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ON ADDITIVE PRESERVERS OF SEMI-BROWDER OPERATORS

M. MBEKHTA, V. MÜLLER, AND M. OUDGHIRI

ABSTRACT. In this paper we provide a complete description of additive surjective
continuous maps in the algebra of all bounded linear operators acting on a com-
plex separable infinite-dimensional Hilbert space, preserving semi-Browder’s op-
erators in both directions.

1. INTRODUCTION

Let H be a separable complex infinite dimensional Hilbert space. The algebra
of all bounded linear operators acting on H is denoted by L (H). For an operator
T ∈ L (H), write T ∗ for its adjoint, N(T ) for its kernel and R(T ) for its range. The
ascent a(T ) and descent d(T ) of T ∈L (H) are defined by

a(T ) = min{n ≥ 0: N(T n) = N(T n+1)}

d(T ) = min{n ≥ 0: R(T n) = R(T n+1)},

where the minimum over the empty set is taken to be infinite, see [8, 6]. The set of
all operators of finite ascent (resp. descent) will be denoted by A (H) (resp. D(H)).

An operator T ∈L (H) is called upper (resp. lower) semi-Fredholm if R(T ) is closed
and dimN(T ) (resp. codimR(T )) is finite. For such operators T the index is defined
by

ind(T ) = dimN(T )−codimR(T ) ∈Z∪ {±∞},

and if the index is finite, T is said to be Fredholm.
Let us introduce the following subsets :

(i) F+(H) the set of upper semi-Fredholm operators,
(ii) F−(H) the set of lower semi-Fredholm operators,

(iii) F±(H) :=F+(H)∪F−(H) the set of semi-Fredholm operators,
(iv) F (H) :=F+(H)∩F−(H) the set of Fredholm operators,
(v) B+(H) :=F+(H)∩A (H) the set of upper semi-Browder operators,

(vi) B−(H) :=F−(H)∩D(H) the set of lower semi-Browder operators,
(vii) B±(H) :=B+(H)∪B−(H) the set of semi-Browder operators,

(viii) B(H) :=B+(H)∩B−(H) the set of Browder operators.
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We refer to [6] for more information about semi-Fredholm, Fredholm, semi-Browder
and Browder operators.

Let S denote any of the subsets (i)-(viii). A surjective additive map Φ : L (H) →
L (H) is said to preserve S in both directions if T ∈S ⇔Φ(T ) ∈S .

In [4, 5], the authors studied linear maps on L (H) preserving semi-Fredholm op-
erators or Fredholm operators in both direction. Observe that the problem makes
sense only in the infinite dimensional case. In fact, every complex matrix is Fred-
holm, and consequently, every map preserves such subsets. Also, it should be men-
tioned that these subsets are invariant under finite rank perturbations. This con-
strains to search information on these maps in the Calkin algebra. More precisely, it
is shown that such maps preserve the ideal of compact operators in both direction
and their induced maps on the Calkin algebra are Jordan automorphism.

Recently, in [3], the authors considered the additive linear preserver problem that
is trivial in the finite dimension case, but the related subsets are not stable under
finite rank perturbations. Indeed, they prove that a surjective additive continuous
map Φ : L (H) → L (H) preserves in both directions B, if and only if Φ possesses
one of the following two forms :

(1.1) Φ(S) = c AS A−1 for all S ∈L (H),

or

(1.2) Φ(S) = c AS∗A−1 for all S ∈L (H),

where A : H → H is an invertible bounded linear, or conjugate linear, operator and c
is a non-zero complex number. They establish also that Φ preserves in both direc-
tion B+, or B−, if and only if it satisfies (1.1).

The purpose of this paper is to extend these results to the case of semi-Browder
operators. More precisely, the main result of this paper is the following theorem :

Theorem 1.1. Let H be a separable infinite-dimensional Hilbert space, and let Φ :
L (H) → L (H) be a surjective additive continuous map. Then the following asser-
tions are equivalent :

(i) Φ preserves in both direction A ∪D;
(ii) Φ preserves in both directions B±;

(iii) there exists an invertible bounded linear, or conjugate linear, operator A : H →
H and a non-zero complex number c such that either Φ(S) = c AS A−1 for all
S ∈L (H), or Φ(S) = c AS∗A−1 for all S ∈L (H).

2. PROOF OF MAIN RESULT

Recall that the hyper-range and the hyper-kernel of an operator T ∈ L (X ) are re-
spectively the T -invariant subspaces R∞(T ) := ⋂

n R(T n) and N ∞(T ) := ⋃
n N(T n).

Notice that if T has finite ascent then T|R∞(T ) is bijective, see [3].
Let x, y ∈ H . We denote, as usual, by x ⊗ y the rank one operator given by

(x ⊗ y)(z) = 〈z, y〉x for all x ∈ H .
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The following theorem that is established in [3] will play a crucial role in this work.

Theorem 2.1. Let T ∈ L (H) be an operator with finite ascent p. Then T |R∞(T ) is
bijective. Moreover, if x, y ∈ H, then T + x ⊗ y has infinite ascent if and only if the
following assertions hold:

(i) x = a +b0 where a ∈ N(T p) and b0 ∈R∞(T );
(ii) 〈b1, y〉 =−1 and 〈bi , y〉 = 0 for all i ≥ 2, where bi = (T |R∞(T ))−i b0;

(iii) 〈T i a, y〉 = 0 for all i ≥ 0.

Moreover, in this case {bi }i≥1 is a linearly independent set.

Lemma 2.2. Let T ∈ B±(H) and F ∈ L (H) be a rank one operator. Then there exists
a non zero complex number α such that T +λF ∈B±(H) for all λ ∈C\ {α}.

Proof. Let F = x ⊗ y where x, y ∈ H . Since B±(H) is invariant under the passage to
the adjoint, we can suppose that T has finite ascent. If there exists α ∈ C such that
a(T +αx ⊗ y) =∞, then it follows by Theorem 2.1 that x = a +b0, where a ∈N ∞(T )
and b0 ∈ R∞(T ), and α < (T |R∞(T ))−i b0, y >= −1. Moreover, the decomposition
x = a + b0 is unique because N ∞(T )∩R∞(T ) = {0}. This shows that T +λF has
finite ascent, and so belongs to B±(H), for all complex number λ,α. �

Recall that an operator T ∈L (H) is said to be Weyl if it is Fredholm of index zero.

Lemma 2.3. Let T ∈ L (X ) be a Weyl operator. The following assertions are equiva-
lent:

(i) T has finite ascent,
(ii) T has finite descent,

(iii) T ∈B±(H).

Proof. Clearly it suffices to establish (i) ⇔ (ii). Let n be a positive integer. It follows
that T n is Fredholm and

0 = n ind(T ) = ind(T n) = dimN(T n)−codimR(T n).

Hence, dimN(T n) = dimN(T n+1) if and only if dimR(T n) = dimR(T n+1), which es-
tablishes the equivalence (i) ⇔ (ii). �

Using the previous Lemma, we can get easily the following result.

Lemma 2.4. Let T ∈L (H) be a semi-Fredholm operator and let F ∈L (H) be a finite
rank operator.

(i) If ind(T ) ≤ 0, then T +F ∈B±(H) if and only if a(T +F ) <∞;
(ii) If ind(T ) ≥ 0, then T +F ∈B±(H) if and only if d(T +F ) <∞.

Let T ∈L (X ) be a semi-Fredholm operator. It is well known that T is upper (resp.
lower) semi-Browder if and only if T has finite ascent (resp. descent), see [1]. Con-
sequently,

(2.1) B+(H) =F±(H)∩A (H) and B−(H) =F±(H)∩D(H).



4 M. MBEKHTA, V. MÜLLER, AND M. OUDGHIRI

Proposition 2.5. Let T be a bounded operator on H. Then the following assertions
are equivalent :

(i) T is a semi-Browder operator;
(ii) for every S ∈ L (H) there exists ε0 > 0 such that T + εS ∈ A (H)∪D(H) for all

ε< ε0.

Proof. (i) ⇒ (ii) follows from the openness of B±(H).
(ii) ⇒ (i). By (2.1), it suffices to establish that T is semi-Fredholm. Suppose the

contrary. Then either R(T ) is not closed or dimN(T ) = ∞ = codimR(T ). In both
cases, for every finite-codimensional subspace H0 ⊂ H neither of the restrictions
T|H0 , T ∗

|H0
is bounded below. So for each ε > 0 there exist x, y ∈ H0 such that ‖x‖ =

1 = ‖y‖, ‖T x‖ < ε and ‖T ∗y‖ < ε. Hence, we can find inductively an orthonormal
system {xn,k , yn,k : n, k ∈N} such that

ym,l ⊥ {xn,k ,T xn,k ,T 2xn,k },‖T xn,k‖ <
1

4n2k
and ‖T ∗yn,k‖ <

1

4n2k

for all n, k, m, l ∈N. Let L1 = Span{xn,k ,T xn,k : n, k ∈N} and L2 = Span{yn,k ,T ∗yn,k :
n, k ∈N}. By construction we have L1 ⊥ L2. Define S ∈L (H) by S|(L1 ⊕L2)⊥ = 0,

Sxn,1 =−2nT xn,1 for all n ≥ 1
Sxn,k =−2nT xn,k +2−(n+k)xn,k−1 for all n ≥ 1 and k ≥ 2
S|(L1 ªSpan{xn,k : n, k ∈N}) = 0,

and S|L2 = V ∗ where V ∈L (L2) is given by
V yn,1 =−2nT ∗yn,1 for all n ≥ 1
V yn,k =−2nT ∗yn,k +2−(n+k) yn,k−1 for all n ≥ 1 and k ≥ 2
V |(L2 ªSpan{yn,k : n, k ∈N}) = 0.

Note that V and S are bounded because∑
n,k

∥ V yn,k ∥≤ 2
∑
n,k

2−(n+k) and
∑
n,k

∥ Sxn,k ∥≤ 2
∑
n,k

2−(n+k) <∞.

Moreover, for each n, we have a(T +2−nS) = a(T ∗+2−nS∗) =∞, i.e., d(T+2−nS) =∞,
a contradiction. �

For a subset Γ⊆L (H), we write Int(Γ) for its interior.

Corollary 2.6. We have B±(H) = Int(A (H)∪D(H)).

Proof. Since B±(H) is an open subset contained in A (H)∪D(H), it suffices to show
that Int(A (H)∪D(H)) ⊆B±(H). Let T ∉B±(H). Then, using Proposition 2.5, there
exists S ∈ L (H) and a sequence (εn) that converges to zero and for which a(T +
εnS) = d(T +εnS) =∞. This implies that T ∉ Int(A (H)∪D(H)).

�

Lemma 2.7. Let Φ : L (H) → L (H) be a surjective additive continuous map. If φ
preserves in both directions B±, then Φ is injective and preserves the set of rank one
operators in both directions.
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Proof. Suppose on the contrary that there exists T , 0 such that Φ(T ) = 0. Then, by
[3, Theorem 2.15], there exists an invertible operator S ∈L (H) such that a(S +T ) =
∞. Hence Φ(S +λT ) = Φ(S) ∈ B±(H), and so S +λT ∈ B±(H), for all λ ∈ R. The
continuity of the index implies that ind(S+λT ) = ind(S) for all λ ∈R. Consequently,
S +T is Weyl with infinite ascent. Thus S +T ∉B±(H), a contradiction.

Now suppose that there exists a rank one operator F such that dimR(Φ(F )) ≥ 2.
Then it follows by Lemma [3, Theorem 2.15] that there exists an invertible operator
R ∈L (H) satisfying

(2.2) a(R +Φ(F )) = a(R −Φ(F )) =∞.

Write R =Φ(S) where S ∈ B±(H). By Lemma 2.2, we get that S +λF ∈ B±(H) for all
λ ∈ C \ {α} where α is non zero complex number. Hence, R +λΦ(F ) ∈ B±(H) for all
λ ∈R\ {α}. But, the continuity of the index implies that

ind(R +λΦ(F )) = ind(R) = 0 for all λ ∈R\ {α}.

Consequently, R +λΦ(F ) has finite ascent for all λ ∈R\ {α}, which contradicts (2.2).
Thus, dimR(Φ(T )) ≤ 1. Since Φ is bijective and Φ−1 satisfies the same properties as
Φ, we obtain that Φ preserves the set of rank one operators in both directions. This
completes the proof. �

Let τ be a field automorphism of C. An additive map A : H → H will be called
τ-semi linear if A(λx) = τ(λ)Ax holds for all λ ∈ C and x ∈ H . Notice that if A is
bounded, then so is τ, and consequently, τ is either the identity or the complex
conjugation, see [2].

Moreover, in this case, the adjoint operator A′ : H ′ → H ′ defined by the equation
〈x, A′y ′〉 = τ(〈Ax, y ′〉) for all x ∈ H , y ′ ∈ H ′, is again τ-semi linear.

Note that we do not identify H with its dual H ′. Let J : H → H ′ be the natural
conjugate linear mapping defined by 〈u, Jx〉 = 〈u, x〉 (x, u ∈ H).

For A ∈L (H), let A∗ : H → H be the Hilbert space adjoint. We have A∗ = J−1 A′J .

Lemma 2.8. Let Φ : L (H) → L (H) be a surjective additive continuous map. If Φ
preserves B± in both directions, then:

either there exist continuous bijective mappings A,B : H → H, either both linear or
both conjugate linear, such that

Φ(F ) = AF B for all finite rank operators F ∈L (H),(2.3)

or there exist continuous bijective mappings C ,D : H → H, either both linear or
both conjugate linear, such that

Φ(F ) =C F∗D for all finite rank operators F ∈L (H).(2.4)

Proof. From the previous Lemma 2.7 and [7, Theorem 3.3], there exists a ring auto-
morphism τ ofC, and either τ-semi linear bijective maps A : H → H and E : H ′ → H ′,
such that

Φ(x ⊗ f ) = Ax ⊗E f for all x ∈ H and f ∈ H ′,(2.5)
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or τ-semi linear bijective maps R : H → H ′ and G : H ′ → H such that

Φ(x ⊗ f ) =G f ⊗Rx for all x ∈ H and f ∈ H ′.(2.6)

Since Φ is continuous, then so are τ, A, E , R and G .
In the first case set B = E ′. It is easy to verify that Φ(F ) = AF B for all rank one

operators and, by additivity of Φ, for all finite rank operators F ∈L (H).
In the second case set C =G J and D = J−1R′. Again it is easy to verify that Φ(F ) =

C F∗D for all finite rank operators F ∈L (H). �

If we replace Φ by Ψ : L (H) →L (H) defined by Ψ(T ) = A−1Φ(T )A in the first case
(by Ψ(T ) =C−1Φ(T )C in the second case, respectively), we can assume that A (resp.
C ) is the identity mapping. Note that in this case B (resp. D) is a linear mapping.

The following lemma which is necessary for proving the main theorem can be
proved in similar way as [3, Lemma 3.11].

Lemma 2.9. Let Φ : L (H) → L (H) be a surjective additive continuous map that
preserves B±, in both directions. Then:

(i) if B ∈ L (H) is an invertible operator and Φ(F ) = F B for all finite rank operator
F , then there exists a non-zero c ∈C such that Φ(S) = cS for all S ∈L (H);

(ii) if D ∈L (H) is an invertible operator and Φ(F ) = F∗D for all finite rank operator
F , then there exists a non-zero c ∈C such that Φ(S) = cS∗ for all S ∈L (H).

Proof of Theorem 1.1. The implication (i) ⇒ (ii) follows from Proposition 2.5. The
implication (iii) ⇒ (i) is obvious.

Suppose that preserves Φ preserves B± in both direction, then by Lemma 2.8, Φ
possesses one of the two forms (2.3) and (2.4). Clearly, if Φ(F ) = AF B for all rank one
operator F ∈L (H), then the map Φ2(.) = A−1Φ(.)A preserves B±, and Φ2(F ) = F B A.
Hence, by Lemma 2.9 (i), there is a nonzero complex c such that Φ2(S) = cS, and so
Φ(S) = c AS A−1, for all S ∈L (H). In similar way, we show that if Φ satisfies (2.4) then
Φ(T ) = c ′C S∗C−1 for all S ∈L (H), where c ′ is a non zero complex number. �

We end this section by the following two remarks. Recall that an additive map Φ

between two algebras is called unital if Φ(I) = I .

Remark 2.10. Let R be any one of the subsets {A ∪D,B±}, and define the corre-
sponding spectrum by

σR(T ) := {λ ∈C : T −λ ∉R}.

Using Theorem 1.1, the form of unital continuous additive maps Φ : L (H) →L (H)
such that σR(Φ(T )) =σR(T ) can be easily determined.

Remark 2.11. Theorem 1.1 can be without any change formulated for additive map-
pings Φ : L (H) → L (K ) preserving any of the classes A ∪D or B±, where H ,K are
separable infinite-dimensional Hilbert spaces.
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