denote the two sided ideal of compact operators in B(X ),

and let m ≥ 1 be an integer. We say in the following that T ∈ B(X ) is:

essentially left m-invertible (resp., essentially right m-invertible) by S ∈
B(X ) if there exists an operator K1 ∈ K(X ) (resp., K2 ∈ K(X )) such that∑m

i=0 (−1)i( m
i )Sm−iTm−i = K1 (resp.,

∑m
i=0 (−1)i( m

i )Tm−iSm−i = K2). T

is essentially m-invertible if it is both essentially left and right m-invertible.

Recall from Müller [15, Page 154] that an essentially left invertible (i.e.,

essentially left 1-invertible) operator T is upper semi-Fredholm with the

range T (X ) complemented and an essentially right invertible operator is

lower semi-Fredholm with T−1(0) complemented. Trivially: If T is essentially

left (resp., right) m-invertible by S then so is T +K for every compact K,

an essentially left (rep., right) m-invertible operator is essentially left (resp.,

right) invertible, and every essentially left (rep., right) invertible operator

is essentially left (rep., right) m-invertible (indeed, if S is an essential left

(right) m-inverse of T then S is an essential n-inverse left (right) of T for

all integers n ≥ m). Observe however that S is an essential left (right)

m-inverse of T does not imply S is an essential left (right) inverse of T .

Call an operator S a strict left m-inverse (resp., a strict essential left m-

inverse) of T if S is a left m-inverse(resp., essential left m-inverse) of T but

S is not a left n-inverse (resp., essential left n-inverse) of T for all integers

n < m. Define strict right m-inverses and strict essential right m-inverses

similarly. In the following, we consider operators T1 and T2 such that T1 is

left (resp., right) m-invertible and T2 is left (resp., right) n-invertible, and

prove that their tensor product T1 ⊗ T2 is left (resp., right) (m + n − 1)-

invertible. Furthermore, if T1 is strictly left (similarly, right) m-invertible,

then T1 ⊗ T2 is: (i) left (resp., right) (m + n − 1)-invertible if and only
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if T2 is left (resp., right) n-invertible; (ii) strictly left (resp., right) (m +

n − 1)-invertible, if and only if T2 is strictly left (resp., right) n-invertible.

These results have an essentially left (resp., right) t-invertible counterpart:

If T1 is essentially left (resp., right) m-invertible and T2 is essential left

(resp., essential right) n-invertible, then T1 ⊗ T2 is essentially left (resp.,

right) (m + n − 1)-invertible. Furthermore, if T1 is strictly essentially left

(similarly, right) m-invertible, then T1 ⊗ T2 is: (i) essentially left (resp.,

right) (m+n− 1)-invertible if and only if T2 is essentially left (resp., right)

n-invertible; (ii) strictly essentially left (resp., right) (m+ n− 1)-invertible,

if and only if T2 is strictly essentially left (resp., right) n-invertible. This

generalizes some results of Botelho et. al. [8, 9], Martinez et al [6, 7] and

those of one of the authors on the tensor product of m-isometric operators

[10, 11, 12]. We remark that these results have a natural interpretation for

the left-right multiplication operator 4ST : J → J , 4ST (A) = SAT , where

J ⊂ B(Y ,X ) is an operator ideal.

2. Results

Given two complex infinite dimensional Banach spaces X and Y , let

X⊗Y denote the completion, endowed with a reasonable uniform cross-

norm, of the algebraic tensor product X ⊗Y of X and Y ; let, for A ∈ B(X )

and B ∈ B(Y), A ⊗ B ∈ B(X⊗Y) denote the tensor product operator

defined by A and B. Evidently, an operator T ∈ B(X ) is left m-invertible

by S ∈ B(X ) if and only if T ⊗ I ∈ B(X⊗Y) is left m-invertible by S⊗ I ∈
B(X⊗Y). Furthermore, T is strictly left m-invertible by S if and only if

T ⊗ I is strictly left m-invertible by S ⊗ I. Observe also that T1 ⊗ T2 =

(T1⊗I)(I⊗T2) = (I⊗T2)(T1⊗I). (Here, and in the sequel, we shall make a

slight misuse of notation and use I to denote the identity operator on both

X and Y .) Hence, given T1 left m-invertible by S1 and T2 left n-invertible by

S2, in considering the left t-invertibility of T1⊗T2 by S1⊗S2 we may assume

without loss of generality that the positive integer m is less then or equal

to the positive integer n. We state our theorems below for left invertibility;

their analogues for right invertibility follow from a similar argument.

Theorem 2.1. The tensor product of a left m-invertible operator with a left

n-invertible operator is a left (m+ n− 1)-invertible operator.

A proof of the theorem may be obtained using a combinatorial argument

similar to that in the papers [10, 11], or by using an argument similar to

the one used to prove [12, Corollary 2.2] (see also [6]). However, we follow

here an argument using double sequences satisfying certain properties. At
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the heart of this argument lies the following simple lemma, which along

with leading to a proof of the theorem has a number of other interesting

consequences. Let Pd denote the set of all complex polynomials of degree

≤ d.

Lemma 2.2. Let m ∈ N, and let (aj)
∞
j=0 be a sequence of complex numbers.

Then the following statements are equivalent:

(i)
∑m

i=0 (−1)i
(
m
i

)
ak+i = 0 for every integer k ≥ 0;

(ii) there exists a polynomial p ∈ Pm−1 such that ai = p(i) for every

i ≥ 0.

Proof. (ii) =⇒ (i): We prove the statement by induction on m. For m = 1,

p is a constant and the statement is clear.

Suppose that m ≥ 2 and the statement is true for m− 1. Let deg p < m.

Define q by q(t) = p(t+ 1)− p(t). Then q is a polynomial of degree deg q =

deg p− 1 < m− 1. We have

m∑
i=0

(−1)i
(
m

i

)
p(k + i) =

m∑
i=0

(−1)i

((
m− 1

i

)
+

(
m− 1

i− 1

))
p(k + i)

=
m−1∑
i=0

(−1)i
(
m− 1

i

)
p(k + i) +

m−1∑
i=0

(−1)i+1

(
m− 1

i

)
p(k + i+ 1)

=
m−1∑
i=0

(−1)i
(
m− 1

i

)(
p(k + i)− p(k + i+ 1)

)
= −

m−1∑
i=0

(−1)i
(
m− 1

i

)
q(k + i) = 0

by the induction assumption.

(i) =⇒ (ii): Let V be the vector space of all sequences (ai) satisfying

(i). Since each sequence in V is uniquely determined by its members ai,

0 ≤ i ≤ m− 1, dimV ≤ m. Let V0 = {(p(i)) : p ∈ Pm−1}. Since V0 ⊂ V and

dimV0 = m, we have V0 = V . �

Remark 2.3. The argument of the proof of (ii) ⇒ (i) of the proof of

Lemma 2.2 works just as well with p(n+ j) replaced by p(n+ rj) for every

r ∈ N. Indeed, let p ∈ Pm−1, r ∈ N and k ≥ 0. Then i 7→ p(k+ ri) is again

a polynomial of degree ≤ m− 1, so we have
∑m

i=0(−1)i
(
m
i

)
p(k+ ri) = 0. In

particular, if 0 ≤ c ≤ m− 1, r ∈ N and k ≥ 0, then
∑m

i=0

(
m
i

)
(k + ri)c = 0.

Lemma 2.2 leads to the following characterization of left m-invertibility.

Let X ∗ denote space dual to X .
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Theorem 2.4. Let S, T ∈ B(X ), m ∈ N. The following statements are

equivalent:

(i) S is a left m-inverse of T ;

(ii) for all x ∈ X , x∗ ∈ X ∗ and k ≥ 0,
m∑
i=0

(−1)i
(
m

i

)
〈Si+kT i+kx, x∗〉 = 0;

(iii) for all x ∈ X and x∗ ∈ X∗ there exists a polynomial p ∈ Pm−1 such

that

〈SiT ix, x∗〉 = p(i) (i ≥ 0).

Proof. (ii)⇒(i): For all x ∈ X and x∗ ∈ X∗ we have
m∑
i=0

(−1)i
(
m

i

)
〈SiT ix, x∗〉 = 0.

So
∑m

i=0(−1)i
(
m
i

)
SiT i = 0.

(i)⇒(ii): Let x ∈ X, x∗ ∈ X∗ and k ≥ 0. We have
m∑
i=0

(−1)i
(
m

i

)
〈Si+kT i+kx, x∗〉 =

〈 m∑
i=0

(−1)i
(
m

i

)
SiT i(T kx), S∗kx∗

〉
= 0.

(ii)⇔(iii) Let x ∈ X and x∗ ∈ X∗. Write ai = 〈SiT ix, x∗〉 (i ≥ 0). The

equivalence (ii)⇔(iii) then follows from the previous lemma. �

The following two corollaries of Lemma 2.2 all but prove Theorem 2.1.

Corollary 2.5. If (ai,j)
∞
i,j=0 is a double sequence of complex numbers satis-

fying
m∑
i=0

(−1)i( m
i )ak+i,` = 0(1)

and
n∑

j=0

(−1)j( n
j )ak,`+j = 0,(2)

then
m+n−1∑
s=0

(−1)s( m+n−1
s )as,s = 0.(3)

Proof. Each double sequence (ai,j) being uniquely determined by its terms

ai,j, 0 ≤ i ≤ m−1 and 0 ≤ j ≤ n−1, if we let V denote the vector space of

all double sequences (ai,j) satisfying (1) and (2) above, then dimV ≤ mn.
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For 0 ≤ c ≤ m− 1 and 0 ≤ d ≤ n− 1, define the double sequence (b(c,d)) by

b
(c,d)
i,j = icjd. Then

m∑
i=0

(−1)i( m
i )b

(c,d)
k+i,` = `d

m∑
i=0

(−1)i( m
i )(k + i)c = 0

for all non-negative integers k, `. Thus (b(c,d)) satisfies (1), similarly (2).

Consequently, (b(c,d)) ∈ V . Since these double sequences are linearly inde-

pendent, and hence form a basis of V , to prove the corollary it would now

suffice to prove that b(c,d) satisfy (3). But this follows from the fact that

b
(c,d)
s,s = sc+d, 0 ≤ c+ d ≤ m+ n− 2, and

m+n−1∑
s=0

(−1)s( m+n−1
s )b(c,d)s,s =

m+n−1∑
s=0

(−1)s( m+n−1
s )sc+d = 0.

�

For a pair of operators A,B ∈ B(X ), let [A,B] = AB −BA.

Corollary 2.6. If A1 ∈ B(X ) is left m-invertible by B1 ∈ B(X ), A2 ∈
B(X ) is left n-invertible by B2 ∈ B(X ) and [A1, A2] = 0 = [B1, B2], then

A1A2 is left (m+ n− 1)-invertible by B1B2.

Proof. Fix x ∈ X and x∗ ∈ X ∗, and let ai,j = 〈Bi
1B

j
2A

i
1A

j
2x, x

∗〉. Then, for

all non-negative integers k and `, the left m-invertibility of A1 by B1 implies

that
m∑
i=0

(−1)i( m
i )ak+i,` =

m∑
i=0

(−1)i( m
i )〈Bi

1A
i
1(A

k
1A

`
2x), (B∗2

`B∗1
kx∗)〉 = 0,

i.e., (ai,j) satisfies (1). Similarly, (ai,j) satisfies (2), and hence also (3). Since

as,s = 〈(B1B2)
s(A1A2)

sx, x∗〉,
m+n−1∑
s=0

(−1)s( m+n−1
s )〈(B1B2)

s(A1A2)
sx, x∗〉 = 0.

Our choice of vectors x and x∗ having been arbitrary, we must have

m+n−1∑
s=0

(−1)s( m+n−1
s )(B1B2)

s(A1A2)
s = 0.

�

Proof of Theorem 2.1. If we set A1 = (T1 ⊗ I) and A2 = (I ⊗ T2),

then T1 ∈ B(X ) is left m-invertible by S1 ∈ B(X ), T2 ∈ B(Y) is left

n-invertible by S2 ∈ B(Y) and T1 ⊗ T2 is left (m + n − 1)-invertible by

S1 ⊗ S2 if and only if A1 is left m-invertible by B1 = (S1 ⊗ I), A2 is left

n-invertible by B2 = (I ⊗ S2) and A1A2 is left (m + n − 1)-invertible by
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B1B2. Since [A1, A2] = 0 = [B1, B2], the proof follows from Corollary 2.6.

�

Remark 2.7. Suppose that T ∈ B(X ) is left m-invertible by S ∈ B(X ).

Fix x ∈ X and x∗ ∈ X ∗, and let an = 〈SnT nx, x∗〉. Then it follows from

Remark 2.3 that
∑m

i=0 (−1)i( m
i )ak+ri = 0 for all r ∈ N and integers k ≥ 0.

In particular,
m∑
i=0

(−1)i( m
i )SriT ri = 0,

i.e., T r is left m-invertible by Sr for all r ∈ N.

(m, p)-isometries – A Remark. Recall that a Banach space operator

T ∈ B(X ) is an (m, p)-isometry for some integer m ≥ 1 and p ∈ (0,∞) if
m∑
i=0

(−1)i( m
i )||T ix||p = 0, x ∈ X .

Let T, S be commuting operators in B(X ) such that T is an (m, p)-isometry

and S is an (n, p)-isometry. Define the double sequence (ai,j) by ai,j =

||T iSjx||p, x ∈ X . Then
m∑
i=0

(−1)i( m
i )ak+i,j = 0 =

n∑
j=0

(−1)j( n
j )ai,`+j

for integers k, ` ≥ 0. Applying Corollary 2.5 we conclude that
m+n−1∑
s=0

(−1)s( m+n−1
s )||(TS)sx||p = 0

for all x ∈ X . We have proved:

Corollary 2.8. [6, Theorem 3.3] If T, S ∈ B(X ) are commuting operators

such that T is an (m, p)-isometry and S is an (n, p)-isometry, then TS is

an (m+ n− 1, p)-isometry.

For an x ∈ X and an operator T ∈ B(X ), define the sequence (an)

by an = ||T nx||p. If T is an (m, p)-isometry, then Remark 2.3 implies that∑m
i=0 (−1)i( m

i )ak+ri = 0 for all r ∈ N and integers k ≥ 0. In particular:

Corollary 2.9. [7, Theorem 3.1] If T ∈ B(X ) is an (m, p)-isometry, then

is so T r for each r ∈ N.

Strict left invertibility If T ∈ B(X ) is left m-invertible and S ∈ B(X )

is a strict left m-inverse of T , then
∑m

i=0 (−1)i( m
i )Sm−iTm−i = 0 and∑p

i=0 (−1)i( m
i )Sp−iT p−i 6= 0 for all p < m. The argument of the proof of [9,
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Theorem 3.1] shows that if S ∈ B(X ) is a strict left m-inverse of T ∈ B(X ),

then the set {I, ST, S2T 2, · · · , Sm−1Tm−1} is linearly independent. More

generally:

Theorem 2.10. Let S, T ∈ B(X ), m ∈ N, let S be a left m-inverse of T .

The following statements are equivalent:

(i) S is a strict left m-inverse of T ;

(ii) the operators I, ST, S2T 2, . . . , Sm−1Tm−1 are linearly independent;

(iii) there exists x ∈ X such that the vectors x, STx, . . . , Sm−1Tm−1x are

linearly independent;

(iv) for every polynomial p ∈ Pm−1 there exist x ∈ X and x∗ ∈ X ∗ such
that

〈SiT ix, x∗〉 = p(i) (i ≥ 0);

(v) there exist x ∈ X and x∗ ∈ X ∗ such that 〈SiT ix, x∗〉 = im−1 (i ≥ 0).

Proof. (iii)⇒(ii) is clear.

(ii)⇒(i): Suppose that S is not a strict left m-inverse of T . By definition,

the operators I, ST, . . . , Sm−1Tm−1 are linearly dependant.

(i)⇒(iii): Suppose that for each x ∈ X the vectors x, STx, . . . , Sm−1Tm−1x

are linearly dependant, i.e., there exists a nontrivial linear combination∑m−1
i=0 αiS

iT ix = 0.

Since also
∑m

i=0(−1)i
(
m
i

)
SiT ix = 0, as in [9] we can get that

∑m−1
i=0 (−1)i

(
m−1
i

)
SiT ix =

0. So
m−1∑
i=0

(−1)i
(
m− 1

i

)
SiT i = 0,

a contradiction.

(iii)⇒(iv): Let x ∈ X and suppose that the vectors x, STx, . . . , Sm−1Tm−1x

are linearly independent. Let p ∈ Pm−1. Then there exists x∗ ∈ X ∗ such that

〈SiT ix, x∗〉 = p(i) (0 ≤ i ≤ m− 1).

By Theorem 2.4 this implies that 〈SiT ix, x∗〉 = p(i) for all i ≥ 0.

(iv)⇒(v) is clear.

(v)⇒(iv): If x ∈ X and x∗ ∈ X∗ satisfy 〈SiT ix, x∗〉 = im−1 for all i ≥ 0,

then (by Theorem 2.4) S is not a left (m-1)-inverse of T , so S is a strict left

m-inverse of T . �

The converse of Theorem 2.1, namely that if S1 ∈ B(X ) is a left t-inverse

of T1 ∈ B(X ) and T1 ⊗ T2 is left s-invertible by S1 ⊗ S2 (for some T2, S2 ∈
B(Y)) then T2 is left (s− t+ 1)-invertible by S2, is not as straight forward.

Recall that every left n1-inverse S ∈ B(X ) of an operator T ∈ B(X ) is a
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left n-inverse of T for every integer n ≥ n1. Hence, if S1 is a left t-inverse of

T1, then there is a least positive integer m ≤ t such that S1 is a strict left

m-inverse of T1 (and then {I, S1T1, · · · , Sm−1
1 Tm−1

1 } is an independent set).

Theorem 2.11. Let S1, T1 ∈ B(X ), S2, T2 ∈ B(Y), m,n ∈ N. Suppose

that S1 is a strict left m-inverse of T1 and S2 is a strict left n-inverse of T2.

Then S1 ⊗ S2 is a strict left (m+ n− 1)-inverse of T1 ⊗ T2.

Proof. By Theorem 2.1, S1 ⊗ S2 is a left (m+ n− 1)-inverse of T1 ⊗ T2.
By Theorem 2.10, there exist x ∈ X , x∗ ∈ X ∗, y ∈ Y and y∗ ∈ Y∗ such

that

〈Si
1T

i
1x, x

∗〉 = im−1 (i ≥ 0)

and

〈Si
2T

i
2y, y

∗〉 = in−1 (i ≥ 0).

So

〈(S1 ⊗ S2)
i(T1 ⊗ T2)i(x⊗ y), x∗ ⊗ y∗〉 = 〈Si

1T
i
1x, x

∗〉 · 〈Si
2T

i
2y, y

∗〉 = im+n−2

for all integers i ≥ 0. This, again by Theorem 2.10, implies that S1 ⊗ S2 is

a strict left (m+ n− 1)-inverse of T1 ⊗ T2. �

Theorem 2.12. Let S1, T1 ∈ B(X ) and S2, T2 ∈ B(Y). If S1 is a strict left

m inverse of T1, then S1⊗ S2 is a left s-inverse of T1⊗ T2 if and only if S2

is a left (s−m+ 1)-inverse of T2.

Proof. If S2 is a left (s−m+ 1)-inverse of T2 then S1⊗S2 is a left s-inverse

of T1 ⊗ T2 by Theorem 2.1.

Suppose that S1⊗S2 is a left s-inverse of T1⊗T2. Let y ∈ Y and y∗ ∈ Y ∗.
Write f(i) = 〈Si

2T
i
2y, y

∗〉 (i ≥ 0).

By Theorem 2.10, for each p ∈ Pm−1 there exist x ∈ X and x∗ ∈ X ∗

such that 〈Si
1T

i
1x, x

∗〉 = p(i) for all i ≥ 0. So

p(i)f(i) = 〈Si
1T

i
1x, x

∗〉 · 〈Si
2T

i
2y, y

∗〉 = 〈(S1 ⊗ S2)
i(T1 ⊗ T2)i(x⊗ y), x∗ ⊗ y∗〉.

Hence i 7→ p(i)f(i) is a polynomial of degree ≤ s− 1. For p ≡ 1 this means

that f is a polynomial of degree ≤ s− 1. For p ≡ im−1 we get f ∈ Ps−m.

Since y ∈ Y and y∗ ∈ Y ∗ were arbitrary, Theorem 2.4 implies that S2 is

a left (s−m+ 1)-inverse of T2. �

Example. If m ≥ 2 and S is a strict left m-inverse of T , then S2 is a left

2-inverse of T 2. Thus S2 is not a strict left 3-inverse of T 2. Observe here

that S and T do not commute.
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Theorem 2.11, also Theorem 2.12, is not true if we assume only that

S1, S2, T1, T2 are commuting operators (such that S1S2 is a left s-inverse of

T1T2). Let X be the `1-space with the standard basis ei,j (i, j ∈ N). Let

the operators T1, T2, S1, S2 ∈ B(X) be defined by

T1ei,j =
i+ j + 1

i+ j
ei+1,j,

T2ei,j =
i+ j + 1

i+ j
ei,j+1,

S1ei,j = ei−1,j if i ≥ 2, S1e1,j = 0,

S2ei,j = ei,j−1 if j ≥ 2, S2ei,1 = 0.

Clearly S1, S2, T1, T2 are mutually commuting operators. We have S1T1ei,j =
i+j+1
i+1

ei,j and S2
1T

2
1 ei,j = i+j+2

i+1
ei,j. So (I − 2S1T1 + S2

1T
2
1 )ei,j = 0 for all

i, j ∈ N and so S1 is a (obviously strict) left 2-inverse of T1. Similarly, S2 is

a strict left 2-inverse of T2.

It is easy to verify that S1S2 is a left 2-inverse of T1T2, so it is not a strict

left 3-inverse.

Evidently, S2 may not be a strict left (s−m+1)-inverse of T2 in Theorem

2.12. For S2 to be a strict left (s−m+ 1)-inverse one requires S1⊗S2 to be

strict left s-inverse of T1⊗T2. The following theorem complements Theorem

2.11.

Theorem 2.13. Let S1, T1 ∈ B(X ) and S2, T2 ∈ B(Y). Suppose that S1 is

a strict left m inverse of T1 and S1⊗S2 is a left s-inverse of T1⊗ T2. Then
S2 is a strict left (s−m+ 1)-inverse of T2 if and only if S1 ⊗ S2 is a strict

left s-inverse of T1 ⊗ T2.

Proof. It is clear from the above that if S1⊗S2 is a left s-inverse of T1⊗T2,
then S2 is a left (s − m + 1)-inverse of T2. To prove that S2 is a strict

(s −m + 1)-inverse of T2 if and only if S1 ⊗ S2 is a strict left s-inverse of

T1 ⊗ T2, suppose (to start with) that S1 ⊗ S2 is a strict left s-inverse of

T1⊗T2 but S2 is not a strict left (s−m+1)-inverse of T2. Then there exists

an integer k, 1 ≤ k < s−m + 1, such that S2 is a left k-inverse of T2, and

hence S1 ⊗ S2 is a left (m + k − 1)-inverse of T1 ⊗ T2 (see Theorem 2.1).

Since m+ k − 1 < s, we have a contradiction. If, instead, S2 is a strict left

(s −m + 1)-inverse of T2, then S1 ⊗ S2 is a strict left s-inverse of T1 ⊗ T2
(by Theorem 2.11). �
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Essentially left m-invertible operators We prove next the analogues

of Theorem 2.12 and 2.13 for the tensor product of essentially left m-

invertible operators. To this end we start by introducing a construction,

known in the literature as the Sadovskii/Buoni, Harte, Wickstead construc-

tion [15, Page 159], which leads to a representation of the Calkin algebra as

an algebra of operators on a suitable Banach space. Let `∞(X ) denote the

Banach space of all bounded sequences x = (xn)∞n=1 of elements of X en-

dowed with the norm ||x||∞ := supn∈N ||xn||, and write T∞, T∞x := (Txn)∞n=1

for all x = (xn)∞n=1, for the operator induced by T on `∞(X ). The set m(X )

of all precompact sequences of elements of X is a closed subspace of `∞(X )

which is invariant for T∞. Let Xq := `∞(X )/m(X ), and denote by Tq the

operator T∞ on Xq. The mapping T 7→ Tq is then a unital homomorphism

from B(X ) → B(Xq), with kernel the ideal K(X ) of compact operators on

X , which induces a norm decreasing monomorphism from B(X )/K(X ) to

B(Xq) with the following properties (see [15, Section 17] for details):

(i) T is upper semi-Fredholm if and only if Tq is injective, if and only if

Tq is bounded below;

(ii) Tq = 0 if and only if T is compact.

Furthermore, this is easily verified,

(iii) (S ⊗ T )q = Sq ⊗ Tq for every S ∈ B(X ) and T ∈ B(Y).

As above, let S1, T1 ∈ B(X ) and S2, T2 ∈ B(Y). If S1 is an essential left

m-inverse of T1, equivalently if
∑m

i=0 (−1)i( m
i )S1

m−iT1
m−i = K for some

K ∈ K(X ), then
∑m

i=0 (−1)i( m
i )(S1)

m−i
q (T1)

m−i
q = 0, i.e., (S1)q ∈ B(Xq) is

a left m-inverse of (T1)q ∈ B(Xq). The converse holds, and we have that

“(S1)q ∈ B(Xq) is a left m-inverse of (T1)q ∈ B(Xq) if and only if S1 is an

essential left m-inverse of T1”. Again, S1 ⊗ S2 is an essential left s-inverse

of T1 ⊗ T2 if and only if (S1)q ⊗ (S2)q is a left s-inverse of (T1)q ⊗ (T2)q.

Observing that the property of being “strict” transfers from an operator T

to Tq (and back), we have:

Theorem 2.14. Let S1, T1 ∈ B(X ) and S2, T2 ∈ B(Y).

(i) If Si, i = 1, 2, is an essential left mi-inverse of Ti, then S1 ⊗ S2 is an

essential left (m1 +m2 − 1)-inverse of T1 ⊗ T2.

(ii) If S1 is a strict essential left m-inverse of T1, then S1⊗S2 is an essential

left s-inverse of T1 ⊗ T2 if and only if S2 is an essential left (s −m + 1)-

inverse of T2.
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(iii) If S1 is a strict essential left m-inverse of T1 and S1⊗S2 is an essential

left s-inverse of T1⊗T2, then S2 is a strict essential left (s−m+ 1)-inverse

of T2 if and only if S1 ⊗ S2 is a strict essential left s-inverse of T1 ⊗ T2.

Elementary Operator 4T1T2 = LT1RT2 Given T1 ∈ B(X ) and T2 ∈
B(Y), the elementary operator 4T1T2 ∈ B(Y ,X ) is defined by 4T1T2(A) =

T1AT2 for all A ∈ B(Y ,X ). Theorems 2.12, 2.13 and 2.14 have natural

analogues for the operator 4T1T2 .

Recall from [13, Page 50] that a pair 〈X , X̃ 〉 of Banach spaces is a dual

pairing if either X̃ = X ∗ or X = X̃ ∗. Let x⊗ y′, x ∈ X and y′ ∈ Y∗, denote

the rank one operator Y → X , y → 〈y, y′〉x. An operator ideal J between

Banach spaces Y and X is a linear subspace of B(Y ,X ) equipped with a

Banach norm α such that

(i) x⊗ y′ ∈ J and α(x⊗ y′) = ||x||||y||;
(ii) 4ST (A) = LSRT (A) = SAT and α(SAT ) ≤ ||S||α(A)||T ||
for all x ∈ X , y′ ∈ Y∗, A ∈ J , S ∈ B(X ) and T ∈ B(Y) [13, Page 51]. Thus

defined, each J is a tensor product relative to the dual pairings 〈X ,X ∗〉 and

〈Y∗,Y〉 and the bilinear mappings

X × Y∗ → J, (x, y′)→ x⊗ y′,

B(X )×B(Y∗)→ B(J), (S, T ∗)→ S ⊗ T ∗,

where S ⊗ T ∗(A) = SAT . The following theorem is now evident from The-

orems 2.12, 2.13 and 2.14.

Theorem 2.15. Let S1, T1 ∈ B(X ) and S2, T2 ∈ B(Y).

(i) If S1 is a left m1-inverse (resp., essential left m1-inverse) of T1 and S2

is a right m2-inverse (resp., essential right m2-inverse) of T2, then 4S1S2 is

a left (m1 +m2 − 1)-inverse (resp., essential left (m1 +m2 − 1)-inverse) of

4T1T2.

(ii) If S1 is a strict left m-inverse (resp., strict essential left m-inverse)

of T1, then 4S1S2 is a left s-inverse (resp., an essential left s-inverse) of

4T1T2 if and only if S2 is a right (s − m + 1)-inverse (resp., an essential

right (s−m+ 1)-inverse) of T2.

(iii) If S1 is a strict left m-inverse (resp., strict essential left m-inverse)

of T1 and 4S1S2 is a left s-inverse (resp., an essential left s-inverse) of

4T1T2, then S2 is a strict right (s − m + 1)-inverse (resp., strict essential
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right (s−m+ 1)-inverse) of T2 if and only if 4S1S2 is a strict left s-inverse

(resp., a strict essential left s-inverse) of 4T1T2.

A limited version of Theorem 2.15 has been considered by Sid Ahmed

[4, Theorems 3.1 and 3.2], and versions of the theorem for m-isometric

operators on the ideal C2(H) of Hilbert-Schmidt class operators have been

considered in [6, 8, 9, 10, 11].
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