INSTITUTE of MATHEMATICS

Universal n-tuples of operators

Vladimír Müller

Preprint No. 19-2013

UNIVERSAL N-TUPLES OF OPERATORS

VLADIMIR MÜLLER

Abstract

We generalize the classical result of Caradus concerning universal operators to the multioperator setting.

1. Introduction

An operator T acting on a Hilbert space K is called universal if it has the following property: for each operator A on a separable Hilbert space H there exist a constant $c \neq 0$ and a subspace $M \subset K$ invariant for T such that the restriction $T \mid M$ is similar to $c A$.

In other words, T "contains" all operators on separable Hilbert spaces.
The first example of a universal operator was given by G.-C. Rotta $[R]$. The notion of universal operators was introduced by Caradus [C], who gave also the following elegant sufficient condition for an operator to be universal.

Theorem 1. Every surjective operator with infinite-dimensional kernel is universal.
Clearly the condition that the kernel is infinite-dimensional is necessary since the operator must contain also the zero operator. The surjectivity is not necessary, but it is a natural condition which is easy to verify. The simplest example of a universal operator is the backward shift of infinite multiplicity (this was the operator considered by G.-C. Rota). For further examples of universal operators see [ChP].

The aim of this note is to generalize the result of Caradus for n-tuples of operators. We study both the commuting and non-commuting setting.

2. Commuting n-tuples

Denote by $B(H)$ the set of all bounded linear operators acting on a Hilbert space H. For $T \in B(H)$ denote by $N(T)$ and $R(T)$ its kernel, $N(T)=\{x \in H: T x=0\}$ and range $R(T)=T X$, respectively.

We say that two n-tuples $\left(T_{1}, \ldots, T_{n}\right) \in B(H)^{n}$ and $\left(S_{1}, \ldots, S_{n}\right) \in B(K)^{n}$ are similar if there exists an invertible operator $V: H \rightarrow K$ such that $V T_{j}=S_{j} V$ for all $j=1, \ldots, n$.

Definition 2. Let $T=\left(T_{1}, \ldots, T_{n}\right)$ be a commuting n-tuple of operators on a Hilbert space K. We say that T is universal for all commuting tuples if it has the following property: for each commuting n-tuple $A=\left(A_{1}, \ldots, A_{n}\right)$ of operators on a separable Hilbert space there exist a constant $c \neq 0$ and a subspace $M \subset K$ invariant for all T_{1}, \ldots, T_{n} such that the n-tuples $T \mid M=\left(T_{1}\left|M, \ldots, T_{n}\right| M\right)$ and $c A=\left(c A_{1}, \ldots, c A_{n}\right)$ are similar.

1991 Mathematics Subject Classification. Primary 47A12, Secondary 47A13.
Key words and phrases. universal operators, universal tuples.
The research was supported by grant 201/09/0473 of GA ČR and RVO: 67985840.

Clearly any n-tuple $T=\left(T_{1}, \ldots, T_{n}\right)$ universal for all commuting tuples must satisfy the condition $\operatorname{dim} \bigcap_{j=1}^{n} N\left(T_{j}\right)=\infty$. Furthermore, T should "contain" all n-tuples of the form $\left(A_{1}, 0, \ldots, 0\right)$, so the restriction $T_{1} \mid \bigcap_{j=2}^{n} N\left(T_{j}\right)$ must be a universal operator. Thus it is natural to assume that this restriction is surjective. Similar condition can be formulated for each T_{j} and its restrictions to the spaces $\bigcap_{i \in F} N\left(T_{i}\right)$, where $F \subset\{1, \ldots, n\}, j \notin F$. Thus it is natural to consider the commuting n-tuples $T=\left(T_{1}, \ldots, T_{n}\right) \in B(K)^{n}$ satisfying the condition that the restrictions $T_{j} \mid \bigcap_{i \in F} N\left(T_{i}\right)$ are surjective for all $F \subset\{1, \ldots, n\} \backslash\{j\}$.

Note that for $F=\emptyset$ this means that the operators T_{j} are surjective for all j.
The main result of this section is that all n-tuples of operators satisfying these natural conditions are universal for commuting tuples.

Theorem 3. Let $n \geq 1$ and let $T_{1}, \ldots, T_{n} \in B(K)$ be a commuting n-tuple of operators satisfying
(i) $\operatorname{dim} \bigcap_{j=1}^{n} N\left(T_{j}\right)=\infty$;
(ii) for all $F \subset\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash F$ the restriction $T_{j} \mid \bigcap_{i \in F} N\left(T_{i}\right)$ is surjective (i.e., $\left.T_{j}\left(\bigcap_{i \in F} N\left(T_{i}\right)\right)=\bigcap_{i \in F} N\left(T_{i}\right)\right)$.

Then T_{1}, \ldots, T_{n} is universal for all commuting tuples.
Proof. We fix an n-tuple $T_{1}, \ldots, T_{n} \in B(K)$ of mutually commuting operators satisfying (i) and (ii).

For each $j=1, \ldots, n$ the operator T_{j} is surjective. Fix a right inverse $\hat{T}_{j} \in B(K)$, i.e., $T_{j} \hat{T}_{j}=I$.

We need several lemmas:

Lemma 4. Let $F \subset\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash F$. Then

$$
\bigcap_{i \in F} N\left(T_{i} T_{j}\right)=N\left(T_{j}\right)+\bigcap_{i \in F} N\left(T_{i}\right) .
$$

Moreover, there exists a projection $P_{j, F}: \bigcap_{i \in F} N\left(T_{i} T_{j}\right) \rightarrow \bigcap_{i \in F} N\left(T_{i} T_{j}\right)$ such that $R\left(P_{j, F}\right)=$ $\bigcap_{i \in F} N\left(T_{i}\right)$ and $N(P) \subset N\left(T_{j}\right)$.

Proof. The inclusion \supset is clear.
Let $x \in \bigcap_{i \in F} N\left(T_{i} T_{j}\right)$. Then $T_{j} x \in \bigcap_{i \in F} N\left(T_{i}\right)$. So there exists $y \in \bigcap_{i \in F} N\left(T_{i}\right)$ such that $T_{j} y=T_{j} x$. Thus $x-y \in N\left(T_{j}\right)$ and $x=(x-y)+y \in N\left(T_{j}\right)+\bigcap_{i \in F} N\left(T_{i}\right)$.

Write for short $M=\bigcap_{i \in F} N\left(T_{i}\right)$ and $L=N\left(T_{j}\right)$. Then $M+L$ is a closed subspace. Let $X=(M+L) \ominus(M \cap L)$. We show that $M+L=M \oplus(L \cap X)$.

If $x \in M \cap(L \cap X)$ then $x \in M \cap L$ and $x \perp M \cap L$, so $x=0$. Hence $M \cap(L \cap X)=\{0\}$.
Clearly $M \subset M+(L \cap X)$. Let $x \in L$. Then x can be written (uniquely) as $x=y+z$, where $y \in M \cap L$ and $z \perp(M \cap L)$. So $z \in L \cap X$ and $x=y+z \in M+(L \cap X)$. Hence $M+L=M \oplus(L \cap X)$ and there exists a projection $P_{j, F}: M+L \rightarrow M+L$ such that $R\left(P_{j, F}\right)=M=\bigcap_{i \in F} N\left(T_{i}\right)$ and $N(P)=L \cap X \subset L=N\left(T_{j}\right)$.

Let $k=\max \left\{2, \max \left\{\left\|P_{j, F}\right\|: F \subset\{1, \ldots, n\}, j \in\{1, \ldots, v\} \backslash F\right\}, \max \left\{\left\|\hat{T}_{j}\right\|: j=1, \ldots, n\right\}\right\}$.

Lemma 5. Let H be a separable Hilbert space. Let $G \subset\{1, \ldots, n\}, G \neq \emptyset$. Suppose that there exist linear operators $V_{F}: H \rightarrow K \quad(F \subset G, F \neq G)$ satisfying

$$
T_{j} V_{F}=V_{F \backslash\{j\}} \quad(F \subset G, F \neq G, j \in F)
$$

Then there exists an operator $V_{G}: H \rightarrow K$ satisfying

$$
T_{j} V_{G}=V_{G \backslash\{j\}} \quad(j \in G)
$$

and $\left\|V_{G}\right\| \leq\left(2 k^{2}\right)^{\operatorname{card} G} \max \left\{\left\|V_{G \backslash\{j\}}\right\|: j \in G\right\}$.
Proof. We prove the statement by induction on $\operatorname{card} G$.
If $\operatorname{card} G=1, G=\{m\}$ then the statement is clear: set $V_{\{m\}}=\hat{T}_{m} V_{\emptyset}$. Then $T_{m} V_{\{m\}}=$ $T_{m} \hat{T}_{m} V_{\emptyset}=V_{\emptyset}$ and $\left\|V_{\{m\}}\right\| \leq\left\|\hat{T}_{m}\right\| \cdot\left\|V_{\emptyset}\right\| \leq k\left\|V_{\emptyset}\right\|$.

Let $G \subset\{1, \ldots, n\}$, card $G \geq 2$ and suppose that the statement is true for each $\tilde{G} \subset\{1, \ldots, n\}$, $1 \leq \operatorname{card} \tilde{G}<\operatorname{card} G$. Fix an $m \in G$ and let $G^{\prime}=G \backslash\{m\}$. Consider the operators $W_{F}=$ $V_{F \cup\{m\}} \quad\left(F \subset G^{\prime}, F \neq G^{\prime}\right)$. By the induction assumption there exists an operator $V^{\prime}: H \rightarrow K$ satisfying $T_{j} V^{\prime}=W_{G^{\prime} \backslash\{j\}}=V_{G \backslash\{j\}}$ for all $j \in G^{\prime}$. Moreover, $\left\|V^{\prime}\right\| \leq\left(2 k^{2}\right)^{\text {card } G^{\prime}} \max \left\{\left\|V_{F}\right\|\right.$: $\operatorname{card} F=\operatorname{card} G-1\}$.

Furthermore, let $V^{\prime \prime}=\hat{T}_{m} V_{G^{\prime}}$. For all $j \in G^{\prime}$ we have

$$
T_{j} T_{m}\left(V^{\prime \prime}-V^{\prime}\right)=T_{j} V_{G^{\prime}}-T_{m} V_{G \backslash\{j\}}=V_{G \backslash\{j, m\}}-V_{G \backslash\{j, m\}}=0 .
$$

So

$$
R\left(V^{\prime \prime}-V^{\prime}\right) \subset \bigcap_{j \in G^{\prime}} N\left(T_{j} T_{m}\right)=N\left(T_{m}\right)+\bigcap_{j \in G^{\prime}} N\left(T_{j}\right)
$$

Let $P_{m, G^{\prime}}: \bigcap_{j \in G^{\prime}} N\left(T_{j} T_{m}\right) \rightarrow \bigcap_{j \in G^{\prime}} N\left(T_{j} T_{m}\right)$ be the projection considered above, i.e., $R\left(P_{m, G^{\prime}}\right)=$ $\bigcap_{j \in G^{\prime}} N\left(T_{j}\right)$ and $N\left(P_{m, G^{\prime}}\right) \subset N\left(T_{m}\right)$.

Set

$$
V_{G}=V^{\prime \prime}+\left(I-P_{m, G^{\prime}}\right)\left(V^{\prime}-V^{\prime \prime}\right)=V^{\prime}+P_{m, G^{\prime}}\left(V^{\prime \prime}-V^{\prime}\right),
$$

Since $R\left(I-P_{m, G^{\prime}}\right)=N\left(P_{m, G^{\prime}}\right) \subset N\left(T_{m}\right)$, we have $T_{m} V_{G}=T_{m} V^{\prime \prime}=V_{G^{\prime}}=V_{G \backslash\{m\}}$. For $j \in G^{\prime}$ we have $T_{j} V_{G}=T_{j} V^{\prime}=V_{G \backslash\{j\}}$. Moreover,

$$
\begin{gathered}
\left\|V_{G}\right\| \leq\left\|V^{\prime}\right\|+\left\|P_{m, G^{\prime}}\right\| \cdot\left(\left\|V^{\prime \prime}\right\|+\left\|V^{\prime}\right\|\right) \\
\leq\left(\left(2 k^{2}\right)^{\operatorname{card} G-1}+k\left(k+\left(2 k^{2}\right)^{\operatorname{card} G-1}\right)\right) \max \left\{\left\|V_{F}\right\|: F \subset G, \operatorname{card} F=\operatorname{card} G-1\right\} \\
\leq\left(2 k^{2}\right)^{\operatorname{card} G} \max \left\{\left\|V_{F}\right\|: F \subset G: \operatorname{card} F=\operatorname{card} G-1\right\}
\end{gathered}
$$

In the following we use the standard multiindex notation. Denote by \mathbb{Z}_{+}the set of all nonnegative integers. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n}$ write $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$. For $j=1, \ldots, n$ let $e_{j}=(\underbrace{0, \ldots, 0}_{j-1}, 1,0, \ldots, 0)$.

Lemma 6. Let $T_{1}, \ldots, T_{n} \in B(K)$ be a commuting n-tuple satisfying the conditions of Theorem 3. Let H be a separable infinite-dimensional Hilbert space. Then there exist operators $V_{\alpha}: H \rightarrow K \quad\left(\alpha \in \mathbb{Z}_{+}^{n}\right)$ satisfying
(i) $V_{0, \ldots, 0}$ is an isometry;
(ii) $T_{j} V_{\alpha}=0 \quad\left(\alpha \in \mathbb{Z}_{+}^{n}, \alpha_{j}=0\right)$;
(iii) $T_{j} V_{\alpha}=V_{\alpha-e_{j}} \quad\left(\alpha \in \mathbb{Z}_{+}^{n}, \alpha_{j} \geq 1\right)$;
(iv) $\left\|V_{\alpha}\right\| \leq\left(2 k^{2}\right)^{n|\alpha|}$.

Proof. Choose an isometry $V_{0, \ldots, 0}: H \rightarrow \bigcap_{i=1}^{n} N\left(T_{i}\right)$.
We construct the mappings V_{α} inductively by induction on $|\alpha|$. Let $\alpha \in \mathbb{Z}_{+}^{n},|\alpha| \geq 1$ and suppose that the mappings $V_{\beta}: H \rightarrow K$ satisfying (i) - (iv) have already been constructed for all $\beta \in \mathbb{Z}_{+}^{n}$ satisfying $|\beta|<|\alpha|$. In particular, the mappings V_{β} are already constructed for all $\beta \leq \alpha, \beta \neq \alpha$.

Let $G=\left\{j: \alpha_{j} \neq 0\right\}$ and let $m=\operatorname{card} G$. Consider the m-tuple of operators $T_{j} \mid \bigcap_{i \notin G} N\left(T_{i}\right)$, $j \in G \quad(j \in G)$. Note that these operators also satisfy the conditions of Theorem 3. For $F \subset$ $G, F \neq G$ let $W_{F}: H \rightarrow \bigcap_{i \notin G} N\left(T_{i}\right)$ be defined by $W_{F}=V_{\left(\beta_{1}, \ldots, \beta_{n}\right)}$, where $\beta_{j}=\alpha_{j} \quad(j \in F)$, $\beta_{j}=\alpha_{j}-1 \quad(j \in G \backslash F)$ and $\beta_{j}=0 \quad(j \notin G)$. Clearly the operators W_{F} satisfy the conditions of Lemma 5. So there exists an operator $V_{\alpha}: H \rightarrow \bigcap_{i \notin G} N\left(T_{i}\right) \subset K$ satisfying

$$
\begin{gathered}
T_{j} W_{\alpha}=W_{G \backslash\{j\}}=V_{\alpha-e_{j}} \quad(j \in G), \\
T_{j} V_{\alpha}=0 \quad(j \notin G)
\end{gathered}
$$

and

$$
\left\|V_{\alpha}\right\| \leq\left(2 k^{2}\right)^{\operatorname{card} G} \cdot \max \left\{\left\|W_{F}\right\|: F \subset G, \operatorname{card} F=\operatorname{card} G-1\right\} \leq\left(2 k^{2}\right)^{n} \cdot \max \left\{\left\|V_{\beta}\right\|:|\beta|=|\alpha|-1\right\} .
$$

Continuing in this way we construct the operators V_{α} with the required properties.
Proof of Theorem 3. Let $T_{1}, \ldots, T_{n} \in B(K)$ be a commuting n-tuple satisfying the conditions of Theorem 3.

Let H be a separable Hilbert space and $A_{1}, \ldots, A_{n} \in B(H)$ a commuting n-tuple of operators. Let $c=\max \left\{\left\|A_{j}\right\|: 1 \leq j \leq n\right\}$. Without loss of generality we may assume that c is sufficiently small (it will be clear from the proof the precise condition which c should satisfy).

Let $V_{\alpha}: H \rightarrow K \quad\left(\alpha \in \mathbb{Z}_{+}^{n}\right)$ be the operators constructed in Lemma 6 . Define $V: H \rightarrow K$ by

$$
V h=\sum_{\alpha \in \mathbb{Z}_{+}^{n}} V_{\alpha} A^{\alpha} h \quad(h \in H) .
$$

We have

$$
\begin{gathered}
\left\|\sum_{\alpha \in \mathbb{Z}_{+}^{n}, \alpha \neq(0, \ldots, 0)} V_{\alpha} A^{\alpha}\right\| \leq \sum_{\alpha \in \mathbb{Z}_{+}^{n}, \alpha \neq(0, \ldots, 0)}\left(2 k^{2}\right)^{n|\alpha|} c^{|\alpha|} \\
=\sum_{r=1}^{\infty}\left(2 k^{2}\right)^{n r} c^{r} \cdot \operatorname{card}\left\{\alpha \in \mathbb{Z}_{+}^{n}:|\alpha|=r\right\}=\sum_{r=1}^{\infty}\left(2 k^{2}\right)^{n r} c^{r}\binom{r+n-1}{n-1} \\
\leq 2^{n-1} \sum_{r=1}^{\infty} 2^{r}\left(2 k^{2}\right)^{n r} c^{r}<1
\end{gathered}
$$

if c is sufficiently small. Then $\left\|V-V_{0, \ldots, 0}\right\|<1$, so V is a bounded operator. Since $V_{0, \ldots 0}$ is an isometry, V is bounded below and its range $V H$ is closed.

For all $j=1, \ldots, n$ and $h \in H$ we have

$$
V A_{j} h=\sum_{\alpha \in \mathbb{Z}_{+}^{n}} V_{\alpha} A^{\alpha} A_{j} h
$$

and

$$
T_{j} V h=\sum_{\alpha \in \mathbb{Z}_{+}^{n}} T_{j} V_{\alpha} A^{\alpha} h=\sum_{\alpha \in \mathbb{Z}_{+}^{n}, \alpha_{j} \geq 1} T_{j} V_{\alpha_{1}, \ldots, \alpha_{n}} A^{\alpha} h=\sum_{\alpha \in \mathbb{Z}_{+, \alpha_{j} \geq 1}^{n}} V_{\alpha-e_{j}} A^{\alpha} h .
$$

So $V A_{j}=T_{j} V \quad(j=1, \ldots, n)$. Hence $V H$ is a closed subspace of K invariant for all $T_{j} \quad(j=$ $1, \ldots, n)$ and V is the similarity between the restrictions $\left(T_{1}\left|V H, \ldots, T_{n}\right| V H\right)$ and $\left(A_{1}, \ldots, A_{n}\right)$.

For $n=2$ we can formulate a simpler statement.
Lemma 7. Let $T_{1}, T_{2} \in B(K)$ be commuting surjective operators. The following statements are equivalent:
(i) $N\left(T_{1} T_{2}\right)=N\left(T_{1}\right)+N\left(T_{2}\right)$;
(ii) $T_{1} N\left(T_{2}\right)=N\left(T_{2}\right)$;
(iii) $T_{2} N\left(T_{1}\right)=N\left(T_{1}\right)$.

Proof. (i) \Rightarrow (ii): Clearly $T_{1} N\left(T_{2}\right) \subset N\left(T_{2}\right)$. Let $x \in N\left(T_{2}\right)$. Since T_{1} is surjective, there exists $y \in K$ such that $T_{1} y=x$. Thus $T_{1} T_{2} y=0$ and by the assumption $y=y_{1}+y_{2}$ for some $y_{1} \in N\left(T_{1}\right)$ and $y_{2} \in N\left(T_{2}\right)$. Then $T_{1}\left(y-y_{1}\right)=T_{1} y=x$ and $T_{2}\left(y-y_{1}\right)=T_{2} y_{2}=0$. So $x \in T_{1} N\left(T_{2}\right)$.
(ii) $\Rightarrow(\mathrm{i})$: The inclusion $N\left(T_{1}\right)+N\left(T_{2}\right) \subset N\left(T_{1} T_{2}\right)$ is always true.

Let $x \in N\left(T_{1} T_{2}\right)$. Then $T_{1} x \in N\left(T_{2}\right)$, and so there exists $y \in N\left(T_{2}\right)$ with $T_{1} y=T_{1} x$. Hence $x-y \in N\left(T_{1}\right)$ and $x=(x-y)+y \in N\left(T_{1}\right)+N\left(T_{2}\right)$.

The equivalence (i) \Leftrightarrow (iii) follows from the symmetry.
Corollary 8. Let $T_{1}, T_{2} \in B(K)$ be commuting surjective operators satisfying
(i) $\operatorname{dim} N\left(T_{1}\right) \cap N\left(T_{2}\right)=\infty$;
(ii) $N\left(T_{1} T_{2}\right)=N\left(T_{1}\right)+N\left(T_{2}\right)$.

Then the pair $\left(T_{1}, T_{2}\right)$ is universal for all commuting pairs.
Examples 9. (1) Let H be a separable infinite-dimensional Hilbert space. Consider the space $K=H^{2}\left(\mathbb{Z}_{+}^{n}, H\right)$ consisting of all functions $f: \mathbb{Z}_{+}^{n} \rightarrow H$ satisfying

$$
\|f\|^{2}:=\sum_{\alpha \in \mathbb{Z}_{+}^{n}}\|f(\alpha)\|^{2}<\infty
$$

The operators $T_{1}, \ldots, T_{n} \in B(K)$ are defined by

$$
\left(T_{j} f\right)(\alpha)=f\left(\alpha+e_{j}\right) \quad\left(\alpha \in \mathbb{Z}_{+}^{n}\right)
$$

Clearly the operators T_{1}, \ldots, T_{n} may be interpreted as adjoints of the multiplication operators $M_{z_{1}}, \ldots, M_{z_{n}}$ by the variables z_{1}, \ldots, z_{n} in the vector-valued Hardy space $H^{2}\left(\mathbb{D}^{n}, H\right)$, where \mathbb{D}^{n} is the unit polydisc in \mathbb{C}^{n}.

Clearly the n-tuple T_{1}, \ldots, T_{n} satisfies the conditions of Theorem 3, so it is universal for commuting tuples.
2. Instead of the Hardy space in the polydisc \mathbb{D}^{n} it is possible to consider the Hardy space $H^{2}\left(B_{n}, H\right)$ where B_{n} is the unit ball in \mathbb{C}^{n}. Again, the adjoints of multiplication operators $M_{z_{1}}, \ldots, M_{z_{n}}$ in this space form an n-tuple universal for commuting tuples.

Both of these examples play an important role in the multivariable dilation theory - the first example in the theory of regular dilations, see e.g. [CV], and the second one in the dilation theory of spherical contractions, see e.g. [MV]. In fact both n-tuples are universal in a stronger sense; they contain a unitarily equivalent copy of any commuting n-tuple of operators on a separable Hilbert space with sufficiently small norms.

3. Non-Commuting case

Definition 10. We say that an n-tuple $T_{1}, \ldots, T_{n} \in B(K)$ of operators is universal for all n tuples if it has the following property: for each n-tuple $A_{1}, \ldots, A_{n} \in B(H)$ there exist a constant $c \neq 0$ and a subspace $M \subset K$ invariant for all T_{1}, \ldots, T_{n} such that the n-tuples $\left(c A_{1}, \ldots, c A_{n}\right)$ and $\left(T_{1}\left|M, \ldots, T_{n}\right| M\right)$ are similar.

Theorem 11. Let $T_{1}, \ldots, T_{n} \in B(K)$ satisfy the following properties:
(i) $\operatorname{dim} \bigcap_{j=1}^{n} N\left(T_{j}\right)=\infty$;
(ii) $T_{j}\left(\bigcap_{i \neq j} N\left(T_{i}\right)\right)=K$ for each $j=1, \ldots, n$.

Then the n-tuple $\left(T_{1}, \ldots, T_{n}\right)$ is universal.
Proof. For $j=1, \ldots, n$ let $\hat{T}_{j}: K \rightarrow \bigcap_{i, i \neq j} N\left(T_{i}\right)$ be a right inverse of the restriction of T_{j} to the subspace $\bigcap_{i, i \neq j} N\left(T_{i}\right)$. Let $k=\max \left\{\left\|\hat{T}_{j}\right\|: j=1, \ldots, n\right\}$.

For $r \geq 0$ let F_{r} be the set of all finite sequences $\alpha_{r}, \alpha_{r-1}, \ldots, \alpha_{1}$ of length r with $\alpha_{j} \in$ $\{1, \ldots, n\}$. Clearly card $F_{r}=n^{r}$. Let $\mathcal{F}=\bigcup_{r=0}^{\infty} F_{r}$. For $r=0$ the only element of F_{0} will be denoted by \emptyset.

Let H be a separable Hilbert space and let $A_{1}, \ldots, A_{n} \in B(H)$. Write $c=\max \left\{\left\|A_{1}\right\| \ldots,\left\|A_{n}\right\|\right\}$. Let $V_{\emptyset}: H \rightarrow \bigcap_{j=1}^{n} N\left(T_{j}\right)$ be an isometry.

For $\left(\alpha_{r}, \ldots, \alpha_{1}\right) \in \mathcal{F}$ define the operator $V_{\alpha_{r}, \ldots, \alpha_{1}}: H \rightarrow K$ by

$$
V_{\alpha_{r}, \ldots, \alpha_{1}}=\hat{T}_{\alpha_{r}} \cdots \hat{T}_{\alpha_{1}} V_{\emptyset}
$$

Then $T_{j} V_{\alpha_{r}, \ldots, \alpha_{1}}=0$ if $\alpha_{r} \neq j$. If $\alpha_{r}=j$ then $T_{j} V_{\alpha_{r}, \ldots, \alpha_{1}}=V_{\alpha_{r-1}, \ldots, \alpha_{1}}$. Moreover, $\left\|V_{\alpha_{r}, \ldots, \alpha_{1}}\right\| \leq$ k^{r}.

Define $V: H \rightarrow K$ by

$$
V h=\sum_{\left(\alpha_{r}, \ldots, \alpha_{1}\right) \in \mathcal{F}} V_{\alpha_{r}, \ldots, \alpha_{1}} A_{\alpha_{1}} \cdots A_{\alpha_{r}} h \quad(h \in H) .
$$

We have

$$
\left\|V-V_{\emptyset}\right\| \leq \sum_{\left(\alpha_{r}, \ldots, \alpha_{1}\right) \in \mathcal{F} \backslash F_{0}}\left\|V_{\left(\alpha_{r}, \ldots, \alpha_{1}\right)}\right\| c^{r} \leq \sum_{r=1}^{\infty} k^{r} n^{r} c^{r}=\frac{c n k}{1-c n k}<1
$$

if c is small enough. So V is a bounded linear operator. Since V_{\emptyset} is an isometry, V is bounded below and its range $M:=V H$ is a closed subspace of K.

For all j and $h \in H$ we have $V A_{j} h=\sum_{\alpha \in \mathcal{F}} V_{\alpha_{r}, \ldots, \alpha_{1}} A_{\alpha_{1}} \cdots A_{\alpha_{r}} A_{j} h$ and

$$
T_{j} V h=\sum_{\left(\alpha_{r}, \ldots, \alpha_{1}\right) \in \mathcal{F}} T_{j} V_{\alpha_{r}, \ldots, \alpha_{1}} A_{\alpha_{1}} \cdots A_{\alpha_{r}} h=\sum_{\alpha_{r-1}, \ldots \alpha_{1}} V_{\alpha_{r-1}, \ldots, \alpha_{1}} A_{\alpha_{1}} \cdot A_{\alpha_{r-1}} A_{j} h
$$

So $T_{j} V=V A_{j}$. Hence M is a subspace of K invariant for all T_{1}, \ldots, T_{n} and the n-tuples $\left(A_{1}, \ldots, A_{n}\right)$ and $\left(T_{1}\left|M, \ldots, T_{n}\right| M\right)$ are similar.

Example 12. Let $\mathcal{F}=\bigcup_{k=0}^{\infty} F_{k}$ denote as above the set of all words $\alpha=\left(\alpha_{k}, \ldots, \alpha_{1}\right)$ with $\alpha_{j} \in\{1, \ldots, n\}$ for all j. Consider the space K of all functions $f: \mathcal{F} \rightarrow H$ with

$$
\|f\|^{2}:=\sum_{\alpha \in \mathcal{F}}\|f(\alpha)\|^{2}<\infty
$$

Define the operators $S_{1}, \ldots, S_{n} \in B(K)$ by

$$
\left(S_{j} f\right)\left(\alpha_{r}, \ldots, \alpha_{1}\right)=f\left(j, \alpha_{r}, \ldots, \alpha_{1}\right) \quad\left(\left(\alpha_{r} \ldots, \alpha_{1}\right) \in \mathcal{F}\right)
$$

Then the n-tuple $\left(S_{1}, \ldots, S_{n}\right) \in B(K)^{n}$ is universal.
Again, this example plays an important role in the dilation theory for non-commuting tuples of operators, see $[P]$.

References

[C] S.R. Caradus, Universal operators and invariant subspaces, Proc. Amer. Math. Soc. 23 (1969), 526-527.
[CV] R.E. Curto, F.-H. Vasilescu, Standard operator models in the polydisc, Indiana Univ. Math. J. 42 (1993), 791-810.
[ChP] I. Chalendar, J. Partington, Modern approaches to the invariant-subspace problem, Combridge Tracts in Mathematics 188, Cambridge University Press, Cambridge, 2011.
[MV] V. Müller, F.-H. Vasilescu, Standard models for some commuting multioperators, Proc. Amer. Math. Soc. 117 (1993), 979-989.
[P] G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. MAth. Soc. 316 (1989),523-536.
[R] G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472.
Mathematical Institute AV ČR, Zitna 25, 11567 Praha 1, Czech Republic
E-mail address: muller@math.cas.cz

