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A PRODUCT OF THREE PROJECTIONS

EVA KOPECKÁ AND VLADIMÍR MÜLLER

Abstract. Let X and Y be two closed subspaces of a Hilbert
space. If we send a point back and forth between them by orthog-
onal projections, the iterates converge to the projection of the point
onto the intersection of X and Y by a theorem of von Neumann.

Any sequence of orthoprojections of a point in a Hilbert space
on a finite family of closed subspaces converges weakly, accord-
ing to Amemiya and Ando. The problem of norm convergence
was open for a long time. Recently Adam Paszkiewicz constructed
five subspaces of an infinite dimensional Hilbert space and a se-
quence of projections on them which does not converge in norm.
We construct three such subspaces, resolving the problem fully.
As a corollary we observe that the Lipschitz constant of certain
Whitney-type extension does in general depend on the dimension
of the underlying space.

1. Introduction

Let K be a fixed natural number and let L = {L1, . . . , LK} be
a family of K closed subspaces of a Hilbert space H. Let z0 ∈ H
and k1, k2, · · · ∈ {1, 2, . . . , K} be arbitrary. Consider the sequence of
vectors {zn} defined by

(1) zn = Pknzn−1,

where Pk denotes the orthogonal projection onto Lk. The sequence
{zn} converges weakly by a theorem of Amemiya and Ando [AA]. If
each projection appears in the sequence {Pkn} infinitely many times,
then this limit is equal to the projection of z0 onto the intersection of
all spaces in L .

If K = 2 then the sequence {zn} converges even in norm according
to a classical result of von Neumann [N].

If K ≥ 3 then additional assumptions are needed to ensure the norm-
convergence. That {zn} converges if H is finite dimensional was origi-
nally proved by Práger [Pr]; this also follows, of course, from [AA].

The first author was partially supported by Grant FWF-P23628-N18, the second
author by grant 14-07880S of GA CR and RVO:67985840.
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2 E. KOPECKÁ AND V. MÜLLER

If H is infinite dimensional, but the sequence {kn} is periodic, the
sequence {zn} converges in norm according to Halperin [Ha]. The result
was generalized to quasiperiodic sequences by Sakai [S]. Recall that
the sequence {kn} is quasiperiodic if there exists r ∈ N such that
{km, km+1, . . . , km+r} = {1, 2, . . . , K} for each m ∈ N.

The case of H infinite dimensional, K ≥ 3 and {kn} arbitrary was
open for a long time. In 2012 Paszkiewicz [P1] constructed an ingenious
example of 5 subspaces of an infinite dimensional Hilbert space and of
a sequence {zn} of the form (1) which does not converge in norm.
An important input towards the construction originates in Hundal’s
example ([H], see also [K] and [MR]) of two closed convex subsets of
an infinite dimensional Hilbert space and a sequence of alternating
projections on them which does not converge in norm.

The basic idea of Paszkiewicz was the observation, that it is possible
to move a unit vector x1 with an arbitrary precision to another unit
vector x2 orthogonal to x1 by iterating just 3 projections. This con-
struction is then used to move the initial vector x1 to x2 ⊥ x1, then
to x3 ⊥ {x1, x2} with better and better precision along quarter cir-
cles connecting an orthogonal sequence {x1, x2, . . . }. Such an iteration
certainly does not converge in norm.

There is a technical difficulty how to glue this “90-degrees” steps
together in such a way, that the next step does not interfere with the
preceding ones. In Paszkiewicz’s example of 5 projections this was
done by gluing the odd and even steps together. The cases of 3 or
4 projections were left open. The goal of this paper is to show that
it is possible to glue the Paszkiewicz “90-degrees” steps constructions
together to obtain 3 Hilbert space projections with non-convergent it-
erations. The construction of 3 projections with this property is not
straightforward. In fact, there is a paper [P2] claiming the same result,
which is apparently not correct.

Notation. LetH be a Hilbert space, andB(H) the space of bounded
linear operators from H to H. For M,N ⊂ H we denote by

∨
M the

closed linear hull of M , and by M ∨N the closed linear hull of M ∪N .
If M is a subspace and N ⊂ M then M 	 N stands for M ∩ N⊥. By
PN we denote the orthogonal projection onto the closed linear hull of
N .

For m ∈ N let Sm be the free semigroup with generators g1, . . . , gm
satisfying the relations g2j = gj (j = 1, . . . ,m). If ϕ = gir · · · gi1 ∈ Sm
(for some r ∈ N and ij ∈ {1, . . . ,m} with ij+1 6= ij for all j) and
A1, . . . , Am ∈ B(H) are projections, then we write ϕ(A1, . . . , Am) =
Air · · ·Ai1 ∈ B(H). Denote by |ϕ| = r the “length” of ϕ.
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Figure 1. Approximating v by projections of u.

2. Construction of the example

In this section, let H be a separable infinite dimensional Hilbert
space. The example is “glued” together from finite dimensional blocks.
In each of the blocks three subspaces and a finite product of projec-
tions is constructed which maps a given normalized vector u with an
arbitrary precision on a normalized vector v orthogonal to u.

This idea was already used by Hundal in [H] to construct a cone and
a half-space in H, which intersect at the origin, but such that the cor-
responding sequence of alternating nearest point mappings (although
weakly convergent to the origin) does not converge in norm. All of
Hundal’s blocks are 3-dimensional; here the dimension of the blocks
increases exponentially.

Let u and v be two orthonormal vectors. It is very easy to get from
u approximately to v be means of finitely many projections onto the
lines hj dissecting the right angle between u and v into small enough
angles.

For ε > 0 let k(ε) be the smallest positive integer k such that
(cos π

2k
)k > 1 − ε. That is, if u and v are two orthonormal vectors,

and we project u consecutively onto the lines dividing the right angle
between u and v into k angles of size π

2k
, then we land at v with error

at most ε (see Fig. 1).
Projecting onto a line can be arbitrarily approximated by iterating

projections between two subspaces intersecting at this particular line.
In Hundal’s example (see [K]) one of the spaces is always the plane
E = u ∨ v and the other is a 2-dimensional space Vj intersecting E at
hj. These 2-dimensional planes support a part of the surface of a cone.
Paszkiewicz’s ingeniously simple idea was to replace the n pieces of
2-dimensional planes Vj by an increasing family of n finite dimensional
spaces Z1 ⊂ · · · ⊂ Zn. He then replaced the projections onto these
spaces by projections onto the largest space X = Zn and its suitable
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small variation Y . Lo and behold, instead of projecting onto several
spaces, Paszkiewicz is projecting just onto three of them: E, X, and
Y . In what follows, we significantly refine this construction in order
to be able at the end to glue together the “90-degree” steps to just 3
resulting subspaces instead of Paszkiewicz’s 5.

The first statement of the next lemma is taken from [P1]; we supply
a slightly different proof.

Lemma 2.1. Let ε > 0. Then there exists ϕε ∈ Sk(ε)+1 with the
following properties:

(i) if u ∈ H, ‖u‖ = 1, then there exist v ⊥ u, ‖v‖ = 1, and subspaces
Z ′1 ⊂ Z ′2 ⊂ · · · ⊂ Z ′k(ε), dimZ ′j = j+1 for all j, such that v ∈ Z ′k(ε) and∥∥ϕε(PZ′1 , . . . , PZ′k(ε) , Pu∨v)u− v∥∥ < 2ε.

(ii) Moreover, if M,R ⊂ H are finite-dimensional subspaces, u ∈
M ∩R⊥, ‖u‖ = 1, then there exist v ⊥ (M ∨R), ‖v‖ = 1 and subspaces
Z ′1 ⊂ Z ′2 ⊂ · · · ⊂ Z ′k(ε), dimZ ′j = j + 1 for all j, such that v ∈ Z ′k(ε),
Z ′k(ε) ⊥ R, and ∥∥ϕε(PZ′1 , . . . , PZ′k(ε) , PM∨v)u− v∥∥ < 2ε.

Proof. Write k := k(ε).
To prove (i), choose orthonormal vectors z0, z1, . . . , zk−1, v ∈ H or-

thogonal to u. Let E = u ∨ v.
Let ξ = π

2k
. For j = 0, . . . , k, let hj = u cos jξ + v sin jξ be the

points on the quarter circle connecting h0 = u to hk = v. We construct
inductively a rapidly decreasing sequence of nonnegative numbers α0 >
α1 > · · · > αk−1 > αk = 0 in the following way. Choose α0 ∈ (0, 1)
arbitrarily. Let 1 ≤ j ≤ k − 1 and suppose that α0, . . . , αj−1 and
subspaces Z ′1 ⊂ · · · ⊂ Z ′j−1 have already been constructed. Set

Z ′′j =
∨
{h0 + α0z0, h1 + α1z1, . . . , hj−1 + αj−1zj−1, hj}.

Since E ∩ Z ′′j = ∨hj, we have (PZ′′j PEPZ′′j )rx → Phjx for each x ∈ H
as r → ∞, by [N]. As both spaces are finite dimensional, there exists
r(j) ∈ N such that ∥∥(PZ′′j PEPZ′′j )r(j) − Phj

∥∥ < ε

k
.

Let αj > 0 be so small that

(2)
∥∥(PZ′jPEPZ′j)

r(j) − Phj
∥∥ < ε

k
,
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where

Z ′j =
∨
{h0 + α0z0, h1 + α1z1, . . . , hj−1 + αj−1zj−1, hj + αjzj}.

Suppose that Z ′1 ⊂ Z ′2 ⊂ · · · ⊂ Z ′k−1 have already been constructed.
Set formally αk = 0 and Z ′k = Z ′′k =

∨
{h0 +α0z0, h1 +α1z1, . . . , hk−1 +

αk−1zk−1, hk}. Find rk ∈ N such that (2) is true also for j = k. Then
v = hk ∈ Z ′k. Let

ϕε(PZ′1 , . . . , PZ′k , PE) = (PZ′kPEPZ′k)r(k) · · · (PZ′1PEPZ′1)
r(1).

We have∥∥ϕε(PZ′1 , . . . , PZ′k , PE)u− v
∥∥

≤
∥∥(PZ′kPEPZ′k)r(k) · · ·

(
(PZ′1PEPZ′1)

r(1) − Ph1
)
u
∥∥

+
∥∥(PZ′kPEPZ′k)r(k) · · ·

(
(PZ′2PEPZ′2)

r(2) − Ph2
)
Ph1u

∥∥+ · · ·

+
∥∥∥((PZ′kPEPZ′k)r(k) − Phk

)
Phk−1

· · ·Ph1u
∥∥∥+

∥∥Phk · · ·Ph1u− v∥∥
≤ ε
k

+ · · ·+ ε

k
+ 1−

(
cos

π

2k

)k
< 2ε.

(ii) Let M0 = M ∩ u⊥. Let H0 = (R ∨M0)
⊥. Then u ∈ H0.

Clearly, the construction of (i) can be done in H0, so we can find v ∈
(M ∨ R)⊥, ‖v‖ = 1, and subspaces Z ′1 ⊂ Z ′2 ⊂ · · · ⊂ Z ′k(ε) ⊂ H0 ⊂ R⊥,

dimZ ′j = j + 1 for all j, such that v ∈ Z ′k(ε) and∥∥ϕε(PZ′1 , . . . , PZ′k , Pu∨v)u− v∥∥ < 2ε.

All iterations in ϕε(PZ′1 , . . . , PZ′k , Pu∨v)u belong to H0 ⊂ M⊥
0 , so we

may replace Pu∨v by PM∨v, and so∥∥ϕ(PZ′1 , . . . , PZ′k , PM∨v)u− v
∥∥ =

∥∥ϕ(PZ′1 , . . . , PZ′k , Pu∨v)u− v
∥∥ < 2ε.

�

The following two corollaries will come in handy, when we will be
joining the “90-degrees” blocks into one single example.

Corollary 2.2. Let ε > 0 and let ϕε ∈ Sk(ε)+1 be the element con-
structed in Lemma 2.1. Then there exists γε ∈ (0,min{1, ε}) (depend-
ing only on ε) with the following property: if M,R ⊂ H are finite-
dimensional subspaces, u ∈ M ∩ R⊥, ‖u‖ = 1 and w ∈ R⊥, ‖w‖ = 1,
|〈u,w〉| < γε, then there exist v ⊥ (M ∨R∨w), ‖v‖ = 1 and subspaces
Z1 ⊂ Z2 ⊂ · · · ⊂ Zk(ε) ⊂ (R ∨ w)⊥, dimZj = j + 1 for all j such that
v ∈ Zk(ε), and

‖ϕε(PZ1 , . . . , PZk(ε)
, PM∨v)u− v‖ < 3ε.
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Proof. Suppose that w ∈ R⊥, ‖w‖ = 1 and |〈u,w〉| is small enough
(how small will be clear from the proof). Let k = k(ε) and v, Z ′1, . . . , Z

′
k

be as in Lemma 2.1 (ii) with v, z1, . . . , zn ⊥ w. We replace the sub-
spaces Z ′j, j = 1, . . . , k, by the subspaces

Zj =

j∨
i=0

{hi + αizi − cos(iξ)〈u,w〉w},

which are orthogonal to w. If |〈u,w〉| is small enough, then ‖PZj
−

PZ′j‖ < ε/|ϕε| for all j, hence

‖ϕε(PZ1 , . . . , PZk
, PM∨v)− ϕε(PZ′1 , . . . , PZ′k , PM∨v)‖ < ε

and by the triangle inequality∥∥ϕε(PZ1 , . . . , PZk
, PM∨v)u− v

∥∥
≤
∥∥ϕε(PZ1 , . . . , PZk

, PM∨v)u− ϕε(PZ′1 , . . . , PZ′k , PM∨v)u
∥∥

+
∥∥ϕε(PZ′1 , . . . , PZ′k , PM∨v)u− v∥∥ < 3ε.

The exact conditions on |〈u,w〉| depend on ε, k, α1, . . . , αk−1, where all
the parameters are determined by ε. �

Corollary 2.3. Let ε > 0 and let k = k(ε). Then ϕε ∈ Sk+1 and γε > 0
constructed in Corollary 2.2 have the following property: if R,M ⊂ H
are finite-dimensional subspaces, u ∈ M ∩ R⊥, ‖u‖ = 1, u′ ∈ R⊥,
‖u−u′‖ < γε, u

′ ⊥ (u′−u), then there exist v ⊥ (R∨M ∨u′), ‖v‖ = 1
and subspaces Z1 ⊂ Z2 ⊂ · · · ⊂ Zk ⊂ (R ∨ (u − u′))⊥, dimZj = j + 1
for all j such that v ∈ Zk, ‖ϕε(PZ1 , . . . , PZk

, PM∨v)u − v‖ < 3ε and
u′ = PXu, where X = Zk ∨ u′.

Proof. If u′ = u then the statement follows from Corollary 2.1. If u′ 6= u
we set w = (u′ − u)/‖u′ − u‖. Then ‖w‖ = 1, and

〈u,w〉 = 〈u− u′, w〉 = ‖u− u′‖ < γε.

If v and Z1, . . . , Zk ⊂ (R ∨ (u − u′))⊥ are constructed as in the proof
of Corollary 2.2, then∥∥ϕε(PZ1 , . . . , PZk

, PM∨v)u− v
∥∥ < 3ε.

Let X = Zk ∨ u′. Since X ⊥ (u′ − u), we have PXu = u′. �

Paszkiewicz replaced projections onto an increasing family of n finite
dimensional spaces by projections onto just two spaces: onto the largest
space in the family and onto a suitable small variation of it. Again, we
modify the proof of his result, so that we can refine it in Lemma 2.5.
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Lemma 2.4. Let Z1 ⊂ Z2 ⊂ · · · ⊂ Zk ⊂ X ⊂ H be subspaces satisfying
dimZj = j+1 for j = 1, . . . , k, dimX = k+2. Let ε, δ > 0 and a > 0.
Then there exist a subspace Y ⊂ H and numbers a < s(k) < s(k−1) <
· · · < s(1) such that X ∩ Y = {0}, ‖PX − PY ‖ < δ and for each
j ∈ {1, . . . , k}, ∥∥(PXPY PX)s(j) − PZj

∥∥ < ε.

Proof. Let e0, . . . , ek+1 be an orthonormal basis in X such that e0, e1 ∈
Z1, ej ∈ Zj 	Zj−1 (2 ≤ j ≤ k), and ek+1 ∈ X 	Zk. Let w0, . . . , wk+1

be orthonormal vectors orthogonal to X. We construct Y as the linear
span of the vectors ej + βjwj, j ∈ {0, . . . , k + 1}, where βk+1 > βk >
· · · > β1 = β0 > 0 are chosen below.

Note that if Y is constructed in this way, we have for m ∈ N and
j ∈ {0, . . . , k + 1},

(3) (PXPY PX)mej =
ej

(1 + β2
j )
m
.

Then choose first βk+1 > 0 such that ‖Pek+1
− Pek+1+βk+1wk+1

‖ < δ.

Choose s(k) > a such that 1/(1 + β2
k+1)

s(k) < ε.
Inductively construct numbers

βk, s(k − 1), βk−1, s(k − 2), . . . , s(1), β1, β0 = β1
such that

βk+1 > βk > · · · > β1 = β0 > 0

a < s(k) < s(k − 1) < · · · < s(1)

1

(1 + β2
j+1)

s(j)
< ε and

∣∣∣ 1

(1 + β2
j )
s(j)
− 1
∣∣∣ < ε

for j = k, . . . , 1. If x =
∑k+1

i=0 aiei ∈ X, then by (3)∥∥(PXPY PX)s(j)x− PZj
x
∥∥2 =

∥∥k+1∑
i=0

ai
ei

(1 + β2
i )
s(j)
−

j∑
i=0

aiei
∥∥2

=

j∑
i=0

a2i

(
1− 1

(1 + β2
i )
s(j)

)2

+
k+1∑
i=j+1

a2i
1

(1 + β2
i )

2s(j)

≤ ε2
k+1∑
i=0

a2i = ε2‖x‖2.

(4)

For any z ∈ H we have

(PXPY PX)s(j)z − PZj
z = (PXPY PX)s(j)(PXz)− PZj

(PXz),

since Zj ⊂ X. Hence by (4) for j ∈ {1, . . . , k},∥∥(PXPY PX)s(j) − PZj

∥∥ < ε.
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It is easy to see that ‖PX − PY ‖ = ‖Pek+1
− Pek+1+βk+1wk+1

‖ < δ. �

The next lemma combines all the technical tools needed for the con-
struction of the example we have developed so far.

Lemma 2.5. Let ε > 0, δ > 0. Let R,M ⊂ H be finite-dimensional
subspaces, u ∈M ∩R⊥, ‖u‖ = 1, u′ ∈ R⊥, ‖u−u′‖ < γε, u

′ ⊥ (u′−u).
Then there exist v ⊥ (R∨M∨u′), ‖v‖ = 1, finite-dimensional subspaces
X, Y ⊂ R⊥, X∩Y = {0} and ψ ∈ S3 such that PXu = u′, ‖PX−PY ‖ <
δ and ∥∥ψ(PX , PY , PM∨v)u− v

∥∥ < 4ε.

Moreover, there exists v′ ∈ Y , ‖v′‖ = 1, such that PXv
′ = cv for some

c > 0, ‖v′ − v‖ < 2δ and {u, u′} ⊥ {v, v′}.
Proof. Let v, Z1, . . . , Zk and X be as in Corollary 2.3. Let e0, . . . , ek+1

be an orthonormal basis inX such that e0, e1 ∈ Z1, ej ∈ Zj	Zj−1 (2 ≤
j ≤ k), ek+1 ∈ X 	 Zk. Let w0, . . . , wk+1 be orthonormal vectors or-
thogonal to X ∨ R ∨M . As in the proof of the previous lemma, let
Y =

∨
{ei + βiwi : 0 ≤ i ≤ k + 1}, where δ

k+2
> βk+1 > · · · > β2 >

β1 = β0 > 0 are positive numbers which decrease so rapidly that

‖Pek+1
− Pek+1+βk+1wk+1

‖ < δ

and so that there exist exponents s(k) < s(k − 1) < · · · < s(1) such
that ∥∥(PXPY PX)s(j) − PZj

∥∥ < ε

|ϕε|
for j ∈ {1, . . . , k}. Then ‖PX − PY ‖ < δ. Set

ψ(PX , PY , PM∨v) = ϕε((PXPY PX)s(1), . . . , (PXPY PX)s(k), PM∨v).

Then∥∥ψ(PX , PY , PM∨v)u− v
∥∥

≤
∥∥ψ(PX , PY , PM∨v)u− ϕε(PZ1 , . . . , PZk

, PM∨v)u
∥∥

+
∥∥ϕε(PZ1 , . . . , PZk

, PM∨v)u− v
∥∥ < 4ε.

Let v =
∑k+1

i=0 νiei. Set

v′ =

∑k+1
i=0 νi(ei + βiwi)

‖
∑k+1

i=0 νi(ei + βiwi)‖
.

Then v′ ∈ Y , ‖v′‖ = 1 and PXv
′ = cv, where c = ‖

∑k+1
i=0 νi(ei +

βiwi)‖−1. Since 1 ≤ ‖
∑k+1

i=0 νi(ei+βiwi)‖ ≤ 1+δ, we have 1 ≥ c > 1−δ
and ‖v′−PXv′‖ = c‖

∑k+1
i=0 νiβiei‖ < δ. Thus 1/‖

∑k+1
i=0 νi(ei+βiwi)‖ >

1− δ, and

‖v′ − v‖ ≤ ‖v′ − PXv′‖+ ‖PXv′ − v‖ < 2δ.
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It is clear from the construction that {u, u′} ⊥ {v, v′}. �

Clearly we have lims→∞ ‖PXPY PX‖s = 0. Moreover, as in the pre-
vious lemma, we may require that s(k) = min{s(j) : 1 ≤ j ≤ k} be
arbitrarily large.

Now we are ready to prove our main result: in an infinite dimensional
Hilbert space the iterates of 3 orthoprojections do not have to converge
in norm.

Theorem 2.6. Let H be an infinite dimensional Hilbert space. There
exist three orthogonal projections P1, P2, P3 ∈ B(H), a vector z0 ∈ H
and a sequence k1, k2, · · · ∈ {1, 2, 3} such that the sequence of iterates
{zn} defined by zn = Pknzn−1 (n ∈ N) does not converge in norm.

Proof. For n ∈ N let εn = 1
2n+4 , and let γn = γεn be defined as in

Corollary 2.2.
Let u1 ∈ H, ‖u1‖ = 1. Set formally Y0 = ∨{u1} and X0 = {0}. Let

u′1 be any vector satisfying ‖u′1 − u1‖ < γ1 and u′1 ⊥ (u′1 − u1). Using
Lemma 2.5 (for R = {0} and M = ∨u1), we find X1, Y1 ⊂ H, v1 ∈ X1

and ψ1 ∈ S3 such that ‖v1‖ = 1, v1 ⊥ u1 and

‖ψ1(PX1 , PY1 , Pu1∨v1)u1 − v1‖ < 4ε1.

Let t1 ∈ N satisfy ‖(PX1PY1PX1)
t1‖ ≤ ε1.

Let v′1 ∈ Y1 satisfy ‖v′1‖ = 1, ‖v′1 − PX1v
′
1‖ ≤ ‖v′1 − v1‖ < γ2, where

PX1v
′
1 is a multiple of v1 and {u1, u′1} ⊥ {v1, v′1}.

Set u2 = v′1, u
′
2 = PX1u2 and continue the construction using Lemma 2.5.

If n ≥ 2 andX1, . . . , Xn−1, Y1, . . . , Yn−1 ⊂ H, u1, . . . , un−1, v1, . . . , vn−1,
u′1, . . . , u

′
n−1 and v′1, . . . , v

′
n−1 have already been constructed, then set

un := v′n−1, u
′
n := PXn−1un (which is a multiple of vn−1), Mn = Yn−1

and Rn =
∨n−1
j=0 (Xj ∨ Yj) 	 ∨{un, u′n}. Construct Xn, Yn ⊂ R⊥n ,

ψn ∈ S3 and vn, v
′
n ⊥ (Rn ∨ {un, u′n}) as in Lemma 2.5 such that

‖v′n − PXnv
′
n‖ ≤ ‖vn − v′n‖ < γn+1 and∥∥ψn(PXn , PYn , PYn−1∨vn)un − vn

∥∥ < 4εn.

Moreover, we require that ‖PXn − PYn‖ < εn/|ϕεn−1 | and that any
two consecutive occurrences of PYn−1∨vn in ψn(PXn , PYn , PYn−1∨vn) are

separated by (PXnPYnPXn)s, with s so large that we have ε
s/tn−2

n−2 <
εn/|ϕn|. This is possible according to the remark after the proof of
Lemma 2.5; if n = 2 then this condition is not relevant. Let tn satisfy
‖(PXnPYnPXn)tn‖ < εn. We now continue the construction.

Let Ln = Xn ∨ Yn ∨ un and L̃n = Ln 	 {un, u′n, vn, v′n}. By the
construction, L̃n ⊥

∨n−1
j=1 Lj, and if |n− j| ≥ 2, then Ln ⊥ Lj.
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Let further X̃n = L̃n ∩Xn = Xn 	 ∨{u′n, vn}.
By the construction,∥∥ψn(PXn , PYn , PYn−1∨vn)un − vn

∥∥ < 4εn.

Set X̂n = Xn ∨Xn−1 ∨Xn−2 ∨ · · · , Ŷn = Yn ∨ Yn−2 ∨ Yn−4 ∨ · · · and

Ên = vn ∨ Yn−1 ∨ Yn−3 ∨ · · ·
For each x ∈ Xn we have PYnx = PŶnx and PYn−1∨vnx = PÊn

x. Since
in the product ψn(PXn , PYn , PYn−1∨vn), both PYn and PYn−1∨vn always
follow PXn , we can replace PYn by PŶn , and PYn−1∨vn by PÊn

without
any change. So we have

(5)
∥∥ψn(PXn , PŶn , PÊn

)un − vn
∥∥ < 4εn.

Note that for n = 1 we have X̂1 = X1 and so we may replace PX1 by
PX̂1

in (5).
Let n ≥ 2. Note that in ψn two consecutive positions of PÊn

are

separated by (PXnPŶnPXn)s where s satisfies ε
s/tn−2

n−2 < εn/|ϕn|. For x ∈
Xn we have PÊn

x = PYn−1∨vnx and PX̂n
PÊn

x = PXnPÊn
x + x′ + x′′ for

some x′ ∈ X̃n−1 and x′′ ∈ ∨u′n−1. Furthermore, PŶnx
′ = 0. Moreover,

for each y ∈ Ln we have PXny = PX̂n
y and PYny = PŶny. Hence∥∥(PX̂n

PŶnPX̂n
)sPÊn

x− (PXnPŶnPXn)sPÊn
x
∥∥

≤
∥∥(PX̂n

PŶnPX̂n
)sx′′

∥∥=
∥∥(PXn−2PYn−2PXn−2)

sx′′
∥∥ < ε

s/tn−2

n−2 < εn/|ϕn|.

So ∥∥ψn(PX̂n
, PŶn , PÊn

)un − vn
∥∥

≤
∥∥ψn(PX̂n

, PŶn , PÊn
)un − ψn(PXn , PŶn , PÊn

)un
∥∥

+
∥∥ψn(PXn , PŶn , PÊn

)un − vn
∥∥ < 5εn.

Let X =
∨∞
j=1Xj, Yodd =

∨∞
j=0 Y2j+1 and Yeven =

∨∞
j=0 Y2j.

Suppose that n is even. All iterations in ψn(PX̂n
, PŶn , PÊn

)un belong
to
∨n
j=1 Lj, so we may replace PX̂n

by PX without any change. Thus∥∥ψn(PX , PŶn , PÊn
)un − vn

∥∥ < 5εn.

Similarly, we may replace PŶn by PYeven . Thus∥∥ψn(PX , PYeven , PÊn
)un − vn

∥∥ < 5εn.

Let Ẽ = Ên∨Xn+1∨Yn+3∨Yn+5∨ · · · . Then ‖PẼ−PYodd‖ = ‖PXn+1−
PYn+1‖ <

εn+1

|ϕεn |
and∥∥ψn(PX , PYeven , PẼ)un − vn

∥∥ < 5εn.
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So ∥∥ψn(PX , PYeven , PYodd)un − vn
∥∥

≤
∥∥ψn(PX , PYeven , PẼ)un − vn

∥∥+
∥∥PXn+1 − PYn+1

∥∥ · |ϕεn|
< 6εn.

Similarly, for odd n we have∥∥ψn(PX , PYodd , PYeven)un − vn
∥∥ < 6εn.

Write for short An = ψn(PX , PYeven , PXodd
) if n is even and An =

ψn(PX , PYodd , PXeven) if n is odd. So ‖Anun − vn‖ < 6εn and ‖An‖ ≤ 1
for all n. We have

‖AnAn−1 · · ·A1u1 − vn‖
≤‖An · · ·A2(A1u1 − v1)‖

+ ‖An · · ·A2(v1 − u2)‖+ ‖An · · ·A2u2 − vn‖
≤6ε1 + γ2 + ‖An · · ·A2u2 − vn‖
≤7ε1 + ‖An · · ·A2u2 − vn‖

and by induction

‖AnAn−1 · · ·A1u1 − vn‖ ≤ 7ε1 + 7ε2 + · · ·+ 7εn < 14ε1 < 1/2.

Since {vn} is an orthonormal sequence, the limit limn→∞An · · ·A1u1
does not exist. �

3. Dimension dependent constant in an extension theorem

Let L be a family of K closed subspaces of finite dimension or
codimension of a Hilbert space H. Let {zn} be a sequence of vectors
defined as in (1). It follows from [Pr], that the sequence converges
in norm. In [KKM] the following estimate of the rate of convergence,
which is sometimes called “condition (K)” (see, e.g., [DR]) was given.

Theorem 3.1. Let L be a finite family of closed subspaces of `2 of
finite dimension or codimension. Let {zi} be a sequence of projections
on the spaces in L as defined in (1). Then for all j ≤ k,

|zj − zk|2 ≤ c(K, d)(|zj|2 − |zk|2),

where the constant c(K, d) > 0 depends on the number K of the spaces
and their maximal dimension or codimension d (for each space we
choose the one which is finite) only. Consequently, the sequence {zi}
converges in norm.



12 E. KOPECKÁ AND V. MÜLLER

The main tool in [KKM] for proving the estimate above is a Whitney-
type extension theorem involving derivatives. Given two points a and
b in Rd with |b − a| = 1, there is a differentiable function Φ, so that
Φ(b) − Φ(a) = 1, and on K given affine spaces, the derivative of Φ is
parallel to these spaces. Moreover, the Lipschitz constant of Φ′ depends
on K and d only.

Theorem 3.2. Let L1, L2, . . . , LK be subspaces of Rd and L̃i their
affine translates. Let a, b ∈ Rd be two points with |b − a| = 1. There
exists a differentiable function Φ : Rd → R, so that

(i) Φ(b)− Φ(a) = 1;
(ii) Φ′(L̃i) ⊂ Li for i = 1, . . . , K;
(iii) the mapping Φ′ : Rd → Rd is Lipschitz with a constant c de-

pending on K and d only.

The question whether it is possible to choose c independently of the
dimension d was left open in [KKM]. According to [KR], if K = 2 this
is indeed the case.

In view of Theorem 2.6, for K ≥ 3 the Lipschitz constant c of Φ′

does depend on the dimension d. If c depended on K only, according
to Theorem 2.8 of [KKM] the rate of convergence as in Theorem 3.1
and hence convergence of {zn} would be available for any K closed
subspaces of any Hilbert space H. Theorem 2.6 proves that in an
infinite dimensional Hilbert space H this is not always the case.
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