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Abstract. We prove several generalizations of the results in [6] for set-valued mappings.
In some cases, we improve also the statements for single-valued mappings. Linear openness
of the set-valued mapping in question is deduced from the properties of its suitable approx-
imation. This approach goes back to the classical Lyusternik-Graves theorem saying that
a continuously differentiable single-valued mapping between Banach spaces is linearly open
around an interior point of its domain provided that its derivative at this point is surjec-
tive. In this paper, we consider approximations given by a graphical derivative, a contingent
variation, a strict pseudo H-derivative, and a bunch of linear mappings.
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1 Introduction

Metric regularity, linear openness and pseudo-Lipschitz property of the inverse are tree equivalent
properties playing fundamental role in modern variational analysis and have been broadly covered
in the recent monographs [3], [8], [20], and [24]. A survey on this topic together with a rich
bibliography can be found in [17].

Banach’s open mapping principle says that a continuous linear mapping between two Banach
spaces is (linearly) open (at any point) if and only if it is surjective. In 1950, L.M. Graves
generalized this statement proving that a single-valued mapping f acting between Banach spaces
is (linearly) open at an interior point x̄ of its domain provided that there exists a surjective
continuous linear mapping A such that the difference f − A is locally Lipschitz continuous at x̄
with a sufficiently small Lipschitz modulus. This result remains true [5] when x̄ is a boundary
point of a closed convex subset K of a Banach space and the restriction of the approximating
mapping A to K is open at x̄. In variational analysis we work with mappings which may be
non-smooth and also set-valued. Note that the mapping f in Graves’ theorem is not necessarily
differentiable at x̄ but it is well approximated by one single-valued mapping around the point in
question. K. Nachi and J.-P. Penot [21] extended this idea to a set-valued mapping F between
Banach spaces by introducing a suitable derivative of F at the reference point which is supposed to
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Sciences, University of West Bohemia, Univerzitńı 22, 306 14 Pilsen, Czech Republic, cibi@kma.zcu.cz. Supported
by the project GA15-00735S.

2Mathematical Institute of Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic,
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be a (single-valued) continuous linear mapping. A different approach was used by B.H. Pourciau
in [25] who proved that a Lipschitz-continuous single-valued mapping from Rn to Rm, with m ≤ n,
is linearly open at an interior point x̄ of its domain provided that all the matrices in the Clarke’s
generalized Jacobian have full (row) rank. His result was extended to reflexive Banach spaces by
D. Preiss and the second named author in [13] where f is approximated by a bounded convex
set of continuous linear operators, and to general Banach spaces by Z. Páles in [23] under rather
strong compactness assumption on the bunch of linear operators (with respect to the topology
induced by the operator norm). Similarly as in the case of Graves’ theorem, these results remain
true [5, 6] when x̄ is a boundary point of the domain of f provided that it is closed and convex.
Of course, there are many other ways how to approximate a set-valued mapping (for more details,
see bibliographical comments following the statements in Section 3). In this paper, we focus on
approximations given by a graphical derivative, or by a contingent variation, or by a strict pseudo
H-derivative, or by a bunch of continuous linear mappings. We obtain generalizations of the
results mentioned above.

The paper is organized as follows. In the next section, we provide a background from regularity
theory. The statements therein will be used in Section 3 which contains all our results together
with relevant bibliographical comments.

Notations and terminology. When we write f : X → Y we mean that f is a (single-valued)
mapping acting from X into Y while F : X ⇒ Y is a mapping from X into Y which may be
set-valued. The set dom F := {x : F (x) 6= ∅} is the domain of F , the graph of F is the set
gphF := {(x, y) ∈ X × Y : y ∈ F (x)} and the inverse of F is the mapping Y 3 y 7−→ {x ∈ X :
y ∈ F (x)} =: F−1(y) ⊂ X; thus F−1 : Y ⇒ X. In any metric space B(x, r) denotes the closed

ball centered at x with a radius r > 0 and
◦
B(x, r) is the corresponding open ball. BX and SX

are respectively the closed unit ball and the unit sphere in a Banach space X. The distance from
a point x to a subset C of a metric space (X, d) is d(x, C) := inf{d(x, y) : y ∈ C}. We use the
convention that inf ∅ := +∞ and as we work with non-negative quantities we set sup ∅ := 0. If a
set is singleton we identify it with its only element, that is, we write a instead of {a}. The symbol
L(X, Y ) denotes the space of all linear bounded operators from a Banach space X into a Banach
space Y .

2 Background from regularity theory

Given two metric spaces X and Y , a set-valued mapping F : X ⇒ Y is called open with a linear
rate near (x̄, ȳ) ∈ gph F if there are positive numbers c and ε such that

(1) B(y, ct) ⊂ F (B(x, t)), whenever (x, y) ∈
(
B(x̄, ε)×B(ȳ, ε)

)
∩ gph F and t ∈ (0, ε).

The supremum of c > 0 such that (1) holds for some ε > 0 is called rate of openness (rate or
modulus of surjection) of F near (x̄, ȳ) and is denoted by sur F (x̄, ȳ). The mapping F : X ⇒ Y
with (x̄, ȳ) ∈ gph F is said to be metrically regular near (x̄, ȳ) if there are κ > 0 and neighborhoods
U of x̄ and V of ȳ such that

(2) d
(
x, F−1(y)

)
≤ κd(y, F (x)) for all (x, y) ∈ U × V.
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The infimum of all κ > 0 such that (2) holds for some neighborhoods U and V is called the rate
or modulus of metric regularity of F near (x̄, ȳ) and is denoted by reg F (x̄, ȳ). It is well known
that reg F (x̄, ȳ) · sur F (x̄, ȳ) = 1 always holds under convention that 0 ·∞ = 1 (see [17] for history
of this equality). If f : X → Y is a single-valued mapping, then we write sur f(x̄) and reg f(x̄)
instead of sur f

(
x̄, f(x̄)

)
and reg f

(
x̄, f(x̄)

)
, respectively. An A ∈ L(X, Y ) is metrically regular at

any point if and only if it is surjective; therefore we write sur A and reg A only.
The theorems below will be proved via the following, nowadays called, A.D. Ioffe’s criterion

for regularity of mappings (accommodated a bit to our purposes); see [13, Corollary 1], and [16,
Theorem 1b]. The proof of the first mentioned statement is based on a generalization of Caristi’s
principle while the latter theorem relies on Ekeland’s variational principle. Elaborating the ideas
from [13], we provide a direct iterative proof for the reader’s convenience. In fact, Ekeland’s
variational principle can be proved via a quite similar iterative procedure [24, p. 62]. It turns out
that a direct application of this criterion yields short proofs of well-known regularity statements
[17].

Proposition 2.1. Let (X, d) be a complete metric space and (Y, %) be a metric space, let x̄ ∈ X
be given, and let g : X → Y be a continuous mapping, whose domain is all of X. Then sur g(x̄)
equals to the supremum of all c > 0 for which there is an r > 0 such that for all (x, y) ∈
B(x̄, r)×

(
B(g(x̄), r) \ {g(x)}

)
there is an x′ ∈ X satisfying

c d(x′, x) < %(g(x), y)− %(g(x′), y).(3)

Proof. Denote the above supremum by s. Fix any c > 0 for which there is r > 0 such that for
every y ∈ B(g(x̄), r) and every x ∈ B(x̄, r), satisfying g(x) 6= y, there is an x′ ∈ X such that (3)
holds. By the continuity of g, there is t̄ ∈ (0, r) such that

B(g(u), ct̄) ⊂ B(g(x̄), r) and B(u, t̄) ⊂ B(x̄, r) whenever u ∈ B(x̄, t̄).(4)

Fix any t ∈ (0, t̄) and any u ∈ B(x̄, t). It suffices to show that g
(
B(u, t)

)
⊃ B(g(u), ct). Consider

any fixed y ∈ B(g(u), ct); we will find x ∈ B(u, t) such that y = g(x). If y = g(u), take x := u and
we are done. Assume further that y 6= g(u). We will construct a sequence x1, x2, . . . in B(u, t)
satisfying

c d(xm, u) ≤ %(g(u), y)− %(g(xm), y), m ∈ N.(5)

Clearly, x1 := u satisfies (5) with m = 1. Let n ∈ N and assume that xn ∈ B(u, t) was already
found. If g(xn) = y, then take x := xn, and stop the construction. Assume further that g(xn) 6= y.
In view of (4), Axiom of choice, and the assumptions, there is an xn+1 ∈ X such that

(6) c d(xn+1, xn) < %(g(xn), y)− %(g(xn+1), y) and that d(xn+1, xn) ≥ 1
2
sn

where
sn := sup

{
d(x′, xn) : x′ ∈ X and c d(x′, xn) < %(g(xn), y)− %(g(x′), y)

}
.

Note that 0 ≤ sn ≤ 1
c
%(g(xn), y) < +∞. Adding the first inequality in (6) and (5), with m := n, we

get (5) with m := n + 1. In particular, we have cd(xn+1, u) ≤ %(g(u), y) ≤ ct; thus xn+1 ∈ B(u, t).
If the process stops at some n ∈ N, we are done.
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Assume that this was not the case, that is, g(xn) 6= y for every n ∈ N. From (6) we have, for
all 1 ≤ n < m, that

0 ≤ c d(xm, xn) ≤ c d(xm, xm−1) + · · ·+ c d(xn+1, xn)

<
(
%(g(xm−1), y)− %(g(xm), y)

)
+ · · ·+

(
%(g(xn), y)− %(g(xn+1), y)

)
= %(g(xn), y)− %(g(xm), y),

and so, %(g(xn), y) > %(g(xm), y). Thus limn→∞ %(g(xn), y) exists and is finite, and consequently,
(xn) is a Cauchy sequence in the (complete) space X. Put x := limn→∞ xn. Then clearly x ∈
B(u, t). Suppose that y 6= g(x). By the assumption, there is an x′ ∈ X such that c d(x′, x) <
%(g(x), y) − %(g(x′), y). As xn → x and g(xn) → g(x), the continuity of d and %(g(·), y) implies
that, for all n ∈ N big enough, we have c d(x′, xn) < %(g(xn), y)−%(g(x′), y), and so sn ≥ d(x′, xn).
Thus lim supn→∞ sn ≥ d(x′, x) (> 0). But, by (6), sn ≤ 2d(xn+1, xn) −→ 0 as n → ∞, and so
x′ = x, a contradiction. Therefore y = g(x). We proved that g

(
B(u, t)

)
⊃ B

(
g(u), ct

)
. We thus

showed that c ≤ sur g(x̄), and therefore s ≤ sur g(x̄).
Assume that s < sur g(x̄). Fix any c ∈

(
s, sur g(x̄)

)
. Find ε > 0 such that B(g(x), ct) ⊂

g
(
B(x, t)

)
whenever x ∈ B(x̄, ε) and t ∈ (0, ε). By the continuity of g, there is an r ∈ (0, ε)

such that %(g(x), y) < cε for each (x, y) ∈ B(x̄, r) × B(g(x̄), r). Fix any y ∈ B(g(x̄), r) and any
x ∈ B(x̄, r) with g(x) 6= y. Let t := %(g(x), y)/c. Then t ∈ (0, ε), and there is an x′ ∈ B(x, t) such
that y = g(x′). Thus

0 < c d(x′, x) ≤ ct = %(g(x), y) = %(g(x), y)− %(g(x′), y).

Hence s ≥ c′ for any c′ ∈ (s, c), a contradiction.

Although Proposition 2.1 is formulated for a single-valued function, it is well-known that the
study of covering properties for a set-valued mapping F : X ⇒ Y can always be reduced to the
study of the corresponding property for a simple single-valued mapping, namely, restriction of the
canonical projection from X × Y onto Y , that is the asignment gph F 3 (x, y) 7−→ y ∈ Y (e.g.,
see [16, Proposition 3]). Using this one gets the following statement for set-valued mappings.

Proposition 2.2 (general criterion for set-valued maps). Let (X, d), (Y, %) be metric spaces and
let F : X ⇒ Y be a set-valued mapping whose graph is complete in a vicinity of (x̄, ȳ) ∈ gph F .
Then sur F (x̄, ȳ) equals to the supremum of all c > 0 for which there are r > 0 and α ∈ (0, 1/c)
such that for any (x, v) ∈ gph F ∩

(
B(x̄, r) × B(ȳ, r)

)
and any y ∈ B(ȳ, r) \ {v} there is a pair

(x′, v′) ∈ gph F such that

c max{d(x, x′), α%(v, v′)} < %(v, y)− %(v′, y).(7)

Proof. Denote by s the supremum from the statement. First, we show that sur F (x̄, ȳ) ≥ s.
If s = 0 we are done. Suppose that s > 0 and pick any c ∈ (0, s). Find the corresponding
α ∈ (0, 1/c) and r > 0 such that the property involving (7) holds. Define the (equivalent) metric
ρ̃ on X × Y for each (u, w), (u′, w′) ∈ X × Y by %̃

(
(u, w), (u′, w′)

)
:= max{d(u, u′), α%(w,w′)}.

Find an r̃ ∈ (0, r) such that X̃ :=
(
B(x̄, r̃) × B(ȳ, r̃/α)

)
∩ gph F equipped with %̃ is a complete

metric space. Let g := pY �
eX , where pY is the canonical projection from X × Y onto Y . Then g

is a continuous mapping defined on the whole X̃. Find an r′ ∈ (0, αr̃) such that r′(2 + α) < cαr̃.
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Fix any (x, v) ∈ B
eX((x̄, ȳ), r′) = gph F ∩

(
B(x̄, r′)×B(ȳ, r′/α)

)
⊂ gph F ∩

(
B(x̄, r̃)×B(ȳ, r̃)

)
and

any y ∈ B(ȳ, r′) \ {v}. Find a pair (x′, v′) ∈ gph F satisfying (7). Then

%̃
(
(x′, v′), (x̄, ȳ)

)
≤ %̃

(
(x′, v′), (x, v)

)
+ r′

(7)
<

%(v, y)

c
+ r′ ≤ %(v, ȳ) + %(ȳ, y)

c
+ r′

≤ r′/α + r′

c
+ r′ =

r′

cα
(1 + α + cα) <

r′

cα
(2 + α) < r̃.

Hence, (x′, v′) ∈ X̃. Proposition 2.1 then implies that sur g(x̄, ȳ) ≥ s. Thus, for some c′ ∈ (0, s)
(arbitrarily close to s), there is an ε > 0 such that for each (x, y) ∈

(
B(x̄, ε) × (B(ȳ, ε/α) ∩

B(ȳ, ε))
)
∩ gph F and each t ∈ (0, ε) we have

B(y, c′t) ⊂ g
(
gph F ∩

(
B(x, t)×B(y, t/α)

))
.

Pick ε′ ∈ (0, ε min{1, 1/α}). Fix any (x, y) ∈
(
B(x̄, ε′) × B(ȳ, ε′)

)
∩ gph F and any t ∈ (0, ε′).

Then for any w ∈ B(y, c′t) there is a u ∈ B(x, t) such that g(u, w) = w, that is, w ∈ F (u). Thus
B(y, c′t) ⊂ F (B(x, t)). As c′ can be chosen arbitrarily close to s, we showed that sur F (x̄, ȳ) ≥ s.

Suppose that sur F (x̄, ȳ) > s. Then there are c′ > s and ε > 0 such that

B(y, c′t) ⊂ F (B(x, t)) whenever (x, y) ∈
(
B(x̄, ε)×B(ȳ, ε)

)
∩ gph F and t ∈ (0, ε).

Let α := 1/c′. Define %̃, r̃, X̃, and g as before, but, in this case, we request that r̃ ∈ (0, ε min{1, α}).
Then

B(y, c′t) ⊂ g
(
B

eX((x, y), t)
)

whenever (x, y) ∈ B
eX((x̄, ȳ), r̃) and t ∈ (0, r̃).

Pick any c ∈ (s, c′). Then sur g(x̄, ȳ) > c. Proposition 2.1 implies that there is an r′ > 0
such that for any (x, v) ∈ gph F ∩

(
B(x̄, r′) × B(ȳ, c′r′)

)
and any y ∈ B(ȳ, r′) \ {v} there is a

pair (x′, v′) ∈ X̃ ⊂ gph F such that (7) holds. Picking r ∈
(
0, min{r′, c′r′}

)
and noting that

α = 1/c′ < 1/c, we get that s ≥ c, a contradiction.

For subsets C and D of a metric space, the excess of C beyond D is defined by e(C, D) :=
supx∈C d(x, D). We now present a slightly improved version of [8, Theorem 5G.3] which concerns
perturbed metric regularity on a set and can be of independent interest.

Theorem 2.3. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let G : X ⇒ Y be a set-valued
mapping, and pick some (x̄, ȳ) ∈ gph G. Assume that there are positive constants a and κ such
that the set gph G ∩

(
B(x̄, a),×B(ȳ, a)

)
is closed and that

(8) e
(
G−1(y) ∩B(x̄, a), G−1(y′)

)
≤ κ‖y − y′‖ for each y, y′ ∈ B(ȳ, a).

Let ν > 0 be such that κν < 1 and let κ′ > κ/(1− κν). Then for every positive α and β such that

(9) 2κ′β + α ≤ a and 2β + ν(2κ′β + α) ≤ a

and for every mapping g : X → Y satisfying

(10) ‖g(x̄)‖ ≤ β and ‖g(x)− g(x′)‖ ≤ ν‖x− x′‖ for every x, x′ ∈ B(x̄, 2κ′β + α),

the mapping g+G has the following property: for every y, y′ ∈ B(ȳ, β) and every x ∈ (g+G)−1(y)∩
B(x̄, α) there exists an x′ ∈ (g + G)−1(y′) such that

‖x− x′‖ ≤ κ′‖y − y′‖.
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Proof. Choose any α and β that satisfy (9) and any g as in the statement. Then

(11) y − g(x) ∈ B(ȳ, a) for each (x, y) ∈ B(x̄, 2κ′β + α)×B(ȳ, β).

Indeed, fix any such a pair (x, y). Then (10) and (9) imply that

‖y − g(x)− ȳ‖ ≤ ‖g(x̄)‖+ ‖g(x̄)− g(x)‖+ ‖y − ȳ‖ ≤ β + ν‖x− x̄‖+ β

≤ 2β + ν(2κ′β + α) ≤ a.

Fix any two distinct y, y′ ∈ B(ȳ, β) and any x ∈ (g + G)−1(y) ∩ B(x̄, α). Let r := κ′‖y − y′‖. As
r ≤ 2κ′β, the first inequality in (9) implies that

B(x, r) ⊂ B(x̄, 2κ′β + α) ⊂ B(x̄, a).

Consider the mapping
X 3 u 7−→ G−1

(
y′ − g(u)

)
=: Φy′(u) ⊂ X.

It suffices to show that there is a fixed point x′ of Φy′ in B(x, r), because then x′ ∈ (g + G)−1(y′)
and the desired distance estimate holds.

To obtain such a point x′ we are going to apply [8, Theorem 5E.2]. The set Ω := gph Φy′ ∩
(B(x, r)×B(x, r)) is closed. Indeed, pick any sequence (xn, zn) in Ω converging to a point (x̃, z̃) ∈
X ×X. Clearly, (x̃, z̃) ∈ B(x, r)×B(x, r). The definition of Φy′ and (11) imply that(

zn, y
′ − g(xn)

)
∈ gph G ∩ (B(x, r)×B(ȳ, a)) ⊂ gph G ∩ (B(x̄, a)×B(ȳ, a)) for each n ∈ N.

Passing to the limit we get that
(
z̃, y′ − g(x̃)

)
∈ gph G, that is, (x̃, z̃) ∈ gph Φy′ . Thus (x̃, z̃) ∈ Ω.

Since y ∈ g(x) + G(x), we have x ∈ G−1(y − g(x)) ∩B(x̄, a). Then (11) and (8) imply that

d(x, Φy′(x)) = d
(
x, G−1(y′ − g(x))

)
≤ e

(
G−1(y − g(x)) ∩B(x̄, a), G−1(y′ − g(x))

)
≤ κ‖y − y′‖ < κ′‖y − y′‖(1− κν) = r(1− κν).

Let u, v ∈ B(x, r) be arbitrary. Using (11) and (8), we get that

e
(
Φy′(u) ∩B(x, r), Φy′(v)

)
= e

(
G−1(y′ − g(u)) ∩B(x̄, r), G−1(y′ − g(v))

)
≤ e

(
G−1(y′ − g(u)) ∩B(x̄, a), G−1(y′ − g(v))

)
≤ κ‖g(u)− g(v)‖

≤ κν ‖u− v‖.

The assumptions of [8, Theorem 5E.2] are verified. Therefore there is an x′ ∈ B(x, r) ∩ Φy′(x
′).

This proves our theorem.

In [8, Theorem 5G.3], it is supposed, instead of (8), that

d
(
x, G−1(y)

)
≤ κd

(
y, G(x)

)
for each (x, y) ∈ B(x̄, a)×B(ȳ, a).

Inequality (8) means that G has the Aubin property on the set B(x̄, a) × B(ȳ, a), which, by [8,
Theorem 5H.3], is equivalent to the metric regularity of G on the same set, that is,

d
(
x, G−1(y)

)
≤ κd

(
y, G(x) ∩B(ȳ, a)

)
for each (x, y) ∈ B(x̄, a)×B(ȳ, a).

Therefore our assumption is slightly weaker. Clearly, such an a > 0 exists provided that sur G(x̄, ȳ) >
0.

Of some importance for us will also be the following perturbation statement, which is a corollary
to [8, Theorem 5E.5].
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Theorem 2.4. Let (X, ‖ · ‖), (Y, ‖ · ‖), and (P, ‖ · ‖) be three Banach spaces, let (p̄, x̄) ∈ P ×X
be given, and let g : P ×X → Y and G : X ⇒ Y be two mappings defined in a vicinity of (p̄, x̄),
and satisfying g(p̄, x̄) = 0 and G(x̄) 3 0. Suppose that there are neighborhoods Q of p̄ and V of x̄
along with positive constants ν and γ such that for each p, p′ ∈ Q and each x, x′ ∈ V we have

(12) ‖g(p, x)− g(p, x′)‖ ≤ ν‖x− x′‖ and ‖g(p, x)− g(p′, x)‖ ≤ γ‖p− p′‖.

Further, assume that sur G(x̄, 0) > τ > ν and consider the “solution mapping” S : P ⇒ X defined
by

S(p) := {x ∈ X : g(p, x) + G(x) 3 0}, p ∈ P.

Then there are neighborhoods Q′ of p̄ and V ′ of x̄ such that

S(p) ∩ V ′ ⊂ S(p′) +
γ

τ − ν
‖p− p′‖BX for every p, p′ ∈ Q′.

3 Regularity statements

First, we use Proposition 2.1 to derive an open mapping theorem for directionally differentiable
single-valued mappings. A mapping g : X → Y acting between Banach spaces X and Y is
one-sided directionally differentiable at x ∈ int dom g provided that for each h ∈ X the limit

lim
t↓0

g(x + th)− g(x)

t
=: d+g(x)(h)

in the norm-topology of Y exists.

Theorem 3.1. Let (X, ‖ · ‖), (Y, ‖ · ‖) be Banach spaces, and let g : X → Y be given. Assume
that there are x̄ ∈ X and positive constants % and r such that g is continuous and one-sided
directionally differentiable on B(x̄, r) ⊂ int dom g and

(13) d+g(x)(BX) ⊃ %BY for each x ∈ B(x̄, r).

Then sur g(x̄) ≥ %.

Proof. Pick any c ∈ (0, %). Fix any (x, y) ∈ B(x̄, r/2)× Y with g(x) 6= y. Let

z := %
y − g(x)

‖y − g(x)‖
6= 0.

By (13), there is an h ∈ BX such that d+g(x)(h) = z; clearly h 6= 0. Use the definition of the
one-sided directional derivative to find a t ∈

(
0, min{‖g(x)− y‖/%, r/2}

)
such that

‖g(x + th)− g(x)− t d+g(x)(h)‖ < (%− c)t.

Let x′ := x + th. Then ‖x′ − x̄‖ ≤ ‖x− x̄‖+ ‖x′ − x‖ ≤ r/2 + t‖h‖ < r. Hence x′ ∈ dom g. Since
td+g(x)(h) = tz and ‖x′ − x‖ ≤ t, we may estimate

‖y − g(x′)‖ = ‖y − g(x + th)‖ ≤ ‖y − g(x)− tz‖+ ‖g(x)− g(x + th) + tz‖
= ‖y − g(x)‖ − t% + ‖g(x + th)− g(x)− td+g(x)(h)‖
< ‖y − g(x)‖ − t% + (%− c)t = ‖y − g(x)‖ − ct ≤ ‖y − g(x)‖ − c‖x− x′‖.

Proposition 2.1 now says that sur g(x̄) ≥ c. And letting c ↑ % we conlude the proof.
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The above statement extends [8, Theorem 5K.1] where it is assumed that there exists κ > 0
such that for any x ∈ B(x̄, r) there exists a selection σ(x; ·) for [d+g(x)]−1 such that

‖σ(x; y)‖ ≤ κ‖y‖ for all y ∈ Y,

and its conclusion is that g−1 has a local selection around g(x̄) for x̄ which is calm at g(x̄) with
modulus κ, that is, for any κ′ > κ there is a δ > 0 and a mapping s : Y → X such that

s(y) ∈ g−1(y) ∩B
(
x̄, κ′‖y − g(x̄)‖

)
whenever y ∈ B(g(x̄), δ).

Indeed, we simply put % := 1/κ to conclude that reg g(x̄) ≤ κ and then we take x := x̄ in (2).
Such a result was originally proved by I. Ekeland in [11] where the role of the local selection at
a point x is played by the right-inverse of the Gateaux derivative of g at x. A finite-dimensional
version of Theorem 3.1 for locally Lipschitz functions was proved in [26].

Now, we proceed to set-valued mappings. Given a set S ⊂ X and an x ∈ S, the contingent
tangent cone T (S, x) of S at x is the collection of all h ∈ X with the following property: there
are sequences (tk) in (0,∞) converging to 0 and (hk) in X converging to h such that x + tkhk ∈ S
for all k ∈ N. For a set-valued mapping F : X ⇒ Y the contingent or graphical derivative of F at
(x, y) ∈ gph F is defined as the following set-valued assignment

X 3 h 7−→ DF (x, y)(h) := {v ∈ Y : (h, v) ∈ T (gph F, (x, y))}.

Theorem 3.2. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let F : X ⇒ Y be a mapping with
closed graph, and let (x̄, ȳ) ∈ gph F . Assume that there are positive constants β, %, and r such
that

DF (x, v)(BX) + βBY ⊃ (β + %)BY for every (x, v) ∈
(
B(x̄, r)×B(ȳ, r)

)
∩ gph F.

Then sur F (x̄, ȳ) ≥ %.

Proof. Fix any c ∈ (0, %). Pick γ > 0 such that c(1 + γ) < %. Fix any (x, v) ∈ gphF ∩
(
B(x̄, r)×

B(ȳ, r)
)

and any y ∈ Y distinct from v. Let

z := (β + %)
y − v

‖y − v‖
6= 0.

By the assumption, there is a pair (h, d) ∈ BX × Y such that d ∈ DF (x, v)(h) and ‖z − d‖ ≤ β.
Hence ‖d‖ ≤ 2β + %. The definition of the graphical derivative yields a triple (t, h′, d′) ∈ (0,∞)×
X × Y such that v + td′ ∈ F (x + th′) with

(14) (β +%)t < ‖y− v‖, ‖d−d′‖ < %− (1+γ)c, ‖d′‖ < (1+γ)(2β +%), and ‖h′‖ < 1+γ.

Let x′ := x + th′ and v′ := v + td′. Then (x′, v′) ∈ gph F . The first inequality in (14) implies that
‖y − v − tz‖ = ‖y − v‖ − t(β + %). Taking into account the second one, we conclude that

‖y − v′‖ = ‖y − v − td′‖ ≤ ‖y − v − tz‖+ t(‖z − d‖+ ‖d− d′‖)(15)

< ‖y − v‖ − t(β + %) + t(β + %− (1 + γ)c) = ‖y − v‖ − t(1 + γ)c.
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The last two inequalities in (14) reveal that ‖v′ − v‖ = t‖d′‖ < t(1 + γ)(2β + %) and ‖x′ − x‖ =
t‖h′‖ < t(1 + γ). Thus, using (15), we have

‖y − v′‖ < ‖y − v‖ − c·max
{
‖x′ − x‖, ‖v′ − v‖/(2β + %)

}
.

Now, Proposition 2.2 with α := 1/(2β+%) says that sur F (x̄, ȳ) ≥ c. And letting c ↑ % we conclude
the proof.

The above statement, proved originally by J.P. Aubin in [1] in 1981 (see also [2, Theorem
5.4.3]), implies both Theorem 5.13 and Theorem 5.15 in [17] where an infinitesimal version of
Proposition 2.2 is used. Here we present a bit simpler proof. Moreover, we think that there is a
tiny gap in the proofs of both statements there since it is claimed that DF (x, v)(BX) ⊃ βBY means
that for any z ∈ Y with ‖z‖ = β there is an h ∈ X with norm one such that z ∈ DF (x, v)(h). In
general, this h can be zero unless we assume that DF (x, v)(0) = 0. Note that Theorem 3.1 can
be derived from the last statement. However, we preferred to have a separate proof to keep it as
simple as possible.

From Theorem 3.2, we can derive a constrained version of Theorem 3.1 which generalizes [2,
Theorem 3.4.3] where the (single-valued) mapping in question is assumed to be Fréchet differen-
tiable in a vicinity of the reference point.

Theorem 3.3. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let K be a closed subset of X which
contains a point x̄ ∈ X, and let g : X → Y . Assume that there are positive constants β, %, and r
such that g is defined, Lipschitz continuous, and one-sided directionally differentiable on B(x̄, r);
and that

d+g(x)
(
T (x, K) ∩BX

)
+ βBY ⊃ (β + %)BY for every x ∈ K ∩B(x̄, r).

Then sur g �K (x̄) ≥ %.

Proof. Let F : X ⇒ Y be defined by F (x) := g(x) if x ∈ K ∩ B(x̄, r) and F (x) := ∅ otherwise;
thus, gph F = gph g �K . The conclusion will follow from Theorem 3.2 once we show that

d+g(x)
(
T (x, K) ∩BX

)
⊂ DF (x, g(x))(BX) for each x ∈ K ∩B(x̄, r).

To see this, fix any such x and then pick any w ∈ d+g(x)
(
T (x, K)∩BX

)
. Find an h ∈ T (x, K)∩BX

such that w = d+g(x)(h). The definition of the tangent cone implies that there are sequences (tk)
in (0,∞) converging to 0 and (hk) in X converging to h such that x + tkhk ∈ K for all k ∈ N.
The Lipschitz continuity of g guarantees that

wk :=
g(x + tkhk)− g(x)

tk
−→ d+g(x)(h) = w as k →∞.

Moreover, (x+tkhk, g(x)+tkwk) ∈ gph g|K = gph F for all k ∈ N. Therefore, w ∈ DF (x, g(x))(h).
Since h ∈ BX , we get the desired inclusion.

A mapping H : X ⇒ Y whose graph is a cone in X × Y is called positively homogeneous. For
such a mapping H, the outer and the inner norm are defined, respectively, by

‖H‖+ := sup
‖x‖≤1

sup
y∈H(x)

‖y‖ and ‖H‖− := sup
‖x‖≤1

inf
y∈H(x)

‖y‖.
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If H is single-valued and defined on the whole X, the two numbers above coincide. For H ∈
L(X, Y ) they reduce to the operator norm ‖H‖. Under the notation just introduced, we see that
Theorem 3.2 (with β := 0) immediately implies [17, Theorem 5.13]:

Corollary 3.4. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let F : X ⇒ Y be a mapping with
closed graph, and let (x̄, ȳ) ∈ gph F . Then

sur F (x̄, ȳ) ≥ lim inf
gphF3(x,y)→(x̄,ȳ)

1∥∥[DF (x, y)]−1
∥∥− .

Note that in finite dimensions both the quantities above are equal (see [17, Theorem 7.3] for a
five-line-proof). Originally, this result was proved in [9] (see also [8, Theorem 4B.1]). This formula
for surjectivity modulus can be deduced from a more general statement proved by H. Frankowska
in [14, Theorem 6.1 and Corollary 6.2] which is presented below and contains both Theorem 3.2
and Theorem 3.1.

For a set-valued mapping F : X ⇒ Y and (x, y) ∈ gph F , the contingent variation of F at (x, y)
is the set F (1)(x, y) of all vectors d ∈ Y such that there are sequences (tk) in (0,∞) converging
to 0 and (dk) in Y converging to d such that y + tkdk ∈ F (B(x, tk)) for each k ∈ N. It is easy to
show that DF (x, y)(BX) ⊂ F (1)(x, y) always and DF (x, y)(BX) = F (1)(x, y) provided that X is
finite-dimensional.

Theorem 3.5. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let F : X ⇒ Y be a mapping with
closed graph, and let (x̄, ȳ) ∈ gph F . Then sur F (x̄, ȳ) is equal to the supremum of all % > 0 for
which there is an r > 0 such that

(16) F (1)(x, y) ⊃ %BY for every (x, y) ∈
(
B(x̄, r)×B(ȳ, r)

)
∩ gph F.

Proof. Denote by s the supremum from the statement. First, we show that sur F (x̄, ȳ) ≥ s.
If s = 0 we are done, so suppose that s > 0. Fix any % ∈ (0, s) and then find an r > 0
such that (16) holds. Pick any c ∈ (0, %) and then a γ > 0 such that c(1 + γ) < %. Fix any
(x, v) ∈

(
B(x̄, r)×B(ȳ, r)

)
∩ gphF and any y ∈ Y distinct from v. Let

z := %
y − v

‖y − v‖
6= 0.

By (16), z ∈ F (1)(x, v). The definition of the contingent variation yields a triple (t, x′, z′) ∈
(0,∞)×X × Y such that v + tz′ ∈ F (x′) with

(17) %t < ‖y − v‖, ‖z − z′‖ < %− (1 + γ)c, ‖z′‖ < (1 + γ)%, and ‖x′ − x‖ ≤ t.

Let v′ := v + tz′. Then (x′, v′) ∈ gph F . The first inequality in (17) means that ‖y − v − tz‖ =
‖y − v‖ − t%. Then, taking into account the second one here, we conclude that

‖y − v′‖ = ‖y − v − tz′‖ ≤ ‖y − v − tz‖+ t‖z − z′‖ < ‖y − v‖ − t% + t(%− (1 + γ)c)

= ‖y − v‖ − t(1 + γ)c.

The last two inequalities in (17) reveal that ‖x′ − x‖ < t(1 + γ) and ‖v′ − v‖ = t‖z′‖ < t(1 + γ)%.
Thus

‖y − v′‖ < ‖y − v‖ − c max
{
‖x′ − x‖, ‖v′ − v‖/%

}
.
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Now, Proposition 2.2 with α := 1/% says that sur F (x̄, ȳ) ≥ c. Letting c ↑ %, we conclude that
sur F (x̄, ȳ) ≥ %. Since % ∈ (0, s) was arbitrary, we obtain that sur F (x̄, ȳ) ≥ s as claimed.

Assume that sur F (x̄, ȳ) > s. Pick a % ∈ (s, sur F (x̄, ȳ)). Then there is an r > 0 such that

B(y, %t) ⊂ F (B(x, t)) whenever (x, y) ∈
(
B(x̄, r)×B(ȳ, r)

)
∩ gph F and t ∈ (0, r).

In other words, for any x, y, t as above we have %BY ⊂
(
F (B(x, t)) − y

)
/t. This implies that

%BY ⊂ F (1)(x, y) for each (x, y) ∈
(
B(x̄, r)×B(ȳ, r)

)
∩ gph F . Thus % ≤ s, a contradiction.

Next, we present a generalization of [6, Theorem 3.9] which was proved in [4] by using an
iterative procedure. An application of the regularity criterion yields a substantially shorter proof.
The space L(X, Y ) will be considered with the topology induced by the operator norm.

Theorem 3.6. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let (x̄, ȳ) ∈ X × Y , let positive
constants r, β, and % be given, and let A ⊂ L(X, Y ) be a compact convex set. Let f : X → Y
and F : X ⇒ Y be such that F has closed graph, that ȳ ∈ f(x̄) + F (x̄) and that dom f ⊃ dom F .
Further assume that:

(A) for each x, x′ ∈ B(x̄, r) ∩ dom f there is an A ∈ A such that ‖f(x)− f(x′)− A(x− x′)‖ ≤
β‖x− x′‖,

(B) sur
(
f(x̄) + A(· − x̄) + F (·)

)
(x̄, ȳ) ≥ β + % for each A ∈ A, and

(C) for each y ∈ Y and each A ∈ A the fiber (f(x̄) + A(· − x̄) + F (·))−1(y) ∩ B(x̄, r) is convex
(possibly empty).

Then sur (f + F )(x̄, ȳ) ≥ %.

Proof. Without any loss of generality we assume that x̄ = 0, ȳ = 0, f(0) = 0, and 0 ∈ F (0). The
condition (A) and the boundedness of A guarantee that f is Lipschitz continuous on rBX ∩dom f .
Fix any c ∈ (0, %). Then pick a %′ ∈ (c, %).

Lemma 0. There is an r′ ∈ (0, r/2) such that for each A ∈ A, each t ∈ (0, r′), and each
(x, w) ∈ gph (A + F ) ∩

(
2r′BX × 2r′BY

)
we have

(A + F )
( ◦
B(x, t)

)
⊃ B(w, (β + %′)t).(18)

Proof. Pick a ν > 0 such that %′ + 3ν < %. The compactness of A yields an n ∈ N and a subset
B = {A1, A2, . . . , An} of A such that A ⊂ B+ νBL(X,Y ). Fix any i ∈ {1, 2, . . . , n}. Thanks to (B)
we have reg (Ai + F )(0, 0) = 1/sur (Ai + F )(0, 0) ≤ 1/(β + %) < 1/(β + %′ + 3ν) := κ. Find an
ai > 0 such that (8) holds with a := ai, G := Ai + F , x̄ := 0, and ȳ := 0. Let κ′ := 1/(β + %′ + ν).
Then

κ′(1− κν) =
1− ν

β+%′+3ν

β + %′ + ν
=

β + %′ + 2ν

(β + %′ + ν)(β + %′ + 3ν)
>

1

β + %′ + 3ν
= κ.

Pick positive αi and βi such that 2κ′βi + αi ≤ ai and 2βi + ν(2κ′βi + αi) ≤ ai. Let δi :=
min{αi, βi/(β + % + 1)}. We claim that for each A ∈ B(Ai, ν), each t ∈ (0, δi), and each (x, w) ∈
gph(A + F ) ∩

(
δiBX × δiBY

)
(A + F )

(
B(x, t)

)
⊃ B(w, (β + %′ + ν)t).
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To see this, fix any such A, t, and (x, w). Pick any y′ ∈ B(w, (β + %′ + ν)t). Let g := A − Ai.
Then g(0) = 0, A + F = g + G, and g satisfies (10). Thus w ∈ (g + G)(x), and noting that
‖x‖ ≤ δi ≤ αi, we get that x ∈ (g + G)−1(w) ∩ (αiBX). Further ‖w‖ ≤ δi < βi and

‖y′‖ ≤ ‖y′ − w‖+ ‖w‖ ≤ (β + %′ + ν)t + δi < (β + % + 1)δi ≤ βi.

By Theorem 2.3 (with y := w), there is an x′ ∈ (g + G)−1(y′) = (A + F )−1(y′) satisfying

‖x− x′‖ ≤ κ′‖w − y′‖ ≤ (β + %′ + ν)t

β + %′ + ν
= t.

This means that y′ ∈ (A + F )(B(x, t)) as claimed.

Put r′ := 1
2
min{r, δ1, δ2, . . . , δn}. As A ⊂ B + νBL(X,Y ), we proved that for each A ∈ A, each

t′ ∈ (0, r′), and each (x, w) ∈ gph (A + F ) ∩
(
2r′BX × 2r′BY

)
we have

(A + F )
(
B(x, t′)

)
⊃ B(w, (β + %′ + ν)t′).

Fix any A, t, and (x, w) as in the premise of our Lemma. The latter inclusion with t′ := t(β +
%′)/(β + %′ + ν) (< t < r′) implies that

(A + F )
( ◦
B(x, t)

)
⊃ (A + F )

(
B(x, t′)

)
⊃ B(w, (β + %′ + ν)t′) = B(w, (β + %′)t).

We proved (18).

Fix any (x, v) ∈ gph(f + F ) ∩
(
r′BX × r′BY

)
and any y ∈ Y distinct from v. Pick some

α ∈
(
0, min{r′, ‖y − v‖/(β + %′)

)
and let

z := α(β + %′)
y − v

‖y − v‖
(6= 0).

Define the set-valued mapping Φ : A ⇒ X by

A 3 A 7−→
[
(A + F )−1(z + Ax− f(x) + v)− x

]
∩

(
αBX

)
=: Φ(A) ⊂ X.

Lemma 1. The mapping Φ is closed-convex-valued and lower semi-continuous on A.

Proof. Let µ := supA∈A ‖A‖ < ∞. First, we show that Φ(A)∩(α
◦
BX) is non-empty for each A ∈ A.

Fix any A ∈ A and let w := Ax − f(x) + v. Then w ∈ Ax − f(x) + f(x) + F (x) = (A + F )(x)
and, by (A), we have

‖w‖ ≤ ‖Ax‖+ ‖f(0)− f(x)‖+ ‖v‖ ≤ µr′ + (µ + β)r′ + r′ < 2r′(1 + β + µ + %).

As ‖z‖ = α(β +%′), we have z +w ∈ B(w, α(β +%′)). Remembering that α < r′ and setting t := α

in (18), we find u ∈
◦
B(x, α) such that u ∈ (A + F )−1(z + w). Then h := u− x ∈ Φ(A) ∩ (α

◦
BX).

In particular, we showed that dom Φ = A. By (C), Φ has convex values. As gph F is closed,
so are the values of Φ. It remains to prove that Φ is lower semi-continuous. Fix any A ∈ A and
any open set Ω ⊂ X such that Φ(A) ∩Ω 6= ∅. Pick an h ∈ Φ(A) ∩Ω. We are going to distinguish
two cases:
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Suppose that ‖h‖ < α. Let w := z + Ax − f(x) + v. Then x + h ∈ (A + F )−1
(
w

)
, that is,

w ∈ (A + F )(x + h). Define G : X ⇒ Y by G(·) := (A + F )(x + ·)− w. Thus G(h) 3 0. Further,
define g : L(X, Y ) × X −→ Y by g(A, h) := (A − A)(h) for each (A, h) ∈ L(X, Y ) × X. Hence
g(A, h) = 0. Consider the solution mapping

L(X, Y ) 3 A 7−→ S(A) := {h ∈ X : g(A, h) + G(h) 3 0}.

Put Q := A + βBL(X,Y ) and V := h + BX . Then (12) holds with ν := β and γ := ‖h‖ + 1.

On the other hand, by (18) we know that sur G(h, 0) = sur (A + F )(x + h,w) ≥ β + %′ since
‖x + h‖ < r′ + α < 2r′ and

‖w‖ ≤ ‖z‖+ ‖Ax‖+ ‖f(0)− f(x)‖+ ‖v‖ ≤ α(β + %′) + µr′ + (µ + β)r′ + r′ < 2r′(1 + β + µ + %).

Pick an ε ∈ (0, % ′). By Theorem 2.4 (with P := L(X, Y ), x̄ := h, p̄ := A, and τ := β + %′ − ε),
there are neighborhoods Q′ of A and V ′ of h such that

S(A1) ∩ V ′ ⊂ S(A2) +
γ

%′ − ε
‖A1 − A2‖BX for all A1, A2 ∈ Q′.

In particular, for every A ∈ Q′ there is an hA ∈ S(A) such that h ∈ hA + γ
%′−ε

‖A − A‖BX . Find

δ > 0 so small that B(h, δ) ⊂ Ω ∩
(
α
◦
BX

)
, which is possible since the open set Ω contains h and

‖h‖ < α. Then for every A ∈ Q′ ∩
(
A + δ(%′−ε)

γ
BL(X,Y )

)
we have hA ∈ Ω as well as hA ∈ α

◦
BX . On

the other hand, once we know that hA belongs to S(A), then (A−A)(hA)+(A+F )(x+hA)−w 3 0,
that is, z − f(x) + v + Ax ∈ (A + F )(x + hA), that is, x + hA ∈ (A + F )−1

(
z + Ax − f(x) + v

)
,

and so, hA lies in Φ(A). Therefore Φ(A) ∩ Ω 6= ∅ for every A ∈ Q′ ∩
(
A + δ(%′−ε)

γ
BL(X,Y )

)
.

Now, suppose that ‖h‖ = α. Pick any ĥ ∈ Φ(A) ∩ (α
◦
BX) (which exists as we have seen at the

very beginning of the proof of this Lemma). Since the set Φ(A) is convex and contains both ĥ and

h, there exists h̃ ∈ Φ(A) ∩Ω such that ‖h̃‖ < α. By the previous case, there is a neighborhood Q
of A such that Φ(A) ∩ Ω 6= ∅ for every A ∈ Q.

Now, the set A being compact, it is automatically paracompact. Therefore, by Michael’s
selection theorem [12, Theorem 7.53], there exists a continuous mapping ϕ : A −→ X such that
ϕ(A) ∈ Φ(A) for every A ∈ A. Set M := ϕ(A). Then M is closed. Define the set-valued mapping
Ψ : M ⇒ A by

(19) M 3 h 7−→
{
A ∈ A: ‖f(x + h)− f(x)− Ah‖ ≤ β‖h‖

}
=: Ψ(h) ⊂ A.

Lemma 2. The composition mapping Ψ ◦ ϕ acting from A into itself has a fixed point.

Proof. Fix any h ∈ M . Clearly, the set Ψ(h) is convex (possibly empty). By the very definition
of Φ, we get that ‖x + h‖ ≤ ‖x‖+ ‖h‖ ≤ r′ + α < 2r′ < r and that x + h ∈ dom F ⊂ dom f . The
assumption (A) then guarantees that Ψ(h) 6= ∅. Therefore dom (Ψ ◦ ϕ) = A. Since f and ‖ · ‖
are continuous and both M and A are closed, the graph of Ψ is closed, and thus so is the graph
of Ψ ◦ ϕ thanks to the continuity of ϕ. Since A is compact and convex, we can apply Gliksberg’s
extension of Kakutani’s fixed point theorem [15] to finish the proof of Lemma 2.
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Let A ∈ A be a fixed point of Ψ ◦ ϕ. Put h := ϕ(A). Then h ∈ Φ(A), and hence, x + h ∈
(A + F )−1(z + Ax− f(x) + v), that is, z − Ah− f(x) + v ∈ F (x + h). Thus for

x′ := x + h and v′ := z + v + f(x + h)− f(x)− Ah

we have v′ ∈ (f + F )(x′). Since α(β + %′) < ‖y − v‖ we have ‖y − v − z‖ = ‖y − v‖ − α(β + %′).
As A ∈ Ψ(h), we get that ‖f(x + h)− f(x)−Ah‖ ≤ β‖h‖ ≤ αβ. Combing the previous facts, we
get that

‖y − v′‖ = ‖y − v − z + (f(x)− f(x + h) + Ah)‖ ≤ ‖y − v − z‖+ ‖f(x + h)− f(x)− Ah‖
≤ ‖y − v‖ − α(β + %′) + αβ = ‖y − v‖ − %′α < ‖y − v‖ − cα.

Note that ‖x′ − x‖ = ‖h‖ ≤ α and

‖v′ − v‖ = ‖z + f(x + h)− f(x)− Ah‖ ≤ α(β + %′) + αβ < 2α(β + %′).

Thus ‖y − v′‖ < ‖y − v‖ − c max
{
‖x′ − x‖, ‖v′ − v‖/(2(β + %′))

}
. Proposition 2.2 with α :=

1/(2(β+%′)) says that sur (f +F )(0, 0) ≥ c and letting c ↑ % we conlude the proof Theorem 3.6.

Remark 3.7. Assume that F in Theorem 3.6 is such that F (x) is either 0 or ∅ for every x ∈ X.
Then (C) means that for every y ∈ Y and every A ∈ A the set A−1

(
y+Ax̄−f(x̄)

)
∩B(x̄, r)∩dom F

is convex. Hence, if such an F has convex domain, then (C) is satisfied and we obtain [6, Theorem
3.9].

Given a nonempty subset S of X, we put cone S := [0,∞)S and call it the cone generated by
S. Now, we derive a generalization of [6, Theorem 3.4] to set-valued mappings.

Theorem 3.8. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let F : X ⇒ Y be a mapping
with closed graph and convex domain, and let (x̄, ȳ) ∈ gph F . Assume that there are positive
constants %, β, and r along with a positively homogeneous set-valued mapping H : X ⇒ Y such
that H(BX \ {0}) is bounded, that dom H = X, that

(20) F (x) ∩B(ȳ, r) ⊂ F (x′) + H(x− x′) + β‖x− x′‖BY for each x, x′ ∈ dom F ∩B(x̄, r),

and that

(21) sup
h∈cone(domF−x)∩BX

inf
w∈−H(−h)

〈y∗, w〉 ≥ β+% whenever x ∈ dom F∩B(x̄, r) and y∗ ∈ SY ∗ .

Assume finally that one of the following two conditions holds:
(a) H has relatively norm compact values, and Y is separable or the norm ‖·‖ on Y is Gateaux

smooth;
(b) Y is reflexive or the norm ‖ · ‖ on Y is Fréchet smooth.

Then sur F (x̄, ȳ) ≥ %.

Proof. First, assume that (a) holds. If Y is separable, then there is an equivalent Gateaux smooth
norm arbitrarily close to the original one; see [6]. Hence, we may assume without any loss of
generality that the norm ‖ · ‖ on Y is Gateaux differentiable off the origin. Find µ > 0 so
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big that H(BX \ {0}) ⊂ µBY . Take any ε ∈ (0, %/2). Pick γ ∈ (0, r/2). Fix any (x, v) ∈
gph F ∩

(
B(x̄, γ)× B(ȳ, γ)

)
and any y ∈ B(ȳ, γ) distinct from v. Let y∗ denote the derivative of

‖ · ‖ at y − v. Then

(22) lim
06=t→0

t−1
(
‖y − v + tw‖ − ‖y − v‖)− 〈y∗, w〉 = 0 for every w ∈ Y.

By (21), there is an h ∈ cone(dom F − x) ∩BX such that

〈y∗, w〉 > β + %− ε > 0 for all w ∈ −H(−h).(23)

Note that h cannot be zero. Fix δ > 0 such that h ∈ δ
(
dom F − x

)
. Since the set H(−h) is

non-empty, relatively compact, and the limit in (22) is uniform with respect to w’s from any fixed
compact set, we get that there is a t ∈

(
0, min{1/δ, γ}

)
such that

‖y − v − tw‖ − ‖y − v‖+ 〈y∗, tw〉 < tε for all w ∈ −H(−h).

This and (23) imply that

(24) ‖y − v − tw‖ < ‖y − v‖ − 〈y∗, tw〉+ εt < ‖y − v‖ − t(β + %− 2ε) for all w ∈ −H(−h).

Let x′ := x + th. Noting that t ∈ (0, 1/δ), we have x′ ∈ x + tδ
(
dom F − x

)
⊂ dom F by convexity

of dom F . As 2t < 2γ < r, we have ‖x′ − x‖ = ‖th‖ ≤ t < r/2. Thus x′ ∈ dom F ∩B(x̄, r). Since
H is positively homogeneous, we have H(x − x′) = H(−th) = tH(−h). As v ∈ F (x) ∩ B(ȳ, γ),
(20) says that there are v′ ∈ F (x′) and w ∈ −H(−h) such that

‖v − (v′ − tw)‖ ≤ βt‖h‖ ≤ βt.(25)

Using (25) and (24) we infer that

‖y − v′‖ ≤ ‖y − v − tw‖+ ‖v − v′ + tw‖ < ‖y − v‖ − (β + %− 2ε)t + βt = ‖y − v‖ − (%− 2ε)t.

As w ∈ −H(−h) ⊂ −H(BX \ {0}) ⊂ µBY , (25) implies that ‖v − v′‖ ≤ (β + µ)t < (% + β + µ)t.
Remembering that ‖x′ − x‖ ≤ t we obtain that

‖y − v′‖ < ‖y − v‖ − (%− 2ε) max
{
‖x′ − x‖, ‖v′ − v‖/(% + β + µ)

}
.

Now, Proposition 2.2 with α := 1/(%+β +µ) and c := %− 2ε says that sur F (x̄, ȳ) ≥ %− 2ε. And,
letting ε ↓ 0, we get the conclusion.

Suppose that (b) holds. If (Y, ‖ · ‖) is reflexive, then there is a dual locally uniformly rotund
norm on Y ∗, see [7, Corollary VII.1.13]. By [7, Theorem II.4.1(ii)] there is a norm | · | on Y which is
equivalent and arbitrarily close to ‖ · ‖; moreover, the dual norm of | · | is locally uniformly rotund
on Y ∗. Hence [7, Proposition II.1.5] implies that the norm | · | on Y is Fréchet smooth. Hence, we
may assume without any loss of generality that the norm ‖ · ‖ on Y is Fréchet differentiable off
the origin. Therefore we only have to take into account that under (b) the limit in (22) is uniform
for w’s from any bounded subset of Y .
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We would like to point out that we assume neither that ‖H‖+ < ∞ nor that H(0) = 0. (Note
that H(0) = 0 whenever ‖H‖+ < ∞).

Consider a set-valued mapping F : X ⇒ Y and a point (x̄, ȳ) ∈ gph F . A positively homoge-
neous set-valued mapping H : X ⇒ Y is called a pseudo strict prederivative of F at (x̄, ȳ) if for
each ε > 0 there exist neighborhoods U of x̄ and V of ȳ such that

(26) F (x) ∩ V ⊂ F (x′) + H(x− x′) + ε‖x− x′‖BY for each x, x′ ∈ U.

Then, in the terminology of C.H.J. Pang [22], F is called pseudo strictly H–differentiable at x̄ for
ȳ. This notion, for single-valued mappings f : X → Y , was introduced by A.D. Ioffe in [18] and
called the strict Fréchet prederivative of f at x̄, that is, the positively homogeneous set-valued
mapping H : X ⇒ Y has to be such that for each ε > 0 there exist neighborhoods U of x̄ and V
of ȳ such that

f(x) ∈ f(x′) + H(x− x′) + ε‖x− x′‖BY for each x, x′ ∈ U.

If H(h) := Ah, h ∈ X, for some A ∈ L(X, Y ), then F is called quasi-peridifferentiable at (x̄, ȳ)
in [21]. Note that such a mapping A may not be unique when F (x̄) 6= {ȳ}. Similarly, if H is the

strict Fréchet prederivative of f at x̄ then so is H̃ := −H(− ·). Using the notions above, we get
the following statement.

Corollary 3.9. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let (x̄, ȳ) ∈ X × Y be given, and let
F : X ⇒ Y be a mapping, with closed graph, and such that x̄ ∈ int dom F . Assume that F has a
pseudo strict prederivative H : X ⇒ Y at (x̄, ȳ) such that ‖H‖+ < ∞ and

inf
y∗∈SY ∗

sup
h∈BX

inf
w∈−H(−h)

〈y∗, w〉 > % > 0 for some constant %.

If either (a) or (b) in Theorem 3.8 is satisfied then sur F (x̄, ȳ) > %.

Proof. As ‖H‖+ < ∞, the set H(BX) is bounded and H(0) = 0. Find a β > 0 such that

inf
y∗∈SY ∗

sup
h∈BX

inf
w∈−H(−h)

〈y∗, w〉 > 2β + %.

Find r > 0 such that (20) holds and B(x̄, 2r) ⊂ dom F . Then necessarily dom H = X. Indeed,
for any h ∈ rBX , we have x̄ − h ∈ B(x̄, r) and (20) with x := x̄ and x′ := x̄ − h implies that
H(h) 6= ∅. As B(x̄, r) ⊂ int dom F , we have that cone (dom F − x) = X for each x ∈ B(x̄, r).
Hence Theorem 3.8 (with % := % + β) implies that sur F (x̄, ȳ) ≥ β + % > %.

If A is a collection of linear operators from X to Y , then the set-valued mapping X 3 x 7−→
Ax := {Ax : A ∈ A} is of course homogeneous, that is, A(λx) = λA(x) for each x ∈ X and each
λ ∈ R. We will consider set-valued mappings which can be approximated by such a set A. We
need [6, Proposition 3.7]:

Proposition 3.10. Let (X, ‖·‖) and (Y, ‖·‖) be Banach spaces, let 0 ∈ K ⊂ X be a convex closed
set, let y∗ ∈ SY ∗, let α > 0, and let A ⊂ L(X, Y ) be a convex set such that

(27) A(BX ∩K) ⊃ αBY for every A ∈ A.
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(a) If the set C := {A∗y∗ : A ∈ A} is weak∗ closed and A is bounded in L(X, Y ), then for
each α′ ∈ (0, α) there exists a non-zero h ∈ K such that

〈y∗, Ah〉 ≥ α′‖h‖ for every A ∈ A;

(b) If X is reflexive, then there exists a non-zero h ∈ K such that

〈y∗, Ah〉 ≥ α‖h‖ for every A ∈ A.

Given two Banach spaces X and Y , then we introduce a strong operator topology (SOT) on
L(X, Y ) as that where a net (Aγ) converges to A if for every x ∈ X we have that ‖Aγx−Ax‖ −→ 0.
A weak operator topology (WOT) on L(X, Y ) is the topology given by the convergence Aγ −→ A if
and only if Aγx −→ Ax weakly for every x ∈ X. Now, we are ready to prove another generalization
of [6, Theorem 3.9]. Note that even for single-valued mappings the statement below is more
general due to (c2). Under (c3), we obtain a generalization of the openness part of [21, Theorem
4.1] where the set-valued mapping is supposed to have x̄ in the interior of the domain and to be
quasi-peridifferentiable at (x̄, ȳ) in such a way that some derivative is invertible.

Theorem 3.11. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let F : X ⇒ Y be a mapping with
closed graph and closed convex domain, and let (x̄, ȳ) ∈ gph F . Suppose that A ⊂ L(X,Y ) is a
convex set such that for some positive constants r, β, ε, and % we have

(28) F (x) ∩B(ȳ, r) ⊂ F (x′) +A(x− x′) + β‖x− x′‖BY for each x, x′ ∈ dom F ∩B(x̄, r),

and also

(29) ε(% + β)BY ⊂ A((εBX) ∩ (dom F − x̄)) for each A ∈ A.

Then sur F (x̄, ȳ) ≥ % provided that one of the following six assumptions holds:

(c1) F is upper semi-continuous and compact-convex-valued on dom F ∩ B(x̄, r), and the set A
is relatively compact in the norm topology on L(X,Y );

(c2) F is upper semi-continuous and compact-convex-valued on dom F ∩ B(x̄, r), and the set A
is compact in the strong operator topology on L(X, Y );

(c3) A is singleton;

(c4) X is reflexive and A is norm-bounded;

(c5) Y is separable, A is norm-bounded and compact in the weak operator topology on L(X,Y ),
and Ax is compact for each x ∈ X;

(c6) X is separable, A is norm-bounded, and Ax is compact for each x ∈ X.

Proof. Assume, without any loss of generality, that x̄ = 0 and ȳ = 0. Note that in all the cases
(c1)–(c6) the number µ := supA∈A ‖A‖ is finite. Indeed, to show this for (c2) observe that Ax
is bounded for any x ∈ X by the compactness of A in the strong operator topology. Therefore
X =

⋃∞
n=1 Ωn, where

Ωn := {x ∈ X : sup
A∈A

‖Ax‖ ≤ n}, n ∈ N.
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Hence there is an n ∈ N such that Ωn has a non-empty interior. As Ωn is convex and symmetric,
there is δ > 0 such that δBX ⊂ Ωn. Fix any A ∈ A. For any non-zero h ∈ X, we have

‖Ah‖ =
‖h‖
δ
‖A(δh/‖h‖)‖ ≤ n

δ
‖h‖.

Hence ‖A‖ ≤ n/δ for each A ∈ A.
Let %′ ∈ (0, %) be arbitrary. It suffices to show that sur F (0, 0) ≥ %′. Indeed, taking %′ ↑ %, we

conclude the proof. Pick a γ ∈ (0, 1) such that β + %′ + γ < (1− γ)2(β + %) and denote by B the
norm-closure of A. Applying Graves’ theorem we get from (29) that

(30) ε(1− γ)(β + %)BY ⊂ A((εBX) ∩ dom F ) for each A ∈ B.

As A is norm-bounded, so is B. By shrinking r, if necessary, we get that for each x ∈ rBX and
each A ∈ B we have

(31) (1− γ)BX − ε−1x ⊂ BX and ‖Ax‖ ≤ ε
[
(1− γ)2(β + %)− β − %′ − γ

]
.

We will show a relaxation of (30) when x is not far from 0, that is,

(32) A
(
(εBX) ∩ (dom F − x)

)
⊃ ε(β + %′ + γ)BY whenever x ∈ (rBX) ∩ dom F and A ∈ B.

To this end, fix any such x and A. Then (31), (30), and the convexity of dom F imply that

A
(
(εBX) ∩ (dom F − x)

)
⊃ A

(
[(ε(1− γ)BX) ∩ dom F ]− x

)
⊃ A

(
(1− γ)[(εBX) ∩ dom F ]

)
− Ax

⊃ (1− γ)2ε(β + %)BY − Ax ⊃ ε(β + %′ + γ)BY

and (32) is verified.

To provide the proof under (c4) and (c5), let H(x) := {Ax : A ∈ A}, x ∈ X. Then
dom H = X, H(BX) ⊂ µBY , and −H(−h) = H(h) for each h ∈ X. It suffices to show that (32)
implies (21) with % replaced by %′. So, fix any x ∈ (rBX) ∩ dom F and any y∗ ∈ SY ∗ .

Assume that (c4) holds. Since X is reflexive, (29) implies that so is Y . Indeed, fix any
A ∈ A. As A is surjective, [12, Corollary 2.26 (iii)] says that Y is isomorphic to X/A−1(0). The
continuity of A implies that A−1(0) is the closed subspace of X. Thus X/A−1(0), and hence Y is
reflexive by [12, Exercises 3.114 and 3.112]. Proposition 3.10 (b) implies that there is a non-zero
h ∈ ε−1(dom F − x) such that

inf
A∈A

〈y∗, Ah〉 ≥ (β + %′ + γ)‖h‖.

Apply then Theorem 3.8 (b) to get that sur F (0, 0) > %′.

Assume that (c5) holds. As A is compact in the weak operator topology, the set C := {A∗y∗ :
A ∈ A} is weak∗ closed. Proposition 3.10 (a) implies that there is a non-zero h ∈ ε−1(dom F − x)
such that

inf
A∈A

〈y∗, Ah〉 ≥ (β + %′)‖h‖.
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Now, apply Theorem 3.8 (a) to finish the proof of this case.

Assume that (c6) holds. Under this assumption, A is compact in the strong operator topology,
thus also in the weak operator topology. Moreover, Y is separable due to (32) as a continuous
image of a separable space. Thus the conclusion follows from the previous case.

Note that the result under (c1) will follow once we establish it under (c2). Indeed, by (c1)
the set B, being norm-compact, is compact also in the strong operator topology. Moreover, (30)
holds.

To furnish the proof under (c2) or (c3), fix any (x, v) ∈ gph F ∩
(

r
2
BX× r

2
BY

)
and any y ∈ r

2
BY

distinct from v. Proposition 2.2 with c := %′ will yield the desired estimate on the surjectivity
modulus provided that we find a pair (x′, v′) ∈ gph F and a constant α ∈ (0, 1/%′) such that

(33) ‖y − v′‖ < ‖y − v‖ − %′ max
{
‖x′ − x‖, α‖v′ − v‖

}
.

Pick some λ ∈
(
0, min{ε, r/2, ‖y − v‖/(β + %′ + γ)}

)
and put

z := λ(β + %′ + γ)
y − v

‖y − v‖
and K := dom F − x.

First, assume that (c2) holds and let us agree that L(X, Y ) will be considered with the strong
operator topology until the end of the proof. We will construct a continuous mapping h̃ : A → K
such that

(34) ‖h̃(A)‖ ≤ λ and ‖A(h̃(A))− z‖ < γλ for each A ∈ A.

Note that (ε/λ)z ∈ ε(β + %′ + γ)BY and (λ/ε)K ⊂ K, because K is convex and contains 0. Using
(32), for every A ∈ A, we find an hA ∈ K such that A(hA) = z and ‖hA‖ ≤ λ. Let

U(A) :=
{
A′ ∈ A : ‖A′(hA)− z‖ < γλ

}
, A ∈ A;

these sets are clearly open. For every A ∈ A, we have A(hA) = z; hence U(A) 3 A. The
union of U(A) when A ranges through A covers A. As A is compact, we can choose a finite
subcover {U(A1), . . . , U(Ak)} of it. Put hi := hAi

, i = 1, . . . , k. Using, [F∼, Theorem 17.21], we
find a partition of unity subordinated to this subcover, that is, for every i = 1, . . . , k there is a
continuous function αi : A → [0, 1] such that αi(·) ≥ 0, αi(A) = 0 if A ∈ A \ U(Ai), and that
α1(·) + · · ·+ αi(·) = 1. (An elemenary construction, of the αi’s is as follows: U(Ai) being an open
and convex set containing Ai, let pi be the Minkowski functional of the set U(Ai)−Ai. Put then
γi(·) :=

(
1− pi(·)

)
∨ 0, and finally αi(·) := γi(·)/

(
γ1(·) + · · ·+ γk(·)

)
.) Define

A 3 A 7−→ h̃(A) :=
k∑

i=1

αi(A)hi.

Clearly, h̃ is a continuous mapping with values in K (as this set is convex). Fix any A ∈ A. The
first inequality in (34) follows immediately from the definition of h̃(A). To verify the second one,
we observe that αi(A) > 0 only if A ∈ A and ‖A(hAi

)− z‖ < γλ. Therefore

‖A(h̃(A))− z‖ =
∥∥∥ k∑

i=1

αi(A)(Ahi − z)
∥∥∥ ≤ k∑

i=1

αi(A)‖A(hAi
)− z‖ < γλ
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for every A ∈ A, and the second inequality in (34) follows.
Next, define the set-valued mapping Ψ from A into itself by

A 3 A 7−→ Ψ(A) :=
{
B ∈ A : v + B(h̃(A)) ∈ F

(
x + h̃(A)

)
+ β‖h̃(A)‖BY

}
.

Fix any A ∈ A. By (34), we have ‖h̃(A)‖ ≤ λ < r/2 and x + h̃(A) ∈ x + K = dom F. Since
v ∈ F (x) ∩ rBY , the inclusion (28), with x′ := x + h̃(A) ∈ (rBX) ∩ dom F , yields a B ∈ A such
that

v ∈ F
(
x + h̃(A)

)
+ B(−h̃(A)) + β‖h̃(A)‖BY ,

which means that B ∈ Ψ(A) 6= ∅. By assumption, the set F
(
x + h̃(A)

)
is convex. Hence so is

F
(
x + h̃(A)

)
+ β‖h̃(A)‖BY , and therefore the set Ψ(A) is also convex.

Further, we will show that the graph of Ψ is closed. Indeed, take any net
(
(Aα, Bα)

)
in gph Ψ

converging to (A, B) ∈ A × A. The continuity of h̃ implies that h̃(Aα) converges to h̃(A) ∈ K,
the latter being true because dom F is closed. Moreover

‖Bα(h̃(Aα))−B(h̃(A))‖ ≤ ‖Bα(h̃(Aα))−Bα(h̃(A))‖+ ‖Bα(h̃(A))−B(h̃(A))‖
≤ ‖Bα‖ ‖h̃(Aα)− h̃(A)‖+ ‖(Bα −B)h̃(A)‖ −→ 0,

where we used that A is norm-bounded. Suppose, on the contrary, that for each w′ ∈ F (x+ h̃(A))
we have ‖v + B(h̃(A)) − w′‖ > β‖h̃(A)‖. Thus, by the norm-compactness of F (x + h̃(A)), there
is a ν > 0 such that

d
(
v + B(h̃(A)), F (x + h̃(A))

)
> β‖h̃(A)‖+ 2ν.

Since h̃(Aα) −→ h̃(A), the upper semi-continuity of F yields an index α0 such that for each α ≥ α0

we have
F (x + h̃(Aα)) ⊂ F (x + h̃(A)) + νBY .

As Bα(h̃(Aα)) → B(h̃(A)) and v + Bα(h̃(Aα)) ∈ F
(
x + h̃(Aα)

)
+ β‖h̃(Aα)‖BY , for each α, there

is an α ≥ α0 and a w′
α ∈ F (x + h̃(Aα)) with ‖v + B(h̃(A))− w′

α‖ < β‖h̃(A)‖+ ν. Thus

β‖h̃(A)‖+ 2ν < d
(
v + B(h̃(A)), F (x + h̃(A))

)
≤ d

(
w′

α, F (x + h̃(A))
)

+ ‖v + B(h̃(A))− w′
α‖

< ν + β‖h̃(A)‖+ ν,

a contradiction. Therefore B ∈ Ψ(A) and the closeness of gph Ψ is verified.
Now, applying Gliksberg’s extension of Kakutani’s fixed point theorem [15] for the mapping

Ψ, we conclude that there is an Â ∈ A such that Ψ(Â) 3 Â. Set ĥ := h̃(Â) and x′ := x + ĥ. Then

‖x′ − x‖ = ‖ĥ‖ ≤ λ. The definition of Ψ implies that there is a v′ ∈ F (x′) with ‖v + Âĥ− v′‖ ≤
β‖ĥ‖ ≤ βλ. The definition of z reveals that ‖y − v − z‖ = ‖y − v‖ − λ(β + %′ + γ). The second

inequality in (34) implies that ‖Âĥ− z‖ < γλ. Summarizing the previous inequalities we get that

‖y − v′‖ ≤ ‖y − v − z‖+ ‖v + Âĥ− v′‖+ ‖z − Âĥ‖
< ‖y − v‖ − λ(β + %′ + γ) + βλ + γλ = ‖y − v‖ − %′λ.

Noting that ‖Âĥ‖ ≤ µλ, we see that ‖v − v′‖ ≤ (β + µ)λ < (% + β + µ)λ. Since ‖x′ − x‖ ≤ λ we
obtain (33) with α := 1/(% + β + µ), which finishes the proof of the case (c2).
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Finally, assume that (c3) holds. Let A be the only element of A. Now, (32) reads as

A
(
(εBX) ∩K

)
⊃ ε(β + %′ + γ)BY whenever x ∈ (rBX) ∩ dom F.

This inclusion implies that there is an h ∈ K with ‖h‖ ≤ λ such that Ah = z. Let x′ = x + h.
Then ‖x′ − x‖ = ‖h‖ ≤ λ < r/2, hence (28) yields a v′ ∈ F (x′) with ‖v + Ah− v′‖ ≤ β‖h‖ ≤ βλ.
Since ‖y − v − z‖ = ‖y − v‖ − λ(β + %′ + γ) and Ah = z, we have

‖y − v′‖ ≤ ‖y − v − z‖+ ‖v + Ah− v′‖ ≤ ‖y − v‖ − λ(β + %′ + γ) + βλ < ‖y − v‖ − %′λ.

As before, we obtain (33) with α := 1/(% + β + µ). This (last) case is proved.

Remark 3.12. Let (X, ‖ · ‖), (Y, ‖ · ‖) be Banach spaces and A be a subset of L(X, Y ). Put

surA := inf
{
sur A : A ∈ A

}
. Then surA = surA ‖·‖

as we have seen in the poof of Theorem 3.11.

This leads to the question whether surA is equal to surASOT
if not even to surAWOT

.
Consider a bounded convex subset A of L(X,Y ). If X is reflexive or the set C := {A∗y∗ : A ∈

A} is weak∗ closed for each y∗ ∈ SY ∗ then surA = surAWOT
. Indeed, fix any α ∈ (0, surA) and

then any ε > 0 such that α + 2ε < surA. Pick an arbitrary B ∈ AWOT
. Find a net (Aγ) in A

which converges to B in WOT. Fix any y∗ ∈ SY ∗ . By Proposition 3.10 with K := X, there is an
h̄ ∈ SX such that 〈y∗, Aγh̄〉 ≥ α + ε for every γ. The definition of WOT yields a γ0 such that for
each γ ≥ γ0 we have

sup
h∈SX

〈y∗, Bh〉 ≥ 〈y∗, Bh̄〉 > 〈y∗, Aγh̄〉 − ε ≥ α + ε− ε = α.

As y∗ ∈ SY ∗ was chosen arbitrary, [24, Proposition 1.106] implies that

sur B = inf
y∗∈SY ∗

‖B∗y∗‖ = inf
y∗∈SY ∗

sup
h∈SX

〈B∗y∗, h〉 = inf
y∗∈SY ∗

sup
h∈SX

〈y∗, Bh〉 ≥ α.

Thus surAWOT ≥ α, and consequently surAWOT ≥ surA.
Note that if Y := R, then L(X, Y ) = X∗ and SOT, WOT and the weak∗ topology on X∗

coincide. Moreover, sur x∗ = ‖x∗‖ for every x∗ ∈ X∗. If X is infinite-dimensional, for A := SX∗

we thus have that surA = 1 while surAw∗

= 0 as 0 lies in the weak∗ closure of SX∗ . Note however
that this A is not convex. In what follows, we will focus on finding convex sets A in X∗.

If X is non-reflexive, we do not know the answer to the question raised above in general. For
dual spaces X the answer is negative. Indeed, assume that (Z, ‖ · ‖) is a Banach space such that
its dual is X. Pick ε ∈ (0, 1). By Riesz’ lemma [12, Lemma 1.37], there is a z∗∗ ∈ BZ∗∗ such that
d
(
z∗∗, Z

)
> 1 − ε. Put then A := z∗∗ + BZ ; this is a convex, norm-closed set. For every x∗ ∈ A

we can write x∗ = z∗∗ + z, with a suitable z ∈ BZ , and so ‖x∗‖ ≥ d
(
z∗∗, BZ

)
> 1 − ε. Therefore

surA ≥ 1 − ε (> 0). However, 0 ∈ Aw∗

, and so surAw∗

= 0. (More terestrially, take Z := c0.

Then X = `1 and X∗ = `∞. Put A := (1, 1, . . .) + Bc0 . Then surA = 1 while 0 ∈ Aw∗

.)
Finally, we discuss several particular non-dual spaces X:
(a) Let X := c0. Put

A := S`+1
:=

{
(xn)N : xn ≥ 0 for every n ∈ N and

∑
xn = 1

}
(⊂ X∗).
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Then, clearly ‖x∗‖`1 = 1 for every x∗ ∈ A while Aw∗

3 0.
(b) Let X := C([0, 1]) and equip it with the maximum norm ‖ · ‖. Put

A := λ + co
{
δt : t ∈ [0, 1]

}
(⊂ X∗),

where λ is Lebesgue measure on [0, 1] and δt’s are Diracs. It is not difficult to calculate that

‖µ‖ = 2 for every µ ∈ A and to check that Aw∗

3 0.
(c) Let X := L1([0, 1]), for n ∈ N let fn(t) := (1− nt)+, t ∈ [0, 1], and then put

A := co
{
f1, f2, . . .

}
(⊂ X∗).

Clearly, for every f ∈ A we have ‖f‖L∞ = 1 and for every n ∈ N and every measurable set
A ⊂ [0, 1] we have that

0 ≤
∫

A

fndλ ≤
∫ 1

0

fndλ =
1

2n
−→ 0 as n →∞.

Thus Aw∗

3 0.
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