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Dedicated to Václav Zizler on the occasion of his 70th birthday

Abstract. We show that if µ is a probability measure and X is a Banach space, then
the space Lebesgue-Bochner space L1(µ,X) admits an equivalent norm which is rotund
(uniformly rotund in every direction, locally uniformly rotund, or midpoint locally uniformly
rotund) if X does. We also prove that if X admits a uniformly rotund norm, then the space
L1(µ,X) has an equivalent norm whose restriction to every reflexive subspace is uniformly
rotund. This is done via the Luxemburg norm associated to a suitable Orlicz function.

1. Introduction and statement of the results

In the paper [14], Smith and Turett proved that if µ is a probability measure and X is

a Banach space, then the canonical norm of the Lebesgue-Bochner function space Lp(µ,X)

inherits the classical properties of convexity of the norm of X whenever 1 < p < +∞. Some

results of the same nature for various smoothness properties were previously established in

[9] and [10]. We notice that, since the canonical norm of the space L1(µ) is not rotund,

neither is it smooth, and this space isometrically embeds into L1(µ,X), the analogues of

the aforementioned results for p = 1 do not make sense. However, it is possible to lift some

geometrical properties of the space X to L1(µ,X) under a renorming. In [5], we constructed

an equivalent norm (namely, an Orlicz-Bochner norm) on L1(µ,X) which preserves several

properties of smoothness of the spaceX. The purpose of this work is to show that a renorming

of this type also permits to transfer the relevant properties of rotundity of the norm of X to

the space L1(µ,X).

Our notation is standard and can be found, for instance, in [2] and [3]. From now on,

let (X, ‖ · ‖) be a real Banach space. The symbols SX and BX stand for the unit sphere

and the closed unit ball in it, respectively. If (Ω,Σ, µ) is a probability space, we denote

by L1(Ω,Σ, µ;X) or simply by L1(µ,X) the Banach space made up of all (equivalence

classes of) Bochner integrable functions f : Ω −→ X, endowed with the norm ‖f‖L1(µ,X) =∫
Ω
‖f(ω)‖dµ(ω). The norm ‖ · ‖ is called rotund (R) if the unit sphere SX does not contain

any non-degenerate segment, that is, if x = y whenever x, y ∈ X and ‖(x + y)/2‖ = ‖x‖ =

‖y‖. The norm ‖ · ‖ is called uniformly rotund (UR) if, for any two sequences (xn) and (yn)
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in SX such that

lim
n→∞

‖xn + yn‖ = 2

we have limn→∞ ‖xn− yn‖ = 0. If limn→∞ ‖xn−x‖ = 0 for every x ∈ SX and every sequence

(xn) in SX such that

lim
n→∞

‖xn + x‖ = 2,

we say that ‖ · ‖ is locally uniformly rotund (LUR). The norm ‖ · ‖ is called midpoint locally

uniformly rotund (MLUR) if for each x ∈ SX and any two sequences (un) and (vn) in SX

such that

lim
n→∞

‖(un + vn)/2− x‖ = 0,

we have limn→∞ ‖un−vn‖ = 0. Finally, we say that ‖ · ‖ is uniformly rotund in every direction

(URED) if, for any two sequences (xn) and (yn) in X and every z ∈ X such that

lim
n→∞

‖xn‖ = 1, lim
n→∞

‖yn‖ = 1, lim
n→∞

‖xn + yn‖ = 2 and xn − yn = Rz for all n ∈ N,

we have limn→∞ ‖xn − yn‖ = 0.

It is easy to see that UR ⇒ LUR ⇒ MLUR ⇒ R and that UR ⇒ URED ⇒ R. It is well

known (see e.g. [2, Section IV.4]) that a Banach space admits an equivalent UR norm if,

and only if, X is super-reflexive. The class of spaces that admit an equivalent LUR norm is

very large. It includes in particular weakly countably determined spaces (see e.g. [2, Section

VII.1]). Therefore, separable spaces, reflexive spaces, and spaces of the types c0(Γ) and L1(µ),

where Γ is a set and µ is a probability measure, are LUR renormable. An easy convexity

argument (see e.g. [2, Theorem II.6.8]) yields that a Banach space X has an equivalent

URED norm if there exist a Hilbert space H and a bounded, linear and one-to-one operator

T : X → H. Thus, every separable space, the dual of every separable space and the long

James space J(η) (for every ordinal η) admit renormings of this kind. Another important

example of Banach space with an equivalent URED norm is L1(µ), where µ is a probability

measure (c.f. [2, Theorem II.7.16]).

The converses of the implications above do not hold in general, even up to renorming. The

first example of a MLUR space with no equivalent LUR renorming (a space of continuous

functions on a scattered compact space) was provided in [6]. In [1] it was shown that the

space `∞, which admits an equivalent URED norm (being the dual of a separable space),

does not have any equivalent MLUR renorming. A LUR renormable space with no equivalent

URED norm is c0(Γ), where Γ is any uncountable set (c.f. [2, Prop. II.7.9]). Another example

of LUR space that admits no equivalent URED renorming (a nonseparable reflexive space

with an unconditional basis) was constructed in [7] (c.f. [2, Theorem IV.6.5]). For a detailed

information on rotundity properties, and the applications of these notions to the Geometry

of Banach spaces we refer to the monographs [2] and [4].
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In this paper, we show that the properties of rotundity, uniform rotundity in every direc-

tion, locally uniform rotundity, and midpoint locally uniform rotundity of the norm on X

lift to L1(µ,X) under a suitable renorming. More precisely, we have the following result.

Theorem 1. Let (Ω,Σ, µ) be a probability space and let (X, ‖ · ‖) be a Banach space. Then,

there exists an equivalent norm ||| · ||| on L1(µ,X) (dependent on ‖ · ‖), such that, if ‖ · ‖ is

rotund, URED, LUR, or MLUR, then so is ||| · |||, respectively.

Since the (non-reflexive) space L1([0, 1]) does not admit any uniformly rotund norm, an

analogue of the theorem above for the property of uniform rotundity can not be achieved.

We have, however, the following result.

Theorem 2. Let (Ω,Σ, µ) be a probability space and let (X, ‖·‖) be a (superreflexive) Banach

space. If ‖ · ‖ is uniformly rotund, then the norm |||·||| on L1(µ,X) constructed in Theorem 1

is such that its restriction to every reflexive subspace of it is uniformly rotund.

We notice that the LUR case of Theorem 1 was previously established in [13] by a different

method. The approach employed there was based on the technique of Troyanski and Zizler

about LUR renorming in Banach spaces with projectional resolutions of the identity; cf. [2,

Chapter VII]. Our method provides an explicit formula for the new norm, namely, an Orlicz-

Bochner norm. Moreover, this construction preserves the lattice structure whenever X is a

Banach lattice (see [5, Remark 2.6]). Further, from the former theorems and our previous

results in [5] we can deduce that, if the norm ‖ · ‖ of the space space X has simultaneously

any of the rotundity properties considered above and some property of smoothness, then

the Orlicz-Bochner norm on L1(µ,X) is such that this norm, or the restriction of it to the

reflexive subspaces of L1(µ,X), shares the same properties of rotundity and smoothness, and

no extra averaging process is needed to get the combination of such properties. This fact

applies in particular if X is super-reflexive or if X is Asplund and simultaneously weakly

compactly generated.

2. Proofs

As we mentioned before, the renorming in the theorems above is the Orlicz-Bochner norm

associated to a suitable Orlicz function and the norm on X with the relevant properties of

rotundity. In what follows, we shall consider an Orlicz function M : R−→[0,+∞), that is, M

is a convex, even function such that M increases on [0,+∞), M(t) −→ +∞ whenever t →
+∞ and M(0) = 0. Further, we shall assume that M is Lipschitzian and twice differentiable,

and that lim
t→+∞

t2M ′′(t) ∈ (0,+∞). Examples of such functions are

M1(t) = |t| − log(1 + |t|), t ∈ R

and

M2(t) =

∫ |t|
0

arctan(s) ds, t ∈ R.
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An argument like in [8] (inequality (7) and Lemma 6) yields that, if M is an Orlicz

function satisfying the properties above, then

(2.1) M(αt) ≥ α2M(t) for all 0 < α < 1 and all t ∈ R,

and

(2.2) M(a) +M(b)− 2M

(
a+ b

2

)
≥ 1

4
M ′′(max{a, b})(b− a)2 for all a, b ≥ 0.

Now, consider the set B =
{
f ∈ L1(µ,X) :

∫
Ω
M(‖f(ω)‖)dµ(ω) ≤ 1

}
. From the properties

of M it follows that B is convex, closed, bounded, symmetric and has non-empty interior.

In particular, the Minkowski functional of B, that is, the function

(2.3) |||f ||| = inf

{
ρ > 0 :

∫
Ω

M (‖f(ω)/ρ‖) dµ(ω) ≤ 1

}
, f ∈ L1(µ,X)

defines a norm on L1(µ,X), the Luxemburg norm associated to M and ‖ · ‖. In [5, page 250],

it is shown that, if C is the Lipschitz constant of M , then

1

C
|||f ||| ≤ ‖f‖L1(µ,X) ≤

2M ′(1) + 1

M ′(1)
|||f ||| for all h ∈ L1(µ,X).(2.4)

In particular, ||| · ||| is an equivalent norm on L1(µ,X). We notice that if f ∈ L1(µ,X), then

|||f ||| = 1 if, and only if,
∫

Ω
M(‖f(ω)‖)dµ(ω) = 1. As an easy consequence of this fact and

inequality (2.1) it follows that if (fn) is a sequence in L1(µ,X) such that |||fn||| ≤ 1 for all

n ∈ N and limn→∞ |||fn||| = 1, then limn→∞
∫

Ω
M(‖fn(ω)‖)dµ(ω) = 1.

We are ready to prove our theorems.

Proof of Theorem 1. We shall prove that the norm given by equality (2.3) satisfies the re-

quired properties. First, assume that the norm ‖ · ‖ on X is rotund. We shall show that

||| · ||| is rotund as well. Pick any f, g ∈ L1(µ,X) such that |||f ||| = |||g||| = 1
2
|||f + g|||. The

convexity and monotonicity of M , together with inequality (2.2) yield

0 =

∫
Ω

M
(
‖f(ω)‖

)
dµ(ω) +

∫
Ω

M
(
‖g(ω)‖

)
dµ(ω)− 2

∫
Ω

M
(‖f(ω) + g(ω)‖

2

)
dµ(ω)

=

∫
Ω

[
M
(
‖f(ω)‖

)
+M

(
‖g(ω)‖

)
− 2M

(‖f(ω)‖+ ‖g(ω)‖
2

)]
dµ(ω)

+2

∫
Ω

[
M
(‖f(ω)‖+ ‖g(ω)‖

2

)
−M

(‖f(ω) + g(ω)‖
2

)]
dµ(ω)

≥ 1

4

∫
Ω

M ′′(max{‖f(ω)‖, ‖g(ω)‖})·
(
‖f(ω)‖ − ‖g(ω)‖

)2
dµ(ω)

+2

∫
Ω

[
M
(‖f(ω)‖+ ‖g(ω)‖

2

)
−M

(‖f(ω) + g(ω)‖
2

)]
dµ(ω).

Since the integrands in the last member of the inequality above are both non-negative,

M ′′(max{‖f(ω)‖, ‖g(ω)‖})·
(
‖f(ω)‖ − ‖g(ω)‖

)2
= 0
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and

M
(‖f(ω)‖+ ‖g(ω)‖

2

)
−M

(‖f(ω) + g(ω)‖
2

)
= 0

for almost all ω ∈ Ω. Bearing in mind that M ′′ does not vanish and that M is strictly

increasing on [0,+∞) we can conclude that

‖f(ω)‖ = ‖g(ω)‖ and ‖f(ω)‖+ ‖g(ω)‖ = ‖f(ω) + g(ω)‖

for almost all ω ∈ Ω. These equalities and the rotundity of the norm ‖ · ‖ guarantee that

f(ω) = g(ω) for almost all ω ∈ Ω. Thus, the norm ||| · ||| is rotund.

Now, suppose that the norm ‖ · ‖ on X is URED. Assume that h ∈ L1(µ,X) is given and

that (fn), (gn) are two sequences in L1(µ,X) such that limn→∞ |||fn||| = limn→∞ |||gn||| =

1, limn→∞ |||fn + gn||| = 2, and that fn − gn ∈ Rh for every N. Since M is Lipschitzian,

from (2.4) it easily follows that
∫

Ω
M
(
‖fn(ω)‖

)
dµ(ω)−→ 1,

∫
Ω
M
(
‖gn(ω)‖

)
dµ(ω)−→ 1 and∫

Ω
M
(
‖fn(ω)+gn(ω)‖

2

)
dµ(ω)−→ 1 as n → ∞. If h(·) = 0 almost everywhere, there is nothing

to prove. From now on assume that µ
(
{ω ∈ Ω : h(ω) 6= 0}

)
> 0; then, necessarily, there

is η > 0 such that the set {ω ∈ Ω : ‖h(ω)‖ > η} has positive measure; denote this set by

Ω0. For every n ∈ N find a suitable λn ∈ R such that fn − gn = λnh. We have to show that

limn→∞ λn = 0. Assume this is not the case. Then there exists ε > 0 such that |λn| > ε (for

simplicity) for every n ∈ N.

Bearing in mind that
∫

Ω
M(‖u(ω)‖)dµ(ω) = 1 whenever u ∈ L1(µ,X) and |||u||| = 1, we

get

0 =

∫
Ω

[
M(‖fn(ω)‖) +M(‖gn(ω)‖)− 2M

(
‖fn(ω) + gn(ω)‖
|||fn + gn|||

)]
dµ(ω)

=

∫
Ω

[
M(‖fn(ω)‖) +M(‖gn(ω)‖)− 2M

(
‖fn(ω)‖+ ‖gn(ω)‖

2

)]
dµ(ω)(2.5)

+2

∫
Ω

[
M

(
‖fn(ω)‖+ ‖gn(ω)‖

2

)
−M

(
‖fn(ω) + gn(ω)‖

2

)]
dµ(ω)

+2

∫
Ω

[
M

(
‖fn(ω) + gn(ω)‖

2

)
−M

(
‖fn(ω) + gn(ω)‖
|||fn + gn|||

)]
dµ(ω).

For every n ∈ N and every ω ∈ Ω we put

an(ω) := M(‖fn(ω)‖) +M(‖gn(ω)‖)− 2M

(
‖fn(ω)‖+ ‖gn(ω)‖

2

)
and

bn(ω) := M

(
‖fn(ω) + gn(ω)‖

2

)
−M

(
‖fn(ω) + gn(ω)‖
|||fn + gn|||

)
.

According to inequality (2.2) we have for all n ∈ N

an(ω) ≥ 1

4
M ′′(max{‖fn(ω)‖, ‖gn(ω)‖})(‖fn(ω)‖ − ‖gn(ω)‖)2 for all ω ∈ Ω.
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and integrating in this inequality, we obtain

(2.6)

∫
Ω

an(ω)dµ(ω) ≥ 1

4

∫
Ω

M ′′ (max{‖fn(ω)‖, ‖gn(ω)‖}) · (‖fn(ω)‖ − ‖gn(ω)‖)2 dµ(ω)

On the other hand, as M is Lipschitz we get

bn(ω) ≥ −C(‖fn(ω)‖+ ‖gn(ω)‖)
∣∣∣∣ 1

|||fn + gn|||
− 1

2

∣∣∣∣
for some constant C > 0, for all n ∈ N and all ω ∈ Ω. Thus,

(2.7)

∫
Ω

bn(ω)dµ(ω) ≥ −C
∣∣∣∣ 1

|||fn + gn|||
− 1

2

∣∣∣∣ ∫
Ω

(‖fn(ω)‖+ ‖gn(ω)‖)dµ(ω).

Plugging (2.6) and (2.7) in (2.5) we get

0 ≥ 1

4

∫
Ω

M ′′ (max{‖fn(ω)‖, ‖gn(ω)‖}) · (‖fn(ω)‖ − ‖gn(ω)‖)2 dµ(ω)

+2

∫
Ω

[
M

(
‖fn(ω)‖+ ‖gn(ω)‖

2

)
−M

(
‖fn(ω) + gn(ω)‖

2

)]
dµ(ω)

−C
∣∣∣∣ 1

|||fn + gn|||
− 1

2

∣∣∣∣ ∫
Ω

(‖fn(ω)‖+ ‖gn(ω)‖) dµ(ω).

But, by our assumption and (2.4), we have∣∣∣∣ 1

|||fn + gn|||
− 1

2

∣∣∣∣ ∫
Ω

(‖fn(ω)‖+ ‖gn(ω)‖) dµ(ω) −→ 0 as n→∞.

Hence, taking into account that the two first integrals in the last member of the former

inequality are non-negative, it follows that∫
Ω

M ′′ (max{‖fn(ω)‖, ‖gn(ω)‖})·(‖fn(ω)‖ − ‖gn(ω‖)2 dµ(ω) −→ 0 as n→∞(2.8)

and ∫
Ω

[
M

(
‖fn(ω)‖+ ‖gn(ω)‖

2

)
−M

(
‖fn(ω) + gn(ω)‖

2

)]
dµ(ω) −→ 0 as n→∞ .(2.9)

Now, a standard trick applied to the convergences above yields an infinite set N ⊂ N such

that for almost all ω ∈ Ω,

(2.10) M ′′ (max{‖fn(ω)‖, ‖gn(ω)‖})·(‖fn(ω)‖ − ‖gn(ω‖)2 −→ 0 as N 3 n→∞

and

M

(
‖fn(ω)‖+ ‖gn(ω)‖

2

)
−M

(
‖fn(ω) + gn(ω)‖

2

)
−→ 0 as N 3 n→∞ .(2.11)

Further, using Fatou’s lemma, we have∫
Ω

lim inf
N3n→∞

(M (‖fn(ω)‖) +M (‖gn(ω)‖)) dµ(ω)

≤ lim inf
N3n→∞

∫
Ω

(M (‖fn(ω)‖) +M (‖gn(ω)‖)) dµ(ω) = 2.
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Thus lim inf
N3n→∞

[M (‖fn(ω)‖) +M (‖gn(ω)‖)] < +∞, and hence also

lim inf
N3n→∞

(‖fn(ω)‖+ ‖gn(ω)‖) < +∞(2.12)

for almost all ω ∈ Ω. Now, fix an ω ∈ Ω0 such that (2.10), (2.11) and (2.12) hold. From (2.12)

we can find an infinite set N1 ⊂ N such that the limit lim
N13n→∞

(‖fn(ω)‖+ ‖gn(ω)‖) exists

and is equal to lim inf
N3n→∞

(‖fn(ω)‖+ ‖gn(ω)‖). Thus, sup
n∈N1

(‖fn(ω)‖+ ‖gn(ω)‖) =: c < +∞.

Then (2.10) implies that

M ′′(c)
(
‖fn(ω)‖ − ‖gn(ω)‖

)2 −→ 0 as N1 3 n→∞,

and hence, bearing in mind that M ′′(c) > 0, we get lim
N13n→∞

(‖fn(ω)‖ − ‖gn(ω)‖) = 0. Find

now an infinite set N2 ⊂ N1 such that the limit lim
N23n→∞

‖fn(ω)‖ =: a exists; note that

a < +∞ and that lim
N23n→∞

‖gn(ω)‖ = a. Then, (2.11) yields that M
(

1
2
‖fn(ω) + gn(ω)‖

)
−→

M(a) as N2 3 n→∞, and since M is increasing and continuous on the interval [0,+∞) it

follows that lim
N23n→∞

‖fn(ω)+gn(ω)‖ = 2a. If a = 0, we would have that 0 = limn→∞ ‖fn(ω)−
gn(ω)‖ = limn→∞ |λn|‖h(ω)‖ ≥ ηε > 0, a contradiction; hence a > 0. Now, putting xn =

fn(ω)/a, yn = gn(ω)/a for n ∈ N2, we get that ‖xn‖ −→ 1, ‖yn‖ −→ 1 and ‖xn + yn‖ −→ 2

as N2 3 n → ∞, and xn − yn ∈ Rh(ω) for every n ∈ N. Then the URED property of the

norm ‖ · ‖ implies that

‖xn − yn‖ −→ 0, and so ‖fn(ω)− gn(ω)‖ −→ 0 as N2 3 n→∞.

But, simultaneously, we know that ‖fn(ω)− gn(ω)‖ = |λn|‖h(ω)‖ > εη > 0 for every n ∈ N;

again a contradiction. Consequently, the norm ||| · ||| is URED.

Next, assume that the norm ‖ · ‖ on X is LUR. Consider any f ∈ L1(µ,X) and any

sequence (fn) ⊂ L1(µ,X) such that |||fn||| = |||f ||| = 1 for all n ∈ N and |||f + fn||| −→ 2

as n → ∞. We have to show that |||fn − f ||| −→ 0 as n → ∞. Assume that this is not so.

Then there exists ε > 0 so that |||fn − f ||| > ε (for simplicity) for every n ∈ N. Then, using

inequality (2.1) we obtain∫
Ω

M

(
‖fn(ω)− f(ω)‖

2

)
dµ(ω) =

∫
Ω

M

(
|||fn − f |||

2
· ‖fn(ω)− f(ω)‖
|||fn − f |||

)
dµ(ω)

≥
∫

Ω

1

4
|||fn − f |||2M

(
‖fn(ω)− f(ω)‖
|||fn − f |||

)
dµ(ω)

=
1

4
|||fn − f |||2 >

ε2

4

(2.13)

for each n ∈ N. On the other hand, using the general assertions (2.10) and (2.11) for the

URED case, where gn is replaced by f , we have for almost all ω ∈ Ω,

M ′′ (max{‖f(ω)‖, ‖fn(ω)‖})·(‖f(ω)‖ − ‖fn(ω‖)2 −→ 0 as N 3 n→∞
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and

M

(
‖f(ω)‖+ ‖fn(ω)‖

2

)
−M

(
‖f(ω) + fn(ω)‖

2

)
−→ 0 as N 3 n→∞(2.14)

where N is a suitable fixed infinite subset of N. Fix for a while any ω ∈ Ω for which the

convergences above occur. Let λ(ω) ∈ [0,+∞] be an accumulation point of the sequence

(‖fn(ω)‖)n∈N . Assume that λ(ω) = +∞. Then, as limt→+∞M
′′(t) t2 ∈ (0,+∞), we have

0 = lim
N13n→∞

M ′′(max{‖f(ω)‖, ‖fn(ω)‖}
)
·
(
‖f(ω)‖ − ‖fn(ω‖

)2

= lim
N13n→∞

M ′′(‖fn(ω)‖
)
·
(
‖f(ω)‖ − ‖fn(ω)‖

)2
= lim

t→+∞
M ′′(t)

(
‖f(ω)‖ − t

)2
> 0,

where N1 is a suitable infinite subset of N . We obtained a contradiction. Therefore λ(ω)

must be a finite number. Then we get M ′′(max{‖f(ω)‖, λ(ω)
}) (
‖f(ω)‖ − λ(ω)

)2
= 0, and

so λ(ω) = ‖f(ω)‖. Consequently,

‖fn(ω)‖ −→ ‖f(ω)‖ as N 3 n→∞(2.15)

for almost all ω ∈ Ω. Thus, using (2.14), we obtain

M

(
‖f(ω) + fn(ω)‖

2

)
−→M (‖f(ω)‖) as N 3 n→∞.

But M is continuous and strictly increasing on [0,+∞), so

‖f(ω) + fn(ω)‖ −→ 2‖f(ω)‖ as N 3 n→∞ for almost every ω ∈ Ω.

Since the norm ‖ · ‖ on X is LUR, from the latter convergence and (2.15) we deduce that

‖fn(ω)− f(ω)‖ −→ 0 as N 3 n→∞ for almost every ω ∈ Ω.(2.16)

It remains to perform a final attack. In what follows we shall use ideas from the proof of

Vitali’s convergence theorem (see e.g. [11, Exercise 12.9]). Put

ϕn(ω) := M
(
‖f(ω)‖

)
+M

(
‖fn(ω)‖

)
− 2M

(
‖fn(ω)− f(ω)‖

2

)
, ω ∈ Ω, n ∈ N .

The convexity and monotonicity of M yields that

ϕn(ω) ≥M
(
‖f(ω)‖

)
+M

(
‖fn(ω)‖

)
− 2M

(
‖fn(ω)‖+ ‖f(ω)‖

2

)
≥ 0

for every ω ∈ Ω and every n ∈ N . Further, (2.15) and (2.16) imply that ϕn(ω) −→
2M
(
‖f(ω)‖

)
as N 3 n→∞ for almost all ω ∈ Ω. Hence, by Fatou’s lemma,

2 =

∫
Ω

2M (‖f(ω)‖) dµ(ω) ≤ lim inf
N3n→∞

∫
Ω

ϕn(ω)dµ(ω)

= 2− lim sup
N3n→∞

∫
Ω

2M

(
‖fn(ω)− f(ω)‖

2

)
dµ(ω),

and therefore

lim
N3n→∞

∫
Ω

M

(
‖fn(ω)− f(ω)‖

2

)
dµ(ω) = 0.
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But this contradicts inequality (2.13). We thus proved that the norm ||| · ||| is LUR.

It remains to show that if the norm ‖ · ‖ on X is MLUR, then so is |||·|||. Pick h ∈ L1(µ,X)

and two sequences (fn), (gn) in L1(µ,X) such that |||fn||| = |||gn||| = |||h||| = 1 for all n ∈ N
and |||(fn + gn)/2 − h||| −→ 0 as n → ∞. Arguing by contradiction, suppose that there is

ε > 0 such that |||fn − gn||| > ε (for simplicity) for every n ∈ N. Then, thanks to inequality

(2.1), we have

(2.17)

∫
Ω

M

(
‖fn(ω)− gn(ω)‖

2

)
dµ(ω) =

∫
Ω

M

(
|||(fn − gn)/2|||‖fn(ω)− gn(ω)‖

|||fn − gn|||

)
dµ(ω)

≥ |||(fn − gn)/2|||2 > ε2/4

for all n ∈ N.

Now, for n ∈ N set hn = 1
2
(fn + gn). We already know that the norm ||| · ||| is rotund.

Hence |||h−hn||| ≥ 1−|||hn||| > 0 for all n ∈ N. We may and do assume that |||hn−h||| < 1

for every n ∈ N. Bearing in mind that M is convex we deduce that∫
Ω

M (‖hn(ω)− h(ω)‖) dµ(ω) ≤ |||hn − h|||
∫

Ω

M

(
‖hn(ω)− h(ω)‖
|||hn − h|||

)
dµ(ω) = |||hn − h|||

for all n ∈ N. Hence, using the fact that |||hn − h||| −→ 0 as n→∞, it follows that∫
Ω

M (‖hn(ω)− h(ω)‖) dµ(ω) −→ 0 as n→∞.

Thus, there is an infinite set N ⊂ N such that

M (‖hn(ω)− h(ω)‖) −→ 0 as N 3 n→∞,

for almost all ω ∈ Ω. Consequently

(2.18) ‖(fn(ω) + gn(ω))/2− h(ω)‖ −→ 0 as N 3 n→∞,

for almost all ω ∈ Ω. For each n ∈ N and each ω ∈ Ω put

an(ω) := M(‖fn(ω)‖) +M(‖h(ω)‖)− 2M

(
‖fn(ω)‖+ ‖h(ω)‖

2

)
and

bn(ω) := M(‖gn(ω)‖) +M(‖h(ω)‖)− 2M

(
‖gn(ω)‖+ ‖h(ω)‖

2

)
.

The convexity and monotonicity of M guarantees that an(ω) ≥ 0, bn(ω) ≥ 0, and

M

(
‖(fn(ω)‖+ ‖h(ω)‖

2

)
+M

(
‖gn(ω)‖+ ‖h(ω)‖

2

)
≥ 2M

(
‖(fn(ω) + gn(ω)‖+ 2‖h(ω)‖

4

)
for all n ∈ N and all ω. Thus

(2.19)

0 ≤
∫

Ω

an(ω)dµ(ω) +

∫
Ω

bn(ω)dµ(ω)

≤ 4− 4

∫
Ω

M

(
‖(fn(ω) + gn(ω)‖+ 2‖h(ω)‖

4

)
dµ(ω)
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for all n ∈ N . On the other hand, from (2.18) we get

M

(
‖(fn(ω) + gn(ω)‖+ 2‖h(ω)‖

4

)
−→M(‖h(ω)‖) as N 3 n→∞

for almost all ω ∈ Ω. Fatou’s Lemma and (2.19) then yield that

(1 =)

∫
Ω

M
(
‖h(ω)‖

)
dµ(ω) ≤ lim inf

n−→∞

∫
Ω

M
(‖fn(ω) + gn(ω)‖+ 2‖h(ω)‖

4

)
dµ(ω).

This equality and (2.19) imply that limN3n→∞
∫

Ω
an(ω)dµ(ω) = limN3n→∞

∫
Ω
bn(ω) = 0.

Thus, there exists an infinite set N1 ⊂ N such that an(ω)→ 0 and bn(ω)→ 0 as N1 3 n→∞
for almost all ω ∈ Ω, and by (2.2),

lim
N13n→∞

M ′′(max{‖fn(ω)‖, ‖h(ω)‖}) (‖fn(ω)‖ − ‖h(ω)‖)2 = 0

and

lim
N13n→∞

M ′′(max{‖gn(ω)‖, ‖h(ω)‖}) (‖gn(ω)‖ − ‖h(ω)‖)2 = 0.

Using the same argument as in the LUR case, we deduce that

lim
N13n→∞

‖fn(ω)‖ = lim
N13n→∞

‖gn(ω)‖ = ‖h(ω)‖ for almost all ω ∈ Ω.

Since the norm ‖ · ‖ is MLUR, from these equalities and (2.18) we easily deduce that

lim
N13n→∞

‖fn(ω)− gn(ω)‖ = 0 for almost all ω ∈ Ω.

Now, imitating again Vitali’s argument, for each n ∈ N and each ω ∈ Ω we put

ϕn(ω) := M(‖fn(ω)‖) +M(‖gn(ω)‖ − 2M (‖fn(ω)− gn(ω)‖/2) .

Then ϕn(ω) ≥ 0 for all n ∈ N1 and limN13n→∞ ϕn(ω) = 2M(‖h(ω)‖) for almost all ω ∈ Ω.

Therefore, according to Fatou’s lemma, we have

(2 =)

∫
Ω

2M(‖h(ω)‖)dµ(ω) ≤ lim inf
N13n→∞

∫
Ω

ϕn(ω)dµ(ω)

= 2− 2 lim sup
N13n→∞

∫
Ω

M (‖fn(ω)− gn(ω)‖/2) dµ(ω).

We thus arrived at the equality

lim
N13n→∞

∫
Ω

M (‖fn(ω)− gn(ω)‖/2) dµ(ω) = 0,

which contradicts (2.17). Therefore, the norm ||| · ||| is MLUR, as we wanted to show. �

Now, we proceed with the proof of Theorem 2.

Proof of Theorem 2. On L1(µ,X), we still consider the norm |||·||| constructed in the proof of

Theorem 1. Let Y be a reflexive subspace of L1(µ,X). Pick any two sequences (fn) and (gn)

in L1(µ,X) such that |||fn||| = |||gn||| = 1, |||fn+gn||| −→ 2 as n→∞, and that fn, gn ∈ Y
(or more generally that just fn − gn ∈ Y ) for all n ∈ N. Arguing by contradiction, assume
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that there is ε > 0 such that |||fn − gn||| > ε (for simplicity) for all n ∈ N. This inequality

and (2.4) imply that

(2.20)

∫
Ω

||fn(ω)− gn(ω)||dµ(ω) > ε
C
.

On the other hand, because of the reflexivity of Y it follows that the set {f1−g1, f2−g2, . . .}
is uniformly integrable (see e.g. [3, p. 104]), that is, there is a δ > 0 so small that∫

A

‖fn(ω)− gn(ω)‖dµ(ω) < ε
2C

whenever n ∈ N, A ∈ Σ, and µ(A) ≤ 2(M ′(1) + 1)

M ′(1)
δ.

For n ∈ N put

An :=

{
ω ∈ Ω : ‖fn(ω)‖+ ‖gn(ω)‖ > 1

δ

}
.

According to Chebyshev’s inequality, from (2.4) it follows that

µ(An) ≤ δ

∫
An

(‖fn(ω)‖+ ‖gn(ω)‖) dµ(ω) ≤ 2M ′(1) + 1)

M ′(1)
(|||fn|||+ |||gn|||) δ

=
2(2M ′(1) + 1)

M ′(1)
δ.

Thus,

(2.21)

∫
An

‖fn(ω)− gn(ω)‖dµ(ω) < ε
2C

for each n ∈ N .

Now, define

f̃n(ω) = fn(ω), g̃n(ω) = gn(ω) if ω ∈ Ω \ An, and f̃n(ω) = g̃n(ω) = 0 if ω ∈ An.

It is clear that f̃n, g̃n ∈ L1(µ,X) for each n ∈ N. Further, we observe that for all n ∈ N and

for all ω ∈ Ω we have

0 ≤ M
(

1
2
(‖f̃n(ω)‖+ ‖g̃n(ω)‖)

)
−M

(
1
2
‖f̃n(ω) + g̃n(ω)‖

)
≤ M

(
1
2
(‖fn(ω)‖+ ‖gn(ω)‖)

)
−M

(
1
2
‖fn(ω) + gn(ω)‖

)
and

0 ≤M ′′(1
δ
)
(
‖f̃n(ω)‖ − ‖g̃n(ω)‖

)2 ≤M ′′(max{‖fn(ω‖, ‖gn(ω)‖}
)(
fn(ω)‖ − ‖gn(ω)‖

)2
.

Hence, taking into account (2.8) and (2.9) (which are at hand also in the UR case), we can

find an infinite set N ⊂ N such that for almost all ω ∈ Ω we have

M
(

1
2
(‖f̃n(ω)‖+ ‖g̃n(ω)‖)

)
−M

(
1
2
‖f̃n(ω) + g̃n(ω)‖

)
−→ 0 as N 3 n→∞

and

M ′′(1
δ
)
(
‖f̃n(ω)‖ − ‖g̃n(ω)‖

)2 −→ 0 as N 3 n→∞,

and so

‖f̃n(ω)‖ − ‖g̃n(ω)‖ −→ 0 as N 3 n→∞
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Thus, for almost all ω ∈ Ω we have that M
(
‖f̃n(ω)‖

)
− M

(
1
2
‖f̃n(ω) + g̃n(ω)‖

)
−→ 0 as

N 3 n → ∞, and, since ‖f̃n(ω)‖ + ‖g̃n(ω)‖ ≤ 1
δ

and M is increasing and continuous on

[0,+∞), we get

‖f̃n(ω) + g̃n(ω)‖ − 2‖f̃n(ω)‖ −→ 0 and ‖f̃n(ω)‖ − ‖g̃n(ω)‖ −→ 0 as N 3 n→∞(2.22)

On the other hand, it is easy to see that if (xn), (yn) are bounded sequences in a Banach

space with UR norm ‖ · ‖ and ‖xn + yn‖ − 2‖xn‖ −→ 0 and ‖xn‖ − ‖yn‖ −→ 0 as n → ∞,

then ‖xn − yn‖ −→ 0 as n → ∞. Substituting here xn := f̃n(ω) and yn := g̃n(ω), n ∈ N ,

and using (2.22) we can conclude that

‖f̃n(ω)− g̃n(ω)‖ −→ 0 as N 3 n→∞

for almost all ω ∈ Ω. Then the Lebesgue’s dominated convergence theorem guarantees that∫
Ω

‖f̃n(ω)− g̃n(ω)‖dµ(ω) −→ 0 as N 3 n→∞.(2.23)

But, because of (2.20) and (2.21) we have

ε
C

<

∫
Ω

‖fn(ω)− gn(ω)‖dµ(ω) =

∫
An

‖fn(ω)− gn(ω)‖dµ(ω) +

∫
Ω

‖f̃n(ω)− g̃n(ω)‖dµ(ω)

< ε
2C

+

∫
Ω

‖f̃n(ω)− g̃n(ω)‖dµ(ω)

for all n ∈ N . And this is in contradiction with (2.23). �

We end this paper with some comments about the possibility to achieve a combination

of properties of rotundity and smoothness on the space L1(µ,X).

Remarks:

(1) In [5, Theorem 2.1] it is shown that if M is the function M2 considered at page 4

and the norm ‖ · ‖ on the Banach space X is Gâteaux (uniformly Gâteaux) smooth,

then so is the corresponding Orlicz-Bochner norm ||| · ||| on L1(µ,X). Thus, as an

immediate consequence of this fact and Theorem 1, we deduce that if (X, ‖ · ‖) is

a Banach space whose norm is Gâteaux smooth or uniformly Gâteaux smooth, and

simultaneously rotund or URED or LUR or MLUR, then so is the norm ||| · ||| on

L1(µ,X) constructed in Theorem 1.

(2) From Theorem 3.2 in [5] we have that if the norm ‖ · ‖ on X is Fréchet (uniformly

Fréchet) smooth, then the restriction of |||·||| to every reflexive subspace of L1(µ,X) is

Fréchet (uniformly Fréchet) smooth. Combining the parenthetic part of this assertion

with Theorem 2 we get that, if X is super-reflexive, then the space L1(µ,X) admits

an equivalent norm whose restriction to every reflexive subspace is simultaneously

UR and uniformly Fréchet smooth. This fact provides a (new) proof of the Lebesgue-

Bochner counterpart of Rosenthal’s result in [12] that, if X is superreflexive, then

every reflexive subspace of L1(µ,X) is super-reflexive.
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(3) Taking into account the norm ||| · ||| preserves the LUR property, the Fréchet version

of Theorem 3.2 in [5] and [2, Theorem VII.1.14] it follows that, if the space X is

both Asplund and weakly compactly generated (in particular, if X is reflexive), then

L1(µ,X) has an equivalent LUR norm whose restriction to every reflexive subspace

is Fréchet smooth.
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