

INSTITUTE of MATHEMATICS

ACADEMY of SCIENCES of the CZECH REPUBLIC

Universal *n*-tuples of operators

Vladimír Müller

Preprint No. 19-2013 PRAHA 2013

UNIVERSAL N-TUPLES OF OPERATORS

VLADIMIR MÜLLER

ABSTRACT. We generalize the classical result of Caradus concerning universal operators to the multioperator setting.

1. INTRODUCTION

An operator T acting on a Hilbert space K is called universal if it has the following property: for each operator A on a separable Hilbert space H there exist a constant $c \neq 0$ and a subspace $M \subset K$ invariant for T such that the restriction T|M is similar to cA.

In other words, T "contains" all operators on separable Hilbert spaces.

The first example of a universal operator was given by G.-C. Rotta [R]. The notion of universal operators was introduced by Caradus [C], who gave also the following elegant sufficient condition for an operator to be universal.

Theorem 1. Every surjective operator with infinite-dimensional kernel is universal.

Clearly the condition that the kernel is infinite-dimensional is necessary since the operator must contain also the zero operator. The surjectivity is not necessary, but it is a natural condition which is easy to verify. The simplest example of a universal operator is the backward shift of infinite multiplicity (this was the operator considered by G.-C. Rota). For further examples of universal operators see [ChP].

The aim of this note is to generalize the result of Caradus for n-tuples of operators. We study both the commuting and non-commuting setting.

2. Commuting n-tuples

Denote by B(H) the set of all bounded linear operators acting on a Hilbert space H. For $T \in B(H)$ denote by N(T) and R(T) its kernel, $N(T) = \{x \in H : Tx = 0\}$ and range R(T) = TX, respectively.

We say that two *n*-tuples $(T_1, \ldots, T_n) \in B(H)^n$ and $(S_1, \ldots, S_n) \in B(K)^n$ are similar if there exists an invertible operator $V : H \to K$ such that $VT_j = S_j V$ for all $j = 1, \ldots, n$.

Definition 2. Let $T = (T_1, \ldots, T_n)$ be a commuting *n*-tuple of operators on a Hilbert space K. We say that T is universal for all commuting tuples if it has the following property: for each commuting *n*-tuple $A = (A_1, \ldots, A_n)$ of operators on a separable Hilbert space there exist a constant $c \neq 0$ and a subspace $M \subset K$ invariant for all T_1, \ldots, T_n such that the *n*-tuples $T|M = (T_1|M, \ldots, T_n|M)$ and $cA = (cA_1, \ldots, cA_n)$ are similar.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A12, Secondary 47A13.

Key words and phrases. universal operators, universal tuples.

The research was supported by grant 201/09/0473 of GA ČR and RVO: 67985840.

VLADIMIR MÜLLER

Clearly any *n*-tuple $T = (T_1, \ldots, T_n)$ universal for all commuting tuples must satisfy the condition dim $\bigcap_{j=1}^n N(T_j) = \infty$. Furthermore, T should "contain" all *n*-tuples of the form $(A_1, 0, \ldots, 0)$, so the restriction $T_1 |\bigcap_{j=2}^n N(T_j)$ must be a universal operator. Thus it is natural to assume that this restriction is surjective. Similar condition can be formulated for each T_j and its restrictions to the spaces $\bigcap_{i \in F} N(T_i)$, where $F \subset \{1, \ldots, n\}, j \notin F$. Thus it is natural to consider the commuting *n*-tuples $T = (T_1, \ldots, T_n) \in B(K)^n$ satisfying the condition that the restrictions $T_j |\bigcap_{i \in F} N(T_i)$ are surjective for all $F \subset \{1, \ldots, n\} \setminus \{j\}$.

Note that for $F = \emptyset$ this means that the operators T_j are surjective for all j.

The main result of this section is that all *n*-tuples of operators satisfying these natural conditions are universal for commuting tuples.

Theorem 3. Let $n \ge 1$ and let $T_1, \ldots, T_n \in B(K)$ be a commuting *n*-tuple of operators satisfying

- (i) dim $\bigcap_{j=1}^{n} N(T_j) = \infty$;
- (ii) for all $F \subset \{1, \ldots, n\}$ and $j \in \{1, \ldots, n\} \setminus F$ the restriction $T_j | \bigcap_{i \in F} N(T_i)$ is surjective (i.e., $T_j (\bigcap_{i \in F} N(T_i)) = \bigcap_{i \in F} N(T_i)$).

Then T_1, \ldots, T_n is universal for all commuting tuples.

Proof. We fix an *n*-tuple $T_1, \ldots, T_n \in B(K)$ of mutually commuting operators satisfying (i) and (ii).

For each j = 1, ..., n the operator T_j is surjective. Fix a right inverse $\hat{T}_j \in B(K)$, i.e., $T_j \hat{T}_j = I$.

We need several lemmas:

Lemma 4. Let $F \subset \{1, \ldots, n\}$ and $j \in \{1, \ldots, n\} \setminus F$. Then

$$\bigcap_{i \in F} N(T_i T_j) = N(T_j) + \bigcap_{i \in F} N(T_i).$$

Moreover, there exists a projection $P_{j,F} : \bigcap_{i \in F} N(T_iT_j) \to \bigcap_{i \in F} N(T_iT_j)$ such that $R(P_{j,F}) = \bigcap_{i \in F} N(T_i)$ and $N(P) \subset N(T_j)$.

Proof. The inclusion \supset is clear.

Let $x \in \bigcap_{i \in F} N(T_iT_j)$. Then $T_j x \in \bigcap_{i \in F} N(T_i)$. So there exists $y \in \bigcap_{i \in F} N(T_i)$ such that $T_j y = T_j x$. Thus $x - y \in N(T_j)$ and $x = (x - y) + y \in N(T_j) + \bigcap_{i \in F} N(T_i)$.

Write for short $M = \bigcap_{i \in F} N(T_i)$ and $L = N(T_j)$. Then M + L is a closed subspace. Let $X = (M + L) \oplus (M \cap L)$. We show that $M + L = M \oplus (L \cap X)$.

If $x \in M \cap (L \cap X)$ then $x \in M \cap L$ and $x \perp M \cap L$, so x = 0. Hence $M \cap (L \cap X) = \{0\}$.

Clearly $M \subset M + (L \cap X)$. Let $x \in L$. Then x can be written (uniquely) as x = y + z, where $y \in M \cap L$ and $z \perp (M \cap L)$. So $z \in L \cap X$ and $x = y + z \in M + (L \cap X)$. Hence $M + L = M \oplus (L \cap X)$ and there exists a projection $P_{j,F} : M + L \to M + L$ such that $R(P_{j,F}) = M = \bigcap_{i \in F} N(T_i)$ and $N(P) = L \cap X \subset L = N(T_j)$.

Let
$$k = \max\left\{2, \max\{\|P_{j,F}\| : F \subset \{1, \dots, n\}, j \in \{1, \dots, v\} \setminus F\}, \max\{\|\hat{T}_j\| : j = 1, \dots, n\}\right\}.$$

Lemma 5. Let H be a separable Hilbert space. Let $G \subset \{1, \ldots, n\}, G \neq \emptyset$. Suppose that there exist linear operators $V_F : H \to K \quad (F \subset G, F \neq G)$ satisfying

$$T_j V_F = V_{F \setminus \{j\}} \qquad (F \subset G, F \neq G, j \in F).$$

Then there exists an operator $V_G: H \to K$ satisfying

$$T_j V_G = V_{G \setminus \{j\}} \qquad (j \in G)$$

and $||V_G|| \le (2k^2)^{\operatorname{card} G} \max\{||V_{G\setminus\{j\}}|| : j \in G\}.$

Proof. We prove the statement by induction on card G.

If card G = 1, $G = \{m\}$ then the statement is clear: set $V_{\{m\}} = \hat{T}_m V_{\emptyset}$. Then $T_m V_{\{m\}} = T_m \hat{T}_m V_{\emptyset} = V_{\emptyset}$ and $\|V_{\{m\}}\| \le \|\hat{T}_m\| \cdot \|V_{\emptyset}\| \le k \|V_{\emptyset}\|$.

Let $G \subset \{1, \ldots, n\}$, card $G \geq 2$ and suppose that the statement is true for each $\tilde{G} \subset \{1, \ldots, n\}$, $1 \leq \operatorname{card} \tilde{G} < \operatorname{card} G$. Fix an $m \in G$ and let $G' = G \setminus \{m\}$. Consider the operators $W_F = V_{F \cup \{m\}}$ $(F \subset G', F \neq G')$. By the induction assumption there exists an operator $V' : H \to K$ satisfying $T_j V' = W_{G' \setminus \{j\}} = V_{G \setminus \{j\}}$ for all $j \in G'$. Moreover, $\|V'\| \leq (2k^2)^{\operatorname{card} G'} \max\{\|V_F\| : \operatorname{card} F = \operatorname{card} G - 1\}$.

Furthermore, let $V'' = \hat{T}_m V_{G'}$. For all $j \in G'$ we have

$$T_j T_m (V'' - V') = T_j V_{G'} - T_m V_{G \setminus \{j\}} = V_{G \setminus \{j,m\}} - V_{G \setminus \{j,m\}} = 0.$$

 So

$$R(V'' - V') \subset \bigcap_{j \in G'} N(T_j T_m) = N(T_m) + \bigcap_{j \in G'} N(T_j)$$

Let $P_{m,G'}: \bigcap_{j\in G'} N(T_jT_m) \to \bigcap_{j\in G'} N(T_jT_m)$ be the projection considered above, i.e., $R(P_{m,G'}) = \bigcap_{j\in G'} N(T_j)$ and $N(P_{m,G'}) \subset N(T_m)$.

Set

$$V_G = V'' + (I - P_{m,G'})(V' - V'') = V' + P_{m,G'}(V'' - V'),$$

Since $R(I - P_{m,G'}) = N(P_{m,G'}) \subset N(T_m)$, we have $T_m V_G = T_m V'' = V_{G'} = V_{G \setminus \{m\}}$. For $j \in G'$ we have $T_j V_G = T_j V' = V_{G \setminus \{j\}}$. Moreover,

$$\|V_G\| \le \|V'\| + \|P_{m,G'}\| \cdot (\|V''\| + \|V'\|)$$

$$\le \left((2k^2)^{\operatorname{card} G - 1} + k \left(k + (2k^2)^{\operatorname{card} G - 1} \right) \right) \max\{\|V_F\| : F \subset G, \operatorname{card} F = \operatorname{card} G - 1 \}$$

$$\le (2k^2)^{\operatorname{card} G} \max\{\|V_F\| : F \subset G : \operatorname{card} F = \operatorname{card} G - 1 \}.$$

In the following we use the standard multiindex notation. Denote by \mathbb{Z}_+ the set of all nonnegative integers. For $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n$ write $|\alpha| = \sum_{i=1}^n \alpha_i$. For $j = 1, \ldots, n$ let $e_j = (\underbrace{0, \ldots, 0}_{j-1}, 1, 0, \ldots, 0)$.

Lemma 6. Let $T_1, \ldots, T_n \in B(K)$ be a commuting n-tuple satisfying the conditions of Theorem 3. Let H be a separable infinite-dimensional Hilbert space. Then there exist operators $V_{\alpha}: H \to K \quad (\alpha \in \mathbb{Z}^n_+)$ satisfying

- (i) $V_{0,\ldots,0}$ is an isometry;
- (ii) $T_j V_\alpha = 0 \quad (\alpha \in \mathbb{Z}^n_+, \alpha_j = 0);$

(iii) $T_j V_{\alpha} = V_{\alpha - e_j} \quad (\alpha \in \mathbb{Z}^n_+, \alpha_j \ge 1);$ (iv) $||V_{\alpha}|| \le (2k^2)^{n|\alpha|}.$

Proof. Choose an isometry $V_{0,\dots,0}: H \to \bigcap_{i=1}^n N(T_i)$.

We construct the mappings V_{α} inductively by induction on $|\alpha|$. Let $\alpha \in \mathbb{Z}_{+}^{n}$, $|\alpha| \geq 1$ and suppose that the mappings $V_{\beta} : H \to K$ satisfying (i) – (iv) have already been constructed for all $\beta \in \mathbb{Z}_{+}^{n}$ satisfying $|\beta| < |\alpha|$. In particular, the mappings V_{β} are already constructed for all $\beta \leq \alpha, \beta \neq \alpha$.

Let $G = \{j : \alpha_j \neq 0\}$ and let $m = \operatorname{card} G$. Consider the *m*-tuple of operators $T_j | \bigcap_{i \notin G} N(T_i), j \in G \quad (j \in G)$. Note that these operators also satisfy the conditions of Theorem 3. For $F \subset G, F \neq G$ let $W_F : H \to \bigcap_{i \notin G} N(T_i)$ be defined by $W_F = V_{(\beta_1,\ldots,\beta_n)}$, where $\beta_j = \alpha_j \quad (j \in F), \beta_j = \alpha_j - 1 \quad (j \in G \setminus F)$ and $\beta_j = 0 \quad (j \notin G)$. Clearly the operators W_F satisfy the conditions of Lemma 5. So there exists an operator $V_\alpha : H \to \bigcap_{i \notin G} N(T_i) \subset K$ satisfying

$$T_{j}W_{\alpha} = W_{G \setminus \{j\}} = V_{\alpha - e_{j}} \qquad (j \in G)$$
$$T_{j}V_{\alpha} = 0 \qquad (j \notin G)$$

and

 $\|V_{\alpha}\| \le (2k^2)^{\operatorname{card} G} \cdot \max\{\|W_F\| : F \subset G, \operatorname{card} F = \operatorname{card} G - 1\} \le (2k^2)^n \cdot \max\{\|V_{\beta}\| : |\beta| = |\alpha| - 1\}.$

Continuing in this way we construct the operators V_{α} with the required properties.

 \square

Proof of Theorem 3. Let $T_1, \ldots, T_n \in B(K)$ be a commuting *n*-tuple satisfying the conditions of Theorem 3.

Let *H* be a separable Hilbert space and $A_1, \ldots, A_n \in B(H)$ a commuting *n*-tuple of operators. Let $c = \max\{||A_j|| : 1 \le j \le n\}$. Without loss of generality we may assume that *c* is sufficiently small (it will be clear from the proof the precise condition which *c* should satisfy).

Let $V_{\alpha}: H \to K$ $(\alpha \in \mathbb{Z}^n_+)$ be the operators constructed in Lemma 6. Define $V: H \to K$ by

$$Vh = \sum_{\alpha \in \mathbb{Z}^n_+} V_{\alpha} A^{\alpha} h \qquad (h \in H).$$

We have

$$\left\|\sum_{\alpha \in \mathbb{Z}_{+}^{n}, \alpha \neq (0,...,0)} V_{\alpha} A^{\alpha}\right\| \leq \sum_{\alpha \in \mathbb{Z}_{+}^{n}, \alpha \neq (0,...,0)} (2k^{2})^{n|\alpha|} c^{|\alpha|}$$
$$= \sum_{r=1}^{\infty} (2k^{2})^{nr} c^{r} \cdot \operatorname{card} \{\alpha \in \mathbb{Z}_{+}^{n} : |\alpha| = r\} = \sum_{r=1}^{\infty} (2k^{2})^{nr} c^{r} \binom{r+n-1}{n-1}$$
$$\leq 2^{n-1} \sum_{r=1}^{\infty} 2^{r} (2k^{2})^{nr} c^{r} < 1$$

if c is sufficiently small. Then $||V - V_{0,...,0}|| < 1$, so V is a bounded operator. Since $V_{0,...0}$ is an isometry, V is bounded below and its range VH is closed.

For all $j = 1, \ldots, n$ and $h \in H$ we have

$$VA_jh = \sum_{\alpha \in \mathbb{Z}_+^n} V_\alpha A^\alpha A_j h$$

 $\mathbf{4}$

and

$$T_j Vh = \sum_{\alpha \in \mathbb{Z}_+^n} T_j V_\alpha A^\alpha h = \sum_{\alpha \in \mathbb{Z}_+^n, \alpha_j \ge 1} T_j V_{\alpha_1, \dots, \alpha_n} A^\alpha h = \sum_{\alpha \in \mathbb{Z}_+^n, \alpha_j \ge 1} V_{\alpha - e_j} A^\alpha h.$$

So $VA_j = T_jV$ (j = 1, ..., n). Hence VH is a closed subspace of K invariant for all T_j (j = 1, ..., n) and V is the similarity between the restrictions $(T_1|VH, ..., T_n|VH)$ and $(A_1, ..., A_n)$.

For n = 2 we can formulate a simpler statement.

Lemma 7. Let $T_1, T_2 \in B(K)$ be commuting surjective operators. The following statements are equivalent:

- (i) $N(T_1T_2) = N(T_1) + N(T_2);$
- (ii) $T_1N(T_2) = N(T_2);$
- (iii) $T_2N(T_1) = N(T_1).$

Proof. (i) \Rightarrow (ii): Clearly $T_1N(T_2) \subset N(T_2)$. Let $x \in N(T_2)$. Since T_1 is surjective, there exists $y \in K$ such that $T_1y = x$. Thus $T_1T_2y = 0$ and by the assumption $y = y_1 + y_2$ for some $y_1 \in N(T_1)$ and $y_2 \in N(T_2)$. Then $T_1(y - y_1) = T_1y = x$ and $T_2(y - y_1) = T_2y_2 = 0$. So $x \in T_1N(T_2)$.

(ii) \Rightarrow (i): The inclusion $N(T_1) + N(T_2) \subset N(T_1T_2)$ is always true.

Let $x \in N(T_1T_2)$. Then $T_1x \in N(T_2)$, and so there exists $y \in N(T_2)$ with $T_1y = T_1x$. Hence $x - y \in N(T_1)$ and $x = (x - y) + y \in N(T_1) + N(T_2)$.

The equivalence $(i) \Leftrightarrow (iii)$ follows from the symmetry.

Corollary 8. Let $T_1, T_2 \in B(K)$ be commuting surjective operators satisfying

- (i) dim $N(T_1) \cap N(T_2) = \infty$;
- (ii) $N(T_1T_2) = N(T_1) + N(T_2).$

Then the pair (T_1, T_2) is universal for all commuting pairs.

Examples 9. (1) Let H be a separable infinite-dimensional Hilbert space. Consider the space $K = H^2(\mathbb{Z}^n_+, H)$ consisting of all functions $f : \mathbb{Z}^n_+ \to H$ satisfying

$$\|f\|^2 := \sum_{\alpha \in \mathbb{Z}^n_+} \|f(\alpha)\|^2 < \infty.$$

The operators $T_1, \ldots, T_n \in B(K)$ are defined by

$$(T_j f)(\alpha) = f(\alpha + e_j) \qquad (\alpha \in \mathbb{Z}^n_+).$$

Clearly the operators T_1, \ldots, T_n may be interpreted as adjoints of the multiplication operators M_{z_1}, \ldots, M_{z_n} by the variables z_1, \ldots, z_n in the vector-valued Hardy space $H^2(\mathbb{D}^n, H)$, where \mathbb{D}^n is the unit polydisc in \mathbb{C}^n .

Clearly the *n*-tuple T_1, \ldots, T_n satisfies the conditions of Theorem 3, so it is universal for commuting tuples.

2. Instead of the Hardy space in the polydisc \mathbb{D}^n it is possible to consider the Hardy space $H^2(B_n, H)$ where B_n is the unit ball in \mathbb{C}^n . Again, the adjoints of multiplication operators M_{z_1}, \ldots, M_{z_n} in this space form an *n*-tuple universal for commuting tuples.

VLADIMIR MÜLLER

Both of these examples play an important role in the multivariable dilation theory — the first example in the theory of regular dilations, see e.g. [CV], and the second one in the dilation theory of spherical contractions, see e.g. [MV]. In fact both *n*-tuples are universal in a stronger sense; they contain a unitarily equivalent copy of any commuting *n*-tuple of operators on a separable Hilbert space with sufficiently small norms.

3. Non-commuting case

Definition 10. We say that an *n*-tuple $T_1, \ldots, T_n \in B(K)$ of operators is universal for all *n*-tuples if it has the following property: for each *n*-tuple $A_1, \ldots, A_n \in B(H)$ there exist a constant $c \neq 0$ and a subspace $M \subset K$ invariant for all T_1, \ldots, T_n such that the *n*-tuples (cA_1, \ldots, cA_n) and $(T_1|M, \ldots, T_n|M)$ are similar.

Theorem 11. Let $T_1, \ldots, T_n \in B(K)$ satisfy the following properties:

(i) dim
$$\bigcap_{j=1}^{n} N(T_j) = \infty$$
;

(ii) $T_j\left(\bigcap_{i\neq j} N(T_i)\right) = K$ for each $j = 1, \dots, n$.

Then the *n*-tuple (T_1, \ldots, T_n) is universal.

Proof. For j = 1, ..., n let $\hat{T}_j : K \to \bigcap_{i,i \neq j} N(T_i)$ be a right inverse of the restriction of T_j to the subspace $\bigcap_{i,i \neq j} N(T_i)$. Let $k = \max\{\|\hat{T}_j\| : j = 1, ..., n\}$.

For $r \geq 0$ let F_r be the set of all finite sequences $\alpha_r, \alpha_{r-1}, \ldots, \alpha_1$ of length r with $\alpha_j \in \{1, \ldots, n\}$. Clearly card $F_r = n^r$. Let $\mathcal{F} = \bigcup_{r=0}^{\infty} F_r$. For r = 0 the only element of F_0 will be denoted by \emptyset .

Let *H* be a separable Hilbert space and let $A_1, \ldots, A_n \in B(H)$. Write $c = \max\{||A_1|| \ldots, ||A_n||\}$. Let $V_{\emptyset} : H \to \bigcap_{j=1}^n N(T_j)$ be an isometry.

For $(\alpha_r, \ldots, \alpha_1) \in \mathcal{F}$ define the operator $V_{\alpha_r, \ldots, \alpha_1} : H \to K$ by

$$V_{\alpha_r,\ldots,\alpha_1} = \hat{T}_{\alpha_r} \cdots \hat{T}_{\alpha_1} V_{\emptyset}.$$

Then $T_j V_{\alpha_r,\dots,\alpha_1} = 0$ if $\alpha_r \neq j$. If $\alpha_r = j$ then $T_j V_{\alpha_r,\dots,\alpha_1} = V_{\alpha_{r-1},\dots,\alpha_1}$. Moreover, $||V_{\alpha_r,\dots,\alpha_1}|| \leq k^r$.

Define $V: H \to K$ by

$$Vh = \sum_{(\alpha_r, \dots, \alpha_1) \in \mathcal{F}} V_{\alpha_r, \dots, \alpha_1} A_{\alpha_1} \cdots A_{\alpha_r} h \qquad (h \in H).$$

We have

$$\|V - V_{\emptyset}\| \le \sum_{(\alpha_r, \dots, \alpha_1) \in \mathcal{F} \setminus F_0} \|V_{(\alpha_r, \dots, \alpha_1)}\|c^r \le \sum_{r=1}^{\infty} k^r n^r c^r = \frac{cnk}{1 - cnk} < 1$$

if c is small enough. So V is a bounded linear operator. Since V_{\emptyset} is an isometry, V is bounded below and its range M := VH is a closed subspace of K.

For all j and $h \in H$ we have $VA_jh = \sum_{\alpha \in \mathcal{F}} V_{\alpha_r,\dots,\alpha_1}A_{\alpha_1}\cdots A_{\alpha_r}A_jh$ and

$$T_j Vh = \sum_{(\alpha_r, \dots, \alpha_1) \in \mathcal{F}} T_j V_{\alpha_r, \dots, \alpha_1} A_{\alpha_1} \cdots A_{\alpha_r} h = \sum_{\alpha_{r-1}, \dots, \alpha_1} V_{\alpha_{r-1}, \dots, \alpha_1} A_{\alpha_1} \cdot A_{\alpha_{r-1}} A_j h.$$

So $T_j V = V A_j$. Hence M is a subspace of K invariant for all T_1, \ldots, T_n and the *n*-tuples (A_1, \ldots, A_n) and $(T_1|M, \ldots, T_n|M)$ are similar.

Example 12. Let $\mathcal{F} = \bigcup_{k=0}^{\infty} F_k$ denote as above the set of all words $\alpha = (\alpha_k, \ldots, \alpha_1)$ with $\alpha_j \in \{1, \ldots, n\}$ for all j. Consider the space K of all functions $f : \mathcal{F} \to H$ with

$$\|f\|^2 := \sum_{\alpha \in \mathcal{F}} \|f(\alpha)\|^2 < \infty$$

Define the operators $S_1, \ldots, S_n \in B(K)$ by

$$(S_j f)(\alpha_r, \dots, \alpha_1) = f(j, \alpha_r, \dots, \alpha_1) \qquad ((\alpha_r, \dots, \alpha_1) \in \mathcal{F}).$$

Then the *n*-tuple $(S_1, \ldots, S_n) \in B(K)^n$ is universal.

Again, this example plays an important role in the dilation theory for non-commuting tuples of operators, see [P].

References

- [C] S.R. Caradus, Universal operators and invariant subspaces, Proc. Amer. Math. Soc. 23 (1969), 526–527.
- [CV] R.E. CURTO, F.-H. VASILESCU, Standard operator models in the polydisc, Indiana Univ. Math. J. 42 (1993), 791–810.
- [ChP] I. CHALENDAR, J. PARTINGTON, Modern approaches to the invariant-subspace problem, Combridge Tracts in Mathematics 188, Cambridge University Press, Cambridge, 2011.
- [MV] V. MÜLLER, F.-H. VASILESCU, Standard models for some commuting multioperators, Proc. Amer. Math. Soc. 117 (1993), 979–989.
- [P] G. POPESCU, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. MAth. Soc. 316 (1989),523–536.
- [R] G.-C. ROTA, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469–472.

MATHEMATICAL INSTITUTE AV ČR, ZITNA 25, 115 67 PRAHA 1, CZECH REPUBLIC *E-mail address:* muller@math.cas.cz