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UNIVERSAL N-TUPLES OF OPERATORS

VLADIMIR MÜLLER

Abstract. We generalize the classical result of Caradus concerning universal operators to the

multioperator setting.

1. Introduction

An operator T acting on a Hilbert space K is called universal if it has the following property:
for each operator A on a separable Hilbert space H there exist a constant c 6= 0 and a subspace
M ⊂ K invariant for T such that the restriction T |M is similar to cA.

In other words, T ”contains” all operators on separable Hilbert spaces.
The first example of a universal operator was given by G.-C. Rotta [R]. The notion of universal

operators was introduced by Caradus [C], who gave also the following elegant sufficient condition
for an operator to be universal.

Theorem 1. Every surjective operator with infinite-dimensional kernel is universal.

Clearly the condition that the kernel is infinite-dimensional is necessary since the operator
must contain also the zero operator. The surjectivity is not necessary, but it is a natural condition
which is easy to verify. The simplest example of a universal operator is the backward shift of
infinite multiplicity (this was the operator considered by G.-C. Rota). For further examples of
universal operators see [ChP].

The aim of this note is to generalize the result of Caradus for n-tuples of operators. We study
both the commuting and non-commuting setting.

2. Commuting n-tuples

Denote by B(H) the set of all bounded linear operators acting on a Hilbert space H. For
T ∈ B(H) denote by N(T ) and R(T ) its kernel, N(T ) = {x ∈ H : Tx = 0} and range
R(T ) = TX, respectively.

We say that two n-tuples (T1, . . . , Tn) ∈ B(H)n and (S1, . . . , Sn) ∈ B(K)n are similar if there
exists an invertible operator V : H → K such that V Tj = SjV for all j = 1, . . . , n.

Definition 2. Let T = (T1, . . . , Tn) be a commuting n-tuple of operators on a Hilbert space
K. We say that T is universal for all commuting tuples if it has the following property: for
each commuting n-tuple A = (A1, . . . , An) of operators on a separable Hilbert space there exist
a constant c 6= 0 and a subspace M ⊂ K invariant for all T1, . . . , Tn such that the n-tuples
T |M = (T1|M, . . . , Tn|M) and cA = (cA1, . . . , cAn) are similar.
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1



2 VLADIMIR MÜLLER

Clearly any n-tuple T = (T1, . . . , Tn) universal for all commuting tuples must satisfy the
condition dim

⋂n
j=1 N(Tj) = ∞. Furthermore, T should ”contain” all n-tuples of the form

(A1, 0, . . . , 0), so the restriction T1|
⋂n

j=2 N(Tj) must be a universal operator. Thus it is natural
to assume that this restriction is surjective. Similar condition can be formulated for each Tj

and its restrictions to the spaces
⋂

i∈F N(Ti), where F ⊂ {1, . . . , n}, j /∈ F . Thus it is natural
to consider the commuting n-tuples T = (T1, . . . , Tn) ∈ B(K)n satisfying the condition that the
restrictions Tj |

⋂
i∈F N(Ti) are surjective for all F ⊂ {1, . . . , n} \ {j}.

Note that for F = ∅ this means that the operators Tj are surjective for all j.
The main result of this section is that all n-tuples of operators satisfying these natural con-

ditions are universal for commuting tuples.

Theorem 3. Let n ≥ 1 and let T1, . . . , Tn ∈ B(K) be a commuting n-tuple of operators
satisfying

(i) dim
⋂n

j=1 N(Tj) = ∞;
(ii) for all F ⊂ {1, . . . , n} and j ∈ {1, . . . , n} \ F the restriction Tj |

⋂
i∈F N(Ti) is surjective

(i.e., Tj

(⋂
i∈F N(Ti)

)
=

⋂
i∈F N(Ti) ).

Then T1, . . . , Tn is universal for all commuting tuples.

Proof. We fix an n-tuple T1, . . . , Tn ∈ B(K) of mutually commuting operators satisfying (i)
and (ii).

For each j = 1, . . . , n the operator Tj is surjective. Fix a right inverse T̂j ∈ B(K), i.e.,
TjT̂j = I.

We need several lemmas:

Lemma 4. Let F ⊂ {1, . . . , n} and j ∈ {1, . . . , n} \ F . Then⋂
i∈F

N(TiTj) = N(Tj) +
⋂
i∈F

N(Ti).

Moreover, there exists a projection Pj,F :
⋂

i∈F N(TiTj) →
⋂

i∈F N(TiTj) such that R(Pj,F ) =⋂
i∈F N(Ti) and N(P ) ⊂ N(Tj).

Proof. The inclusion ⊃ is clear.
Let x ∈

⋂
i∈F N(TiTj). Then Tjx ∈

⋂
i∈F N(Ti). So there exists y ∈

⋂
i∈F N(Ti) such that

Tjy = Tjx. Thus x− y ∈ N(Tj) and x = (x− y) + y ∈ N(Tj) +
⋂

i∈F N(Ti).
Write for short M =

⋂
i∈F N(Ti) and L = N(Tj). Then M + L is a closed subspace. Let

X = (M + L)	 (M ∩ L). We show that M + L = M ⊕ (L ∩X).
If x ∈ M ∩ (L ∩X) then x ∈ M ∩ L and x ⊥ M ∩ L, so x = 0. Hence M ∩ (L ∩X) = {0}.
Clearly M ⊂ M + (L ∩ X). Let x ∈ L. Then x can be written (uniquely) as x = y + z,

where y ∈ M ∩ L and z ⊥ (M ∩ L). So z ∈ L ∩ X and x = y + z ∈ M + (L ∩ X). Hence
M + L = M ⊕ (L ∩ X) and there exists a projection Pj,F : M + L → M + L such that
R(Pj,F ) = M =

⋂
i∈F N(Ti) and N(P ) = L ∩X ⊂ L = N(Tj). �

Let k = max
{

2,max
{
‖Pj,F ‖ : F ⊂ {1, . . . , n}, j ∈ {1, . . . , v} \F

}
,max{‖T̂j‖ : j = 1, . . . , n}

}
.
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Lemma 5. Let H be a separable Hilbert space. Let G ⊂ {1, . . . , n}, G 6= ∅. Suppose that there
exist linear operators VF : H → K (F ⊂ G, F 6= G) satisfying

TjVF = VF\{j} (F ⊂ G, F 6= G, j ∈ F ).

Then there exists an operator VG : H → K satisfying

TjVG = VG\{j} (j ∈ G)

and ‖VG‖ ≤ (2k2)card G max{‖VG\{j}‖ : j ∈ G}.

Proof. We prove the statement by induction on cardG.
If cardG = 1, G = {m} then the statement is clear: set V{m} = T̂mV∅. Then TmV{m} =

TmT̂mV∅ = V∅ and ‖V{m}‖ ≤ ‖T̂m‖ · ‖V∅‖ ≤ k‖V∅‖.
Let G ⊂ {1, . . . , n}, card G ≥ 2 and suppose that the statement is true for each G̃ ⊂ {1, . . . , n},

1 ≤ card G̃ < cardG. Fix an m ∈ G and let G′ = G \ {m}. Consider the operators WF =
VF∪{m} (F ⊂ G′, F 6= G′). By the induction assumption there exists an operator V ′ : H → K

satisfying TjV
′ = WG′\{j} = VG\{j} for all j ∈ G′. Moreover, ‖V ′‖ ≤ (2k2)card G′

max{‖VF ‖ :
cardF = cardG− 1}.

Furthermore, let V ′′ = T̂mVG′ . For all j ∈ G′ we have

TjTm(V ′′ − V ′) = TjVG′ − TmVG\{j} = VG\{j,m} − VG\{j,m} = 0.

So
R(V ′′ − V ′) ⊂

⋂
j∈G′

N(TjTm) = N(Tm) +
⋂

j∈G′

N(Tj).

Let Pm,G′ :
⋂

j∈G′ N(TjTm) →
⋂

j∈G′ N(TjTm) be the projection considered above, i.e., R(Pm,G′) =⋂
j∈G′ N(Tj) and N(Pm,G′) ⊂ N(Tm).
Set

VG = V ′′ + (I − Pm,G′)(V ′ − V ′′) = V ′ + Pm,G′(V ′′ − V ′),

Since R(I − Pm,G′) = N(Pm,G′) ⊂ N(Tm), we have TmVG = TmV ′′ = VG′ = VG\{m}. For j ∈ G′

we have TjVG = TjV
′ = VG\{j}. Moreover,

‖VG‖ ≤ ‖V ′‖+ ‖Pm,G′‖ · (‖V ′′‖+ ‖V ′‖)

≤
(
(2k2)card G−1 + k

(
k + (2k2)card G−1

))
max{‖VF ‖ : F ⊂ G, cardF = cardG− 1}

≤ (2k2)card G max{‖VF ‖ : F ⊂ G : cardF = cardG− 1}.
�

In the following we use the standard multiindex notation. Denote by Z+ the set of all non-
negative integers. For α = (α1, . . . , αn) ∈ Zn

+ write |α| =
∑n

i=1 αi. For j = 1, . . . , n let
ej = (0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0).

Lemma 6. Let T1, . . . , Tn ∈ B(K) be a commuting n-tuple satisfying the conditions of The-
orem 3. Let H be a separable infinite-dimensional Hilbert space. Then there exist operators
Vα : H → K (α ∈ Zn

+) satisfying

(i) V0,...,0 is an isometry;
(ii) TjVα = 0 (α ∈ Zn

+, αj = 0);
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(iii) TjVα = Vα−ej (α ∈ Zn
+, αj ≥ 1);

(iv) ‖Vα‖ ≤ (2k2)n|α|.

Proof. Choose an isometry V0,...,0 : H →
⋂n

i=1 N(Ti).
We construct the mappings Vα inductively by induction on |α|. Let α ∈ Zn

+, |α| ≥ 1 and
suppose that the mappings Vβ : H → K satisfying (i) – (iv) have already been constructed for
all β ∈ Zn

+ satisfying |β| < |α|. In particular, the mappings Vβ are already constructed for all
β ≤ α, β 6= α.

Let G = {j : αj 6= 0} and let m = cardG. Consider the m-tuple of operators Tj |
⋂

i/∈G N(Ti),
j ∈ G (j ∈ G). Note that these operators also satisfy the conditions of Theorem 3. For F ⊂
G, F 6= G let WF : H →

⋂
i/∈G N(Ti) be defined by WF = V(β1,...,βn), where βj = αj (j ∈ F ),

βj = αj − 1 (j ∈ G \F ) and βj = 0 (j /∈ G). Clearly the operators WF satisfy the conditions
of Lemma 5. So there exists an operator Vα : H →

⋂
i/∈G N(Ti) ⊂ K satisfying

TjWα = WG\{j} = Vα−ej (j ∈ G),

TjVα = 0 (j /∈ G)

and

‖Vα‖ ≤ (2k2)card G·max{‖WF ‖ : F ⊂ G, cardF = cardG−1} ≤ (2k2)n·max{‖Vβ‖ : |β| = |α|−1}.

Continuing in this way we construct the operators Vα with the required properties. �

Proof of Theorem 3. Let T1, . . . , Tn ∈ B(K) be a commuting n-tuple satisfying the conditions
of Theorem 3.

Let H be a separable Hilbert space and A1, . . . , An ∈ B(H) a commuting n-tuple of operators.
Let c = max{‖Aj‖ : 1 ≤ j ≤ n}. Without loss of generality we may assume that c is sufficiently
small (it will be clear from the proof the precise condition which c should satisfy).

Let Vα : H → K (α ∈ Zn
+) be the operators constructed in Lemma 6. Define V : H → K by

V h =
∑

α∈Zn
+

VαAαh (h ∈ H).

We have ∥∥∥ ∑
α∈Zn

+,α 6=(0,...,0)

VαAα
∥∥∥ ≤ ∑

α∈Zn
+,α 6=(0,...,0)

(2k2)n|α|c|α|

=
∞∑

r=1

(2k2)nrcr · card{α ∈ Zn
+ : |α| = r} =

∞∑
r=1

(2k2)nrcr

(
r + n− 1

n− 1

)

≤ 2n−1
∞∑

r=1

2r(2k2)nrcr < 1

if c is sufficiently small. Then ‖V − V0,...,0‖ < 1, so V is a bounded operator. Since V0,...0 is an
isometry, V is bounded below and its range V H is closed.

For all j = 1, . . . , n and h ∈ H we have

V Ajh =
∑

α∈Zn
+

VαAαAjh
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and
TjV h =

∑
α∈Zn

+

TjVαAαh =
∑

α∈Zn
+,αj≥1

TjVα1,...,αnAαh =
∑

α∈Zn
+,αj≥1

Vα−ejA
αh.

So V Aj = TjV (j = 1, . . . , n). Hence V H is a closed subspace of K invariant for all Tj (j =
1, . . . , n) and V is the similarity between the restrictions (T1|V H, . . . , Tn|V H) and (A1, . . . , An).

�

For n = 2 we can formulate a simpler statement.

Lemma 7. Let T1, T2 ∈ B(K) be commuting surjective operators. The following statements
are equivalent:

(i) N(T1T2) = N(T1) + N(T2);
(ii) T1N(T2) = N(T2);
(iii) T2N(T1) = N(T1).

Proof. (i)⇒(ii): Clearly T1N(T2) ⊂ N(T2). Let x ∈ N(T2). Since T1 is surjective, there exists
y ∈ K such that T1y = x. Thus T1T2y = 0 and by the assumption y = y1 + y2 for some
y1 ∈ N(T1) and y2 ∈ N(T2). Then T1(y − y1) = T1y = x and T2(y − y1) = T2y2 = 0. So
x ∈ T1N(T2).

(ii)⇒(i): The inclusion N(T1) + N(T2) ⊂ N(T1T2) is always true.
Let x ∈ N(T1T2). Then T1x ∈ N(T2), and so there exists y ∈ N(T2) with T1y = T1x. Hence

x− y ∈ N(T1) and x = (x− y) + y ∈ N(T1) + N(T2).

The equivalence (i)⇔(iii) follows from the symmetry. �

Corollary 8. Let T1, T2 ∈ B(K) be commuting surjective operators satisfying

(i) dim N(T1) ∩N(T2) = ∞;
(ii) N(T1T2) = N(T1) + N(T2).

Then the pair (T1, T2) is universal for all commuting pairs.

Examples 9. (1) Let H be a separable infinite-dimensional Hilbert space. Consider the space
K = H2(Zn

+,H) consisting of all functions f : Zn
+ → H satisfying

‖f‖2 :=
∑

α∈Zn
+

‖f(α)‖2 < ∞.

The operators T1, . . . , Tn ∈ B(K) are defined by

(Tjf)(α) = f(α + ej) (α ∈ Zn
+).

Clearly the operators T1, . . . , Tn may be interpreted as adjoints of the multiplication operators
Mz1 , . . . ,Mzn by the variables z1, . . . , zn in the vector-valued Hardy space H2(Dn,H), where Dn

is the unit polydisc in Cn.
Clearly the n-tuple T1, . . . , Tn satisfies the conditions of Theorem 3, so it is universal for

commuting tuples.

2. Instead of the Hardy space in the polydisc Dn it is possible to consider the Hardy space
H2(Bn,H) where Bn is the unit ball in Cn. Again, the adjoints of multiplication operators
Mz1 , . . . ,Mzn in this space form an n-tuple universal for commuting tuples.
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Both of these examples play an important role in the multivariable dilation theory — the
first example in the theory of regular dilations, see e.g. [CV], and the second one in the dilation
theory of spherical contractions, see e.g. [MV]. In fact both n-tuples are universal in a stronger
sense; they contain a unitarily equivalent copy of any commuting n-tuple of operators on a
separable Hilbert space with sufficiently small norms.

3. Non-commuting case

Definition 10. We say that an n-tuple T1, . . . , Tn ∈ B(K) of operators is universal for all n-
tuples if it has the following property: for each n-tuple A1, . . . , An ∈ B(H) there exist a constant
c 6= 0 and a subspace M ⊂ K invariant for all T1, . . . , Tn such that the n-tuples (cA1, . . . , cAn)
and (T1|M, . . . , Tn|M) are similar.

Theorem 11. Let T1, . . . , Tn ∈ B(K) satisfy the following properties:

(i) dim
⋂n

j=1 N(Tj) = ∞;

(ii) Tj

(⋂
i6=j N(Ti)

)
= K for each j = 1, . . . , n.

Then the n-tuple (T1, . . . , Tn) is universal.

Proof. For j = 1, . . . , n let T̂j : K →
⋂

i,i6=j N(Ti) be a right inverse of the restriction of Tj to
the subspace

⋂
i,i6=j N(Ti). Let k = max{‖T̂j‖ : j = 1, . . . , n}.

For r ≥ 0 let Fr be the set of all finite sequences αr, αr−1, . . . , α1 of length r with αj ∈
{1, . . . , n}. Clearly card Fr = nr. Let F =

⋃∞
r=0 Fr. For r = 0 the only element of F0 will be

denoted by ∅.
Let H be a separable Hilbert space and let A1, . . . , An ∈ B(H). Write c = max{‖A1‖ . . . , ‖An‖}.

Let V∅ : H →
⋂n

j=1 N(Tj) be an isometry.
For (αr, . . . , α1) ∈ F define the operator Vαr,...,α1 : H → K by

Vαr,...,α1 = T̂αr · · · T̂α1V∅.

Then TjVαr,...,α1 = 0 if αr 6= j. If αr = j then TjVαr,...,α1 = Vαr−1,...,α1 . Moreover, ‖Vαr,...,α1‖ ≤
kr.

Define V : H → K by

V h =
∑

(αr,...,α1)∈F

Vαr,...,α1Aα1 · · ·Aαrh (h ∈ H).

We have

‖V − V∅‖ ≤
∑

(αr,...,α1)∈F\F0

‖V(αr,...,α1)‖cr ≤
∞∑

r=1

krnrcr =
cnk

1− cnk
< 1

if c is small enough. So V is a bounded linear operator. Since V∅ is an isometry, V is bounded
below and its range M := V H is a closed subspace of K.

For all j and h ∈ H we have V Ajh =
∑

α∈F Vαr,...,α1Aα1 · · ·AαrAjh and

TjV h =
∑

(αr,...,α1)∈F

TjVαr,...,α1Aα1 · · ·Aαrh =
∑

αr−1,...α1

Vαr−1,...,α1Aα1 ·Aαr−1Ajh.

So TjV = V Aj . Hence M is a subspace of K invariant for all T1, . . . , Tn and the n-tuples
(A1, . . . , An) and (T1|M, . . . , Tn|M) are similar. �
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Example 12. Let F =
⋃∞

k=0 Fk denote as above the set of all words α = (αk, . . . , α1) with
αj ∈ {1, . . . , n} for all j. Consider the space K of all functions f : F → H with

‖f‖2 :=
∑
α∈F

‖f(α)‖2 < ∞.

Define the operators S1, . . . , Sn ∈ B(K) by

(Sjf)(αr, . . . , α1) = f(j, αr, . . . , α1) ((αr . . . , α1) ∈ F).

Then the n-tuple (S1, . . . , Sn) ∈ B(K)n is universal.
Again, this example plays an important role in the dilation theory for non-commuting tuples

of operators, see [P].
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