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SEPARABLE REDUCTIONS AND RICH FAMILIES IN THEORY
OF FRÉCHET SUBDIFFERENTIALS

MARIÁN FABIAN, ALEXANDER IOFFE

Abstract. In [Fabian-Ioffe13], we presented the separable reduction for a gen-
eral statement covering practically all important properties of Fréchet subdiffer-
entials, in particular: the non-emptiness of subdifferentials, the non-zeroness of
normal cones, the fuzzy calculus, and the extremal principle; all statements being
considered in Fréchet sense. As in earlier studies of various separable reduction
techniques, this was done with help of suitable cofinal families of separable sub-
spaces. In this paper we show that such reductions can be done with the help of a
subclass of cofinal families known as rich families, recently articulated (and used)
in [Borwein-Moors00], [Lindenstrauss-Preiss-Tǐser12, page 37]. The most advan-
tageous feature of rich families is that the intersection of even countably many of
them is again a rich family. This means that in case we need separable reduction
of a combination of properties and know that each of them is reducible by elements
of a certain rich family, then all we need to do is to take the intersection of rich
families associated with the properties instead of devising a new (and typically
fairly complicated) proof.

1. Prologue/warming up

It is said that a certain property P that may or may not be satisfied at elements
of e.g. a certain Banach space X is separably reducible (or separably determined)
if there is a family F of separable subspaces of X such that

⋃
F = X and for

any Y ∈ F the property P is satisfied at x ∈ Y if the ”restriction” of P to Y is
satisfied at x. (Usually it is not a problem to define the restriction of a property to
a subspace.)

The need for separable reducibility is not rare in analysis — it often leads to
substantial simplifications and sometimes is the only way to obtain a result. We refer
to [Fabian-Ioffe13] for (certainly incomplete) list of separably reducible properties
considered in the literature. Recently it has been realized that separable reduction
can be implemented with different types of families and there is one class especially
attractive as it allows to simultaneously deal with a number of different properties
or objects.
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We shall illustrate this with one of the simplest properties: continuity of a function
on a metric space. Let X be a metric space, preferably non-separable. For x ∈ X
and r > 0 the symbol B(x, r) will denote the open ball with center x and radius r.
Let f : X −→ (−∞,+∞) be an arbitrary function. We shall focus on recognizing
the points of X where f is continuous by using the continuity of the restrictions f�Y

of f to some separable subsets Y of X. Obviously, given a fixed point x ∈ X, then
f is continuous at x if (and only if) the restriction f |Y is continuous at x for every
separable, even just for every countable, subset x ∈ Y ⊂ X. But statements so
simple like that is not an objective of this paper. We shall rather look for separable
subsets Y ⊂ X such that for every x ∈ Y , if the restriction f |Y is continuous at x,
then the whole f is continuous at x. In order to recognize points of the continuity
of f we concentrate on the following statement: Given any infinite countable subset
C ⊂ X we look for a closed separable set C ⊂ Y ⊂ X such that for every x ∈ Y the
function f is continuous at x if (and only if) the restriction f |Y is continuous at x.
The latter statement can be called a separable reduction for the continuity of f .

Let us construct such a Y . Denote by N the set of natural numbers, by Q the
set of rational numbers, and by Q+ := Q ∩ (0,+∞) the set of positive rationals.
Denote C0 := C and assume that we already have found countable sets C0 ⊂ C1 ⊂
· · · ⊂ Cn−1 ⊂ X for some n ∈ N. For every c ∈ Cn−1 and for every r ∈ Q+ we find
a countable set c ∈ D(c, r) ⊂ B(c, r) such that diam f(B(c, r)) = diam f(D(c, r)).
Define

Cn :=
⋃ {

D(c, r) : c ∈ Cn−1, r ∈ Q+

}
;

which is clearly a countable set. Do so for every n ∈ N and set finally Y :=
⋃∞

n=0Cn;
the latter set is clearly separable. We shall show that this Y “works”. So, pick any
x ∈ Y (if there is any) such that f |Y is continuous at x. (If x ∈ Cn for some n ∈ N,
then it is rather easy to verify that f is continuous at x. However it may happen
that x ∈ Y \

⋃∞
n=0Cn and then we have to work a bit harder.) Let any ε > 0 be

given. The continuity of f |Y yields an r > 0 such that diam f
(
B(x, r)∩Y

)
< ε. We

shall show that diam f(B(x, r)) < ε and so the continuity of f at x will be proved.
So, fix any x1, x2 ∈ B(x, r). Since the latter ball is open, there is γ > 0 such that
2γ < r, that r − γ ∈ Q+, and that B(x, r − 2γ) 3 x1, x2. Find n ∈ N so big that
dist (x,Cn−1) < γ; find then c ∈ Cn−1 such that the distance between c and x is less
than γ. Thus x1, x2 ∈ B(c, r − γ), and so

|f(x1)− f(x2)| ≤ diam f(B(c, r − γ)) = diam f(D(c, r − γ))

≤ diam f(B(c, r − γ) ∩ Y ) ≤ diam f(B(x, r) ∩ Y ) < ε.

Therefore diam f(B(x, r)) < ε, and the continuity of f at x is proved.

Keeping still X and f fixed, let S be the family of all closed separable subsets in
X. Further, let C consist of all Y ∈ S such that for every x ∈ Y the function f is
continuous at x if (and only if) so is the restriction f |Y at x. The statement proved
in the preceding paragraph can be reformulated as that the family C is cofinal in S,
i.e., for every S ∈ S there is Y ∈ C such that Y ⊃ S.
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If, instead of one f , we have two functions f1, f2 : X −→ (−∞,+∞), we can
elaborate a bit the proof above to get a cofinal family C1,2 ⊂ S such that for every
Y ∈ C1,2, for every x ∈ Y , and for every i ∈ {1, 2} the function fi is continuous at x
if (and only if) the restriction fi�Y is continuous at x. However it is not clear at first
glance if we can for C1,2 take just the intersection of the two cofinal families found for
f1 and f2; we do not even know if this intersection is non-empty. This obstacle, and
other reasons, lead to consider a stronger concept, introduced in [Borwein-Moors00],
see also [Lindenstrauss-Preiss-Tǐser12, Section 3.6].

Definition 1.1. Let X be a (rather) non-separable metric [or normed] space. Let
S(X) denote the family of all closed separable subsets [closed separable subspaces]
of X. A subfamily R of S(X) is called rich if

(i) for every S ∈ S(X) there is Y ∈ R so that S ⊂ Y and

(ii) whenever Y1, Y2, . . . ∈ R and Y1 ⊂ Y2 ⊂ · · · , then Y :=
⋃∞

n=1 Yn ∈ R.

More abstractly, let T be a set and let ≺ be a (partial) order on it, i.e. ≺ is a
subset of T × T which is reflexive, symmetric and transitive, see [Engelking, page
21]. We agree that, instead of “s, t ∈≺” we will rather write “s ≺ t”. Moreover,
assume that T is (up)-directed by ≺, i.e., for every t1, t2 ∈ T there is t3 ∈ T such that
t1 ≺ t3 and t2 ≺ t3. (An example of this is T := S and ≺ :=“⊂”, see Definition 1.1.)
A subset R ⊂ T is called cofinal/dominating if for every t ∈ T there is r ∈ R such
that t ≺ r. R is called σ-complete/closed if, whenever r1 ≺ r2 ≺ · · · is an increasing
sequence in R, then there is r ∈ R such that ri ≺ r for every i ∈ N and r ≺ t
whenever t ∈ T and ri ≺ t for every i ∈ N. The set R is called rich/a club set if it
is both cofinal and σ-complete. (Note that the whole T is rich if T is σ-complete.)
Having these concepts introduced, then we can easily see that a subfamily R ⊂ S
is rich in the sense of Definition 1.1 if and only if R is rich in the partially ordered
up-directed family (S(X),⊂).

The power of rich families is demonstrated by the following fundamental fact (see
[Borwein-Moors00] and also [Lindenstrauss-Preiss-Tǐser12, page 37])

Proposition 1.2. The intersection of countably many rich families of a given space
is (not only non-empty but even) rich.

In the paper, we shall be dealing with families of closed subspaces of a Banach
space ordered by inclusion.

We do not know if the family C defined above is rich, that is, if C is σ-complete.
(We already showed that it is cofinal.) This can be remedied by shrinking C as
follows. Given X and f as in the beginning,

we define R as the family consisting of all Y ∈ S such that for every x ∈ Y and for
every r > 0 we have that diam f(B(x, r)) = diam f(B(x, r) ∩ Y ).

Clearly, R ⊂ C. The cofinality of R can be verified similarly as that of C. It remains
to check the σ-completeness of R. Let Y1, Y2, . . . and Y be as in (ii) of Definition 1.1.
Fix any x ∈ Y and any r > 0. Consider any x1, x2 ∈ B(x, r). Find γ > 0 so small
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that 2γ < r and that B(x, r− 2γ) 3 x1, x2. Find n ∈ N so big that dist (x, Yn) < γ;
find then y ∈ Yn such that the distance between x and y is less than γ. Thus
x1, x2 ∈ B(y, r − γ). As Yn ∈ R and y ∈ Yn, we have that

|f(x1)− f(x2)| ≤ diam f(B(y, r − γ))

= diam f(B(y, r − γ) ∩ Yn) ≤ f(B(x, r) ∩ Y ).

Therefore diam f(B(x, r)) = diam f(B(x, r) ∩ Y ), and so Y ∈ R.
Thus, if we have two or even countably many functions, then by taking the in-

tersection of the corresponding rich families, we immediately get a rich family that
insures separable reduction of continuity simultaneously for all the functions.

This explains substantial advantage of dealing with rich families when we need
separable reduction. Typically a cofinal family can do the job for an individual
object or property. But when we need simultaneous reduction of a number of them
and have a rich family for each one, then all we have to do is to take the intersection
of all these rich families instead of devising a special proof in case our families are
only cofinal.

2. Primal representation of Fréchet subdifferentiability

Here we wish to construct rich families for separable reduction of various prop-
erties associated with Fréchet subdifferentiability. In pursuing this goal we shall
follow the traditional approach going back to [Preiss84], [Fabian-Zhivkov85] (see
also [Fabian89], [Penot10], [Ioffe11], and [Fabian-Ioffe13]), whose first step is ”pri-
mal” (not involving anything associated with the dual space) characterization of the
desired property.

Let (X, ‖ · ‖) be a Banach space, let f : X −→ (−∞,+∞] be a proper function,
and let x ∈ X be an element of its domain, i.e., f(x) < +∞. We say that f Fréchet
subdifferentiable at x if there are an element x∗ of the dual space X∗ and a function

o : [0,+∞) −→ [0,+∞) such that 0(t)
t
→ 0 as t ↓ 0 and

f(x+ h)− f(x)− 〈x∗, h〉 > −o(‖h‖)
holds for every non-zero h ∈ X. The (possibly empty) set of all x∗’s for which the
above holds with a suitable function o(·) is called the Fréchet subdifferential of f at
x.

Let k ∈ N, let X,X1, . . . , Xk be (rather) non-separable Banach spaces, and let
Ai : Xi → X, i = 1, . . . , k, be bounded linear operators. The statement below is a
slight extension of [Fabian-Ioffe13, Lemma 2.1].

Proposition 2.1. Let c ≥ 0, ε1 > 0, . . . , εk > 0, ρ1 ≥ 0, . . . , ρk ≥ 0 be given
constants and let ϕ : X −→ (−∞,+∞] be a convex function, with ϕ(0) < +∞.
Then the following two assertions are equivalent:

(i) There exist ε′i ∈ (0, εi), i = 1, . . . , k, and (w1, . . . wk) ∈ SX1 × · · · × SXk
such

that
ϕ(x) ≥ ϕ(0)− c

∥∥x−∑
Aixi

∥∥−∑
ε′i‖xi‖ −

∑
ρi‖xi − wi‖+

∑
ρi
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holds for all (x, x1, . . . , xk) ∈ X ×X1 × · · · ×Xk.

(ii) There exists x∗ ∈ ∂ϕ(0) such that ‖x∗‖ ≤ c and
∣∣‖A∗

ix
∗‖ − ρi

∣∣ < εi for every
i = 1, . . . , k.

Proof. (Above and below,
∑

means
∑k

i=1.) Assume (ii) holds. Find ε′i ∈ (0, εi) so
that

∣∣‖A∗
ix

∗‖ − ρi

∣∣ < ε′i for every i = 1, . . . , k. For each i find a norm attaining
w∗

i ∈ X∗
i such that ‖w∗

i ‖ = ρi and ‖A∗
ix

∗−w∗
i ‖ < ε′i. Take finally a wi ∈ SXi

so that
‖w∗

i ‖ = 〈w∗
i , wi〉. Then for all (x, , x1, . . . , xk) ∈ X ×X1 × · · · ×Xk we have

ϕ(x) ≥ ϕ(0) + 〈x∗, x〉 = ϕ(0) +
〈
x∗, x−

∑
Aixi〉

+
∑〈

A∗
ix

∗ − w∗
i , xi

〉
+

∑〈
w∗

i , xi − wi

〉
+

∑
〈w∗

i , wi〉

≥ ϕ(0)− c
∥∥∥x−∑

Aixi

∥∥∥−∑
ε′i‖xi‖ −

∑
ρi‖xi − wi‖+

∑
ρi.

Assume that (i) holds. Set

ψ(x, x1, . . . , xk) := ϕ(x) + c
∥∥x−∑

Aixi

∥∥ +
∑
ε′i‖xi‖+

∑
ρi‖xi − wi‖ −

∑
ρi.

Then
ψ(x, x1, . . . , xk) ≥ ϕ(0) = ψ(0, 0, . . . , 0)

for all x ∈ X and for all (x1, . . . , xk) ∈ X1× · · · ×Xk. Thus, by Moreau-Rockafellar
theorem [Phelps93, page 47], there are x∗ ∈ ∂ϕ(0), ξ ∈ cBX∗ , and further, for
i = 1, . . . , k, there are ξi ∈ ε′iBX∗

i
and w∗

i ∈ X∗
i , with 〈w∗

i , wi〉 = ‖w∗
i ‖ = ρi, such

that

(0, 0, . . . , 0) = (x∗, 0, . . . , 0) + (ξ,−A∗
1ξ, . . . ,−A∗

i ξ) + (0, ξ1, . . . , ξk) + (0, w∗
1, . . . , w

∗
k).

Hence, 0 = x∗ + ξ and A∗
i ξ = ξi + w∗

i for i = 1, . . . , k. Therefore, ‖x∗‖ ≤ c and∣∣‖A∗
i ξ‖ − ρi

∣∣ =
∣∣‖A∗

i ξ‖ − ‖w∗
i ‖

∣∣ ≤ ∥∥A∗
i ξ − w∗

i

∥∥ = ‖ξi‖ ≤ ε′i < εi

for every i = 1, . . . , k. �

The proposition above gives us the key instrument for finding the necessary primal
characterization of Fréchet subdifferentiability and several associated properties.

Let us call data any triple d = (c, ε, ρ) such that c ≥ 0, ε = (ε1, . . . , εk) ∈
(0,+∞)k, and ρ = (ρ1, . . . , ρk) ∈ [0,+∞)k. To begin with, we define for any given
data d and any w = (w1, . . . , wk) ∈ SX1 × · · · × SXk

the function

pd,w(h, x1, . . . , xk) := c
∥∥h−∑

Aixi

∥∥ +
∑
εi‖xi‖+

∑
ρi‖xi − wi‖ −

∑
ρi,

where (h, x1, . . . , xk) ∈ X × X1 × · · · × Xk are the arguments of the function and
and d and w are parameters changing within the indicated limits. For any fixed d
and w this is a convex continuous function, equal to zero at (0, 0, . . . , 0). Moreover
for u = (u1, . . . , uk) ∈ SX1 × · · · × SXk

we have

(2.1) pd,w(h, x1, . . . , xk)− pd,u(h, x1, . . . , xk) ≤
∑
ρi‖wi − ui‖.

We need more notation for the statements below. Namely, we denote
• by ∆ the collection of all sequences δ = (δn) ∈ (0,+∞)ω such that δ1 ≥ δ2 ≥ · · · ;
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• by Λ the collection of all sequences λ = (λn) ∈ [0,+∞)ω such that
∑∞

n=1 λn = 1
and {n ∈ N : λn > 0} is a finite set;
• by Υ the collection of all (νn) ∈ Nω such that {n ∈ N : νn 6= 1} is a finite set;
• and, given ν = (νn) ∈ Υ and δ = (δn) ∈ ∆, we denote by H(ν, δ) the collection of
all sequences (hn) in X such that ‖hn‖ < δνn for every n ∈ N.

The next proposition offers the desired primal characterization. It translates the
non-emptiness of Fréchet subdifferential (even a subtler fact) completely into terms
of the space X. The proof of the proposition repeats word for word the proof of
[Fabian-Ioffe13, Lemma 2.2] if we replace the reference to [Fabian-Ioffe13, Lemma
2.1] by the reference to Proposition 2.1, so we omit it.

Proposition 2.2. Consider a proper function f : X −→ (−∞,+∞] and fix x ∈ X
such that f(x) < +∞. Then, given data d = (c, ε, ρ), the following two assertions
are equivalent:

(i) There exist ε′i ∈ (0, εi), i = 1, . . . , k, w := (w1, . . . , wk) ∈ SX1 × . . . × SXk
,

and a sequence δ := (δ1, δ2, . . .) ∈ ∆ ∩Qω such that for d′ := (c, ε′, ρ) the inequality

∞∑
n=1

λn

(
f(x+ hn) +

1

νn

‖hn‖
)

+ pd′,w

( ∞∑
n=1

λnhn, x1, . . . , xk

)
≥ f(x)(2.2)

holds whenever x1, . . . , xk ∈ X1 × · · · ×Xk, (λn) ∈ Λ, ν ∈ Υ, and (hn) ∈ H(ν, δ).

(ii) There exists x∗ ∈ ∂Ff(x) such that ‖x∗‖ ≤ c and
∣∣‖A∗

ix
∗‖− ρi

∣∣ < εi for every
i = 1, . . . , k.

Our aim is to find a rich family that could be used for a separable reduction of
(ii). It is the first property (i) of the proposition that equips us with a suitable
instrument for constructing such family.

3. Rich families associated with (i) in Proposition 2.2

Let k,X,X1, . . . , Xk, A1, . . . Ak have the same meaning as before. By a block we
understand any product Y × Y1 × · · · × Yk where Y, Y1, . . . , Yk are subspaces of
X,X1, . . . , Xk, respectively. Any F ⊂ S(X × X1 × · · · × Xk) whose elements are
blocks is called a block-family. For every block Y := Y × Y1 × · · · × Yk, every
x ∈ Y , every λ = (λn) ∈ Λ, every ν = (νn) ∈ Nω, every δ = (δn) ∈ ∆, every data
d = (c, ε, ρ) ∈ [0,+∞) × (0,+∞)k × [0,+∞)k and every w ∈ SX1 × · · · × SXk

we
denote by I(x, λ, ν, δ, d, w,Y) the following (possibly infinite) quantity

inf
{ ∞∑

n=1

λn

(
f(x+ hn)+

1

νn

‖hn‖
)

+ pd,w

( ∞∑
n=1

λnhn, x1, . . . , xk

)
:

(hn) ∈ H(ν, δ) ∩ Y ω, (x1, . . . , xk) ∈ Y1 × · · · × Yk

}
.(3.1)

If Y = X and Yi = Xi for all i = 1, . . . , k, we write just I(x, λ, ν, δ, d, w). With this
notation, (2.2) reads as I(x, λ, ν, δ, d, w) ≥ f(x).
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For λ = (λn) ∈ Λ, ν = (νn) ∈ Nω, and d = (c, ε, ρ) ∈ [0,+∞) × (0,+∞)k ×
[0,+∞)k we define the block-family Rλ,ν,d as that consisting of all blocks Y :=
Y × Y1 × · · · × Yk ∈ S(X ×X1 × · · · ×Xk) such that

A1(Y1) ⊂ Y, . . . , Ak(Yk) ⊂ Y(3.2)

and that for all x ∈ Y, δ ∈ ∆ ∩Qω, and w ∈ SY1 × · · · × SYk

(3.3) I(x, λ, ν, δ, d, w) = I(x, λ, ν, δ, d, w,Y).

Proposition 3.1. For any λ = (λn) ∈ Λ, ν = (νn) ∈ Nω and d = (c, ε, ρ) ∈
[0,+∞)× (0,+∞)k × [0,+∞)k, the family Rλ,ν,d defined above is rich.

Proof. Fix any λ, ν and d as above and put, for simplicity, R := Rλ,ν,d. We re-denote
I(x, λ, ν, δ, d, w) and I(x, λ, ν, δ, d, w,Y), respectively, by I(x, δ, w) and I(x, δ, w,Y).
Now, for every x ∈ X, every w = (w1, . . . , wk) ∈ SX1 × . . .× SXk

, every δ ∈ ∆, and
for every m,n ∈ N we find vectors v1(x, δ, w,m) ∈ X1, . . ., vk(x, δ, w,m) ∈ Xk, and
vectors gn(x, δ, w,m) ∈ X, with ‖gn(x, δ, w,m)‖ < δνn , such that

I(x, δ, w) +
1

m
≥

∞∑
n=1

λn

(
f
(
x+ gn(x, δ, w,m)

)
+

1

νn

‖gn(x, δ, w,m)‖
)(3.4)

+ pd,w

( ∞∑
n=1

λngn(x, δ, w,m), v1(x, δ, w,m), ..., vk(x, δ, w,m)
)

if I(x, δ, w) > −∞, and

−m >
∞∑

n=1

λn

(
f
(
x+ gn(x, δ, w,m)

)
+

1

νn

‖gn(x, δ, w,m)‖
)

(3.5)

+ pd,w

( ∞∑
n=1

λngn(x, δ, w,m), v1(x, δ, w,m), . . . , vk(x, δ, w,m)
)

if I(x, δ, w) = −∞. Here, we choose the vectors vi(x, δ, w,m) and gn(x, δ, w,m) in
such a way that vi(x, δ, w,m) = vi(x, δ

′, w,m) and gn(x, δ, w,m) = gn(x, δ′, w,m)
whenever δ, δ′ ∈ ∆ and δνj

= δ′νj
for every j ∈ N such that λj > 0. By this we

guarantee that for every x ∈ X, every w ∈ SX1 × · · · × SXk
, and every m ∈ N the

set

{vi(x, δ, w,m) : i = 1, . . . , k, δ ∈ ∆∩Qω}
⋃
{gn(x, δ, w,m) : n ∈ N, δ ∈ ∆∩Qω}

is countable.
We first show that R is cofinal in S(X ×X1 × · · · ×Xk). To begin with, fix any

Z ∈ S(X) and any Zi ∈ S(Xi), i = 1, . . . , k. Choose countable dense subsets C0

in Z, C1
0 in Z1, . . . , and Ck

0 in Zk. Assume further that for some m ∈ N we have
already constructed countable sets C0 ⊂ C1 ⊂ · · · ⊂ Cm−1 ⊂ X and Ci

0 ⊂ Ci
1 ⊂

· · · ⊂ Ci
m−1 ⊂ SXi

, i = 1, . . . , k. Define then Cm as the Q-linear span of the union
of Cm−1, Ai(C

i
m−1), i = 1, . . . , k, and the set
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gn(x, δ, w,m) : n ∈ N, x ∈ Cm−1, δ ∈ ∆ ∩Qω, w ∈ C1

m−1 × · · · × Ck
m−1

}
Likewise, for any i = 1, . . . , k define the set Ci

m as the Q-linear span of the union of
Ci

m−1 and

{vi(x, δ, w,m) : i = 1, . . . , k, x ∈ Cm−1, δ ∈ ∆ ∩Qω, w ∈ C1
m−1 × · · · × Ck

m−1}.
augmented with normalized versions of its elements (that is, vectors of the form
ξ/‖ξ‖). Clearly, all these sets are still countable.

Set Y := C0 ∪ C1 ∪ · · · and Yi := Ci
0 ∪ Ci

1 ∪ · · · for every i = 1, . . . , k. Clearly,
these are closed separable subspaces and Y := Y ×Y1×· · ·×Yk ⊃ Z×Z1×· · ·×Zk We
have to show that Y belongs to R, that is, that (3.2) and (3.3) hold. The verification
of (3.2) is easy. As regards (3.3), fix any x ∈ Y , δ ∈ ∆∩Qω, and w = (w1, . . . , wk) ∈
SY1×· · ·×SYk

. Clearly, it is enough to prove that I(x, δ, w) ≥ I(x, δ, w,Y). Uniform
continuity of the assignment u 7→ pd,u (· · · ) (see(2.1)) allows us to assume that wi

belongs to Ci
0 ∪ Ci

1 ∪ · · · for every i = 1, . . . , k. Now, consider any (hn) ∈ H(ν, δ)
and any (x1, . . . , xk) ∈ X1 × · · · ×Xk. Put N := {n ∈ N : λn > 0}; this is a finite
set. Take an arbitrary r ∈ Q+ so small that ‖hn‖ < δνn − 2r for every n ∈ N . Find
then δ′ = (δ′n) ∈ ∆∩Qω such that δ′n ≤ δn for every n ∈ N and δ′n = δn− r if n ∈ N .
Find m ∈ N so big that w1 ∈ C1

m−1, . . . , wk ∈ Ck
m−1, and that dist (x,Cm−1) < r;

pick then ym ∈ Cm−1 such that ‖x− ym‖ < r.
We are now ready to estimate

∞∑
n=1

λn

(
f
(
ym + gn(ym, δ

′, w,m)) +
1

νn

‖gn(ym, δ
′, w,m)‖

)
(3.6)

+pd,w

( ∞∑
n=1

λngn(ym, δ
′, w,m), v1(ym, δ

′, w,m), . . . , vk(ym, δ
′, w,m)

)
≥

∞∑
n=1

λn

(
f
(
x+ (ym − x+ gn(ym, δ

′, w,m))
)

+
1

νn

‖ym − x+ gn(ym, δ
′, w,m)‖

)
+pd,w

( ∞∑
n=1

λn

(
ym − x+ gn(ym, δ

′, w,m)
)
, v1(ym, δ

′, w,m), . . . , vk(ym, δ
′, w,m)

)
−r − cr ≥ I(x, δ, w,Y)− r − cr,

the last inequality being true because vi(ym, δ
′, w,m) ∈ Cm ⊂ Y and

(
ym − x +

gn(ym, δ
′, w,m) : n ∈ N

)
∈ H(ν, δ) ∩ Y ω.

If I(ym, δ
′, w) = −∞ for infinitely many m ∈ N, then (3.5) and (3.6) imply

together that −m > I(x, δ, w,Y)− r− cr for all such m; hence I(x, δ, w,Y) = −∞,
and thus I(x, δ, w) ≥ −∞ = I(x, δ, w,Y).

Assume now that I(ym, δ
′, w) > −∞ for all sufficiently large m ∈ N. Fix one such

m, big enough to guarantee that m > 1
r
. Define h′n := hn + x − ym if n ∈ N , and
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h′n := 0 if n ∈ N \N . Then (h′n) ∈ H(ν, δ′) and we can estimate

∞∑
n=1

λn

(
f(x+ hn) +

1

νn

‖hn‖
)

+ pd,w

( ∞∑
n=1

λnhn, x1, . . . , xk

)
(3.7)

=
∞∑

n=1

λn

(
f(ym + h′n) +

1

νn

‖hn‖
)

+ pd,w

( ∞∑
n=1

λnhn, x1, . . . , xk

)
≥

∞∑
n=1

λn

(
f(ym + h′n) +

1

νn

‖h′n‖
)

+ pd,w

( ∞∑
n=1

λnh
′
n, x1, . . . , xk

)
− r − cr

≥ I(ym, δ
′, w)− r − cr

≥
∞∑

n=1

λn

(
f
(
ym + gn(ym, δ

′, w,m)
)

+
1

νn

‖gn(ym, δ
′, w,m)‖

)
+pd,w

( ∞∑
n=1

λngn(ym, δ
′, w,m), v1(ym, δ

′, w,m), . . . , vk(ym, δ
′, w,m)

)
− 1

m
− r − cr ≥ I(x, δ, w,Y)− 3r − 2cr,

by (3.4) and (3.6). Since r ∈ Q+ could be arbitrarily small, this proves that I(x, δ, w)
≥ I(x, δ, w,Y). Therefore Y ∈ R and so the property (i) from Definition 1.1 is
verified.

To prove that R is σ-complete, we have to somewhat elaborate on the above
constructions. Let Y1 = Y1 × Y 1

1 × · · · × Y k
1 , Y2 = Y2 × Y 1

2 × · · · × Y k
2 , . . . , be an

increasing sequence of elements of R. Put Y := Y × Y 1 × · · · × Y k where

Y := Y1 ∪ Y2 ∪ · · · , Y 1 := Y 1
1 ∪ Y 1

2 ∪ · · · , . . . , Y k := Y k
1 ∪ Y k

2 ∪ · · · .

We have to show that Y belongs to R. This means to verify (3.2) and (3.3).
The proof of (3.2) is straightforward. As regards (3.3), fix some x ∈ Y , δ ∈ ∆∩Qω

and w = (w1, . . . , wk) ∈ SY 1 × · · · × SY k . We have to prove that I(x, δ, w) ≥
I(x, δ, w,Y). Because the assignment u 7→ pd,u(· · · ) is uniformly continuous, we may
and do assume that w ∈ SY 1

j
×· · ·×SY k

j
for some j ∈ N. Now, take any (hn) ∈ H(ν, δ)

and any (x1, . . . , xk) ∈ X1 × · · · ×Xk. Let again N := {n ∈ N : λn > 0}; this is a
finite set. Take an arbitrary r ∈ Q+ so small that ‖hn‖ < δνn − 2r for every n ∈ N .
Find then δ′ = (δ′n) ∈ ∆ ∩Qω such that δ′n ≤ δn for every n ∈ N and δ′n = δn − r if
n ∈ N . Take m ∈ N so big that m > j and dist (x, Ym) < r; pick then ym ∈ Ym so
that ‖x − ym‖ < r. Define h′n := hn + x − ym if n ∈ N , and h′n := 0 if n ∈ N \ N .
Then (h′n) ∈ H(ν, δ′) and from the first half of (3.7) (valid also now) we have

r + cr +
∞∑

n=1

λn

(
f(x+ hn)+

1

νn

‖hn‖
)

+ pd,w

( ∞∑
n=1

λnhn, x1, . . . , xk

)
(3.8)

≥ I(ym, δ
′, w) = I(ym, δ

′, w,Ym) ≥ I(ym, δ
′, w,Y)
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since ym ∈ Y m, Ym ∈ R, and Ym ⊂ Y .
Now, consider any (kn) ∈ H(ν, δ′) ∩ Y ω and any (x′1, . . . , x

′
k) ∈ Y1 × · · · × Yk. Set

k′n := kn + ym − x if n ∈ N , and k′n := 0 if n ∈ N \ N . Then (k′n) ∈ H(ν, δ) ∩ Y ω

and we can estimate
∞∑

n=1

λn

(
f(ym + kn) +

1

νn

‖kn‖
)

+ pd,w

( ∞∑
n=1

λnkn, x
′
1, . . . , x

′
k

)
=

∞∑
n=1

λn

(
f(x+ k′n) +

1

νn

‖kn‖
)

+ pd,w

( ∞∑
n=1

λnkn, x
′
1, . . . , x

′
k

)
≥

∞∑
n=1

λn

(
f(x+ k′n) +

1

νn

‖k′n‖
)

+ pd,w

( ∞∑
n=1

λnk
′
n, x

′
1, . . . , x

′
k

)
− r − cr

≥ I(x, δ, w,Y)− r − cr.

Hence

I(ym, δ
′, w,Y) ≥ I(x, δ, w,Y)− r − cr.(3.9)

Therefore, combining (3.8) and (3.9) and recalling that r ∈ Q+ was arbitrarily small,
we conclude that I(x, δ, w) ≥ I(x, δ, w,Y). This verifies (3.3) for our Y and hence
guarantees that Y ∈ R. We proved that R is σ-complete. �

Remark 3.2. There are other rich families associated with (i). For instance we can
drop condition (3.2) in the definition of Cm. But the family so obtained cannot be
used for separable reduction of (ii) in Proposition 2.2.

4. Main result

We can now state and prove the main result of the paper.

Theorem 4.1. Let k ∈ N, let X,X1, . . . , Xk be Banach spaces, let Ai : Xi →
X, i = 1, . . . , k, be bounded linear operators, and let f be a proper extended real-
valued function on X. Let finally c ≥ 0, ε1 > 0, . . . , εk > 0, ρ1 ≥ 0, . . . , ρk ≥ 0 be
given constants. Then there exists a rich block-family R ⊂ S(X × X1 × · · · × Xk)
such that for every Y × Y1 × · · · × Yk ∈ R we have A1(Y1) ⊂ Y, . . . , Ak(Yk) ⊂ Y ,
and for every x ∈ Y the following holds:
There is an x∗ ∈ ∂Ff(x) such that ‖x∗‖ ≤ c and

∣∣‖A∗
ix

∗‖ − ρi

∣∣ < εi, i = 1, . . . , k,

whenever there is a y∗ ∈ ∂F (f |Y )(x) such that ‖y∗‖ ≤ c and
∣∣‖(Ai|Yi

)∗y∗‖ − ρi

∣∣ <
εi, i = 1, . . . , k.

Proof. Put ε := (ε1, . . . , εk), ρ := (ρ1, . . . , ρk), and d := (c, ε, ρ). For every λ ∈ Λ ∩
Qω and every ν ∈ Υ let Rλ,ν,d be the corresponding rich family from Proposition 3.1.
As there are countably many such λ and ν, the intersection R of all such families
over λ and ν is also a rich family by Proposition 1.2. This is precisely the family we
need.
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Indeed, take any Y := Y × Y1 × · · · × Yk ∈ R. Take any x ∈ Y and assume that
there is y∗ ∈ ∂F (f |Y )(x), with ‖y∗‖ ≤ c and

∣∣‖(Ai|Yi
)∗y∗‖ − ρi

∣∣ < εi, i = 1, . . . , k.
By Proposition 2.2, there are ε′i ∈ (0, εi) ∩ Q, i = 1, . . . , k, w ∈ SY1 × · · · ×
SYk

and δ ∈ ∆ ∩ Qω such that, when putting d′ := (c, (ε′1, . . . , ε
′
k), ρ), we have

I(x, λ, ν, δ, d′, w,Y) ≥ f(x) for every λ ∈ Λ and for every ν ∈ Υ. But then, by the
definition of our R and by (3.3), we have that I(x, λ, ν, δ, d′, w) ≥ f(x) for every
λ ∈ Λ∩Qω and ν ∈ Υ. Applying again Proposition 2.2, we conclude that there exists
x∗ ∈ ∂Ff(x), with ‖x∗‖ ≤ c and

∣∣‖(Ai|Yi
)∗x∗‖ − ρi

∣∣ < εi for every i = 1, . . . , k. �

All the results to follow are consequences of the theorem above.

Corollary 4.2 (Preiss-Zaj́ıček; see [Lindenstrauss-Preiss-Tǐser12]). Let X be a Ba-
nach space and f an extended real-valued function on X. Then there is a rich family
R ⊂ S(X) such that for any Y ∈ R, any x ∈ Y , and any c ≥ 0 the following two
properties are equivalent:

(a) f is Fréchet differentiable at x and ‖f ′(x)‖ ≤ c;
(b) f |Y is Fréchet differentiable at x and ‖(f |Y )′(x)‖ ≤ c.

Proof. Applying the theorem to f and X1 := · · · := Xk := {0}, we immediately get
a rich family R+ ⊂ S(X) such that for any Y ∈ R+ and any x ∈ Y we can be sure
that ∂Ff(x) contains an element with norm not greater than c if the same is true for
∂F (f |Y )(x). Likewise, applying the theorem, we find a rich family R− ⊂ S(X) with
similar properties for the function −f . It remains to set R := R+ ∩ R− and apply
Proposition 1.2 taking into account that f is Fréchet differentiable at x if (and only
if) both ∂Ff(x) and ∂F (−f)(x) are nonempty. This proves that (b) ⇒ (a). The
opposite implication is trivial. �

Theorem 4.1 is suitable for separable reductions of various statements on Fréchet
subdifferential of one function. As a very particular case of it we get the existence
of a rich family of separable subspaces that guarantees separable reduction of the
non-emptiness of Fréchet subdifferential. But Theorem 4.1 allows to say more.

Corollary 4.3. Given a Banach space X, a proper function f : X −→ (−∞,+∞],
and constants 0 ≤ δ < c, then there exists a rich family R ⊂ S(X) such that
δ < ‖x∗‖ < c for some x∗ ∈ ∂Ff(x) whenever Y ∈ R, x ∈ Y , and δ < ‖y∗‖ < c for
some y∗ ∈ ∂F (f |Y )f(x).

Proof. Let k := 1, X1 := X, and let A1 be the identity operator on X. For every
ε1 > 0, ρ1 > 0 (and our given c) let Rε1,ρ1 be the corresponding rich block-family in
S(X×X) found in Theorem 4.1. Put R0 :=

⋂ {
Rε1,ρ1 : ε1, ρ1 ∈ Q+

}
; this is again a

rich block-family in S(X×X) by Proposition 1.2. Put R1 := {Y ×Y : Y ∈ S(X)};
clearly this is a rich family in S(X ×X). Put R2 := R0 ∩ R1; this is a rich family
by Proposition 1.2. Define finally R := {Y ∈ S(X) : Y × Y ∈ R2}; it is easy to
show that this is a rich family in S(X).

It remains to verify that this R “works”. So take any Y in it, any x ∈ Y , and
assume there is y∗ ∈ ∂F (f |Y )(x) satisfying that δ < ‖y∗‖ < c. Find ε, ρ ∈ Q+



12 MARIÁN FABIAN, ALEXANDER IOFFE

such that δ < ρ − ε < ‖y∗‖ < ρ + ε < c. By Theorem 4.1, as Y ∈ Rε,ρ, there
is x∗ ∈ ∂Ff(x) such that ‖x∗‖ ≤ c and

∣∣‖x∗‖ − ρ
∣∣ < ε. It then follows that

δ < ρ− ε < ‖x∗‖ < ρ+ ε < c. �

If the f is an indicator function of a closed subset Ω of X, then we get separable
reduction (via a rich family) of non-zeroness of the Fréchet normal cone of Ω.

We can make a one step further and apply Theorem 4.1 to get the existence
of rich families for separable reduction of Fréchet subdifferentiability of composite
functions obtained by means of one or another functional operation with various
quantitative requirements on elements of Fréchet subdifferentials. The following
umbrella theorem is a gateway to many results of this sort.

Theorem 4.4. Let m ∈ N, let Z,Z1, . . . , Zm be Banach spaces, and let constants
c ≥ 0, γ > 0, εi > 0, ρi ≥ 0, proper functions fi : Zi −→ (−∞,+∞], and linear
bounded operators Λi : Z → Zi, i = 1, . . . ,m, be given. Then there exists a rich
block-family R ⊂ S(Z × Z1 × · · · × Zm) such that for every V × V1 × · · · × Vm ∈ R
we have Λ1(V ) ⊂ V1, . . . , Λm(V ) ⊂ Vm, and for every (z1, . . . , zm) ∈ V1 × · · · × Vm,
the following holds:
There are z∗1 ∈ ∂Ff1(z1), . . . , z

∗
m ∈ ∂Ffm(zm) such that∑m

i=1 ‖z∗i ‖ ≤ c, ‖
∑m

i=1 Λ∗
i z

∗
i ‖ < γ,

∣∣‖Λ∗
i z

∗
i ‖ − ρi| < εi, i = 1, . . . ,m,

whenever there are v∗1 ∈ ∂F (f1|V1)(z1), . . . , v
∗
m ∈ ∂F (fm|Vm)(zm) such that∑m

i=1 ‖v∗i ‖ ≤ c, ‖
∑m

i=1(Λi|V )∗v∗i ‖ < γ,
∣∣‖(Λi|V )∗v∗i ‖ − ρi| < εi, i = 1, . . . ,m.

Proof. Set X := Z1 × · · · × Zm, and endow it with the `∞-norm, so that for x =
(z1, . . . , zm) ∈ X and x∗ = (z∗1 , . . . , z

∗
m) ∈ X∗ we have ‖x‖ = max{‖z1‖, . . . , ‖zm‖}

and ‖x∗‖ = ‖z∗1‖ + · · · + ‖z∗m‖. For every subspace U of Z we denote ∆U :=
{(z, . . . , z) : z ∈ U}. Set further X0 := ∆Z, X1 := Z, . . . , Xm := Z, and define
operators Ai : Xi → X, i = 0, 1, . . . ,m, as follows: A0(z, . . . , z) := (Λ1z, . . . ,Λmz)
and, for i = 1, . . . ,m, Ai(z) := (0, . . . , 0,Λiz, 0, . . . 0) with Λiz at the i-th place. An
elementary calculation reveals that for z∗1 ∈ Z∗

1 , . . . , z
∗
m ∈ Z∗

m we have
(4.1)
‖A∗

0(z
∗
1 , . . . , z

∗
m)‖ = ‖Λ∗

1z
∗
1+· · ·+Λ∗

mz
∗
m‖; ‖A∗

i (z
∗
1 , . . . , z

∗
m)‖ = ‖Λ∗

i z
∗
i ‖, i = 1, . . . ,m.

More generally, if V ∈ S(Z), Vi ∈ S(Zi), and v∗1 ∈ V ∗
1 , . . . , v

∗
m ∈ V ∗

m, we have

(4.2)
∥∥(
A0|∆V

)∗
(v∗1, . . . , v

∗
m)

∥∥ =
∥∥(

Λ1|V
)∗
v∗1 + · · ·+

(
Λm|V

)∗
v∗m

∥∥
(4.3)

∥∥(
Ai|Vi

)∗
(v∗1, . . . , v

∗
m)

∥∥ =
∥∥(

Λi|V
)∗
v∗i

∥∥, i = 1, . . . ,m.

Let now f : X −→ (−∞,+∞] be defined by

f(z1, . . . , zm) = f1(z1) + · · ·+ fm(zm), (z1, . . . , zm) ∈ X.
Clearly, this is a proper function. Moreover, this is a “separable” function, i.e., the
sum of functions depending on mutually different arguments; so

(4.4) ∂Ff(z1, . . . , zm) = ∂Ff1(z1)× · · · × ∂Ffm(zm).
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Finally, we set ε0 = γ, ρ0 = 0.
LetR0 ⊂ S(X×X0×X1×· · ·×Xm) be the rich block-family found in Theorem 4.1

for our constants, c, εi, ρi, i = 0, 1, . . . ,m, and for our operators A0, A1, . . . , Am.
Consider the block-family

R1 :=
{
V1×· · ·×Vm×∆V ×V ×· · ·×V : V1 ∈ S(Z1), . . . , Vm ∈ S(Zm), V ∈ S(Z)

}
;

clearly, it is rich in S
(
X ×X0 ×X1 × · · · ×Xm

)
. Put R2 := R0 ∩R1; it is also rich

by Proposition 1.2. Finally, put

R :=
{
V × V1 × · · · × Vm : V1 × · · · × Vm ×∆V × V × · · · × V ∈ R2

}
;

this block-family is also rich, now in S
(
Z × Z1 × · · · × Zm

)
.

We shall show thatR has the desired properties. So, fix any V ×V1×· · ·×Vm ∈ R.
Then V1 × · · · × Vm ×∆V × V × · · · × V ∈ R0. Now, apply Theorem 4.1 where we
plug k := m + 1, Y := V1 × · · · × Vm, Y0 := ∆V, Y1 := V, . . . , Ym := V , and get
that A0(∆V ) ⊂ V1× · · · ×Vm, A1(V ) ⊂ V1× · · · ×Vm, . . . , Am(V ) ⊂ V1× · · · ×Vm.
Thus, using the definition of Ai’s, we get that Λ1(V ) ⊂ V1, . . . , Λm(V ) ⊂ Vm.

Take now any x = (z1, . . . , zm) ∈ V1× · · · ×Vm. Then the statement: “there is an
x∗ ∈ ∂Ff(x) such that ‖x∗‖ ≤ c and

∣∣‖A∗
ix

∗‖ − ρi

∣∣ < εi for i = 0, 1, . . . ,m” means,
by (4.1), that x∗ = (z∗1 , . . . , z

∗
m) for some z∗i ∈ ∂Ffi(zi) and ‖z∗1‖ + · · · + ‖z∗m‖ ≤ c,

‖Λ∗
1z

∗
1 + · · ·+ Λ∗

mz
∗
m‖ < ε0 = γ and

∣∣‖Λ∗
i z

∗
i ‖ − ρi

∣∣ < εi, i = 1, . . . ,m.

Likewise, the statement: “there is v∗ ∈ ∂F

(
f |V1×···×Vm

)
(x) such that ‖v∗‖ ≤ c

and
∣∣‖(Ai|V

)∗
v∗‖ − ρi

∣∣ < εi for i = 0, . . . ,m” means by (4.2) and (4.3), that v∗ =

(v∗1, . . . , v
∗
m) for some v∗i ∈ ∂F

(
fi|Vi

)
(zi), ‖v∗1‖ + · · · + ‖v∗m‖ ≤ c, ‖(Λ1|V )∗v∗1 + · · · +

(Λm|V )∗v∗m‖ < ε0 = γ and
∣∣‖(Λi|V )∗v∗i ‖ − ρi

∣∣ < εi, i = 1, . . . ,m.
As, by Theorem 4.1, the first statement holds at x = (z1, . . . , zm) ∈ V1× · · · × Vm

if the second statement holds at the point, this completes the proof. �

As consequences of Theorem 4.4, we can get quantitative versions of separable
reductions (via suitable rich families) for a fuzzy calculus and an extremal principle
for Fréchet subdifferentials and Fréchet normal cones, respectively. In the following
corollaries we consider (as simple but basic examples) the operations of composition
with a linear operator and sum of functions.

Corollary 4.5. Let X and Y be Banach spaces, let f be a proper function on Y ,
let A : X → Y be a bounded linear operator, and let x∗ ∈ X∗. Given an ε > 0
and c > ‖x∗‖, then there exists a rich family R ⊂ S(X × Y ) such that for every
U × V ∈ R we have A(U) ⊂ V and for every y ∈ V the following holds:
There is y∗ ∈ ∂Ff(y) such that ‖y∗‖+‖x∗‖ ≤ c and ‖A∗y∗−x∗‖ < ε whenever there
is v∗ ∈ ∂F (f |V )(y) such that ‖v∗‖+

∥∥x∗|U∥∥ ≤ c and
∥∥(A|U)∗v∗ − x∗|U

∥∥ < ε.

Proof. Applying Theorem 4.4 to m := 2, γ := ε, to any ε1 > 0, ε2 > 0, ρ1 > 0, ρ2 >
0, and to Z := X, Z1 := Y, Z2 := X, f1 := f , f2 := −x∗, A1 := A, to A2 being the
identity operator on Z2, we get a rich block-family Rε1,ε2,ρ1,ρ2 ⊂ S(X×Y ×X). Put
then R0 :=

⋂ {
Rε1,ε2,ρ1,ρ2 : ε1, ε2, ρ1, ρ2 ∈ Q+

}
; this is a rich block-family. Further
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put R1 := {U ×V ×U : U ∈ S(X), V ∈ S(Y )} and then R2 := R0 ∩R1; we again
got a rich block-family. Finally, define R := {U × V : U × V × U ∈ R2}; it is easy
to check that this is also a rich block-family. Now, the verification that our R has
the desired properties is routine. �

As a consequence, we get the fuzzy chain rule for the Fréchet subdifferential of
the composition with a linear operator.

Theorem 4.6. In addition to the assumptions of Corollary 4.5, suppose that Y is
an Asplund space, f is function on Y Lipschitzian in a vicinity of y := Ax, let
x∗ ∈ ∂F (f ◦ A)(x), and let ε > 0 be given. Then there are y ∈ Y and y∗ ∈ ∂Ff(y)
such that ‖y − Ax‖ < ε and ‖A∗y∗ − x∗‖ < ε.

The novelty of this result, compared with the known fuzzy chain rules for compo-
sitions, is that X is no longer assumed to be Asplund. The (small) price we pay is
the necessity to assume that f is Lipschitz near y. It is not clear to us whether this
assumption is essential or is connected only with the techniques used in the proof
below.

Proof. For x ∈ X set g(x) = (f ◦A)(x); then g(x) ≥ g(x) + 〈x∗, x− x〉 − r(‖x− x‖,
where r : [0,+∞) −→ [(0,+∞) is a function such that r(t)

t
→ 0 as t ↓ 0. We can

moreover assume that r(t) > 0 for all t > 0, that r is convex, and that ∂r(t) → 0
as t ↓ 0. (For convexity see [Ioffe13]; the rest is easy to show.) Fix any δ > 0 such
that f is Lipschitz with constant ` on the ball B(y, δ).

For every n = 1, 2, . . . consider the function

ϕn(u, y) = f(y) + n‖y − Au‖2 + 2r(‖u− x‖)− 〈x∗, u− x〉, (u, y) ∈ X × Y.

Set Q := B(x, δ)×B(y, δ) and choose for every n ∈ N a pair (un, vn) ∈ Q such that

(4.5) ϕn(un, vn) ≤ inf
Q
ϕn + n−2.

We claim that (un, vn) → (x̄, ȳ) as n→∞.
Indeed, we notice first that, ‖vn−Aun‖ → 0 as all terms of ϕn are bounded below

on Q and infQ ϕn ≤ ϕn(x, y) = f(y) < +∞. Furthermore

n−2 + f(y) ≥ ϕ(un, vn) ≥ f(vn) + 2r(‖un − x‖)− 〈x∗, un − x〉
≥ f(Aun)− `‖vn − Aun‖+ 2r(‖un − x‖)− 〈x∗, xn − x〉
≥ f(y) + 〈x∗, un − x〉 − r(‖un − x‖)− `‖vn − Aun‖

+2r(‖un − x‖)− 〈x∗, un − x〉
= f(y)− `‖vn − Aun‖+ r(‖un − x‖)

and we conclude that

0 ≤ r(‖un − x‖) ≤ n−2 + `‖vn − Axn‖ −→ 0 as n→∞.

Now, the properties of r force that un → x, and consequently vn → y as claimed.
We shall first verify that the result is true when Y is a separable space. In this

case as Y is Asplund, there is a dense collection of Fréchet smooth equivalent norms
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in Y ([Deville-Godefroy-Zizler], pp. 43, 48). So we assume that Y is endowed with
such a norm, say ‖ · ‖Y .

For every n ∈ N so big that (un, vn) lies in Q, the variational principle of Ekeland
applied to ϕn restricted to Q yields a pair (xn, yn) ∈ Q such that ‖xn − un‖ ≤ n−1,
‖yn − vn‖ ≤ n−1 and that

ψn(x, y) := ϕn(x, y) + n−1(‖x− xn‖+ ‖y − yn‖) ≥ ψn(xn, yn) = ϕn(xn, yn)

for all (x, y) ∈ Q. From the above, we get that ‖xn − x‖ → 0 and ‖yn − y‖ → 0 as
n → ∞. Thus for all n ∈ N big enough the couple (xn, yn) lies in the interior of Q
and we can subdifferentiate in Fréchet sense without any troubles. From now on,
consider any such n ∈ N.

Let v∗n be the derivative of n‖ · ‖2
Y at the point yn − Axn, and let γn(x, y) be the

sum of all terms of ψn except n‖y − Ax‖2 − 〈x∗, x − x〉. As the latter is Fréchet
differentiable, we have that ∂Fψn(xn, yn) = ∂Fγn(xn, yn)+ (−A∗v∗n, v

∗
n)− (x∗, 0). On

the other hand, γn is the sum of two functions, one λn(y) = f(y)+n−1‖y−yn‖, y ∈
Y , depending only on y and the other µn(x) = 2r(‖x− x‖) + n−1‖x− xn‖, x ∈ X,
depending only on x. Therefore ∂Fγn(xn, yn) = ∂Fµn(xn)× ∂Fλn(yn). The Fréchet
subdifferentials of λn and µn are easy to estimate. Indeed, as Y is Asplund, the
standard fuzzy sum rule (see Theorem 4.8 below) gives ∂Fλn(yn) ⊂ ∂Ff(ỹn) +
n−1BY ∗ + n−1BY ∗ with some ỹn ∈ Y satisfying ‖ỹn − yn‖ < n−1. On the other
hand, µn is the sum of two convex continuous functions. Therefore the Fréchet
subdifferentials of µn and both its component functions coincide with their convex
subdifferentials, so that ∂Fµn(xn) ⊂ 2∂r(‖xn − x‖)BX∗ + n−1BX∗ =: δnBX∗ , where
δn → 0 as n→∞.

Summarizing, we conclude that 0 ∈ ∂nf(ỹn)+v∗n +2n−1BY ∗ and 0 ∈ −Av∗n−x∗+
δnBX∗ , where δn → 0 as n→∞. This means that there is a y∗n ∈ ∂Ff(ỹn) such that
‖y∗n + v∗n‖ ≤ 2n−1 and ‖x∗ − A∗y∗n‖ ≤ δn + 2n−1‖A‖ → 0. It remains to note that
‖ỹn − Axn‖ → 0 as ỹn → y and xn → x. This completes the proof of the theorem
for the case of separable Y .

Returning to the statement of the theorem, assume now that Y is a non-separable
Asplund space. Let Rmn ⊂ S(X × Y ) be a rich block-family satisfying Corollary
4.5 and corresponding to c := m and ε := n−1. Then R =

⋂
Rmn is also a rich

family by Proposition 1.2. Take a (U, V ) ∈ R with x ∈ U and y ∈ V . Clearly,
A|U : U → V and x∗|U ∈ ∂F (f |V ◦ A|U)(x).

Now, from the separable case already proved, we can find a y ∈ V and a v∗ ∈
∂Ff |V (y) such that ‖y − y‖ < ε ‖x∗|U −A|∗Uv∗‖ < ε. It remains to choose m,n ∈ N
such that the two inequalities remain valid with ε replaced by n−1 and ‖v∗‖+‖x∗‖ ≤
n and to apply Corollary 4.5 taking into account that (U, V ) ∈ Rmn. �

The second corollary of Theorem 4.4 is related to sums of functions.

Corollary 4.7. Let Z be a Banach space, consider constants c ≥ 0, ε > 0, ρ1 ≥
0, . . . , ρm ≥ 0, and let proper functions fi : Z −→ (−∞,+∞], i = 1, . . . ,m, be
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given. Then there exists a rich family R ∈ S(Z) such that for every V ∈ R and
every z1, . . . , zm ∈ V the following holds:
There are z∗i ∈ ∂Ffi(zi), i = 1, . . . ,m, such that

‖z∗1‖+ · · ·+ ‖z∗m‖ ≤ c, ‖z∗1 + · · ·+ z∗m‖ < ε,
∣∣‖z∗i ‖ − ρi| < ε, i = 1, . . . ,m

whenever there are v∗i ∈ ∂F (fi|V )(zi), i = 1, . . . ,m, such that

‖v∗1‖+ · · ·+ ‖v∗m‖ ≤ c, ‖v∗1 + · · ·+ v∗m‖ < ε,
∣∣‖v∗i ‖ − ρi| < ε, i = 1, . . . ,m.

Proof. Apply Theorem 4.4, with Z1 := · · · := Zm := Z, Λi being identities and
γ := ε1 := · · · := εm := ε, and get a rich block-family R0 ⊂ S(Zm+1). Using a
simple gymnastics like in the proof of Corollary 4.5, we produce a rich family R in
S(Z) with the desired property. �

The corollary, in turn, provides a direct access to the fuzzy sum rule in Asplund
spaces which, in the simplest form, is stated as follows.

Theorem 4.8. Let X be an Asplund space, and let f1 and f2 be two lower semi-
continuous functions on X with one of them Lipschitz near a certain x ∈ X. If
x∗ ∈ ∂F (f1 +f2)(x), then for any ε > 0 there are xi ∈ X and x∗i ∈ ∂Ffi(xi), i = 1, 2,
such that ‖xi − x‖ < ε and ‖x∗1 + x∗2 − x∗‖ < ε.

Proof. The statement is true if X is a separable Asplund space. For the proof, first
find an equivalent Fréchet smooth norm, see e.g. [Deville-Godefroy-Zizler, pages 48,
43], and then proceed as in [Ioffe83]. If X is non-separable, put together the validity
of the separable case and Corollary 4.7 in a way similar to how in has been done in
the proof of Theorem 4.6. �
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rich families.

References

[Borwein-Moors00] J.M. Borwein and W.B. Moors, Separable determination of integrability and
minimality of the Clarke subdifferential mapping, Proc. Amer. Math. Soc., 128 (2000), 215–221.

[Deville-Godefroy-Zizler] Deville-Godefroy-Zizler, Smoothness and renormings in Banach spaces,
Longman House, Harlow, 1993.

[Engelking] R. Engelking, General topology, PWN Warszawa 1977.
[Fabian89] M. Fabian, Subdifferentiability and trustworthiness in the light of a new variational
principle of Borwein and Preiss, Proc. 17th Winter School from Abstract Analysis, Acta Univ.
Carolinae 30(1989), 51–56.

[Fabian-Ioffe13] M. Fabian, A. Ioffe, Separable reduction in the theory of Fréchet subdifferentials,
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