INSTITUTE of MATHEMATICS

Asymptotic properties of gravitational and electromagnetic fields in higher dimensions

Marcello Ortaggio
Alena Pravdová

Preprint No. 8-2015

Asymptotic properties of gravitational and electromagnetic fields in higher dimensions

Marcello Ortaggio, Alena Pravdová
Institute of Mathematics, Academy of Sciences of the Czech Republic Žitná 25, 11567 Prague 1, Czech Republic
E-mail: ortaggio@math.cas.cz, pravdova@math.cas.cz

Abstract

. We summarize the fall-off of electromagnetic and gravitational fields in $n>5$ dimensional Ricci-flat spacetimes along an asympotically expanding non-singular geodesic null congruence.

1. Introduction

Under suitable assumptions, the well-known peeling-off property characterizes the behavior of the gravitational and electromagnetic fields at null infinity (see, e.g., [1, 2] and references therein). It has been observed [3] that the Weyl tensor peels off differently in $n>4$ dimensions. Here, we summarize our recent results $[4,5]$ on the leading-order behavior of gravitational and electromagnetic fields in higher dimensions. Ref. [4] partly recovers the results of [3] but uses a different method and different assumptions. We restrict to Ricci-flat spacetimes with suitable properties at null infinity (a cosmological constant can be included [4,5]), formulated in terms of a geodesic null vector field $\ell=\partial_{r}$ (r is an affine parameter) and of the Weyl tensor, using a "null" frame [6] based on two null vectors $\boldsymbol{m}_{(0)}=\boldsymbol{\ell}, \boldsymbol{m}_{(1)}=\boldsymbol{n}$ and $n-2$ orthonormal spacelike vectors $\boldsymbol{m}_{(i)}(i, j, \cdots=2, \ldots, n-1)$. First, we assume that the optical matrix $\rho_{i j}=\ell_{a ; b} m_{(i)}^{a} m_{(j)}^{b}$ is asymptotically non-singular and expanding $[4,5]$ (this includes asymptotically flat spacetimes [3] but also holds more generally - see [7] in four dimensions). Furthermore, we assume that the boost-weight (b.w.) +2 Weyl components $\Omega_{i j} \equiv C_{0 i 0 j}=C_{a b c d} \ell^{a} m_{(i)}^{b} \ell^{c} m_{(j)}^{d}$ fall off as

$$
\begin{equation*}
\Omega_{i j}=O\left(r^{-\nu}\right) \quad(\nu>2) \tag{1}
\end{equation*}
$$

Again, this is satisfied in asymptotically flat spacetimes [3] (e.g., $\Omega_{i j}=O\left(r^{-5}\right)$ in the 4D spacetimes of [7]). Under the above conditions, one is able to determine how the Maxwell and Weyl tensors fall off as $r \rightarrow \infty$, as we summarize in sections 2 and 3 . However, as an intermediate step, one also needs the r-dependence of the Ricci rotation coefficients and of the derivative operators [6], which is given in [4] (it follows from the Ricci identities [8], also using the commutators [9] and the Bianchi identities [10]). For example, $\rho_{i j}=\frac{\delta_{i j}}{r}+\ldots$. For brevity, in this paper, we discuss only results in $n>5$ dimensions - the case $n \geq 5$ is studied in [4,5].

2. Electromagnetic field

We start from the simpler case of test Maxwell fields in the background of an n-dimensional Ricciflat spacetime satisfying the assumptions of section 1 [5]. The gravitational field (Weyl tensor)
can be treated similarly, however, resulting in a larger number of possible cases (section 3).
In the frame of section 1, we assume that for $r \rightarrow \infty$ the Maxwell components have a powerlike behavior described by

$$
\begin{equation*}
F_{0 i}=O\left(r^{\alpha}\right), \quad F_{01}=O\left(r^{\beta}\right), \quad F_{i j}=O\left(r^{\gamma}\right), \quad F_{1 i}=O\left(r^{\delta}\right) \tag{2}
\end{equation*}
$$

The empty-space Maxwell equations $F^{a}{ }_{b ; a}=0=F_{[a b ; c]}$ (see [5,11] for their GHP and NP form) determine the possible values of α, β, γ and δ. We assume that if a generic component f behaves as $f=O\left(r^{-\zeta}\right)$ then $\partial_{r} f=O\left(r^{-\zeta-1}\right)$ and $\partial_{A} f=O\left(r^{-\zeta}\right)$. As it turns out, α can be chosen arbitrarily, giving raise to two main cases, $\alpha \geq-2$ or $\alpha<-2$. In the latter, one needs to choose whether $\gamma \geq-2$ or $\gamma<-2$, and then specify more precisely the value of α, as we detail.

2.1. Case $\alpha \geq-2$.

In this case, all components fall off at the same speed, i.e.,

$$
\begin{equation*}
F_{0 i}=O\left(r^{\alpha}\right), \quad F_{01}=O\left(r^{\alpha}\right), \quad F_{i j}=O\left(r^{\alpha}\right), \quad F_{1 i}=O\left(r^{\alpha}\right) . \tag{3}
\end{equation*}
$$

The electromagnetic field does not peel. This describes, e.g., a uniform magnetic field permeating asymptotically flat black holes [12] (or black rings [13] if $n=5$ is included, cf. [5]).

2.2. Case $\alpha<-2$.

Generically, we have

$$
\begin{align*}
& F_{0 i}=O\left(r^{\alpha}\right), \tag{4}\\
& F_{01}=o\left(r^{-2}\right), \quad F_{i j}=O\left(r^{-2}\right), \tag{5}\\
& F_{1 i}=O\left(r^{-2}\right) . \tag{6}
\end{align*}
$$

The above behavior includes the special case when ℓ is an aligned null direction of the Maxwell field, i.e., $F_{0 i}=0$ (in the formal limit $\alpha \rightarrow-\infty$). The leading term is of type II. Examples can be obtained as a "linearized" Maxwell field limit of certain full Einstein-Maxwell solutions given in [14] for even n. Several subcases are possible when $\gamma<-2$.
2.2.1. Subcase (a): $\gamma<-2$ with $1-\frac{n}{2} \leq \alpha<-2$. In this case, one has the same results as in section 2.1 above. This subcase does not exist for $n=6$.
2.2.2. Subcase (b): $\gamma<-2$ with $-\frac{n}{2} \leq \alpha<1-\frac{n}{2}$. Here, we have

$$
\begin{align*}
& F_{0 i}=O\left(r^{\alpha}\right), \tag{7}\\
& F_{01}=O\left(r^{\alpha}\right), \quad F_{i j}=O\left(r^{\alpha}\right), \tag{8}\\
& F_{1 i}=O\left(r^{1-n / 2}\right) . \tag{9}
\end{align*}
$$

The leading term falls off as $1 / r^{\frac{n}{2}-1}$ and is of type N . This is characteristic of radiative fields (note that $T_{11} \propto F_{1 i} F_{1 i} \sim 1 / r^{n-2}$ and the energy flux along ℓ can be directly related to the energy loss, at least in the case of asymptotically flat spacetimes - cf. [15-17] for $n=4$). As opposed to the well-known four-dimensional case, here, ℓ cannot be aligned with $F_{a b}$ if radiation is present (since $\alpha \geq-\frac{n}{2}$). In the case $\alpha=-\frac{n}{2}$, if one assumes that $F_{1 i}$ has a power-like behavior also at the subleading order, from the Maxwell equations, one finds $F_{1 i}=F_{1 i}^{(0)} r^{1-\frac{n}{2}}+O\left(r^{-n / 2}\right)$, which gives the peeling-off behavior

$$
\begin{equation*}
F_{a b}=\frac{N_{a b}}{r^{\frac{n}{2}-1}}+\frac{G_{a b}}{r^{\frac{n}{2}}}+\ldots \quad\left(\alpha=-\frac{n}{2}\right) . \tag{10}
\end{equation*}
$$

The subleading term is algebraically general, which is qualitatively different from the 4D case $[1,2,16,17]$. This resembles the behavior of the Weyl tensor of higher dimensional asymptotically flat spacetimes [3]. See [5] for a possible different peeling-off in five dimensions.
2.2.3. Subcase (c): $\gamma<-2$ with $2-n \leq \alpha<-\frac{n}{2}$. The same results as in section 2.1 apply.
2.2.4. Subcase (d): $\gamma<-2$ with $\alpha<2-n$. We have

$$
\begin{align*}
& F_{0 i}=O\left(r^{\alpha}\right), \tag{11}\\
& F_{01}=O\left(r^{2-n}\right), \quad \quad F_{i j}=o\left(r^{2-n}\right), \tag{12}\\
& F_{1 i}=O\left(r^{2-n}\right) \tag{13}
\end{align*}
$$

The leading term is of type II and falls off as $1 / r^{n-2}$ (it is purely electric in the subcase $F_{1 i}=o\left(r^{2-n}\right)$). This behavior includes the Coulomb field of a weakly charged asymptotically flat black hole [12, 18] (or black ring [13] if $n=5$ is included [5]). In the special subcase $F_{01}=o\left(r^{2-n}\right)$, the same results as in section 2.1 again apply (for example, for $n=5$ and $\alpha=-4$, this is the case of the weak-field limit of the 5D dipole black rings of [19]).

Let us observe that in all cases, type N fields for which $\boldsymbol{\ell}$ is aligned are not permitted [11,20].

2.3. The case of p-forms

The above results for a 2-form $F_{a b}$ can be extended easily [5] to p-form fields satisfying the generalized Maxwell equations (given in [11] in the GHP notation). In even dimensions, the special case $p=n / 2$ (including $n=4, p=2$) has unique properties. It peels off as

$$
\begin{equation*}
F_{a_{1} \ldots a_{p}}=\frac{N_{a_{1} \ldots a_{p}}}{r^{\frac{n}{2}-1}}+\frac{I I_{a_{1} \ldots a_{p}}}{r^{\frac{n}{2}}}+\ldots \quad\left(p=\frac{n}{2}\right) \tag{14}
\end{equation*}
$$

The (radiative) leading term is of type N and falls off as $1 / r^{\frac{n}{2}-1}$. In contrast to the case $p=2$ discussed above (or, in fact, any other $p \neq n / 2$), Maxwell fields of type N aligned with ℓ are now permitted [5] and the peeling (14) applies also in the presence of a cosmological constant [5]. Corresponding solutions of the full Einstein-Maxwell equations have recently been obtained [21].

3. Gravitational field

The method to be used for the Weyl tensor [4] is essentially similar, now $-\nu$ playing the role that α played above. Instead of the Maxwell equations, one has to integrate the system "Bianchi-Ricci-commutators". However, there is now extra freedom in the choice of possible boundary conditions. In particular, three possible choices for the behavior of b.w. +1 components $\Psi_{i j k}$ are possible (cases (i), (ii) and (iii) below). Once the fall-off of $\Omega_{i j}$ and $\Psi_{i j k}$ has been specified, the next step is to determine the fall-off of the b.w. 0 components $\Phi_{i j k l}$

$$
\begin{equation*}
\Phi_{i j k l}=O\left(r^{\beta_{c}}\right) \tag{15}
\end{equation*}
$$

The parameter β_{c} can then be used to label various possible subcases, which we now present.
3.1. Case (i): $\Omega_{i j}=O\left(r^{-\nu}\right), \Psi_{i j k}=O\left(r^{-\nu}\right)$

In all cases given here, we have (this will not be repeated every time below)

$$
\begin{equation*}
\Omega_{i j}=O\left(r^{-\nu}\right) \quad(\nu>2), \quad \Psi_{i j k}=O\left(r^{-\nu}\right) \tag{16}
\end{equation*}
$$

3.1.1. Subcase $(A): \beta_{c}=-2$. In this case, necessarily $\beta_{c}>-\nu$ and we have the following possible behaviors, depending on how ν is chosen (cf. [4] for a few further special subcases):

A1:

$$
\begin{align*}
& \Phi_{i j k l}=O\left(r^{-2}\right), \quad \Phi_{i j}^{S}=o\left(r^{-2}\right), \quad \Phi_{i j}^{A}=o\left(r^{-2}\right) \quad(2<\nu \leq 3), \\
& \Psi_{i j k}^{\prime}=O\left(r^{-2}\right), \tag{17}\\
& \Omega_{i j}^{\prime}=O\left(r^{\sigma}\right) \quad(-2 \leq \sigma<-1) ;
\end{align*}
$$

A2:

$$
\begin{array}{ll}
\Phi_{i j k l}=O\left(r^{-2}\right), & \Phi_{i j}^{S}=O\left(r^{-3}\right), \quad \Phi=O\left(r^{-\nu}\right), \quad \Phi_{i j}^{A}=O\left(r^{-3}\right) \quad(3<\nu<4), \\
\Psi_{i j k}^{\prime}=O\left(r^{-2}\right), & \Psi_{i}^{\prime}=O\left(r^{-3}\right), \tag{18}\\
\Omega_{i j}^{\prime}=O\left(r^{-2}\right) ;
\end{array}
$$

A3:

$$
\begin{array}{ll}
\Phi_{i j k l}=O\left(r^{-2}\right), \quad \Phi_{i j}^{S}=O\left(r^{-3}\right), \quad \Phi=O\left(r^{-4}\right), \quad \Phi_{i j}^{A}=O\left(r^{-3}\right) \quad(\nu \geq 4), \\
\Psi_{i j k}^{\prime}=O\left(r^{-2}\right), \quad \Psi_{i}^{\prime}=O\left(r^{-3}\right), \tag{19}\\
\Omega_{i j}^{\prime}=O\left(r^{-2}\right), &
\end{array}
$$

with the further restrictions $\Phi_{i j}^{S}=O\left(r^{1-\nu}\right)$ for $4 \leq \nu<5$ and $\Phi_{i j}^{S}=O\left(r^{-4}\right)$ for $\nu \geq 5$;
A4:

$$
\begin{array}{ll}
\Phi_{i j k l}=O\left(r^{-2}\right), & \Phi_{i j}^{S}=O\left(r^{1-\nu}\right), \quad \Phi=O\left(r^{-\nu}\right), \quad \Phi_{i j}^{A}=O\left(r^{-\nu}\right) \quad(\nu \geq 4, \nu \neq n), \\
\Psi_{i j k}^{\prime}=O\left(r^{-2}\right), & \Psi_{i}^{\prime}=O\left(r^{1-\nu}\right), \tag{20}\\
\Omega_{i j}^{\prime}=O\left(r^{-2}\right) ; &
\end{array}
$$

A5:

$$
\begin{align*}
& \Phi_{i j k l}=O\left(r^{-2}\right), \quad \Phi_{i j}^{S}=O\left(r^{1-n}\right), \quad \Phi_{i j}^{A}=O\left(r^{-n}\right) \quad(\nu \geq n), \\
& \Psi_{i j k}^{\prime}=O\left(r^{-2}\right), \quad \Psi_{i}^{\prime}=O\left(r^{1-n}\right), \tag{21}\\
& \Omega_{i j}^{\prime}=O\left(r^{-2}\right) .
\end{align*}
$$

None of the above five cases can describe asymptotically flat spacetimes, cf. [3]. In cases A2-A5, the leading term falls off as $1 / r^{2}$ at infinity and it is of type II(abd). In cases A3-A5, ℓ can be a multiple WAND. Examples in case A5 are Robinson-Trautman spacetime [22].

When $\beta_{c}<-2$, its precise value depends on the value of ν so that we have to consider the following possible cases.
3.1.2. Subcase (B): $\beta_{c}<-2$ with $\frac{n}{2}<\nu \leq 1+\frac{n}{2}$. In this case, $\beta_{c}=-\frac{n}{2}$ and we have

$$
\begin{align*}
& \Phi_{i j k l}=O\left(r^{-n / 2}\right), \quad \Phi=O\left(r^{-\nu}\right), \quad \Phi_{i j}^{A}=O\left(r^{-\nu}\right) \quad\left(\frac{n}{2}<\nu \leq 1+\frac{n}{2}\right), \\
& \Psi_{i j k}^{\prime}=O\left(r^{-n / 2}\right), \tag{22}\\
& \Omega_{i j}^{\prime}=O\left(r^{1-n / 2}\right) .
\end{align*}
$$

Here, $\boldsymbol{\ell}$ cannot be a WAND. The leading term at infinity falls off as $1 / r^{n / 2-1}$ and it is of type N . This includes radiative spacetimes [3] that are asymptotically flat in the Bondi
definition [23,24]. If one takes for b.w. +2 components $\nu=1+\frac{n}{2}$ and additionally assumes that $\Omega_{i j}=\Omega_{i j}^{(0)} r^{-n / 2-1}+\Omega_{i j}^{(1)} r^{-n / 2-2}+o\left(r^{-n / 2-2}\right)$, then one finds [4] the peeling-off behavior

$$
\begin{equation*}
C_{a b c d}=\frac{N_{a b c d}}{r^{n / 2-1}}+\frac{I I_{a b c d}}{r^{n / 2}}+o\left(r^{-n / 2}\right) \tag{23}
\end{equation*}
$$

This agrees with [3] for asymptotically flat spacetimes. See [3, 4] for special properties of the case $n=5$. When $\beta_{c}<-2$ but ν is not in the range $\frac{n}{2}<\nu \leq 1+\frac{n}{2}$ one has the following subcases (B^{*}) and (C).
3.1.3. Subcase $\left(B^{*}\right)$: $\beta_{c}<-2$ with $2<\nu \leq \frac{n}{2}$ or $1+\frac{n}{2}<\nu \leq n-1$. In this case, $\beta_{c}=-\nu$ and we have (cf. section IV A 5 of [4])

$$
\begin{align*}
& \Phi_{i j k l}=O\left(r^{-\nu}\right), \quad \Phi_{i j}^{A}=O\left(r^{-\nu}\right), \\
& \Psi_{i j k}^{\prime}=O\left(r^{-2}\right) \quad \text { if } 2<\nu \leq 3, \quad \Psi_{i j k}^{\prime}=O\left(r^{-\nu}\right) \quad \text { if } \nu>3, \tag{24}\\
& \Omega_{i j}^{\prime}=o\left(r^{1-\nu}\right) \quad \text { if } \nu \neq \frac{n}{2}, \quad \Omega_{i j}^{\prime}=O\left(r^{1-n / 2}\right) \quad \text { if } \nu=\frac{n}{2} .
\end{align*}
$$

Here, ℓ cannot be a WAND.
3.1.4. Subcase (C): $\beta_{c}<-2$ with $\nu>n-1$. In this case, $\beta_{c}=1-n$ and we have

$$
\begin{align*}
& \Phi_{i j k l}=O\left(r^{1-n}\right), \quad \Phi_{i j}^{A}=o\left(r^{1-n}\right) \quad(\nu>n-1), \\
& \Psi_{i j k}^{\prime}=O\left(r^{1-n}\right), \tag{25}\\
& \Omega_{i j}^{\prime}=o\left(r^{2-n}\right),
\end{align*}
$$

with $\Phi_{i j}^{A}=O\left(r^{-\nu}\right)$ for $n-1<\nu<n$ and $\Phi_{i j}^{A}=O\left(r^{-n}\right)$ for $\nu \geq n$. Here, ℓ can become a multiple WAND, cf. [25]. This includes asymptotically flat spacetimes in the case of vanishing radiation [3], such as those for which ℓ is a multiple WAND [25], e.g., the SchwarzschildTangherlini metric and Kerr-Schild spacetimes [26] with a non-degenerate Kerr-Schild vector.
3.2. Case (ii): $\Omega_{i j}=o\left(r^{-n}\right), \Psi_{i j k}=O\left(r^{-n}\right)$
3.2.1. Subcase $\beta_{c}=-2$. Generically, one has

$$
\begin{align*}
& \Omega_{i j}=o\left(r^{-n}\right), \\
& \Psi_{i j k}=O\left(r^{-n}\right), \\
& \Phi_{i j k l}=O\left(r^{-2}\right), \tag{26}\\
& \Psi_{i j k}^{\prime}=O\left(r^{-2}\right), \\
& \Phi_{i j}^{S}=O\left(r^{-4}\right), \quad \Psi_{i}^{\prime}=O\left(r^{-3}\right), \\
& \Omega_{i j}^{\prime}=O\left(r^{-2}\right) .
\end{align*}
$$

For $\Psi_{i j k}^{(n)}=0$, this case reduces to (19) (with $\nu>n$). See [4] for possible subcases.
3.2.2. Subcase $\beta_{c}=1-n$. When $\beta_{c}<-2$ then necessarily $\beta_{c}=1-n$ and generically, one has

$$
\begin{align*}
& \Omega_{i j}=o\left(r^{-n}\right), \\
& \Psi_{i j k}=O\left(r^{-n}\right), \\
& \Phi_{i j k l}=O\left(r^{1-n}\right), \tag{27}\\
& \Psi_{i j k}^{\prime}=O\left(r^{1-n}\right), \\
& \Omega_{i j}^{\prime}=o\left(r^{2-n}\right) .
\end{align*}
$$

This includes asymptotically flat spacetimes in the case of vanishing radiation [3]. For $\Psi_{i j k}^{(n)}=0$, this case reduces to (25) (with $\nu>n$).
3.3. Case (iii): $\Omega_{i j}=o\left(r^{-3}\right), \Psi_{i j k}=O\left(r^{-3}\right)$

This case cannot represent asymptotically flat spacetimes [3]. Generically, $\beta_{c}=-2$ and

$$
\begin{array}{ll}
\Omega_{i j}=O\left(r^{-\nu}\right) & (\nu>3), \\
\Psi_{i j k}=O\left(r^{-3}\right), & \Psi_{i}=o\left(r^{-3}\right), \\
\Phi_{i j k l}=O\left(r^{-2}\right), & \Phi_{i j}^{S}=O\left(r^{-3}\right), \quad \Phi=o\left(r^{-3}\right), \quad \Phi_{i j}^{A}=O\left(r^{-3}\right), \\
\Psi_{i j k}^{\prime}=O\left(r^{-2}\right), & \Psi_{i}^{\prime}=O\left(r^{-3}\right), \\
\Omega_{i j}^{\prime}=O\left(r^{-2}\right), &
\end{array}
$$

where $\Psi_{i}=O\left(r^{-\nu}\right), \Phi=O\left(r^{-\nu}\right)$ for $3<\nu \leq 4$ while $\Psi_{i}=O\left(r^{-4}\right), \Phi=O\left(r^{-4}\right)$ for $\nu>4$. Here, ℓ can be a single WAND and the asymptotically leading term is of type $\operatorname{II}(\mathrm{abd})$. For $\Psi_{i j k}^{(3)}=0$, this case reduces for $3<\nu<4$ to (18) (with $\nu>n$), for $4 \leq \nu \leq n$ to (19) and for $\nu>n$ to (26). If $\beta_{c}<-2$ then $\Phi_{i j k l}=O\left(r^{-3}\right)$ and the leading term at infinity becomes of type III(a).

Acknowledgments

The authors acknowledge support from research plan RVO: 67985840 and research grant GACR 13-10042S.

References

[1] Newman E T and Tod K P 1980 General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein vol 2 ed Held A (London and New York: Plenum Press) pp 1-36
[2] Penrose R and Rindler W 1986 Spinors and Space-Time vol 2 (Cambridge: Cambridge University Press)
[3] Godazgar M and Reall H S 2012 Phys. Rev. D 85084021
[4] Ortaggio M and Pravdová A 2014 Phys. Rev. D 90104011
[5] Ortaggio M 2014 Phys. Rev. D 90124020
[6] Ortaggio M, Pravda V and Pravdová A 2013 Class. Quantum Grav. 30013001
[7] Newman E T and Penrose R 1962 J. Math. Phys. 3 566-578 see also E. Newman and R. Penrose (1963), Errata, J. Math. Phys. 4:998.
[8] Ortaggio M, Pravda V and Pravdová A 2007 Class. Quantum Grav. 24 1657-1664
[9] Coley A, Milson R, Pravda V and Pravdová A 2004 Class. Quantum Grav. 21 L35-L41
[10] Pravda V, Pravdová A, Coley A and Milson R 2004 Class. Quantum Grav. 21 2873-2897 see also V. Pravda, A. Pravdová, A. Coley and R. Milson Class. Quantum Grav. 24 (2007) 1691 (corrigendum).
[11] Durkee M, Pravda V, Pravdová A and Reall H S 2010 Class. Quantum Grav. 27215010
[12] Aliev A N and Frolov V P 2004 Phys. Rev. D 69084022
[13] Ortaggio M and Pravda V 2006 JHEP 12054
[14] Ortaggio M, Podolský J and Žofka M 2008 Class. Quantum Grav. 25025006
[15] Penrose R 1963 Phys. Rev. Lett. 10 66-68
[16] Exton A, Newman E and Penrose R 1969 J. Math. Phys. 10 1566-1570
[17] van der Burg M 1969 Proc. R. Soc. A 310 221-230
[18] Aliev A N 2006 Phys. Rev. D 74024011
[19] Emparan R 2004 JHEP 03064
[20] Ortaggio M Proceedings of the XVII SIGRAV Conference (Torino, September 4-7, 2006) (Preprint gr-qc/ 0701036) URL http://www.sigrav.org/Material/Torino2006/Ortaggio.pdf
[21] Ortaggio M, Podolský J and Žofka M 2015 JHEP 02045
[22] Podolský J and Ortaggio M 2006 Class. Quantum Grav. 23 5785-5797
[23] Tanabe K, Tanahashi N and Shiromizu T 2010 J. Math. Phys. 51062502
[24] Tanabe K, Kinoshita S and Shiromizu T 2011 Phys. Rev. D 84044055
[25] Ortaggio M, Pravda V and Pravdová A 2009 Phys. Rev. D 80084041
[26] Ortaggio M, Pravda V and Pravdová A 2009 Class. Quantum Grav. 26025008

