# INSTITUTE of MATHEMATICS 

## Tensor product of left $n$-invertible operators

B.P. Duggal<br>Vladimír Müller

Preprint No. 16-2013
PRAHA 2013

# TENSOR PRODUCT OF LEFT $n$-INVERTIBLE OPERATORS 

B.P. DUGGAL AND VLADIMIR MÜLLER


#### Abstract

A Banach space operator $T \in B(\mathcal{X})$ has a left $m$-inverse (resp., an essential left $m$-inverse) for some integer $m \geq 1$ if there exists an operator $S \in B(\mathcal{X})$ (resp., an operator $S \in B(\mathcal{X})$ and a compact operator $K \in B(\mathcal{X}))$ such that $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{m-i} T^{m-i}=0$ (resp., $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} T^{m-i} S^{m-i}=K$ ). If $T_{i}$ is left $m_{i}$-invertible (resp., essentially left $m_{i}$-invertible), then the tensor product $T_{1} \otimes T_{2}$ is left ( $m_{1}+m_{2}-1$ )-invertible (resp., essentially left ( $m_{1}+m_{2}-1$ )-invertible). Furthermore, if $T_{1}$ is strictly left $m$-invertible (resp., strictly essentially left $m$-invertible), then $T_{1} \otimes T_{2}$ is: (i) left ( $m+n-1$ )-invertible (resp., essentially left ( $m+n-1$ )-invertible) if and only if $T_{2}$ is left $n$-invertible (resp., essentially left $n$-invertible); (ii) strictly left ( $m+n-1$ )-invertible (resp., strictly essentially left ( $m+n-1$ )-invertible), if and only if $T_{2}$ is strictly left $n$-invertible (resp., strictly essentially left $n$-invertible).


## 1. Introduction

Let $B(\mathcal{X})$ denote the algebra of bounded linear transformations, equivalently operators, on a Banach space $\mathcal{X}$ into itself. An operator $T \in B(\mathcal{X})$ is left (resp., right) $m$-invertible, for some integer $m \geq 1$, by $S \in B(\mathcal{X})$ if

$$
\left.\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{m-i} T^{m-i}=0 \quad \text { (resp. } \quad \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} T^{m-i} S^{m-i}=0\right) .
$$

It is elementary to see that $S$ is a left $m$-inverse of $T$ if and only if (the adjoint operator) $S^{*}$ is a right $m$-inverse of $T^{*}$. We say that $T \in B(\mathcal{X})$ is $m$-invertible if it has both a left $m$-inverse and a right $m$-inverse. Evidently, every left inverse (i.e., left 1-inverse) of $T$ is a left $m$-inverse of $T$ and every right inverse of $T$ is a right $m$-inverse of $T$ for every integer $m \geq 1$. Indeed, if $T$ is left $n$-invertible for some positive integer $n$, then it is left $m$-invertible for every integer $m \geq n$. If $T$ is left (right) $m$-invertible then it is left (resp., right) invertible, but a left (right) $m$-inverse of $T$ is not necessarily a left (resp., right) inverse of $T$. Observe also that if $T$ is left $m$-invertible by $L$ and right $n$-invertible by $R$ (for some integers $m, n \geq 1$ ),

[^0]then $T$ is invertible by the operator $\sum_{i=0}^{m-1}(-1)^{m+1+i}\binom{m}{i} L^{m-1-i} T^{m-1-i}=$ $\sum_{i=0}^{n-1}(-1)^{n+1+i}\binom{n}{i} T^{n-1-i} R^{n-1-i}$. The study of $m$-left and $m$-right invertible operators has its roots in the work of Przeworska-Rolewicz [16, 17], and has since been carried out by a number of authors, amongst them [4]. An interesting example of a left $m$-invertible Hilbert space operator is that of an $m$-isometric operator $T$ for which $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} T^{* m-i} T^{m-i}=0$, where $T^{*}$ denotes the Hilbert space adjoint of $T$. A study of $m$-isometric operators has been carried out by Agler and Stankus in a series of papers [1, 2, 3]; more recently a generalisation of these operators to Banach spaces has been carried by Bayart [5], Bermudez et al [6, 7] and Hoffman et al [14].

Let $\mathcal{K}(\mathcal{X})$ denote the two sided ideal of compact operators in $B(\mathcal{X})$, and let $m \geq 1$ be an integer. We say in the following that $T \in B(\mathcal{X})$ is: essentially left m-invertible (resp., essentially right m-invertible) by $S \in$ $B(\mathcal{X})$ if there exists an operator $K_{1} \in \mathcal{K}(\mathcal{X})$ (resp., $K_{2} \in \mathcal{K}(\mathcal{X})$ ) such that $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{m-i} T^{m-i}=K_{1}$ (resp., $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} T^{m-i} S^{m-i}=K_{2}$ ). $T$ is essentially $m$-invertible if it is both essentially left and right $m$-invertible. Recall from Müller [15, Page 154] that an essentially left invertible (i.e., essentially left 1 -invertible) operator $T$ is upper semi-Fredholm with the range $T(\mathcal{X})$ complemented and an essentially right invertible operator is lower semi-Fredholm with $T^{-1}(0)$ complemented. Trivially: If $T$ is essentially left (resp., right) $m$-invertible by $S$ then so is $T+K$ for every compact $K$, an essentially left (rep., right) $m$-invertible operator is essentially left (resp., right) invertible, and every essentially left (rep., right) invertible operator is essentially left (rep., right) $m$-invertible (indeed, if S is an essential left (right) $m$-inverse of $T$ then $S$ is an essential $n$-inverse left (right) of $T$ for all integers $n \geq m$ ). Observe however that $S$ is an essential left (right) $m$-inverse of $T$ does not imply $S$ is an essential left (right) inverse of $T$.

Call an operator $S$ a strict left $m$-inverse (resp., a strict essential left $m$ inverse) of $T$ if $S$ is a left $m$-inverse(resp., essential left $m$-inverse) of $T$ but $S$ is not a left $n$-inverse (resp., essential left $n$-inverse) of $T$ for all integers $n<m$. Define strict right $m$-inverses and strict essential right $m$-inverses similarly. In the following, we consider operators $T_{1}$ and $T_{2}$ such that $T_{1}$ is left (resp., right) $m$-invertible and $T_{2}$ is left (resp., right) $n$-invertible, and prove that their tensor product $T_{1} \otimes T_{2}$ is left (resp., right) $(m+n-1)$ invertible. Furthermore, if $T_{1}$ is strictly left (similarly, right) $m$-invertible, then $T_{1} \otimes T_{2}$ is: (i) left (resp., right) $(m+n-1)$-invertible if and only
if $T_{2}$ is left (resp., right) $n$-invertible; (ii) strictly left (resp., right) ( $m+$ $n-1$ )-invertible, if and only if $T_{2}$ is strictly left (resp., right) $n$-invertible. These results have an essentially left (resp., right) $t$-invertible counterpart: If $T_{1}$ is essentially left (resp., right) $m$-invertible and $T_{2}$ is essential left (resp., essential right) $n$-invertible, then $T_{1} \otimes T_{2}$ is essentially left (resp., right) ( $m+n-1$ )-invertible. Furthermore, if $T_{1}$ is strictly essentially left (similarly, right) $m$-invertible, then $T_{1} \otimes T_{2}$ is: (i) essentially left (resp., right) $(m+n-1)$-invertible if and only if $T_{2}$ is essentially left (resp., right) $n$-invertible; (ii) strictly essentially left (resp., right) $(m+n-1)$-invertible, if and only if $T_{2}$ is strictly essentially left (resp., right) $n$-invertible. This generalizes some results of Botelho et. al. [8, 9], Martinez et al [6, 7] and those of one of the authors on the tensor product of $m$-isometric operators [10, 11, 12]. We remark that these results have a natural interpretation for the left-right multiplication operator $\triangle_{S T}: J \rightarrow J, \triangle_{S T}(A)=S A T$, where $J \subset B(\mathcal{Y}, \mathcal{X})$ is an operator ideal.

## 2. Results

Given two complex infinite dimensional Banach spaces $\mathcal{X}$ and $\mathcal{Y}$, let $\mathcal{X} \bar{\otimes} \mathcal{Y}$ denote the completion, endowed with a reasonable uniform crossnorm, of the algebraic tensor product $\mathcal{X} \otimes \mathcal{Y}$ of $\mathcal{X}$ and $\mathcal{Y}$; let, for $A \in B(\mathcal{X})$ and $B \in B(\mathcal{Y}), A \otimes B \in B(\mathcal{X} \bar{\otimes} \mathcal{Y})$ denote the tensor product operator defined by $A$ and $B$. Evidently, an operator $T \in B(\mathcal{X})$ is left $m$-invertible by $S \in B(\mathcal{X})$ if and only if $T \otimes I \in B(\mathcal{X} \bar{\otimes} \mathcal{Y})$ is left $m$-invertible by $S \otimes I \in$ $B(\mathcal{X} \bar{\otimes} \mathcal{Y})$. Furthermore, $T$ is strictly left $m$-invertible by $S$ if and only if $T \otimes I$ is strictly left $m$-invertible by $S \otimes I$. Observe also that $T_{1} \otimes T_{2}=$ $\left(T_{1} \otimes I\right)\left(I \otimes T_{2}\right)=\left(I \otimes T_{2}\right)\left(T_{1} \otimes I\right)$. (Here, and in the sequel, we shall make a slight misuse of notation and use $I$ to denote the identity operator on both $\mathcal{X}$ and $\mathcal{Y}$.) Hence, given $T_{1}$ left $m$-invertible by $S_{1}$ and $T_{2}$ left $n$-invertible by $S_{2}$, in considering the left $t$-invertibility of $T_{1} \otimes T_{2}$ by $S_{1} \otimes S_{2}$ we may assume without loss of generality that the positive integer $m$ is less then or equal to the positive integer $n$. We state our theorems below for left invertibility; their analogues for right invertibility follow from a similar argument.

Theorem 2.1. The tensor product of a left m-invertible operator with a left $n$-invertible operator is a left $(m+n-1)$-invertible operator.

A proof of the theorem may be obtained using a combinatorial argument similar to that in the papers [10,11], or by using an argument similar to the one used to prove [12, Corollary 2.2] (see also [6]). However, we follow here an argument using double sequences satisfying certain properties. At
the heart of this argument lies the following simple lemma, which along with leading to a proof of the theorem has a number of other interesting consequences. Let $\mathcal{P}_{d}$ denote the set of all complex polynomials of degree $\leq d$.

Lemma 2.2. Let $m \in \mathbf{N}$, and let $\left(a_{j}\right)_{j=0}^{\infty}$ be a sequence of complex numbers.
Then the following statements are equivalent:
(i) $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} a_{k+i}=0$ for every integer $k \geq 0$;
(ii) there exists a polynomial $p \in \mathcal{P}_{m-1}$ such that $a_{i}=p(i)$ for every $i \geq 0$.

Proof. $(i i) \Longrightarrow(i)$ : We prove the statement by induction on $m$. For $m=1$, $p$ is a constant and the statement is clear.

Suppose that $m \geq 2$ and the statement is true for $m-1$. Let $\operatorname{deg} p<m$. Define $q$ by $q(t)=p(t+1)-p(t)$. Then $q$ is a polynomial of $\operatorname{degree} \operatorname{deg} q=$ $\operatorname{deg} p-1<m-1$. We have

$$
\begin{aligned}
& \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} p(k+i)=\sum_{i=0}^{m}(-1)^{i}\left(\binom{m-1}{i}+\binom{m-1}{i-1}\right) p(k+i) \\
= & \sum_{i=0}^{m-1}(-1)^{i}\binom{m-1}{i} p(k+i)+\sum_{i=0}^{m-1}(-1)^{i+1}\binom{m-1}{i} p(k+i+1) \\
= & \sum_{i=0}^{m-1}(-1)^{i}\binom{m-1}{i}(p(k+i)-p(k+i+1))=-\sum_{i=0}^{m-1}(-1)^{i}\binom{m-1}{i} q(k+i)=0
\end{aligned}
$$

by the induction assumption.
$(i) \Longrightarrow(i i)$ : Let $\mathcal{V}$ be the vector space of all sequences $\left(a_{i}\right)$ satisfying (i). Since each sequence in $\mathcal{V}$ is uniquely determined by its members $a_{i}$, $0 \leq i \leq m-1, \operatorname{dim} \mathcal{V} \leq m$. Let $\mathcal{V}_{0}=\left\{(p(i)): p \in \mathcal{P}_{m-1}\right\}$. Since $\mathcal{V}_{0} \subset \mathcal{V}$ and $\operatorname{dim} \mathcal{V}_{0}=\mathrm{m}$, we have $\mathcal{V}_{0}=\mathcal{V}$.

Remark 2.3. The argument of the proof of $(i i) \Rightarrow(i)$ of the proof of Lemma 2.2 works just as well with $p(n+j)$ replaced by $p(n+r j)$ for every $r \in \mathbf{N}$. Indeed, let $p \in \mathcal{P}_{m-1}, r \in \mathbf{N}$ and $k \geq 0$. Then $i \mapsto p(k+r i)$ is again a polynomial of degree $\leq m-1$, so we have $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} p(k+r i)=0$. In particular, if $0 \leq c \leq m-1, r \in \mathbf{N}$ and $k \geq 0$, then $\sum_{i=0}^{m}\binom{m}{i}(k+r i)^{c}=0$.

Lemma 2.2 leads to the following characterization of left $m$-invertibility. Let $\mathcal{X}^{*}$ denote space dual to $\mathcal{X}$.

Theorem 2.4. Let $S, T \in B(\mathcal{X}), m \in \mathbf{N}$. The following statements are equivalent:
(i) $S$ is a left m-inverse of $T$;
(ii) for all $x \in \mathcal{X}, x^{*} \in \mathcal{X}^{*}$ and $k \geq 0$,

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\left\langle S^{i+k} T^{i+k} x, x^{*}\right\rangle=0
$$

(iii) for all $x \in X$ and $x^{*} \in X^{*}$ there exists a polynomial $p \in \mathcal{P}_{m-1}$ such that

$$
\left\langle S^{i} T^{i} x, x^{*}\right\rangle=p(i) \quad(i \geq 0)
$$

Proof. (ii) $\Rightarrow$ (i): For all $x \in X$ and $x^{*} \in X^{*}$ we have

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\left\langle S^{i} T^{i} x, x^{*}\right\rangle=0
$$

So $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{i} T^{i}=0$.
(i) $\Rightarrow$ (ii): Let $x \in X, x^{*} \in X^{*}$ and $k \geq 0$. We have

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\left\langle S^{i+k} T^{i+k} x, x^{*}\right\rangle=\left\langle\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{i} T^{i}\left(T^{k} x\right), S^{* k} x^{*}\right\rangle=0
$$

(ii) $\Leftrightarrow$ (iii) Let $x \in X$ and $x^{*} \in X^{*}$. Write $a_{i}=\left\langle S^{i} T^{i} x, x^{*}\right\rangle \quad(i \geq 0)$. The equivalence (ii) $\Leftrightarrow$ (iii) then follows from the previous lemma.

The following two corollaries of Lemma 2.2 all but prove Theorem 2.1.
Corollary 2.5. If $\left(a_{i, j}\right)_{i, j=0}^{\infty}$ is a double sequence of complex numbers satisfying

$$
\begin{equation*}
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} a_{k+i, \ell}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} a_{k, \ell+j}=0 \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{s=0}^{m+n-1}(-1)^{s}\left({\underset{s}{m+n-1}) a_{s, s}=0 . . ~ . ~}_{\text {. }}\right. \tag{3}
\end{equation*}
$$

Proof. Each double sequence ( $a_{i, j}$ ) being uniquely determined by its terms $a_{i, j}, 0 \leq i \leq m-1$ and $0 \leq j \leq n-1$, if we let $V$ denote the vector space of all double sequences ( $a_{i, j}$ ) satisfying (1) and (2) above, then $\operatorname{dimV} \leq m n$.

For $0 \leq c \leq m-1$ and $0 \leq d \leq n-1$, define the double sequence $\left(b^{(c, d)}\right)$ by $b_{i, j}^{(c, d)}=i^{c} j^{d}$. Then

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} b_{k+i, \ell}^{(c, d)}=\ell^{d} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i}(k+i)^{c}=0
$$

for all non-negative integers $k, \ell$. Thus $\left(b^{(c, d)}\right)$ satisfies (1), similarly (2). Consequently, $\left(b^{(c, d)}\right) \in V$. Since these double sequences are linearly independent, and hence form a basis of $V$, to prove the corollary it would now suffice to prove that $b^{(c, d)}$ satisfy (3). But this follows from the fact that $b_{s, s}^{(c, d)}=s^{c+d}, 0 \leq c+d \leq m+n-2$, and

$$
\sum_{s=0}^{m+n-1}(-1)^{s}(\underset{s}{m+n-1}) b_{s, s}^{(c, d)}=\sum_{s=0}^{m+n-1}(-1)^{s}\left({ }_{s}^{m+n-1}\right) s^{c+d}=0
$$

For a pair of operators $A, B \in B(\mathcal{X})$, let $[A, B]=A B-B A$.
Corollary 2.6. If $A_{1} \in B(\mathcal{X})$ is left m-invertible by $B_{1} \in B(\mathcal{X}), A_{2} \in$ $B(\mathcal{X})$ is left n-invertible by $B_{2} \in B(\mathcal{X})$ and $\left[A_{1}, A_{2}\right]=0=\left[B_{1}, B_{2}\right]$, then $A_{1} A_{2}$ is left $(m+n-1)$-invertible by $B_{1} B_{2}$.

Proof. Fix $x \in \mathcal{X}$ and $x^{*} \in \mathcal{X}^{*}$, and let $a_{i, j}=\left\langle B_{1}^{i} B_{2}^{j} A_{1}^{i} A_{2}^{j} x, x^{*}\right\rangle$. Then, for all non-negative integers $k$ and $\ell$, the left $m$-invertibility of $A_{1}$ by $B_{1}$ implies that

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} a_{k+i, \ell}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\left\langle B_{1}^{i} A_{1}^{i}\left(A_{1}^{k} A_{2}^{\ell} x\right),\left(B_{2}^{* \ell} B_{1}^{* k} x^{*}\right)\right\rangle=0,
$$

i.e., $\left(a_{i, j}\right)$ satisfies (1). Similarly, $\left(a_{i, j}\right)$ satisfies (2), and hence also (3). Since $a_{s, s}=\left\langle\left(B_{1} B_{2}\right)^{s}\left(A_{1} A_{2}\right)^{s} x, x^{*}\right\rangle$,

$$
\sum_{s=0}^{m+n-1}(-1)^{s}(\underset{s}{m+n-1})\left\langle\left(B_{1} B_{2}\right)^{s}\left(A_{1} A_{2}\right)^{s} x, x^{*}\right\rangle=0
$$

Our choice of vectors $x$ and $x^{*}$ having been arbitrary, we must have

$$
\sum_{s=0}^{m+n-1}(-1)^{s}(\underset{s}{m+n-1})\left(B_{1} B_{2}\right)^{s}\left(A_{1} A_{2}\right)^{s}=0
$$

Proof of Theorem 2.1. If we set $A_{1}=\left(T_{1} \otimes I\right)$ and $A_{2}=\left(I \otimes T_{2}\right)$, then $T_{1} \in B(\mathcal{X})$ is left $m$-invertible by $S_{1} \in B(\mathcal{X}), T_{2} \in B(\mathcal{Y})$ is left $n$-invertible by $S_{2} \in B(\mathcal{Y})$ and $T_{1} \otimes T_{2}$ is left ( $m+n-1$ )-invertible by $S_{1} \otimes S_{2}$ if and only if $A_{1}$ is left $m$-invertible by $B_{1}=\left(S_{1} \otimes I\right), A_{2}$ is left $n$-invertible by $B_{2}=\left(I \otimes S_{2}\right)$ and $A_{1} A_{2}$ is left ( $m+n-1$ )-invertible by
$B_{1} B_{2}$. Since $\left[A_{1}, A_{2}\right]=0=\left[B_{1}, B_{2}\right]$, the proof follows from Corollary 2.6.

Remark 2.7. Suppose that $T \in B(\mathcal{X})$ is left $m$-invertible by $S \in B(\mathcal{X})$. Fix $x \in \mathcal{X}$ and $x^{*} \in \mathcal{X}^{*}$, and let $a_{n}=\left\langle S^{n} T^{n} x, x^{*}\right\rangle$. Then it follows from Remark 2.3 that $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} a_{k+r i}=0$ for all $r \in \mathbf{N}$ and integers $k \geq 0$. In particular,

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{r i} T^{r i}=0
$$

i.e., $T^{r}$ is left $m$-invertible by $S^{r}$ for all $r \in \mathbf{N}$.
( $m, p$ )-isometries - A Remark. Recall that a Banach space operator $T \in B(\mathcal{X})$ is an $(m, p)$-isometry for some integer $m \geq 1$ and $p \in(0, \infty)$ if

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\left\|T^{i} x\right\|^{p}=0, x \in \mathcal{X}
$$

Let $T, S$ be commuting operators in $B(\mathcal{X})$ such that $T$ is an $(m, p)$-isometry and $S$ is an $(n, p)$-isometry. Define the double sequence $\left(a_{i, j}\right)$ by $a_{i, j}=$ $\left\|T^{i} S^{j} x\right\|^{p}, x \in \mathcal{X}$. Then

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} a_{k+i, j}=0=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} a_{i, \ell+j}
$$

for integers $k, \ell \geq 0$. Applying Corollary 2.5 we conclude that

$$
\sum_{s=0}^{m+n-1}(-1)^{s}\left({ }_{s}^{m+n-1}\right)\left\|(T S)^{s} x\right\|^{p}=0
$$

for all $x \in \mathcal{X}$. We have proved:
Corollary 2.8. [6, Theorem 3.3] If $T, S \in B(\mathcal{X})$ are commuting operators such that $T$ is an $(m, p)$-isometry and $S$ is an $(n, p)$-isometry, then $T S$ is an ( $m+n-1, p$ )-isometry.

For an $x \in \mathcal{X}$ and an operator $T \in B(\mathcal{X})$, define the sequence $\left(a_{n}\right)$ by $a_{n}=\left\|T^{n} x\right\|^{p}$. If $T$ is an $(m, p)$-isometry, then Remark 2.3 implies that $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} a_{k+r i}=0$ for all $r \in \mathbf{N}$ and integers $k \geq 0$. In particular:

Corollary 2.9. [7, Theorem 3.1] If $T \in B(\mathcal{X})$ is an $(m, p)$-isometry, then is so $T^{r}$ for each $r \in \mathbf{N}$.

Strict left invertibility If $T \in B(\mathcal{X})$ is left $m$-invertible and $S \in B(\mathcal{X})$ is a strict left $m$-inverse of $T$, then $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{m-i} T^{m-i}=0$ and $\sum_{i=0}^{p}(-1)^{i}\binom{m}{i} S^{p-i} T^{p-i} \neq 0$ for all $p<m$. The argument of the proof of [9,

Theorem 3.1] shows that if $S \in B(\mathcal{X})$ is a strict left $m$-inverse of $T \in B(\mathcal{X})$, then the set $\left\{I, S T, S^{2} T^{2}, \cdots, S^{m-1} T^{m-1}\right\}$ is linearly independent. More generally:

Theorem 2.10. Let $S, T \in B(\mathcal{X}), m \in \mathbf{N}$, let $S$ be a left $m$-inverse of $T$. The following statements are equivalent:
(i) $S$ is a strict left m-inverse of $T$;
(ii) the operators $I, S T, S^{2} T^{2}, \ldots, S^{m-1} T^{m-1}$ are linearly independent;
(iii) there exists $x \in \mathcal{X}$ such that the vectors $x, S T x, \ldots, S^{m-1} T^{m-1} x$ are linearly independent;
(iv) for every polynomial $p \in \mathcal{P}_{m-1}$ there exist $x \in \mathcal{X}$ and $x^{*} \in \mathcal{X}^{*}$ such that

$$
\left\langle S^{i} T^{i} x, x^{*}\right\rangle=p(i) \quad(i \geq 0)
$$

(v) there exist $x \in \mathcal{X}$ and $x^{*} \in \mathcal{X}^{*}$ such that $\left\langle S^{i} T^{i} x, x^{*}\right\rangle=i^{m-1} \quad(i \geq 0)$.

Proof. (iii) $\Rightarrow$ (ii) is clear.
(ii) $\Rightarrow$ (i): Suppose that $S$ is not a strict left $m$-inverse of $T$. By definition, the operators $I, S T, \ldots, S^{m-1} T^{m-1}$ are linearly dependant.
(i) $\Rightarrow$ (iii): Suppose that for each $x \in \mathcal{X}$ the vectors $x, S T x, \ldots, S^{m-1} T^{m-1} x$ are linearly dependant, i.e., there exists a nontrivial linear combination $\sum_{i=0}^{m-1} \alpha_{i} S^{i} T^{i} x=0$.

Since also $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{i} T^{i} x=0$, as in [9] we can get that $\sum_{i=0}^{m-1}(-1)^{i}\binom{m-1}{i} S^{i} T^{i} x=$ 0. So

$$
\sum_{i=0}^{m-1}(-1)^{i}\binom{m-1}{i} S^{i} T^{i}=0
$$

a contradiction.
(iii) $\Rightarrow$ (iv): Let $x \in \mathcal{X}$ and suppose that the vectors $x, S T x, \ldots, S^{m-1} T^{m-1} x$ are linearly independent. Let $p \in \mathcal{P}_{m-1}$. Then there exists $x^{*} \in \mathcal{X}^{*}$ such that

$$
\left\langle S^{i} T^{i} x, x^{*}\right\rangle=p(i) \quad(0 \leq i \leq m-1) .
$$

By Theorem 2.4 this implies that $\left\langle S^{i} T^{i} x, x^{*}\right\rangle=p(i)$ for all $i \geq 0$.
(iv) $\Rightarrow(\mathrm{v})$ is clear.
(v) $\Rightarrow$ (iv): If $x \in X$ and $x^{*} \in X^{*}$ satisfy $\left\langle S^{i} T^{i} x, x^{*}\right\rangle=i^{m-1}$ for all $i \geq 0$, then (by Theorem 2.4) $S$ is not a left (m-1)-inverse of $T$, so $S$ is a strict left $m$-inverse of $T$.

The converse of Theorem 2.1, namely that if $S_{1} \in B(\mathcal{X})$ is a left $t$-inverse of $T_{1} \in B(\mathcal{X})$ and $T_{1} \otimes T_{2}$ is left $s$-invertible by $S_{1} \otimes S_{2}$ (for some $T_{2}, S_{2} \in$ $B(\mathcal{Y}))$ then $T_{2}$ is left $(s-t+1)$-invertible by $S_{2}$, is not as straight forward. Recall that every left $n_{1}$-inverse $S \in B(\mathcal{X})$ of an operator $T \in B(\mathcal{X})$ is a
left $n$-inverse of $T$ for every integer $n \geq n_{1}$. Hence, if $S_{1}$ is a left $t$-inverse of $T_{1}$, then there is a least positive integer $m \leq t$ such that $S_{1}$ is a strict left $m$-inverse of $T_{1}$ (and then $\left\{I, S_{1} T_{1}, \cdots, S_{1}^{m-1} T_{1}^{m-1}\right\}$ is an independent set).

Theorem 2.11. Let $S_{1}, T_{1} \in B(\mathcal{X}), S_{2}, T_{2} \in B(\mathcal{Y}), m, n \in \mathbf{N}$. Suppose that $S_{1}$ is a strict left m-inverse of $T_{1}$ and $S_{2}$ is a strict left n-inverse of $T_{2}$. Then $S_{1} \otimes S_{2}$ is a strict left $(m+n-1)$-inverse of $T_{1} \otimes T_{2}$.

Proof. By Theorem 2.1, $S_{1} \otimes S_{2}$ is a left $(m+n-1)$-inverse of $T_{1} \otimes T_{2}$.
By Theorem 2.10, there exist $x \in \mathcal{X}, x^{*} \in \mathcal{X}^{*}, y \in \mathcal{Y}$ and $y^{*} \in \mathcal{Y}^{*}$ such that

$$
\left\langle S_{1}^{i} T_{1}^{i} x, x^{*}\right\rangle=i^{m-1} \quad(i \geq 0)
$$

and

$$
\left\langle S_{2}^{i} T_{2}^{i} y, y^{*}\right\rangle=i^{n-1} \quad(i \geq 0)
$$

So
$\left\langle\left(S_{1} \otimes S_{2}\right)^{i}\left(T_{1} \otimes T_{2}\right)^{i}(x \otimes y), x^{*} \otimes y^{*}\right\rangle=\left\langle S_{1}^{i} T_{1}^{i} x, x^{*}\right\rangle \cdot\left\langle S_{2}^{i} T_{2}^{i} y, y^{*}\right\rangle=i^{m+n-2}$
for all integers $i \geq 0$. This, again by Theorem 2.10, implies that $S_{1} \otimes S_{2}$ is a strict left $(m+n-1)$-inverse of $T_{1} \otimes T_{2}$.

Theorem 2.12. Let $S_{1}, T_{1} \in B(\mathcal{X})$ and $S_{2}, T_{2} \in B(\mathcal{Y})$. If $S_{1}$ is a strict left $m$ inverse of $T_{1}$, then $S_{1} \otimes S_{2}$ is a left s-inverse of $T_{1} \otimes T_{2}$ if and only if $S_{2}$ is a left $(s-m+1)$-inverse of $T_{2}$.

Proof. If $S_{2}$ is a left $(s-m+1)$-inverse of $T_{2}$ then $S_{1} \otimes S_{2}$ is a left $s$-inverse of $T_{1} \otimes T_{2}$ by Theorem 2.1.

Suppose that $S_{1} \otimes S_{2}$ is a left $s$-inverse of $T_{1} \otimes T_{2}$. Let $y \in Y$ and $y^{*} \in Y^{*}$. Write $f(i)=\left\langle S_{2}^{i} T_{2}^{i} y, y^{*}\right\rangle \quad(i \geq 0)$.

By Theorem 2.10, for each $p \in \mathcal{P}_{m-1}$ there exist $x \in \mathcal{X}$ and $x^{*} \in \mathcal{X}^{*}$ such that $\left\langle S_{1}^{i} T_{1}^{i} x, x^{*}\right\rangle=p(i)$ for all $i \geq 0$. So
$p(i) f(i)=\left\langle S_{1}^{i} T_{1}^{i} x, x^{*}\right\rangle \cdot\left\langle S_{2}^{i} T_{2}^{i} y, y^{*}\right\rangle=\left\langle\left(S_{1} \otimes S_{2}\right)^{i}\left(T_{1} \otimes T_{2}\right)^{i}(x \otimes y), x^{*} \otimes y^{*}\right\rangle$.
Hence $i \mapsto p(i) f(i)$ is a polynomial of degree $\leq s-1$. For $p \equiv 1$ this means that $f$ is a polynomial of degree $\leq s-1$. For $p \equiv i^{m-1}$ we get $f \in \mathcal{P}_{s-m}$.

Since $y \in Y$ and $y^{*} \in Y^{*}$ were arbitrary, Theorem 2.4 implies that $S_{2}$ is a left $(s-m+1)$-inverse of $T_{2}$.

Example. If $m \geq 2$ and $S$ is a strict left $m$-inverse of $T$, then $S^{2}$ is a left 2-inverse of $T^{2}$. Thus $S^{2}$ is not a strict left 3 -inverse of $T^{2}$. Observe here that $S$ and $T$ do not commute.

Theorem 2.11, also Theorem 2.12, is not true if we assume only that $S_{1}, S_{2}, T_{1}, T_{2}$ are commuting operators (such that $S_{1} S_{2}$ is a left $s$-inverse of $\left.T_{1} T_{2}\right)$. Let $\mathcal{X}$ be the $\ell_{1}$-space with the standard basis $e_{i, j} \quad(i, j \in \mathbf{N})$. Let the operators $T_{1}, T_{2}, S_{1}, S_{2} \in B(X)$ be defined by

$$
\begin{gathered}
T_{1} e_{i, j}=\frac{i+j+1}{i+j} e_{i+1, j}, \\
T_{2} e_{i, j}=\frac{i+j+1}{i+j} e_{i, j+1}, \\
S_{1} e_{i, j}=e_{i-1, j} \quad \text { if } i \geq 2, \quad S_{1} e_{1, j}=0, \\
S_{2} e_{i, j}=e_{i, j-1} \quad \text { if } j \geq 2, \quad S_{2} e_{i, 1}=0 .
\end{gathered}
$$

Clearly $S_{1}, S_{2}, T_{1}, T_{2}$ are mutually commuting operators. We have $S_{1} T_{1} e_{i, j}=$ $\frac{i+j+1}{i+1} e_{i, j}$ and $S_{1}^{2} T_{1}^{2} e_{i, j}=\frac{i+j+2}{i+1} e_{i, j}$. So $\left(I-2 S_{1} T_{1}+S_{1}^{2} T_{1}^{2}\right) e_{i, j}=0$ for all $i, j \in \mathbf{N}$ and so $S_{1}$ is a (obviously strict) left 2-inverse of $T_{1}$. Similarly, $S_{2}$ is a strict left 2 -inverse of $T_{2}$.

It is easy to verify that $S_{1} S_{2}$ is a left 2 -inverse of $T_{1} T_{2}$, so it is not a strict left 3 -inverse.

Evidently, $S_{2}$ may not be a strict left $(s-m+1)$-inverse of $T_{2}$ in Theorem 2.12. For $S_{2}$ to be a strict left $(s-m+1)$-inverse one requires $S_{1} \otimes S_{2}$ to be strict left $s$-inverse of $T_{1} \otimes T_{2}$. The following theorem complements Theorem 2.11.

Theorem 2.13. Let $S_{1}, T_{1} \in B(\mathcal{X})$ and $S_{2}, T_{2} \in B(\mathcal{Y})$. Suppose that $S_{1}$ is a strict left $m$ inverse of $T_{1}$ and $S_{1} \otimes S_{2}$ is a left s-inverse of $T_{1} \otimes T_{2}$. Then $S_{2}$ is a strict left $(s-m+1)$-inverse of $T_{2}$ if and only if $S_{1} \otimes S_{2}$ is a strict left s-inverse of $T_{1} \otimes T_{2}$.

Proof. It is clear from the above that if $S_{1} \otimes S_{2}$ is a left $s$-inverse of $T_{1} \otimes T_{2}$, then $S_{2}$ is a left $(s-m+1)$-inverse of $T_{2}$. To prove that $S_{2}$ is a strict $(s-m+1)$-inverse of $T_{2}$ if and only if $S_{1} \otimes S_{2}$ is a strict left $s$-inverse of $T_{1} \otimes T_{2}$, suppose (to start with) that $S_{1} \otimes S_{2}$ is a strict left $s$-inverse of $T_{1} \otimes T_{2}$ but $S_{2}$ is not a strict left $(s-m+1)$-inverse of $T_{2}$. Then there exists an integer $k, 1 \leq k<s-m+1$, such that $S_{2}$ is a left $k$-inverse of $T_{2}$, and hence $S_{1} \otimes S_{2}$ is a left $(m+k-1)$-inverse of $T_{1} \otimes T_{2}$ (see Theorem 2.1). Since $m+k-1<s$, we have a contradiction. If, instead, $S_{2}$ is a strict left ( $s-m+1$ )-inverse of $T_{2}$, then $S_{1} \otimes S_{2}$ is a strict left $s$-inverse of $T_{1} \otimes T_{2}$ (by Theorem 2.11).

Essentially left $m$-invertible operators We prove next the analogues of Theorem 2.12 and 2.13 for the tensor product of essentially left $m$ invertible operators. To this end we start by introducing a construction, known in the literature as the Sadovskii/Buoni, Harte, Wickstead construction [15, Page 159], which leads to a representation of the Calkin algebra as an algebra of operators on a suitable Banach space. Let $\ell^{\infty}(\mathcal{X})$ denote the Banach space of all bounded sequences $x=\left(x_{n}\right)_{n=1}^{\infty}$ of elements of $\mathcal{X}$ endowed with the norm $\|x\|_{\infty}:=\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|$, and write $T_{\infty}, T_{\infty} x:=\left(T x_{n}\right)_{n=1}^{\infty}$ for all $x=\left(x_{n}\right)_{n=1}^{\infty}$, for the operator induced by $T$ on $\ell^{\infty}(\mathcal{X})$. The set $m(\mathcal{X})$ of all precompact sequences of elements of $\mathcal{X}$ is a closed subspace of $\ell^{\infty}(\mathcal{X})$ which is invariant for $T_{\infty}$. Let $\mathcal{X}_{q}:=\ell^{\infty}(\mathcal{X}) / m(\mathcal{X})$, and denote by $T_{q}$ the operator $T_{\infty}$ on $\mathcal{X}_{q}$. The mapping $T \mapsto T_{q}$ is then a unital homomorphism from $B(\mathcal{X}) \rightarrow B\left(\mathcal{X}_{q}\right)$, with kernel the ideal $\mathcal{K}(\mathcal{X})$ of compact operators on $\mathcal{X}$, which induces a norm decreasing monomorphism from $B(\mathcal{X}) / \mathcal{K}(\mathcal{X})$ to $B\left(\mathcal{X}_{q}\right)$ with the following properties (see [15, Section 17] for details):
(i) $T$ is upper semi-Fredholm if and only if $T_{q}$ is injective, if and only if $T_{q}$ is bounded below;
(ii) $T_{q}=0$ if and only if $T$ is compact.

Furthermore, this is easily verified,
(iii) $(S \otimes T)_{q}=S_{q} \otimes T_{q}$ for every $S \in B(\mathcal{X})$ and $T \in B(\mathcal{Y})$.

As above, let $S_{1}, T_{1} \in B(\mathcal{X})$ and $S_{2}, T_{2} \in B(\mathcal{Y})$. If $S_{1}$ is an essential left $m$-inverse of $T_{1}$, equivalently if $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S_{1}{ }^{m-i} T_{1}{ }^{m-i}=K$ for some $K \in \mathcal{K}(\mathcal{X})$, then $\sum_{i=0}^{m}(-1)^{i}\left({ }_{i}^{m}\right)\left(S_{1}\right)_{q}^{m-i}\left(T_{1}\right)_{q}^{m-i}=0$, i.e., $\left(S_{1}\right)_{q} \in B\left(\mathcal{X}_{q}\right)$ is a left $m$-inverse of $\left(T_{1}\right)_{q} \in B\left(\mathcal{X}_{q}\right)$. The converse holds, and we have that " $\left(S_{1}\right)_{q} \in B\left(\mathcal{X}_{q}\right)$ is a left m-inverse of $\left(T_{1}\right)_{q} \in B\left(\mathcal{X}_{q}\right)$ if and only if $S_{1}$ is an essential left m-inverse of $T_{1}$ ". Again, $S_{1} \otimes S_{2}$ is an essential left $s$-inverse of $T_{1} \otimes T_{2}$ if and only if $\left(S_{1}\right)_{q} \otimes\left(S_{2}\right)_{q}$ is a left $s$-inverse of $\left(T_{1}\right)_{q} \otimes\left(T_{2}\right)_{q}$. Observing that the property of being "strict" transfers from an operator $T$ to $T_{q}$ (and back), we have:

Theorem 2.14. Let $S_{1}, T_{1} \in B(\mathcal{X})$ and $S_{2}, T_{2} \in B(\mathcal{Y})$.
(i) If $S_{i}, i=1,2$, is an essential left $m_{i}$-inverse of $T_{i}$, then $S_{1} \otimes S_{2}$ is an essential left $\left(m_{1}+m_{2}-1\right)$-inverse of $T_{1} \otimes T_{2}$.
(ii) If $S_{1}$ is a strict essential left m-inverse of $T_{1}$, then $S_{1} \otimes S_{2}$ is an essential left s-inverse of $T_{1} \otimes T_{2}$ if and only if $S_{2}$ is an essential left $(s-m+1)$ inverse of $T_{2}$.
(iii) If $S_{1}$ is a strict essential left m-inverse of $T_{1}$ and $S_{1} \otimes S_{2}$ is an essential left s-inverse of $T_{1} \otimes T_{2}$, then $S_{2}$ is a strict essential left $(s-m+1)$-inverse of $T_{2}$ if and only if $S_{1} \otimes S_{2}$ is a strict essential left s-inverse of $T_{1} \otimes T_{2}$.

Elementary Operator $\triangle_{T_{1} T_{2}}=L_{T_{1}} R_{T_{2}}$ Given $T_{1} \in B(\mathcal{X})$ and $T_{2} \in$ $B(\mathcal{Y})$, the elementary operator $\triangle_{T_{1} T_{2}} \in B(\mathcal{Y}, \mathcal{X})$ is defined by $\triangle_{T_{1} T_{2}}(A)=$ $T_{1} A T_{2}$ for all $A \in B(\mathcal{Y}, \mathcal{X})$. Theorems 2.12, 2.13 and 2.14 have natural analogues for the operator $\triangle_{T_{1} T_{2}}$.

Recall from [13, Page 50] that a pair $\langle\mathcal{X}, \tilde{\mathcal{X}}\rangle$ of Banach spaces is a dual pairing if either $\tilde{\mathcal{X}}=\mathcal{X}^{*}$ or $\mathcal{X}=\tilde{\mathcal{X}}^{*}$. Let $x \otimes y^{\prime}, x \in \mathcal{X}$ and $y^{\prime} \in \mathcal{Y}^{*}$, denote the rank one operator $\mathcal{Y} \rightarrow \mathcal{X}, y \rightarrow\left\langle y, y^{\prime}\right\rangle x$. An operator ideal $J$ between Banach spaces $\mathcal{Y}$ and $\mathcal{X}$ is a linear subspace of $B(\mathcal{Y}, \mathcal{X})$ equipped with a Banach norm $\alpha$ such that
(i) $x \otimes y^{\prime} \in J$ and $\alpha\left(x \otimes y^{\prime}\right)=\|x\|\|y\|$;
(ii) $\triangle_{S T}(A)=L_{S} R_{T}(A)=S A T$ and $\alpha(S A T) \leq\|S\| \alpha(A)\|T\|$
for all $x \in \mathcal{X}, y^{\prime} \in \mathcal{Y}^{*}, A \in J, S \in B(\mathcal{X})$ and $T \in B(\mathcal{Y})$ [13, Page 51]. Thus defined, each $J$ is a tensor product relative to the dual pairings $\left\langle\mathcal{X}, \mathcal{X}^{*}\right\rangle$ and $\left\langle\mathcal{Y}^{*}, \mathcal{Y}\right\rangle$ and the bilinear mappings

$$
\begin{aligned}
& \mathcal{X} \times \mathcal{Y}^{*} \rightarrow J, \quad\left(x, y^{\prime}\right) \rightarrow x \otimes y^{\prime} \\
& B(\mathcal{X}) \times B\left(\mathcal{Y}^{*}\right) \rightarrow B(J), \quad\left(S, T^{*}\right) \rightarrow S \otimes T^{*}
\end{aligned}
$$

where $S \otimes T^{*}(A)=S A T$. The following theorem is now evident from Theorems 2.12, 2.13 and 2.14.

Theorem 2.15. Let $S_{1}, T_{1} \in B(\mathcal{X})$ and $S_{2}, T_{2} \in B(\mathcal{Y})$.
(i) If $S_{1}$ is a left $m_{1}$-inverse (resp., essential left $m_{1}$-inverse) of $T_{1}$ and $S_{2}$ is a right $m_{2}$-inverse (resp., essential right $m_{2}$-inverse) of $T_{2}$, then $\triangle_{S_{1} S_{2}}$ is a left ( $m_{1}+m_{2}-1$ )-inverse (resp., essential left ( $m_{1}+m_{2}-1$ )-inverse) of $\triangle_{T_{1} T_{2}}$.
(ii) If $S_{1}$ is a strict left m-inverse (resp., strict essential left m-inverse) of $T_{1}$, then $\triangle_{S_{1} S_{2}}$ is a left s-inverse (resp., an essential left s-inverse) of $\triangle_{T_{1} T_{2}}$ if and only if $S_{2}$ is a right $(s-m+1)$-inverse (resp., an essential right $(s-m+1)$-inverse) of $T_{2}$.
(iii) If $S_{1}$ is a strict left m-inverse (resp., strict essential left m-inverse) of $T_{1}$ and $\triangle_{S_{1} S_{2}}$ is a left s-inverse (resp., an essential left s-inverse) of $\triangle_{T_{1} T_{2}}$, then $S_{2}$ is a strict right $(s-m+1)$-inverse (resp., strict essential
right $(s-m+1)$-inverse) of $T_{2}$ if and only if $\triangle_{S_{1} S_{2}}$ is a strict left s-inverse (resp., a strict essential left s-inverse) of $\triangle_{T_{1} T_{2}}$.

A limited version of Theorem 2.15 has been considered by Sid Ahmed [4, Theorems 3.1 and 3.2], and versions of the theorem for $m$-isometric operators on the ideal $\mathcal{C}_{2}(\mathcal{H})$ of Hilbert-Schmidt class operators have been considered in $[6,8,9,10,11]$.

## References

[1] J. Agler, M. Stankus, n-isometric transformations of Hilbert space I, Integral Equat. Oper. Th. 21(4)(1995) 383-429.
[2] J. Agler, M. Stankus, n-isometric transformations of Hilbert space II, Integral Equat. Oper. Th. 23(1)(1995) 1-48.
[3] J. Agler, M. Stankus, n-isometric transformations of Hilbert space III, Integral Equat. Oper. Th. 24(4)(1996), 379-421.
[4] Ould Ahmed Mahmoud Sid Ahmed, Some properties of m-isometries and minvertible operators on Banach spaces, Acta Math. Scientia 32(B)(2)(2012), 520530.
[5] Frédéric Bayart, m-isometries on Banach spaces, Math. Nachr. 284(2011), 21412147. (DOI 10.1002/mana.200910029)
[6] T. Bermudez, A. Martinón and J. A. Noda, Products of m-isometrise, Linear Alg. Appl. 438(2012), 80-86. (DOI:org/10.1016/laa.2012.07.011)
[7] T. Bermudez, A. Martinón and J. A. Noda, Powers of m-isometries, Studia Math. 208(3)(2012), 249-255.
[8] F. Botelho, J. Jamison, Isometric properties of elementary operators, Linear Alg. Appl. 432(1)(2010) 357-365.
[9] F. Botelho, J. Jamison, B. Zheng, Strict isometries of arbitrary order, Linear Alg. Appl. 436(2012), 3303-3314. (DOI.org/10.1016/j.laa.2011.11.022)
[10] B. P. Duggal, Tensor product of n-isometries, Linear Alg. Appl. 437(2012), 307-318. (DOI:10.1016/j.laa.2012.02.017)
[11] B. P. Duggal, Tensor product of n-isometries II, Functional Analysis, Approximation and Computation 4:1(2012), 27-32.
[12] B. P. Duggal, Tensor product of n-isometries III, Functional Analysis, Approximation and Computation 4:2(2012), 61-67.
[13] J. Eschmeier, Tensor products and elementary operators, J. reine angew. Math. 390(1988), 47-66.
[14] P. Hoffman, M. Mackey and M. Ó Searcóid, On the second parameter of an ( $m, p$ )isometry, Integr. Equ. Oper. Theory 71(2011), 389-405.
[15] V. Müller, Spectral Theory of Linear Operators, Operator Theory Advances and Applications, Volume 139, Birkhäuser Verlag(2003).
[16] D. Przeworska-Rolewicz, Algebraic theory of right invertible operators, Studia Math. 48(1973), 129-144.
[17] D. Przeworska-Rolewicz, Algebraic Analysis, Warszawa-Dordrecht- Polish Scientific Publishers and D. Reidel Publishers (1988).

8 Redwood Grove, Northfield Avenue, London W5 4SZ, England, U.K.
E-mail address: bpduggal@yahoo.co.uk
Institute of Mathematics AV ČR, Zitna 25, 11567 Prague 1, Czech RePUBLIC

E-mail address: muller@math.cas.cz


[^0]:    2010 Mathematics Subject Classification: Primary 47A80, 47A10; Secondary 47B47.
    Key words and phrases: Banach space, left $n$-invertible operator, essentially left $n$ invertible operator, tensor product, left-right multiplication operator.
    The second author was supported by grant No. 201/09/0473 of GACR and RVO:67985840.

