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Lecture Notes

Abstract Consider the following phenomena: Given a metric space X a function f : X →
R and x ∈ X, we can study the continuity of f at x, to calculate sup f ; if X is a Banach
space, we can study non-emptiness of a subdifferential ∂f(x), or ask for f1, f2 : X → R if
∂f1(x1)+∂f2(x2) contains 0 provided that the sum f1 +f2 attains infimum at x and x1, x2

are close to x; given two metric spaces X,Y , a mapping f : X → 2Y , and x ∈ X, we want
to calculate a modulus of surjectivity sur f(x) of f at x, or a slope of f at x; ... Such ques-
tions are important to study, no doubts. On the other hand, countable/separable objects
are easier to manipulate with than uncountable/nonseparable ones, no doubts. Separable
reduction is a procedure which transforms uncountable/nonseparable settings into count-
able/separable ones and thus enables to tackle them more easily. We plan to show that
behind many uncountable/nonseparable phenomena (like those mentioned above, but ac-
tually behind many other ones, often going far beyond variational analysis) there are “rich
families” of separable subspaces of a space in question, which are good/big/small enough
to focus on the corresponding separable cases only. In order, just to get a taste, a main
and most important property of rich families is that the intersection of two, or even of
countably many rich families is non-empty, it is even a rich family again. Amazing, isn’t?
The rich families were first articulated some 15 years ago by J.M. Borwein and W. Moors,
though, in set theory a similar concept existed for several decades. Now a definition
follows. Given a non-separable metric space X, a family R consisting of (some) closed
subspaces of X is called rich if it is “big enough” and moreover, whenever Y1, Y2, . . . is
an increasing sequence of elements of R, then the closure of Y1∪Y2∪· · · also belongs to R.

Keywords Asplund space, separable reduction, cofinal family, rich family, Fréchet differ-
entiability, Fréchet subdifferential, Fréchet normal cone, fuzzy calculus, extremal principle
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Motto “The Asplund spaces form a right framework for variational analysis.” Boris
Mordukhovich around 2000

1 Motivation for performing separable reductions

A central theme of our investigation will be the concept of Fréchet differentiability and
subdifferentiability.

Definition 1.1. Let (X, ‖ · ‖) be a Banach space, let f : X −→ (−∞,+∞] be a proper
function, i.e. f 6≡ +∞, and let x be any element of the domain of f , which means that
f(x) < +∞. We say that f is Fréchet differentiable at x if there are an element x∗ of the

dual space X∗ and a function o : [0,+∞) −→ [0,+∞] such that o(t)
t
→ 0 as t ↓ 0, and

o(‖h‖) > f(x+ h)− f(x)− 〈x∗, h〉 > −o(‖h‖)

holds for every non-zero h ∈ X. In this case the x∗ is called the Fréchet derivative of f
at x and it is denoted by the symbol f ′(x). We say that f is Fréchet subdifferentiable at

x if there are x∗ ∈ X∗ and a function o : [0,+∞) −→ [0,+∞) such that o(t)
t
→ 0 as t ↓ 0,

and

f(x+ h)− f(x)− 〈x∗, h〉 > −o(‖h‖) (1.1)

holds for every 0 6= h ∈ X. The (possibly empty) set of all x∗’s for which (1.1) holds with
a suitable function o(·) is called the Fréchet subdifferential of f at x and is denoted by
∂Ff(x).

Of course, if f ′(x) exists, then ∂Ff(x) = {f ′(x)}. If f as well as −f are Fréchet subdiffer-
entiable at x, then an easy reasoning reveals that the function f is Fréchet differentiable
at x. We also observe that x∗ ∈ ∂Ff(x) if and only if, for every ε > 0 there is δ > 0
such that 1

‖h‖

(
f(x + h) − f(x) − 〈x∗, h〉

)
> −ε whenever h ∈ X and 0 < ‖h‖ < δ.

Finally, for convex functions, ∂Ff(x) coincides with the well known Moreau-Rockafellar
subdifferential ∂f(x); see [Ph, page 6].

Now, consider a “big”, that is non-separable Banach space X, e.g. X := `2(Γ),
where Γ is a“big” set, say Γ := R; the set of real numbers. Let f : X → R be a
convex continuous function. We want to focus on points of Fréchet differentiability of f .
Because X is big, we are facing a problem how to tackle this question. Indeed, dealing
with uncountable objects can be difficult, once we have at hand just ten fingers. This
“tool” can help us in considering problems with all finite numbers, and at the best case, to
manipulate with countable objects, having cardinality ω — the first infinite number (right
after all millions, billions, trillions, ...). Now, assume that we can find points of Fréchet
differentiability of convex continuous functions defined on separable spaces, that is, on
those Banach spaces which possess a countable dense subset. For our concrete X := `2(Γ),
the restriction of f as above to any separable subspace Y ⊂ X, denoted by f |Y , has points
of Fréchet differentiability; this true by Preiss-Zaj́ıček theorem [Ph, page 22]. Can we
deduct from this “separable” information that the whole f , defined on X, is somewhere
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Fréchet differentiable? The answer is affirmative and this is caused by availability of
a suitable “separable reduction” of the phenomenon of Fréchet differentiability. More
generally, let f : X −→ (−∞,+∞] be a proper function and assume that we know that
for every (or at least for many) separable subspaces Y of X, the restriction f |Y has points
of Fréchet subdifferentiability. Then we look for a suitable separable reduction allowing
us to prove that the whole f has the same property. Let us first present (and prove) a
meaningful and very useful “separable” statement.

Proposition 1.2. Let (X, ‖ · ‖) be a (separable) Banach space whose dual X∗ is separable
and let f : X −→ (−∞,+∞] be a lower semi-continuous function. Then the set of all
x ∈ X where the Fréchet subdifferential ∂Ff(x) is non-empty is dense in the domain of
f .

Proof. We realize that X admits an equivalent Fréchet smooth (off the origin) norm.
Indeed, let {x1, x2, . . .} be a countable dense subset of the unit sphere SX of X and
{ξ1, ξ2, . . .} be a countable dense subset of the unit sphere SX∗ of the dual. Then the
assignment

X∗ 3 x∗ 7−→
√
‖x∗‖2 +

∑∞
n=1 2−n〈x∗, xn〉2 +

∑∞
n=1 2−ndist (x∗, sp{ξ1, . . . , ξn}

)2
=: |x∗|

is an equivalent weak∗ lower semi-continuous norm. A small effort reveals that this norm
is locally uniformly rotund, and hence, by Šmulyan test, the predual norm | · | on X
defined by

X 3 x 7−→ sup
{
〈x∗, x〉 : x∗ ∈ X∗, |x∗| ≤ 1

}
=: |x|

is Fréchet differentiable at every nonzero point of X. For more details, see [DGZ, page
43].

Next, let x ∈ dom f and ε > 0 be given. We shall find an x ∈ X such that |x− x| < ε
and ∂Ff(x) is non-empty. From the lower semi-continuity of f find ε′ ∈ (0, ε) so small
that f is bounded below on the open ball B(x, ε). Define

ϕ(x) :=

{(
tan( π

2ε′
|x− x|)

)2
if x ∈ B(x, ε′)

+∞ if x ∈ X \B(x, ε′).

Then ϕ : X −→ [0,+∞] is easily seen to be proper and lower semi-continuous. Now,
Borwein-Preiss variational principle [Ph, Theorem 4.20] provides a Fréchet smooth func-
tion θ : X −→ [0,+∞) such that the sum f + ϕ + θ attains infimum at some v ∈ X;
clearly, v ∈ B(x, ε′) ∩ dom f . We thus have

f(v + h) + ϕ(v + h) + θ(v + h) ≥ f(v) + ϕ(v) + θ(v) for every h ∈ X,

and so
f(v + h)− f(v) + 〈ϕ′(v) + θ′(v), h〉 ≥ −o(|h|) for every h ∈ X

where o is a function such that o(t)
t
→ 0 as t ↓ 0. We proved that −ϕ′(v)−θ′(v) ∈ ∂Ff(v),

and hence ∂Ff(v) 6= ∅.
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Joke. If X∗ is separable and g : X → R is convex continuous, then putting f := −g in
the proposition above, we conclude that g is Fréchet differentiable at points of a dense
subset of X.

Well, the separable case is done. Now, consider non-separable spaces. Here one
should be careful, since, for instance, `∞ admits an equivalent norm which is nowhere
(even) Gateaux differentiable: `∞ 3 (xn) 7−→ ‖(xn)‖∞ + lim supn→∞ |xn| is such a norm.
In what follows, we shall restrict ourselves to Banach spaces with the property that every
separable subspace of it has separable dual. Such spaces are called Asplund spaces. (The
original definition is that X is Asplund if every convex continuous function on it has
points of Fréchet differentiability.) The reason why we cannot go beyond Asplund spaces
can bee seen from the fact that (even) the canonical norm of the “innocent” `1 is nowhere
Fréchet differentiable; actually every non-Asplund space admits an equivalent norm which
is nowhere Fréchet differentiable, see [M, page 197]. (The situation is even worse. Ac-
cording to R. Haydon, there is a non-separable Asplund space having no Gateaux smooth
norm [H].) Now a main question which concerns us arises: Is it possible to extend Propo-
sition 1.2 to non-separable Asplund spaces? The answer is affirmative. Just the proof is
not easy. It will occupy more or less the rest of this text. The technology used goes back
to [F, FZ, Pr] and D. Gregory [Ph, Theorem 2.14] (in the reverse chronological order). In
order not to get lost, we shall first restrict ourselves to Fréchet differentiability of convex
functions. And this is right D. Gregory’s theorem below, with (now) a bit simplified proof.

Proposition 1.3. (D. Gregory) Let (X, ‖·‖) be a non-separable Banach space, f : X → R
a convex continuous function, and Z a separable subspace of X. Then there exists a
separable subspace Y of X, containing Z, and such that, if the restriction f |Y of f to Y
is Fréchet differentiable at some x ∈ Y , then the “whole” f is Fréchet differentiable at x.

Proof. First, we need a translation of Fréchet differentiability (of convex functions)
completely to the terms of the space X: f is Fréchet differentiable at x ∈ X if and only if

S(x, t) := sup
h∈BX

(
f(x+ th) + f(x− th)

)
= 2f(x) + o(t) as Q+ 3 t↓0;

this is easy to check. For any x ∈ X and any t > 0, if S(x, t) < +∞, we find a vector
u(x, t) ∈ BX such that

f
(
x+ t u(x, t)

)
+ f

(
x− t u(x, t)

)
> S(x, t)− t2. (1.2)

(This u(x, t) is almost “the worst possible” as regards the Fréchet differentiability of f
at x.) Let C0 be a countable dense subset of Z. We shall construct countable sets
C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ X as follows. Let m ∈ N be given and assume that Cm−1 was
already found. Find a countable set Cm in X such that it is stable under making all finite
linear combinations with rational coefficients, and that it contains Cm−1 as well as the set{
u(x, t) : x ∈ Cm−1, t ∈ Q+}; clearly, Cm is again countable. Do so for every m ∈ N,

and put finally Y := C1 ∪ C2 ∪ · · · . Clearly, Y ⊃ Z.
We claim that this Y has the desired property. So, assume that f |Y is Fréchet differ-

entiable at some x ∈ Y . We shall show that the whole f is Fréchet differentiable at x
as well. (If x ∈ C1 ∪ C2 ∪ · · · , then it is rather easy to proceed. So, we have to find an
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argument working also for x ∈ Y \C1 ∪C2 ∪ · · · .) Let L denote a Lipschitz constant of f
in a vicinity of x; see [Ph, Proposition 1.6]. Pick any t ∈ Q+ small enough (so that we can
profit below from the L-Lipschitz property of f around x). Find then c ∈

⋃∞
m=1Cm such

that ‖c− x‖ < t2. We can now subsequently estimate for all sufficiently small t ∈ Q+ (so
that we can profit from the Lipschitz property of f)

2f(x) ≤ S(x, t) < S(c, t) + 2Lt2

< f
(
c+ t u(c, t)

)
+ f(c− t u(c, t)

)
+ t2 + 2Lt2

< f
(
x+ t u(c, t)

)
+ f(x− t u(c, t)

)
+ t2 + 4Lt2

≤ sup
k∈BY

(
f(x+ tk) + f(x− tk)

)
+ t2 + 4Lt2

= o(t) + 2f(x) as Q+3 t ↓ 0

since f |Y is Fréchet differentiable at x. Therefore, the “whole” f is Fréchet differentiable
at x.

Homework. Show that the (semi)-continuity of a function is also separable reducible in
the spirit of Proposition1.3. Hint. Realize that the continuity of f at x can be character-

ized via “oscillation”, that is diameter of f
( ◦
B (x, t)

)
, t > 0 and that the latter quantity

can be calculated via a suitable countable subset of
◦
B (x, t); see [FI2].

We finish this section by one observation. Let S(X) denote the family of all closed
separable subspaces of a non-separable Banach space X. We actually showed that the
subfamily C of all Y ∈ S(X) such that the conclusion of Proposition 1.3 holds is cofi-
nal/dominating/saturating in S(X), that is, it has the property that for every Z ∈ S(X)
there is Y ∈ C containing Z.
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2 Motivation for introducing rich families

Going back to the previous section, we can say that Fréchet differentiability of a convex
continuous function is “separably reducible” via a suitable cofinal subfamily of S(X).
Consider now two convex continuous functions f1, f2. We would like to separably reduce
Fréchet differentiability simultaneously for both functions. A natural way how to do this
would be to consider the family C := C1 ∩ C2. However, we, or may be just the author
of this text, does not see if C is cofinal, not even if it is non-empty. Then it remains to
cultivate a bit the argument above and thus get a cofinal family working simultaneously
for both functions. And what about if somebody brings one more functions, etc? This
trouble can be remedied with help the concept of rich family. It was first articulated in a
joint paper by J.M. Borwein and W. Moors [BM]; see also [LPT, Section 3.6] and [FI2].

Definition 2.1. Let X be a (rather) non-separable Banach space [or just a metrizable
space]. Let S(X) denote the family of all closed separable subspaces [closed separable
subsets] of X. A family R ⊂ S(X) is called rich if
(i) it is cofinal, and
(ii) it is σ-complete, that is, whenever Y1, Y2, . . . are in R and Y1 ⊂ Y2 ⊂ · · · , then
Y := Y1 ∪ Y2 ∪ · · · ∈ R.

The power of rich families is demonstrated by the following fundamental fact; see [BM]
and also [LPT, page 37].

Proposition 2.2. The intersection of two, even of countably many, rich families of a
given space is (not only non-empty but even) rich again.

Proof. Let R1,R2 be two rich families in S(X). Let Z ∈ S(X) be arbitrary. From the
cofinality ofR1,R2 we find, alternatively, two sequences Y 1

1 , Y
1
2 , . . . inR1 and Y 2

1 , Y
2
2 , . . .

in R2 such that Z ⊂ Y 1
1 ⊂ Y 2

1 ⊂ Y 1
2 ⊂ Y 2

2 ⊂ Y 1
3 ⊂ · · · . Then Y := Y 1

1 ∪ Y 1
2 ∪ · · · =

Y 2
1 ∪ Y 2

2 ∪ · · · belongs to R by (ii), and the cofinality of R is proved. The proof that R
is σ-complete is simple, and is left to a potential reader.

Okay, once we know that the intersection of two rich families is rich, we can conclude,
via a simple induction, that the intersection of any finite number of rich families is again
rich. Finally, letR1,R2, . . . be a sequence of rich families and denote byR the intersection
of all them. Then, for sure, and immediately, R is σ-complete. Let Z ∈ S(X) be any.
Find subsequently Y1 ∈ R1 so that Y1 ⊃ Z. Find Y2 ∈ R1 ∩ R2 so that Y2 ⊃ Y1. Find
Y3 ∈ R1 ∩ R2 ∩ R3 so that Y3 ⊃ Y2. (Fed up already?) ... Profiting from what was

already proved, we get that Y := Y 1
1 ∪ Y 1

2 ∪ · · · belongs to R, and the cofinality of R is
also verified.

Next we shall strengthen the conclusion of Proposition 1.3 by showing that, behind
the separable reduction of Fréchet differentiability of (for this moment only) convex func-
tions, there is a suitable rich family.

Proposition 2.3. Let (X, ‖ · ‖) be a non-separable Banach space and f : X → R be
a convex, not necessarily continuous, function. Then there exists a rich family R
in S(X) such that for every Y ∈ R and every x ∈ Y the whole function f is Fréchet
differentiable at x if (and only if) the restriction f |Y is Fréchet differentiable at x.
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Proof. Search for a suitable R is not so obvious. Indeed, it is not clear to us if the
“natural” candidate, the family of all Y ∈ S(X) such that for every x ∈ Y , the function
f is Fréchet differentiable at x if (and only if) the restriction f |Y is Fréchet differentiable
at x, works. We shall proceed as follows. For every subspace Y of X, every x ∈ X, and
every t > 0 we put

SY (x, t) := sup
{
f(x+ th) + f(x− th) : h ∈

◦
BY

}
;

here, and below
◦
BY denotes the open unit ball in Y . (Here, and in what follows, we shall

frequently profit from the boon coming from using open balls.) Now, we define

R :=
{
Y ∈ S(X) : SY (x, t) = SX(x, t) for every x ∈ Y and every t > 0

}
.

We shall show that this R is rich.
Let us prove that R is cofinal in S(X). For every x ∈ X and every t > 0, γ > 0, if

SX(x, t) < +∞, we find a vector u(x, t, γ) ∈
◦
BX such that

f
(
x+ tu(x, t, γ)

)
+ f

(
(x− tu(x, t, γ)

)
> SX(x, t)− γ.

Now, fix any Z ∈ S(X). Pick a countable dense subset C0 in Z. Let m ∈ N be fixed
for a short while and assume we have already found Cm−1. Find then a rationally linear
countable set Cm in X such that it contains Cm−1 as well as the set

{
u(x, t, γ) : x ∈

Cm−1, t, γ∈Q+

}
. Doing so for every m ∈ N, put finally Y := C0 ∪ C1 ∪ C2 ∪ · · · . Clearly,

Y lies in S(X) and contains Z. It remains to verify that Y does belong to R. So, fix

any h ∈
◦
BX and any t > 0. We have to show that SX(x, t) ≤ SY (x, t). Find a rational

t′ ∈ (0, t) such that t
t′
‖h‖ < 1. Find then x′ ∈ C1∪C2∪ · · · such that t‖h‖+‖x′−x‖ < t′

and t′ + ‖x′ − x‖ < t. Find then m ∈ N so big that Cm−1 contains x′. Now, for every

k ∈
◦
BY we have

f(x′ + t′k) + f(x′ − t′k) = f
(
x+ t

(t′
t
k +

x′ − x

t

))
+ f

(
x− t

(t′
t
k +

x′ − x

t

))
≤ SY (x, t);

here we profited from the fact that
∥∥ t′

t
k + x′−x

t

∥∥ < t′

t
+ ‖x′−x‖

t
< 1. Thus, recalling that k

was an arbitrary element of
◦
BY , we have that SY (x′, t′) ≤ SY (x, t) (≤ SX(x, t) < +∞).

Next, fix for a while any γ ∈ Q+ . We can estimate:

f(x+th) + f(x−th) = f
(
x′ + t′

( t
t′
h+

x− x′

t′

))
+ f

(
x′ − t′

( t
t′
h+

x− x′

t′

))
≤ SX(x, t′) < γ + f

(
x′ + t′u(x′, t′, γ)

)
+ f

(
x′ − t′u(x′, t′, γ)

)
≤ γ + SY (x′, t′) ≤ γ + SY (x, t);

here we profited from the inequality ‖ t
t′
h + x−x′

t′
‖ ≤ t

t′
‖h‖ + ‖x−x′‖

t′
< 1. Thus we have

that f(x+ th) + f(x− th) ≤ SY (x, t) + γ. And, as γ ∈ Q+ and h ∈
◦
BX were arbitrary, we

obtain that SX(x, t) ≤ SY (x, t) for every x ∈ Y and t > 0. This means that Y ∈ R.
As regards the σ-completeness of R, consider an increasing sequence Y1, Y2, . . . in it

and put Y := Y1 ∪ Y2 ∪ · · · . Fix for a while any x ∈ Y and any t > 0. (If x ∈ Y1∪Y2∪· · · ,
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then a reader can easily verify that SY (x, t) = SX(x, t). Further, we take into account

that this may not be so.) Fix any h ∈
◦
BX and any t > 0. We have to show that

f(x + th) + f(x − th) ≤ SY (x, t). Find t′ ∈ (0, t) such that t
t′
‖h‖ < 1. Find then

x′ ∈ Y1 ∪Y2 ∪ · · · such that t‖h‖+ ‖x′−x‖ < t′ and t′ + ‖x′−x‖ < t. Finally find m ∈ N
so big that Ym contains x′. Now, we can estimate:

f(x+ th) + f(x− th) = f
(
x′ + t′

( t
t′
h+

x− x′

t′

))
+ f

(
x′ − t′

( t
t′
h+

x− x′

t′

))
≤ SX

(
x′, t′

)
= SYm(x′, t′) ≤ SY (x′, t′);

(2.1)

here we used that Ym ∈ R and that ‖ t
t′
h+ x−x′

t′
‖ < 1. On the other hand, for every k ∈

◦
BY

we have

f(x′ + t′k) + f(x′ − t′k) = f
(
x+ t

(t′
t
k +

x′ − x

t

))
+ f

(
x− t

(t′
t
k +

x′ − x

t

))
≤ SY (x, t);

here we used that
∥∥ t′

t
k + x′−x

t

∥∥ < 1. Thus, recalling that k was an arbitrary element of
◦
BY , we have that SY (x′, t′) ≤ SY (x, t). Now putting together this inequality with (2.1),

we can conclude that f(x + th) + f(x − th) ≤ SY (x, t). And, as h ∈
◦
BX were arbitrary,

we have that SX(x, t) ≤ SY (x, t) for every x ∈ Y and t > 0. This means that Y ∈ R. We
verified that our R is σ-complete.

It remains to check that our R “works”. So, take any Y in it and any x in Y such
that the restriction f |Y is Fréchet differentiable at x (if there is any such). This means
that(
SY (x, t)− 2f(x) =

)
sup

{
f(x+ th) + f(x− th) : h ∈

◦
BY

}
− 2f(x) = o(t) as t ↓ 0 .

But the definition of R guarantees that SY (x, t) = SX(x, t) for every t > 0. Therefore

sup
{
f(x+ th) + f(x− th) : h ∈

◦
BX

}
− 2f(x) = o(t) as t ↓ 0 ,

that is, the whole f is Fréchet differentiable at x.

There are many other separable reducible statements, and practically, behind any,
such there is a suitable rich family.

Homework. Given a real-valued function f defined on a Banach space (more generally,
on a metric space), show that the continuity of it is separable reducible via a rich family.
Hint: Define R as that consisting of all Y ∈ S(X) such that for every x ∈ Y and every

t > 0 we have diam f
( ◦
B (x, t)

)
= diam f

( ◦
B (x, t) ∩ Y

)
; here

◦
B (x, t) means the open

ball around x with radius t.

9



3 Separable reduction of Fréchet subdifferentiability

via rich families in general Banach spaces

Consider a convex function ϕ : X −→ −∞,+∞], with ϕ(0) finite, and let c ≥ 0 be given.
We start with proving a simple but basic Fact: ∂ϕ(0) ∩ cBX∗ is non-empty if and only
if ϕ(h) ≥ ϕ(0) − c‖h‖ for every h ∈ X. (We note that the subdifferential ∂ϕ(0) can
be empty, for instance, when ϕ is a linear non-continuous functional on X.) Indeed, if
x∗ ∈ ∂ϕ(0) ∩ cBX∗ , then for every h ∈ X we have ϕ(h) ≥ ϕ(0) + 〈x∗, h〉 ≥ ϕ(0) − c‖h‖.
Reversely, having this inequality at hand, we know that the function ϕ + ‖ · ‖ attains
infimum at h := 0. Hence 0 ∈ ∂(ϕ + ‖ · ‖)(0) = ∂ϕ(0) + ∂‖ · ‖(0) = ∂ϕ(0) − cBX∗ , by
Moreau-Rockafellar theorem [Ph, page 47]. Thus ∂ϕ(0) ∩ cBX∗ 6= ∅.

The next statement translates the non-emptiness of Fréchet subdifferential of any, not
necessarily convex or continuous, function purely into terms of the space X. To do so, we
need more notation. Namely, we denote
• by ∆ the collection of all sequences δ = (δn) ∈ (0,+∞)ω such that δ1 ≥ δ2 ≥ · · · ;
• by Λ the collection of all sequences λ = (λn) ∈ [0,+∞)ω such that the set {n ∈ N :
λn > 0} is finite and

∑∞
n=1 λn = 1;

• by Υ the collection of all (νn) ∈ Nω such that the set {n ∈ N : νn 6= 1} is finite, and
• given ν = (νn) ∈ Υ and δ = (δn) ∈ ∆, we denote by H(ν, δ) the collection of all
H = (hn) ∈ Xω such that ‖hn‖ < δνn for every n ∈ N.

Proposition 3.1. Let (X, ‖ · ‖) be a general Banach space, consider a proper function
f : X −→ (−∞,+∞], let x ∈ dom f , and let c ≥ 0 be given. Then ∂Ff(x) ∩ cBX∗ is
non-empty if and only if there is a sequence δ = (δn) ∈ ∆ ∩Qω so that

∞∑
n=1

λn

(
f(x+ hn) +

1

νn

‖hn‖
)

+ c

∥∥∥∥ ∞∑
n=1

λnhn

∥∥∥∥ ≥ f(x) (3.1)

for all (λn) ∈ Λ, all ν = (νn) ∈ Υ, and all (hn) ∈ H(ν, δ).

Proof. Sufficiency. For h ∈ X define

ϕ(h) := inf

{ ∞∑
i=1

λn

(
f(x+ hn) + 1

νn
‖hn‖

)
− f(x) :

(λn) ∈ Λ, (νn) ∈ Υ, (hn) ∈ H(ν, δ),
∞∑

n=1

λnhn = h

} (3.2)

if ‖h‖ ≤ δ1, and ϕ(h) := +∞ if ‖h‖ > δ1. It is clear from (3.1) that ϕ(h) ≥ −c‖h‖ > −∞
for all h ∈ X. We shall verify that ϕ : X −→ (−∞,+∞] is a convex function. Fix any
α ∈ (0, 1) and any h, h′ ∈ domϕ; then ‖h‖ ≤ δ1, ‖h′‖ ≤ δ1. Fix any t > 0 and find
(λn), (λ′n)∈Λ, ν=(νn)∈Υ, ν ′=(ν ′n)∈Υ, and (hn)∈H(ν, δ), (h′n)∈H(ν ′, δ) such that

∞∑
n=1

λnhn = h, ϕ(h) + t >
∞∑

n=1

λn

(
f(x+ hn) + 1

νn
‖hn‖

)
− f(x)
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and that the same holds if we replace λn, νn, hn and h, respectively, by λ′n, ν
′
n, h

′
n and

h′. Take an n̄ ∈ N so big that λn = λ′n = 0 for n > n̄ and set

λ′′n = αλn, ν ′′n = νn, h′′n = hn, if 1 ≤ n ≤ n̄;
λ′′n = (1− α)λ′n−n̄, ν ′′n = ν ′n−n̄, h′′n = h′n−n̄, if n̄ < n ≤ 2n̄;
λ′′n = 0, ν ′′n = 1, h′′n = 0, if n > 2n̄.

We note that (λ′′n) ∈ Λ, ν ′′ := (ν ′′n) ∈ Υ, and ‖h′′n‖ < δν ′′
n

for every n ∈ N; so (h′′n) ∈
H(ν ′′, δ). Then

αϕ(h) + (1− α)ϕ(h′) + t+ f(x)

>

n̄∑
n=1

[
αλn

(
f(x+ hn) +

1

νn

‖hn‖
)

+ (1− α)λ′n

(
f(x+ h′n) +

1

ν ′n
‖h′n‖

)]
=

n̄∑
n=1

λ′′n

(
f(x+ h′′n) +

1

ν ′′n
‖h′′n‖

)
+

n̄∑
n=1

λ′′n̄+n

(
f(x+ h′′n̄+n) +

1

ν ′′n̄+n

‖h′′n̄+n‖
)

=
∞∑

n=1

λ′′n

(
f(x+ h′′n) +

1

ν ′′n
‖h′′n‖

)
≥ ϕ

(
αh+ (1− α)h′

)
+ f(x).

which proves the convexity of ϕ as t > 0 could be taken arbitrarily small.
Now, it follows from (3.1) and (3.2) that 0 ≥ ϕ(0) ≥ 0. Thus ϕ(h) ≥ ϕ(0)− c‖h‖ for

every h ∈ X. By the Fact above, there is a x∗ ∈ ∂ϕ(0) such that ‖x∗‖ ≤ c. We shall
show that x∗ ∈ ∂Ff(x). So, consider an arbitrary ε > 0. Find m ∈ N such that 1

m
< ε.

Take any fixed h ∈ X such that ‖h‖ < δm. Put λm = 1, hm = h and νm = m, and
for n ∈ N \ {m} put λn = 0, hn = 0, and νn = 1; then (λn) ∈ Λ, ν := (νn) ∈ Υ, and
(hn) ∈ H(ν, δ). Hence, by (3.2) we get that

f(x+ h) + ε‖h‖ − f(x) ≥ f(x+ h) + 1
m
‖h‖ − f(x) ≥ ϕ(h) ≥ ϕ(0) + 〈x∗, h〉 = 〈x∗, h〉

as x∗ ∈ ∂ϕ(0). Therefore x∗ ∈ ∂Ff(x) ∩ cBX∗ .
Conversely, assume there is x∗ in ∂Ff(x) ∩ cBX∗ . For every n ∈ N we find δn ∈ Q+

such that f(x + h) + 1
n
‖h‖ − f(x) > 〈x∗, h〉 whenever h ∈ X and ‖h‖ ≤ δn. We may

arrange that δ1 ≥ δ2 ≥ · · · . Then δ := (δn) ∈ ∆ ∩ Qω. For h ∈ X define ϕ(h) by the
formula (3.2) with this δ if ‖h‖ ≤ δ1, and ϕ(h) := +∞ if ‖h‖ > δ1. As above, we can
check that this ϕ is a convex function on X. We certainly have that ϕ(0) ≤ 0. Fix for
a while any h ∈ X, with ‖h‖ < δ1. Consider any (λn) ∈ Λ, any ν = (νn) ∈ Υ, and any
(hn) ∈ H(Υ, δ) such that

∑∞
n=1 λnhn = h . We observe that for every n ∈ N we have

f(x+ hn) + 1
νn
‖hn‖ − f(x) > 〈x∗, hn〉. It follows that

∞∑
n=1

λn

(
f(x+ hn) + 1

νn
‖hn‖

)
− f(x) ≥

∞∑
n=1

λn〈x∗, hn〉 = 〈x∗, h〉.

Therefore, by (3.2), ϕ(h) ≥ 〈x∗, h〉
(
≥ ϕ(0) + 〈x∗, h〉

)
whenever h ∈ X and ‖h‖ < δ1,

and hence x∗ ∈ ∂ϕ(0). And as ‖x∗‖ ≤ c, applying the Fact above again, we get that (3.1)
holds.
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Now we are ready to perform separable reduction of the nonemptiness of Fréchet
subdifferential via a rich family. For every subspace Y of X, every x ∈ Y , every λ =
(λn) ∈ Λ, every ν = (νn) ∈ Nω, every δ = (δn) ∈ ∆, and every c ≥ 0 we denote by
I(x, λ, ν, δ, c, Y ) the following (possibly infinite) quantity

inf

{ ∞∑
n=1

λn

(
f(x+ hn) +

1

νn

‖hn‖
)

+ c
∥∥∥ ∞∑

n=1

λnhn

∥∥∥ : (hn) ∈ H(ν, δ) ∩ Y ω

}
. (3.3)

Clearly, with this notation, (3.1) reads as I(x, λ, ν, δ, c,X) ≥ f(x).
For λ = (λn) ∈ Λ, ν = (νn) ∈ Nω, and c ≥ 0, we define the family Rλ,ν,c as that

consisting of all Y ∈ S(X) such that for every x ∈ Y and every δ ∈ ∆ ∩Qω we have

I(x, λ, ν, δ, c,X) = I(x, λ, ν, δ, c, Y ). (3.4)

Proposition 3.2. For any λ = (λn) ∈ Λ, ν = (νn) ∈ Nω, and c ≥ 0 the family Rλ,ν,c

defined above is rich.

Proof. Fix any λ, ν and c as above. We re-denote I(x, λ, ν, δ, c,X) and I(x, λ, ν, δ, c, Y ),
respectively, by I(x, δ,X) and I(x, δ, Y ). Now, for every x ∈ X, every δ ∈ ∆, and for
every m,n ∈ N, we find vectors gn(x, δ,m) ∈ X, with ‖gn(x, δ,m)‖ < δνn , such that

I(x, δ,X) +
1

m
≥

∞∑
n=1

λn

(
f
(
x+ gn(x, δ,m)

)
+

1

νn

‖gn(x, δ,m)‖
)

+ c
∥∥∥ ∞∑

n=1

λngn(x, δ,m)
∥∥∥

(3.5)

if I(x, δ,X) > −∞, and

−m >
∞∑

n=1

λn

(
f
(
x+ gn(x, δ,m)

)
+

1

νn

‖gn(x, δ,m)‖
)

+ c
∥∥∥ ∞∑

n=1

λngn(x, δ,m)
∥∥∥ (3.6)

if I(x, δ,X) = −∞. Here, we choose the vectors gn(x, δ,m) in such a way that gn(x, δ,m) =
gn(x, δ′,m) whenever δ, δ′ ∈ ∆ and δνj

= δ′νj
for every j ∈ N such that λj > 0. Using this

policy, we guarantee that for every x ∈ X and every m ∈ N the set {gn(x, δ,m) : n ∈
N, δ ∈ ∆ ∩Qω} is countable.

We first show that Rλ,ν,c is cofinal in S(X). So, fix any Z ∈ S(X). Choose a countable
dense subset C0 in Z. Assume further that for some m ∈ N we have already constructed
countable sets C0 ⊂ C1 ⊂ · · · ⊂ Cm−1 ⊂ X. Define then Cm as the Q-linear span of the
set Cm−1∪

{
gn(x, δ,m) : n ∈ N, x ∈ Cm−1, δ ∈ ∆∩Qω}. Clearly, Cm is again countable.

Put Y := C0 ∪ C1 ∪ · · · . Clearly, Y ∈ S(X) and Y ⊃ Z. We have to show that Y
belongs to R, that is, that (3.4) holds. So, fix any x ∈ Y and any δ ∈ ∆ ∩ Qω. Clearly,
it is enough to prove that I(x, δ,X) ≥ I(x, δ, Y ). Consider any (hn) ∈ H(ν, δ). Put
N := {n ∈ N : λn > 0}; this is a finite set. Take an arbitrary r ∈ Q+ so small that
‖hn‖ < δνn − 2r for every n ∈ N . Find then δ′ = (δ′i) ∈ ∆∩Qω such that δ′i ≤ δi for every
i ∈ N and δ′νn

= δνn − r if n ∈ N . Find m ∈ N so big that dist (x,Cm−1) < r; pick then
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ym ∈ Cm−1 such that ‖x− ym‖ < r. We are now ready to estimate

∞∑
n=1

λn

(
f
(
ym + gn(ym, δ

′,m)) +
1

νn

‖gn(ym, δ
′,m)‖

)
+ c

∥∥∥ ∞∑
n=1

λngn(ym, δ
′,m)

∥∥∥,
≥

∞∑
n=1

λn

(
f
(
x+ (ym − x+ gn(ym, δ

′,m))
)

+
1

νn

‖ym − x+ gn(ym, δ
′,m)‖

)
+ c

∥∥∥ ∞∑
n=1

λn

(
ym − x+ gn(ym, δ

′,m)
)∥∥∥− r − cr ≥ I(x, δ, Y )− r − cr,

(3.7)

the last inequality being true because
(
ym − x+ gn(ym, δ

′,m) : n ∈ N
)
∈ H(ν, δ) ∩ Y ω.

If I(ym, δ
′, X) = −∞ for infinitely many m ∈ N, then (3.6) and (3.7) imply together

that −m > I(x, δ, Y )−r−cr for all such m; hence I(x, δ, Y ) = −∞, and thus I(x, δ,X) ≥
−∞ = I(x, δ, Y ).

Assume now that I(ym, δ
′, X) > −∞ for all sufficiently large m ∈ N. Fix one such m,

big enough to guarantee that m > 1
r
. Define h′n := hn + x− ym if n ∈ N , and h′n := 0 if

n ∈ N \N . Then (h′n) ∈ H(ν, δ′) and we can estimate

∞∑
n=1

λn

(
f(x+ hn) +

1

νn

‖hn‖
)

+ c
∥∥∥ ∞∑

n=1

λnhn

∥∥∥
=

∞∑
n=1

λn

(
f(ym + h′n) +

1

νn

‖hn‖
)

+ c
∥∥∥ ∞∑

n=1

λnhn

∥∥∥
≥

∞∑
n=1

λn

(
f(ym + h′n) +

1

νn

‖h′n‖
)

+ c
∥∥∥ ∞∑

n=1

λnhn

∥∥∥− r − cr

≥ I(ym, δ
′, X)− r − cr

≥
∞∑

n=1

λn

(
f
(
ym + gn(ym, δ

′,m)
)

+
1

νn

‖gn(ym, δ
′,m)‖

)
+ c

∥∥∥ ∞∑
n=1

λngn(ym, δ
′,m)

∥∥
− 1

m
− r − cr ≥ I(x, δ, Y )− 3r − 2cr,

(3.8)

by (3.5) and (3.7). Since r ∈ Q+ could be arbitrarily small, this proves that I(x, δ,X)
≥ I(x, δ, Y ). Therefore Y ∈ Rλ,ν,c and so the cofinality of Rλ,ν,c is verified.

To prove thatRλ,ν,c is σ-complete, we have to further elaborate the construction above.
Let Y1, Y2, . . . , be an increasing sequence of elements of Rλ,ν,c. Put Y := Y1 ∪ Y2 ∪ · · · .
We have to show that Y belongs to Rλ,ν,c. This means that we have to verify (3.4). So, fix
any x ∈ Y and any δ ∈ ∆ ∩Qω. We have to prove that I(x, δ,X) ≥ I(x, δ, Y ). Take any
(hn) ∈ H(ν, δ). Let again N := {n ∈ N : λn > 0}; this is a finite set. Take an arbitrary
r ∈ Q+ so small that ‖hn‖ < δνn − 2r for every n ∈ N . Find then δ′ = (δ′i) ∈ ∆ ∩ Qω

such that δ′i ≤ δi for every i ∈ N and δ′νn
= δνn − r if n ∈ N . Take m ∈ N so big that

dist (x, Ym) < r; pick then ym ∈ Ym so that ‖x − ym‖ < r. Define h′n := hn + x − ym if
n ∈ N , and h′n := 0 if n ∈ N \ N . Then (h′n) ∈ H(ν, δ′) and from the first half of (3.8)
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(valid also now) we have

r + cr+
∞∑

n=1

λn

(
f(x+ hn)+

1

νn

‖hn‖
)

+ c
∥∥∥ ∞∑

n=1

λnhn

∥∥∥
≥ I(ym, δ

′, X) = I(ym, δ
′, Ym) ≥ I(ym, δ

′, Y )

(3.9)

since ym ∈ Ym, Ym ∈ Rλ,ν,c, and Ym ⊂ Y .
Now, consider any (kn) ∈ H(ν, δ′) ∩ Y ω. Set k′n := kn + ym − x if n ∈ N , and k′n := 0

if n ∈ N \N . Then (k′n) ∈ H(ν, δ) ∩ Y ω and we can estimate

∞∑
n=1

λn

(
f(ym + kn) +

1

νn

‖kn‖
)

+ c
∥∥∥ ∞∑

n=1

λnkn

∥∥∥
=

∞∑
n=1

λn

(
f(x+ k′n) +

1

νn

‖kn‖
)

+ c
∥∥∥ ∞∑

n=1

λnkn

∥∥∥
≥

∞∑
n=1

λn

(
f(x+ k′n) +

1

νn

‖k′n‖
)

+ c
∥∥∥ ∞∑

n=1

λnkn

∥∥∥− r − cr

≥ I(x, δ, Y )− r − cr.

Hence I(ym, δ
′, Y ) ≥ I(x, δ, Y ) − r − cr. Therefore, combining the latter inequality with

(3.9) and recalling that r ∈ Q+ was arbitrarily small, we conclude that I(x, δ,X) ≥
I(x, δ, Y ). This verifies (3.4) for our Y and hence guarantees that Y ∈ Rλ,ν,c. We proved
that Rλ,ν,c is σ-complete.

Theorem 3.3. ([FZ], [F]) Let X be a non-separable Banach space and f an extended-
real-valued function on X. Then there is a rich family R in S(X) such that for every
Y ∈ R, every x ∈ Y , and every c ≥ 0 we have that: ∂Ff(x) ∩ cBX∗ is non-empty if (and
only if) ∂F

(
f |Y

)
(x) ∩ cBY ∗ is non-empty.

Proof. Assume that ∂F

(
f |Y

)
(x)∩ cBY ∗ 6= ∅. By Proposition 3.1, there is δ ∈ ∆∩Qω such

that I(x, λ, ν, δ, c, Y ) ≥ f(x) whenever λ ∈ Λ∩Qω and ν ∈ Y . Hence, by Proposition 3.2,
for all these λ’s and ν’s, we have I(x, λ, ν, δ, c,X) ≥ f(x). And using Proposition 3.1
again, we can conclude that ∂Ff(x) ∩ cBX∗ is nonempty. The necessity statement is
obvious.

Corollary 3.4 (Preiss-Zaj́ıček; see [LPT]). Let X be a Banach space and f an extended-
real-valued function on X. Then there is a rich family R of separable subspaces of X such
that for every Y ∈ R and every x ∈ Y we have that f is Fréchet differentiable at x, with
‖f ′(x)‖ ≤ c, if (and only if) f |Y is Fréchet differentiable at x, with and ‖(f |Y )′(x)‖ ≤ c.

Proof. Applying Theorem 3.3 to our f , we get a rich family R+ in S(X) such that for any
Y ∈ R+ and any x ∈ Y we can be sure that ∂f(x) contains an element with norm not
greater than c if the same is true for ∂(f |Y )(x). Likewise, applying the theorem to −f ,
we find a rich family R− for −f with similar properties. It remains to set R = R+ ∩R−
and to apply Theorem 2.2, taking into account that, f is Fréchet differentiable at x if and
only if both ∂f(x) and ∂(−f)(x) are nonempty. This proves that the sufficiency. The
necessity is obvious.
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Okay, we have separable reduction, via rich family for Fréchet (sub)differentiability
of functions. Unfortunately, this is not enough for more complicated statements with
Fréchet subdifferentials: in particular for fuzzy calculus, non-zerones of Fréchet normal
cones and extremal principle. This will be a content of the next section.
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4 Primal representation of more complex statements

involving ∂F

This section is a broad enhancement of the situation considered in Section 3. We wish
here to construct rich families for separable reductions of various statements associated
with Fréchet subdifferentiability. In pursuing this goal we shall follow the traditional
approach going back to [Pr], [FZ] (see also [F], [P], [I2], and [FI1]), whose first step is
”primal” (not involving anything associated with the dual space) characterization of the
desired property.

Let k ∈ N, let X,X1, . . . , Xk be (rather) non-separable Banach spaces, and let Ai :
Xi → X, i = 1, . . . , k, be bounded linear operators. The statement below is an extension
of the Fact from the beginning of Section 3.

Proposition 4.1. Let c ≥ 0, ε1 > 0, . . . , εk > 0, ρ1 ≥ 0, . . . , ρk ≥ 0 be given constants
and let ϕ : X −→ (−∞,+∞] be a convex function, with ϕ(0) < +∞. Then the following
two assertions are equivalent:

(i) There exist ε′i ∈ (0, εi), i = 1, . . . , k, and (w1, . . . wk) ∈ SX1 × · · · × SXk
such that

ϕ(x) ≥ ϕ(0)− c
∥∥x−∑

Aixi

∥∥−∑
ε′i‖xi‖ −

∑
ρi‖xi − wi‖+

∑
ρi

holds for all (x, x1, . . . , xk) ∈ X ×X1 × · · · ×Xk.

(ii) There exists x∗ ∈ ∂ϕ(0) such that ‖x∗‖ ≤ c and
∣∣‖A∗

ix
∗‖ − ρi

∣∣ < εi for every
i = 1, . . . , k.

For better understanding of this proposition, we can consider several special cases of
it. For instance: k = 1 and ρ1 = 0; or k = 1, A1 = 0 and ρ1 6= 0; etc. For more examples
we refer to the end of Section 5.

Proof. (Above and below,
∑

means
∑k

i=1.) Assume (ii) holds. Find ε′i ∈ (0, εi) so that∣∣‖A∗
ix

∗‖ − ρi

∣∣ < ε′i for every i = 1, . . . , k. For each i find a norm attaining w∗
i ∈ X∗

i such
that ‖w∗

i ‖ = ρi and ‖A∗
ix

∗ − w∗
i ‖ < ε′i. Take finally a wi ∈ SXi

so that ‖w∗
i ‖ = 〈w∗

i , wi〉.
Then for all (x, , x1, . . . , xk) ∈ X ×X1 × · · · ×Xk we have

ϕ(x) ≥ ϕ(0) + 〈x∗, x〉 = ϕ(0) +
〈
x∗, x−

∑
Aixi〉

+
∑〈

A∗
ix

∗ − w∗
i , xi

〉
+

∑〈
w∗

i , xi − wi

〉
+

∑
〈w∗

i , wi〉

≥ ϕ(0)− c
∥∥∥x−∑

Aixi

∥∥∥−∑
ε′i‖xi‖ −

∑
ρi‖xi − wi‖+

∑
ρi.

Assume that (i) holds. Set

ψ(x, x1, . . . , xk) := ϕ(x) + c
∥∥x−∑

Aixi

∥∥ +
∑
ε′i‖xi‖+

∑
ρi‖xi − wi‖ −

∑
ρi.

Then
ψ(x, x1, . . . , xk) ≥ ϕ(0) = ψ(0, 0, . . . , 0)

for all x ∈ X and for all (x1, . . . , xk) ∈ X1 × · · · × Xk. Thus, by Moreau-Rockafellar
theorem [Ph, page 47], there are x∗ ∈ ∂ϕ(0), ξ ∈ cBX∗ , and further, for i = 1, . . . , k,
there are ξi ∈ ε′iBX∗

i
and w∗

i ∈ X∗
i , with 〈w∗

i , wi〉 = ‖w∗
i ‖ = ρi, such that

(0, 0, . . . , 0) = (x∗, 0, . . . , 0) + (ξ,−A∗
1ξ, . . . ,−A∗

i ξ) + (0, ξ1, . . . , ξk) + (0, w∗
1, . . . , w

∗
k).
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Hence, 0 = x∗ + ξ and A∗
i ξ = ξi + w∗

i for i = 1, . . . , k. Therefore, ‖x∗‖ ≤ c and∣∣‖A∗
i ξ‖ − ρi

∣∣ =
∣∣‖A∗

i ξ‖ − ‖w∗
i ‖

∣∣ ≤ ∥∥A∗
i ξ − w∗

i

∥∥ = ‖ξi‖ ≤ ε′i < εi

for every i = 1, . . . , k.

The proposition above gives us the key instrument for finding the necessary primal
characterization of Fréchet subdifferentiability and several associated properties.

Let us call data any triple d = (c, ε, ρ) such that c ≥ 0, ε = (ε1, . . . , εk) ∈ (0,+∞)k,
and ρ = (ρ1, . . . , ρk) ∈ [0,+∞)k. To begin with, we define for any given data d and any
w = (w1, . . . , wk) ∈ SX1 × · · · × SXk

the function

pd,w(h, x1, . . . , xk) := c
∥∥h−∑

Aixi

∥∥ +
∑
εi‖xi‖+

∑
ρi‖xi − wi‖ −

∑
ρi,

where (h, x1, . . . , xk) ∈ X×X1×· · ·×Xk are the arguments of the function and and d and
w are parameters changing within the indicated limits. For any fixed d and w this is a
convex continuous function, equal to zero at (0, 0, . . . , 0). Moreover for u = (u1, . . . , uk) ∈
SX1 × · · · × SXk

we have

pd,w(h, x1, . . . , xk)− pd,u(h, x1, . . . , xk) ≤
∑
ρi‖wi − ui‖. (4.1)

We shall need again the notation introduced in Section 3, that is the symbols ∆,Λ,Υ,
and H(ν, δ). The next proposition offers the desired primal characterization. It translates
the non-emptiness of Fréchet subdifferential (even a subtler fact) completely into terms
of the space X. The proof of the proposition repeats word for word the proof of [FI1,
Lemma 2.2] if we replace reference to [FI1, Lemma 2.1] by the reference to Proposition
4.1. Hence we omit this proof.

Proposition 4.2. Consider a proper function f : X −→ (−∞,+∞] and fix x ∈ X
such that f(x) < +∞. Then, given data d = (c, ε, ρ), the following two assertions are
equivalent:

(i) There exist ε′i ∈ (0, εi), i = 1, . . . , k, w := (w1, . . . , wk) ∈ SX1 × . . .× SXk
, and a

sequence δ := (δ1, δ2, . . .) ∈ ∆ ∩Qω such that for d′ := (c, ε′, ρ) the inequality

∞∑
n=1

λn

(
f(x+ hn) +

1

νn

‖hn‖
)

+ pd′,w

( ∞∑
n=1

λnhn, x1, . . . , xk

)
≥ f(x) (4.2)

holds whenever x1, . . . , xk ∈ X1 × · · · ×Xk, (λn) ∈ Λ, ν ∈ Υ, and (hn) ∈ H(ν, δ).

(ii) There exists x∗ ∈ ∂Ff(x) such that ‖x∗‖ ≤ c and
∣∣‖A∗

ix
∗‖ − ρi

∣∣ < εi for every
i = 1, . . . , k.

Our aim is to find a rich family that could be used for separable reduction of (ii).
It is the first property (i) of the proposition that equips us with a suitable instrument
for constructing such family. Let k,X,X1, . . . , Xk, A1, . . . Ak have the same meaning as
before. By a block we understand any product Y × Y1 × · · · × Yk where Y, Y1, . . . , Yk are
subspaces of X,X1, . . . , Xk, respectively. Any F ⊂ S(X ×X1× · · ·×Xk) whose elements
are blocks shall be called a block-family. For every block Y := Y × Y1 × · · · × Yk, every
x ∈ Y , every λ = (λn) ∈ Λ, every ν = (νn) ∈ Nω, every δ = (δn) ∈ ∆, every data
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d = (c, ε, ρ) ∈ [0,+∞)× (0,+∞)k × [0,+∞)k and every w ∈ SX1 × · · · × SXk
we denote

by I(x, λ, ν, δ, d, w,Y) the following (possibly infinite) quantity

inf
{ ∞∑

n=1

λn

(
f(x+ hn)+

1

νn

‖hn‖
)

+ pd,w

( ∞∑
n=1

λnhn, x1, . . . , xk

)
:

(hn) ∈ H(ν, δ) ∩ Y ω, (x1, . . . , xk) ∈ Y1 × · · · × Yk

}
.

(4.3)

If Y = X and Yi = Xi for all i = 1, . . . , k, we write just I(x, λ, ν, δ, d, w). With this
notation, (4.2) reads as I(x, λ, ν, δ, d, w) ≥ f(x).

For λ = (λn) ∈ Λ, ν = (νn) ∈ Nω, and d = (c, ε, ρ) ∈ [0,+∞)× (0,+∞)k × [0,+∞)k

we define the block-family Rλ,ν,d as that consisting of all blocks Y := Y × Y1× · · · × Yk ∈
S(X ×X1 × · · · ×Xk) such that

A1(Y1) ⊂ Y, . . . , Ak(Yk) ⊂ Y (4.4)

and that for all x ∈ Y, δ ∈ ∆ ∩Qω, and w ∈ SY1 × · · · × SYk

I(x, λ, ν, δ, d, w) = I(x, λ, ν, δ, d, w,Y), (4.5)

Proposition 4.3. For any λ = (λn) ∈ Λ, ν = (νn) ∈ Nω and d = (c, ε, ρ) ∈ [0,+∞) ×
(0,+∞)k × [0,+∞)k, the family Rλ,ν,d defined above is rich.

Proof. Fix any λ, ν and d as above and put, for simplicity, R := Rλ,ν,d. We redenote
I(x, λ, ν, δ, d, w) and I(x, λ, ν, δ, d, w,Y), respectively, by I(x, δ, w) and I(x, δ, w,Y). Now,
for every x ∈ X, every w = (w1, . . . , wk) ∈ SX1 × . . . × SXk

, every δ ∈ ∆, and for
every m,n ∈ N we find vectors v1(x, δ, w,m) ∈ X1, . . ., vk(x, δ, w,m) ∈ Xk, and vectors
gn(x, δ, w,m) ∈ X, with ‖gn(x, δ, w,m)‖ < δνn , such that

I(x, δ, w) +
1

m
≥

∞∑
n=1

λn

(
f
(
x+ gn(x, δ, w,m)

)
+

1

νn

‖gn(x, δ, w,m)‖
)

+ pd,w

( ∞∑
n=1

λngn(x, δ, w,m), v1(x, δ, w,m), . . . , vk(x, δ, w,m)
) (4.6)

if I(x, δ, w) > −∞, and

−m >
∞∑

n=1

λn

(
f
(
x+ gn(x, δ, w,m)

)
+

1

νn

‖gn(x, δ, w,m)‖
)

+ pd,w

( ∞∑
n=1

λngn(x, δ, w,m), v1(x, δ, w,m), . . . , vk(x, δ, w,m)
) (4.7)

if I(x, δ, w) = −∞. Here, we choose the vectors vi(x, δ, w,m) and gn(x, δ, w,m) in such
a way that vi(x, δ, w,m) = vi(x, δ

′, w,m) and gn(x, δ, w,m) = gn(x, δ′, w,m) whenever
δ, δ′ ∈ ∆ and δνj

= δ′νj
for every j ∈ N such that λj > 0. By this we guarantee that for

every x ∈ X, every w ∈ SX1 × · · · × SXk
, and every m ∈ N the set
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{vi(x, δ, w,m) : i = 1, . . . , k, δ ∈ ∆ ∩Qω}
⋃
{gn(x, δ, w,m) : n ∈ N, δ ∈ ∆ ∩Qω}

is countable.
We first show thatR is cofinal in S(X×X1×· · ·×Xk). To begin with, fix any Z ∈ S(X)

and any Zi ∈ S(Xi), i = 1, . . . , k. Choose countable dense subsets C0 in Z, C1
0 in Z1, . . . ,

and Ck
0 in Zk. Assume further that for some m ∈ N we have already constructed countable

sets C0 ⊂ C1 ⊂ · · · ⊂ Cm−1 ⊂ X and Ci
0 ⊂ Ci

1 ⊂ · · · ⊂ Ci
m−1 ⊂ SXi

, i = 1, . . . , k. Define
then Cm as the Q-linear span of the union of Cm−1, Ai(C

i
m−1), i = 1, . . . , k, and the set{

gn(x, δ, w,m) : n ∈ N, x ∈ Cm−1, δ ∈ ∆ ∩Qω, w ∈ C1
m−1 × · · · × Ck

m−1

}
Likewise, for any i = 1, . . . , k define the set Ci

m as the Q-linear span of the union of Ci
m−1

and

{vi(x, δ, w,m) : i = 1, . . . , k, x ∈ Cm−1, δ ∈ ∆ ∩Qω, w ∈ C1
m−1 × · · · × Ck

m−1}.
augmented with normalized versions of its elements (that is, vectors of the form ξ/‖ξ‖).
Clearly, all these sets are still countable.

Set Y := C0 ∪ C1 ∪ · · · and Yi := Ci
0 ∪ Ci

1 ∪ · · · for every i = 1, . . . , k. Clearly, these
are closed separable subspaces and Y := Y × Y1 × · · · × Yk ⊃ Z ×Z1 × · · · ×Zk. We have
to show that Y belongs to R, that is, that (4.4) and (4.5) hold. The verification of (4.4) is
easy. As regards (4.5), fix any x ∈ Y , δ ∈ ∆∩Qω, and w = (w1, . . . , wk) ∈ SY1×· · ·×SYk

.
Clearly, it is enough to prove that I(x, δ, w) ≥ I(x, δ, w,Y). Uniform continuity of the
assignment u 7→ pd,u (· · · ) (see(4.1)) allows us to assume that wi belongs to Ci

0∪Ci
1∪· · · for

every i = 1, . . . , k. Now, consider any (hn) ∈ H(ν, δ) and any (x1, . . . , xk) ∈ X1×· · ·×Xk.
Put N := {n ∈ N : λn > 0}; this is a finite set. Take an arbitrary r ∈ Q+ so small that
‖hn‖ < δνn−2r for every n ∈ N . Find then δ′ = (δ′n) ∈ ∆∩Qω such that δ′n ≤ δn for every
n ∈ N and δ′n = δn − r if n ∈ N . Find m ∈ N so big that w1 ∈ C1

m−1, . . . , wk ∈ Ck
m−1,

and that dist (x,Cm−1) < r; pick then ym ∈ Cm−1 such that ‖x− ym‖ < r.
We are now ready to estimate

∞∑
n=1

λn

(
f
(
ym + gn(ym, δ

′, w,m)) +
1

νn

‖gn(ym, δ
′, w,m)‖

)
+ pd,w

( ∞∑
n=1

λngn(ym, δ
′, w,m), v1(ym, δ

′, w,m), . . . , vk(ym, δ
′, w,m)

)
≥

∞∑
n=1

λn

(
f
(
x+ (ym − x+ gn(ym, δ

′, w,m))
)

+
1

νn

‖ym − x+ gn(ym, δ
′, w,m)‖

)
+ pd,w

( ∞∑
n=1

λn

(
ym − x+ gn(ym, δ

′, w,m)
)
, v1(ym, δ

′, w,m), . . . , vk(ym, δ
′, w,m)

)
− r − cr ≥ I(x, δ, w,Y)− r − cr,

(4.8)

the last inequality being true because vi(ym, δ
′, w,m) ∈ Cm ⊂ Y and

(
ym−x+gn(ym, δ

′, w,m) :
n ∈ N

)
∈ H(ν, δ) ∩ Y ω.

If I(ym, δ
′, w) = −∞ for infinitely many m ∈ N, then (4.7) and (4.8) imply together

that −m > I(x, δ, w,Y) − r − cr for all such m; hence I(x, δ, w,Y) = −∞, and thus
I(x, δ, w) ≥ −∞ = I(x, δ, w,Y).
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Assume now that I(ym, δ
′, w) > −∞ for all sufficiently large m ∈ N. Fix one such m,

big enough to guarantee that m > 1
r
. Define h′n := hn + x− ym if n ∈ N , and h′n := 0 if

n ∈ N \N . Then (h′n) ∈ H(ν, δ′) and we can estimate

∞∑
n=1

λn

(
f(x+ hn) +

1

νn

‖hn‖
)

+ pd,w

( ∞∑
n=1

λnhn, x1, . . . , xk

)
=

∞∑
n=1

λn

(
f(ym + h′n) +

1

νn

‖hn‖
)

+ pd,w

( ∞∑
n=1

λnhn, x1, . . . , xk

)
≥

∞∑
n=1

λn

(
f(ym + h′n) +

1

νn

‖h′n‖
)

+ pd,w

( ∞∑
n=1

λnh
′
n, x1, . . . , xk

)
− r − cr

≥ I(ym, δ
′, w)− r − cr

≥
∞∑

n=1

λn

(
f
(
ym + gn(ym, δ

′, w,m)
)

+
1

νn

‖gn(ym, δ
′, w,m)‖

)
+ pd,w

( ∞∑
n=1

λngn(ym, δ
′, w,m), v1(ym, δ

′, w,m), . . . , vk(ym, δ
′, w,m)

)
− 1

m
− r − cr ≥ I(x, δ, w,Y)− 3r − 2cr,

(4.9)

by (4.6) and (4.8). Since r ∈ Q+ could be arbitrarily small, this proves that I(x, δ, w)
≥ I(x, δ, w,Y). Therefore, R is cofinal in S(X ×X1 × · · · ×Xk).

To prove that R is σ-complete, we have to somewhat elaborate on the reasoning above.
Let Y1 = Y1 × Y 1

1 × · · · × Y k
1 , Y2 = Y2 × Y 1

2 × · · · × Y k
2 , . . . , be an increasing sequence

of elements of R. Put Y := Y × Y 1 × · · · × Y k where

Y := Y1 ∪ Y2 ∪ · · · , Y 1 := Y 1
1 ∪ Y 1

2 ∪ · · · , . . . , Y k := Y k
1 ∪ Y k

2 ∪ · · · .

We have to show that Y belongs to R. This means to verify (4.4) and (4.5).
The proof of (4.4) is straightforward. As regards (4.5), fix some x ∈ Y , δ ∈ ∆ ∩ Qω

and w = (w1, . . . , wk) ∈ SY 1 × · · · × SY k . We have to prove that I(x, δ, w) ≥ I(x, δ, w,Y).
Because the assignment u 7→ pd,u(· · · ) is uniformly continuous, we may and do assume
that w ∈ SY 1

j
× · · · × SY k

j
for some j ∈ N. Now, take any (hn) ∈ H(ν, δ) and any

(x1, . . . , xk) ∈ X1 × · · · × Xk. Let again N := {n ∈ N : λn > 0}; this is a finite set.
Take an arbitrary r ∈ Q+ so small that ‖hn‖ < δνn − 2r for every n ∈ N . Find then
δ′ = (δ′n) ∈ ∆ ∩ Qω such that δ′n ≤ δn for every n ∈ N and δ′n = δn − r if n ∈ N . Take
m ∈ N so big that m > j and dist (x, Ym) < r; pick then ym ∈ Ym so that ‖x− ym‖ < r.
Define h′n := hn + x − ym if n ∈ N , and h′n := 0 if n ∈ N \N . Then (h′n) ∈ H(ν, δ′) and
from the first half of (4.9) (valid also now) we have

r + cr +
∞∑

n=1

λn

(
f(x+ hn)+

1

νn

‖hn‖
)

+ pd,w

( ∞∑
n=1

λnhn, x1, . . . , xk

)
≥ I(ym, δ

′, w) = I(ym, δ
′, w,Ym) ≥ I(ym, δ

′, w,Y)

(4.10)

since ym ∈ Y m, Ym ∈ R, and Ym ⊂ Y .
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Now, consider any (kn) ∈ H(ν, δ′) ∩ Y ω and any (x′1, . . . , x
′
k) ∈ Y1 × · · · × Yk. Set

k′n := kn + ym − x if n ∈ N , and k′n := 0 if n ∈ N \N . Then (k′n) ∈ H(ν, δ) ∩ Y ω and we
can estimate

∞∑
n=1

λn

(
f(ym + kn) +

1

νn

‖kn‖
)

+ pd,w

( ∞∑
n=1

λnkn, x
′
1, . . . , x

′
k

)
=

∞∑
n=1

λn

(
f(x+ k′n) +

1

νn

‖kn‖
)

+ pd,w

( ∞∑
n=1

λnkn, x
′
1, . . . , x

′
k

)
≥

∞∑
n=1

λn

(
f(x+ k′n) +

1

νn

‖k′n‖
)

+ pd,w

( ∞∑
n=1

λnk
′
n, x

′
1, . . . , x

′
k

)
− r − cr

≥ I(x, δ, w,Y)− r − cr.

Hence I(ym, δ
′, w,Y) ≥ I(x, δ, w,Y) − r − cr. Therefore, combining this inequality with

(4.10), and recalling that r ∈ Q+ was arbitrarily small, we conclude that I(x, δ, w) ≥
I(x, δ, w,Y). This verifies (4.5) for our Y and hence guarantees that Y ∈ R. We proved
that R is σ-complete.
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5 Umbrella theorem for separable reduction of many

statements dealing with ∂F

We can now state and prove one of the main results of the whole text.

Theorem 5.1. Let k ∈ N, let X,X1, . . . , Xk be general Banach spaces, let Ai : Xi →
X, i = 1, . . . , k, be bounded linear operators, and let f be a proper extended real-valued
function on X. Let finally c ≥ 0, ε1 > 0, . . . , εk > 0, ρ1 ≥ 0, . . . , ρk ≥ 0 be given
constants. Then there exists a rich block-family R ⊂ S(X ×X1 × · · · ×Xk) such that for
every Y × Y1 × · · · × Yk ∈ R we have A1(Y1) ⊂ Y, . . . , Ak(Yk) ⊂ Y , and for every x ∈ Y
the following holds:
There is an x∗ ∈ ∂Ff(x) such that ‖x∗‖ ≤ c and

∣∣‖A∗
ix

∗‖−ρi

∣∣ < εi, i = 1, . . . , k, whenever
there is a y∗ ∈ ∂F (f |Y )(x) such that ‖y∗‖ ≤ c and

∣∣‖(Ai|Yi
)∗y∗‖ − ρi

∣∣ < εi, i = 1, . . . , k.

Proof. Put ε := (ε1, . . . , εk), ρ := (ρ1, . . . , ρk), and d := (c, ε, ρ). For every λ ∈ Λ ∩ Qω

and every ν ∈ Υ let Rλ,ν,d be the corresponding rich family from Proposition 4.3. As
there are countably many such λ and ν, the intersection R of all such families over λ and
ν is also a rich family by Proposition 2.2. This is precisely the family we need.

Indeed, take any Y := Y × Y1 × · · · × Yk ∈ R. Take any x ∈ Y and assume that
there is y∗ ∈ ∂F (f |Y )(x), with ‖y∗‖ ≤ c and

∣∣‖(Ai|Yi
)∗y∗‖ − ρi

∣∣ < εi, i = 1, . . . , k. By
Proposition 4.2, there are ε′i ∈ (0, εi)∩Q, i = 1, . . . , k, w ∈ SY1×· · ·×SYk

and δ ∈ ∆∩Qω

such that, when putting d′ := (c, (ε′1, . . . , ε
′
k), ρ), we have I(x, λ, ν, δ, d′, w,Y) ≥ f(x) for

every λ ∈ Λ and for every ν ∈ Υ. But then, by the definition of our R and by (7.1),
we have that I(x, λ, ν, δ, d′, w) ≥ f(x) for every λ ∈ Λ ∩ Qω and ν ∈ Υ. Applying
again Proposition 4.2, we conclude that there exists x∗ ∈ ∂Ff(x), with ‖x∗‖ ≤ c and∣∣‖(Ai|Yi

)∗x∗‖ − ρi

∣∣ < εi for every i = 1, . . . , k.

All the results to follow are consequences of the theorem above. It is suitable for
separable reductions of various statements on Fréchet subdifferential of one function. As
a very particular case of it we get the existence of a rich family of separable subspaces
that guarantees separable reduction of the non-emptiness of Fréchet subdifferential. But
Theorem 5.1 allows to say more.

Corollary 5.2. Given a Banach space X, a proper function f : X −→ (−∞,+∞], and
constants 0 ≤ δ < c, then there exists a rich family R ⊂ S(X) such that δ < ‖x∗‖ < c for
some x∗ ∈ ∂Ff(x) whenever Y ∈ R, x ∈ Y , and δ < ‖y∗‖ < c for some y∗ ∈ ∂F (f |Y )f(x).

Proof. Let k := 1, X1 := X, and let A1 be the identity operator on X. For every
ε1 > 0, ρ1 > 0 (and our given c) let Rε1,ρ1 be the corresponding rich block-family in
S(X × X) found in Theorem 5.1. Put R0 :=

⋂ {
Rε1,ρ1 : ε1, ρ1 ∈ Q+

}
; this is again a

rich block-family in S(X × X) by Proposition 2.2. Put R1 := {Y × Y : Y ∈ S(X)};
clearly this is a rich family in S(X × X). Put R2 := R0 ∩ R1; this is a rich family by
Proposition 2.2. Define finally R := {Y ∈ S(X) : Y × Y ∈ R2}; it is easy to show that
this is a rich family in S(X).

It remains to verify that this R “works”. So take any Y in it, any x ∈ Y , and
assume there is y∗ ∈ ∂F (f |Y )(x) satisfying that δ < ‖y∗‖ < c. Find ε, ρ ∈ Q+ such that
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δ < ρ − ε < ‖y∗‖ < ρ + ε < c. By Theorem 5.1, as Y ∈ Rε,ρ, there is x∗ ∈ ∂Ff(x) such
that ‖x∗‖ ≤ c and

∣∣‖x∗‖ − ρ
∣∣ < ε. It then follows that δ < ρ− ε < ‖x∗‖ < ρ+ ε < c.

If the f is an indicator function of a closed subset Ω of X, then we get separable
reduction (via a rich family) of non-zeroness of the Fréchet normal cone of Ω.

We can make a one step further and apply Theorem 5.1 to get the existence of rich fam-
ilies for separable reduction of Fréchet subdifferentiability of composite functions obtained
by means of one or another functional operation with various quantitative requirements
on elements of Fréchet subdifferentials. The following umbrella theorem is a gateway to
many results of this sort.

Theorem 5.3. Let m ∈ N, let Z,Z1, . . . , Zm be Banach spaces, and let constants c ≥
0, γ > 0, εi > 0, ρi ≥ 0, proper functions fi : Zi −→ (−∞,+∞], and linear bounded
operators Λi : Z → Zi, i = 1, . . . ,m, be given. Then there exists a rich block-family
R ⊂ S(Z × Z1 × · · · × Zm) such that for every V × V1 × · · · × Vm ∈ R we have Λ1(V ) ⊂
V1, . . . , Λm(V ) ⊂ Vm, and for every (z1, . . . , zm) ∈ V1 × · · · × Vm, the following holds:
There are z∗1 ∈ ∂Ff1(z1), . . . , z

∗
m ∈ ∂Ffm(zm) such that∑m

i=1 ‖z∗i ‖ ≤ c, ‖
∑m

i=1 Λ∗
i z

∗
i ‖ < γ,

∣∣‖Λ∗
i z

∗
i ‖ − ρi| < εi, i = 1, . . . ,m,

whenever there are v∗1 ∈ ∂F (f1|V1)(z1), . . . , v
∗
m ∈ ∂F (fm|Vm)(zm) such that∑m

i=1 ‖v∗i ‖ ≤ c, ‖
∑m

i=1(Λi|V )∗v∗i ‖ < γ,
∣∣‖(Λi|V )∗v∗i ‖ − ρi| < εi, i = 1, . . . ,m.

Proof. Set X := Z1 × · · · × Zm, and endow it with the `∞-norm, so that for x =
(z1, . . . , zm) ∈ X and x∗ = (z∗1 , . . . , z

∗
m) ∈ X∗ we have ‖x‖ = max{‖z1‖, . . . , ‖zm‖} and

‖x∗‖ = ‖z∗1‖+ · · ·+ ‖z∗m‖. For every subspace U of Z we denote ∆U := {(z, . . . , z) : z ∈
U}. Set further X0 := ∆Z, X1 := Z, . . . , Xm := Z, and define operators Ai : Xi →
X, i = 0, 1, . . . ,m, as follows: A0(z, . . . , z) := (Λ1z, . . . ,Λmz) and, for i = 1, . . . ,m,
Ai(z) := (0, . . . , 0,Λiz, 0, . . . 0) with Λiz at the i-th place. An elementary calculation
reveals that for z∗1 ∈ Z∗

1 , . . . , z
∗
m ∈ Z∗

m we have

‖A∗
0(z

∗
1 , . . . , z

∗
m)‖ = ‖Λ∗

1z
∗
1 + · · ·+ Λ∗

mz
∗
m‖; ‖A∗

i (z
∗
1 , . . . , z

∗
m)‖ = ‖Λ∗

i z
∗
i ‖, i = 1, . . . ,m.

(5.1)
More generally, if V ∈ S(Z), Vi ∈ S(Zi), and v∗i ∈ V ∗

i , i = 1, . . . , k, we have∥∥(
A0|∆V

)∗
(v∗1, . . . , v

∗
m)

∥∥ =
∥∥(

Λ1|V
)∗
v∗1 + · · ·+

(
Λm|V

)∗
v∗m

∥∥ (5.2)∥∥(
Ai|Vi

)∗
(v∗1, . . . , v

∗
m)

∥∥ =
∥∥(

Λi|V
)∗
v∗i

∥∥, i = 1, . . . ,m. (5.3)

Let now f : X −→ (−∞,+∞] be defined by

f(z1, . . . , zm) = f1(z1) + · · ·+ fm(zm), (z1, . . . , zm) ∈ X.

Clearly, this is a proper function. Moreover, this is a “separable” function, i.e., the sum
of functions depending on mutually distinct arguments; so

∂Ff(z1, . . . , zm) = ∂Ff1(z1)× · · · × ∂Ffm(zm). (5.4)

Finally, we put ε0 = γ, ρ0 = 0.
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Let R0 ⊂ S(X×X0×X1×· · ·×Xm) be the rich block-family found in Theorem 5.1 for
our constants, c, εi, ρi, i = 0, 1, . . . ,m, and for our operators A0, A1, . . . , Am. Consider
the block-family

R1 :=
{
V1 × · · · × Vm ×∆V × V × · · · × V : V1 ∈ S(Z1), . . . , Vm ∈ S(Zm), V ∈ S(Z)

}
;

clearly, it is rich in S
(
X ×X0 ×X1 × · · · ×Xm

)
. Put R2 := R0 ∩ R1; it is also rich by

Proposition 2.2. Finally, put

R :=
{
V × V1 × · · · × Vm : V1 × · · · × Vm ×∆V × V × · · · × V ∈ R2

}
;

this block-family is also rich, now in S
(
Z × Z1 × · · · × Zm

)
.

We shall show that R has the desired properties. So, fix any V × V1 × · · · × Vm ∈ R.
Then V1 × · · · × Vm ×∆V × V × · · · × V ∈ R0. Now, apply Theorem 5.1 where we plug
k := m + 1, Y := V1 × · · · × Vm, Y0 := ∆V, Y1 := V, . . . , Ym := V , and get that
A0(∆V ) ⊂ V1 × · · · × Vm, A1(V ) ⊂ V1 × · · · × Vm, . . . , Am(V ) ⊂ V1 × · · · × Vm. Thus,
using the definition of Ai’s, we get that Λ1(V ) ⊂ V1, . . . , Λm(V ) ⊂ Vm.

Take now any x = (z1, . . . , zm) ∈ V1 × · · · × Vm. Then the statement: “there is an
x∗ ∈ ∂Ff(x) such that ‖x∗‖ ≤ c and

∣∣‖A∗
ix

∗‖ − ρi

∣∣ < εi for i = 0, 1, . . . ,m” means,
by (5.1), that x∗ = (z∗1 , . . . , z

∗
m) for some z∗i ∈ ∂Ffi(zi) and ‖z∗1‖ + · · · + ‖z∗m‖ ≤ c,

‖Λ∗
1z

∗
1 + · · ·+ Λ∗

mz
∗
m‖ < ε0 = γ, and

∣∣‖Λ∗
i z

∗
i ‖ − ρi

∣∣ < εi, i = 1, . . . ,m.
Likewise, the statement: “there is v∗ ∈ ∂F

(
f |V1×···×Vm

)
(x) such that ‖v∗‖ ≤ c and∣∣‖(Ai|V

)∗
v∗‖− ρi

∣∣ < εi for i = 0, . . . ,m” means by (5.2) and (5.3), that v∗ = (v∗1, . . . , v
∗
m)

for some v∗i ∈ ∂F

(
fi|Vi

)
(zi), ‖v∗1‖+ · · ·+‖v∗m‖ ≤ c, ‖(Λ1|V )∗v∗1 + · · ·+(Λm|V )∗v∗m‖ < ε0 = γ

and
∣∣‖(Λi|V )∗v∗i ‖ − ρi

∣∣ < εi, i = 1, . . . ,m.
Now, by Theorem 5.1, the first statement holds at x = (z1, . . . , zm) ∈ V1 × · · · × Vm if

the second statement holds at the point. This completes the proof.

As consequences of Theorem 5.3, we get quantitative versions of separable reductions
(via suitable rich families) for a fuzzy calculus and an extremal principle for Fréchet
subdifferentials and Fréchet normal cones, respectively. In the following corollaries we
consider (as simple examples) the operations of composition with a linear operator and
sum of functions.

Corollary 5.4. Let X and Y be Banach spaces, let f be a proper function on Y , let
A : X → Y be a bounded linear operator, and let x∗ ∈ X∗. Given an ε > 0 and c > ‖x∗‖,
then there exists a rich family R ⊂ S(X × Y ) such that for every U × V ∈ R we have
A(U) ⊂ V and for every y ∈ V the following holds:
There is y∗ ∈ ∂Ff(y) such that ‖y∗‖ + ‖x∗‖ ≤ c and ‖A∗y∗ − x∗‖ < ε whenever there is
v∗ ∈ ∂F (f |V )(y) such that ‖v∗‖+

∥∥x∗|U∥∥ ≤ c and
∥∥(A|U)∗v∗ − x∗|U

∥∥ < ε.

Proof. Applying Theorem 5.3 to m := 2, γ := ε, to any ε1 > 0, ε2 > 0, ρ1 > 0, ρ2 > 0,
and to Z := X, Z1 := Y, Z2 := X, f1 := f , f2 := −x∗, A1 := A, to A2 being the
identity operator on Z2, we get a rich block-family Rε,ε2,ρ1,ρ2 ∈ S(X × Y × X). Put
then R0 :=

⋂ {
Rε1,ε2,ρ1,ρ2 : ε1, ε2, ρ1, ρ2 ∈ Q+

}
; this is a rich block-family. Further put

R1 := {U ×V ×U : U ∈ S(X), V ∈ S(Y )} and then R2 := R0∩R1; we again got a rich
block-family. Finally, define R := {U×V : U×V ×U ∈ R2}; it is easy to check that this
is also a rich block-family. Now, the verification that our R has the desired properties is
routine.
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As an immediate consequence, we get a statement on the Fréchet subdifferential of
composition with a linear operator.

Proposition 5.5. In addition to the assumptions of Corollary 5.4, suppose that Y is an
Asplund space, f is a lower semicontinuous proper function on Y and x∗ ∈ ∂F (f ◦A)(x).
Then for any ε > 0 there are y ∈ Y and y∗ ∈ ∂Ff(y) such that ‖y − Ax‖ < ε and
‖A∗y∗ − x∗‖ < ε.

Proof. In view of the preceding corollary, we only need to verify that the result is true
if Y is separable. To this end we have to take into account that in a separable Asplund
space there is an equivalent Fréchet smooth norm (see [DGZ, pages 48, 43] or the proof
of Proposition 1.2) and then use the standard arguments based on minimization of the
function

X × Y 3 (u, y) 7−→ f(y) + r‖y − Au‖2 + ‖u− x‖2 − 〈x∗, u− x〉

with sufficiently large r.

The second consequence of Theorem 5.3 is related to sums of functions.

Corollary 5.6. Let Z be a Banach space, consider constants c ≥ 0, ε > 0, ρ1 ≥
0, . . . , ρm ≥ 0, and let proper functions fi : Z −→ (−∞,+∞], i = 1, . . . ,m, be given.
Then there exists a rich family R ∈ S(Z) such that for every V ∈ R and every z1, . . . , zm ∈
V the following holds: There are z∗1 ∈ ∂Ff1(z1), . . . , z

∗
m ∈ ∂Ffm(zm) such that

‖z∗1‖+ · · ·+ ‖z∗m‖ ≤ c, ‖z∗1 + · · ·+ z∗m‖ < ε, and
∣∣‖z∗i ‖ − ρi| < ε, i = 1, . . . ,m

whenever there are v∗1 ∈ ∂F (f1|V )(z1), . . . , v
∗
1 ∈ ∂F (f1|V )(z1) such that

‖v∗1‖+ · · ·+ ‖v∗m‖ ≤ c, ‖v∗1 + · · ·+ v∗m‖ < ε, and
∣∣‖v∗i ‖ − ρi| < ε, i = 1, . . . ,m

Proof. Apply Theorem 5.3, with Z1 := · · · = Zm := Z, Λi being identities and γ := ε1 :=
· · · = εm := ε, and get a rich block-family R0 ⊂ S(Zm+1). Using a simple gymnastics
like in the proof of Corollary 5.4, we produce a rich family R in S(Z) with the desired
property.

The latter corollary, in turn, provides a direct access to the fuzzy sum rule in Asplund
spaces which, in the simplest form, is stated as follows.

Proposition 5.7. Let X be an Asplund space, and let f1 and f2 be two lower semicontin-
uous functions on X, with one of them being Lipschitz, or at least uniformly continuous,
near a certain x ∈ X. If x∗ ∈ ∂F (f + g)(x), then for any ε > 0 there are x1, x2 ∈ X and
x∗1 ∈ ∂Ff1(x1), x

∗
2 ∈ ∂Ff2(x2), such that ‖x1−x‖ < ε, ‖x2−x‖ < ε, and ‖x∗1+x∗2−x∗‖ < ε.

Proof. If X is separable, first find an equivalent Fréchet smooth norm (see [DGZ, pages
48, 43] or the proof of Proposition 1.2) and then proceed as in [I1]. Further assume that
X is non-separable. Put Z := X, n := 2, f1 := f, f2 := g − x∗, ε1 := ε2 := ε, and
let c, ρ1, ρ2 ∈ Q+ be any. For these data find the corresponding rich family Rc,ρ1,ρ2 by
Corollary 5.6. Put R :=

⋂ {
Rc,ρ1,ρ2 : c, ρ1, ρ2 ∈ Q+

}
; this family is again rich. Find

V ∈ R so that V 3 x. From the separable case find x1, x2 ∈ V and v∗1 ∈ ∂F (f |V )(x1), v
∗
2 ∈

∂F

(
g|V −x∗|V

)
(x2) such that ‖x1−x‖ < ε, ‖x2−x‖ < ε, and ‖v∗1+v∗2‖ < ε. Now, applying

Corollary 5.6, we get the result.
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Remark 5.8. Performing intersections of countably many suitable rich families in S(Z)
we can replace the conclusion of Corollary 5.6 by

Then there exists a rich family R ∈ S(Z) such that for every V ∈ R, every ε > 0, and
every z1, . . . , zm ∈ V the following holds: There are z∗1 ∈ ∂Ff1(z1), . . . , z

∗
m ∈ ∂Ffm(zm)

such that

‖z∗1 + · · ·+ z∗m‖ < ε and 1− ε < ‖z∗1‖+ · · ·+ ‖z∗m‖ < 1 + ε

whenever there are v∗1 ∈ ∂F (f1|V )(z1), . . . , v
∗
1 ∈ ∂F (f1|V )(z1) such that

‖v∗1 + · · ·+ v∗m‖ < ε and ‖v∗1‖+ · · ·+ ‖v∗m‖ = 1.

Amazing, isn’t it? We believe that this observation will be appreciated by sympathizers
with extremal principles, see [M, Chapter 2].
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6 Rich families in Asplund spaces

Material in this and next section comes from the forthcoming paper [CF2]. First we shall
present a structural result characterizing Asplund spaces, which will prove to be useful
later and could be of broad interest.

Let P be a set and let ≺ be a partial order on it, i.e. ≺ is a subset of P × P which is
reflexive, symmetric and transitive, see [E, page 21]. We agree that, instead of “s, t ∈≺”
we rather write “s ≺ t”. Assume moreover that P is (up)-directed by ≺, i.e., for every
t1, t2 ∈ P there is t3 ∈ P such that t1 ≺ t3 and t2 ≺ t3. A subset R ⊂ P is called
cofinal/dominating/saturating if for every t ∈ P there is r ∈ P such that t ≺ r. R is
called σ-complete/closed if, whenever r1 ≺ r2 ≺ · · · is an increasing sequence in R, then
there is r ∈ R such that ri ≺ r for every i ∈ N and r ≺ t whenever t ∈ P and ri ≺ t for
every i ∈ N. The set R ⊂ P is called rich/a club set if it is both cofinal and σ-complete.
(Note that the whole P is rich if it is σ-complete.)

Now, we are ready to provide concrete examples of the poset (P,≺) that emerge in
the framework of Banach spaces. Let Z be a (rather non-separable) Banach space. By
S(Z) we denote the family of all separable closed subspaces of Z and we endow it by the
partial order “⊂”. Thus, we can consider rich families in the poset (S(Z),⊂). We then
also simply say that they are rich in Z. Now, let X be a Banach space and apply the
above to the product Z := X ×X∗. Then we can speak about rectangle-families lying in
S@A(X×X∗). (The definition of the latter symbol is left to the fantasy of a reader, if there
is any.) More generally, let k ∈ N be greater that 1, and let X1, . . . , Xk be Banach spaces.
By a block we understand any product Y1×· · ·×Yk. The symbol S@A@A(X1×· · ·×Xk) will
denote the (rich) family of all blocks Y1×· · ·×Yk such that Y1 ∈ S(X1), . . . , Yk ∈ S(Xk).
Any subset of S@A@A(X1 × · · · × Xk) will be called a block-family in S(X1 × · · · × Xk) or
just in X1 × · · · ×Xk.

We conclude by one warning. If R is a rich rectangle-family in S@A(X × X∗) , we
do not know if, the “projection” of it on, say, the second coordinate, that is, the family{
A2 : A1×A2 ∈ R for some A1 ∈ S(X)

}
is rich in S(X∗). Fortunately, in one important

case, the “projection” of R to the first coordinate is again rich; see Theorems 6.2 and 7.1
below.

The power of rich families in Banach spaces is demonstrated by the fundamental
Proposition 2.2 (see also [BM] and [LPT, page 37]) saying that they are stable under
countable intersections.

Let X be a Banach space. If A ⊂ X, the symbols spA and spQA mean the closed
linear span of A and the set consisting of all finite linear combinations of elements in A
with rational coefficients, respectively. For A ⊂ X and B ⊂ X∗ we put B|A :=

{
x∗|A :

x∗ ∈ B
}
; hence, if A is a subspace of X, then B|A is a subset of the dual space A∗. Let

C(X) and C(X∗) denote the families of all countable subsets of X and X∗ respectively.
A Banach space is called Asplund if every convex continuous function on it is Fréchet

differentiable at a point (equivalently, at the points of a dense set, yet equivalently, at the
points of a dense Gδ set). An important, and widely used, equivalent condition for the
Asplund property of a Banach space is that every separable subspace of it has separable
dual, see [Ph, Theorem 2.34].

Now, we introduce a concept which serves as a link between X and X∗ (and exists
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right if and only if X is Asplund).

Definition 6.1. By an Asplund generator in a Banach space X we understand any cor-
respondence G : C(X) −→ C(X∗) such that

(a)
(
spC

)∗ ⊂ G(C)|sp C for every C ∈ C(X);

(b) if C1, C2, . . . is an increasing sequence in C(X), then G(C1 ∪ C2 ∪ · · · ) = G(C1) ∪
G(C2) ∪ · · · ;
(c)

⋃
{G(C) : C ∈ C(X)} is a dense subset in X∗; and

(d) if C1, C2 ∈ C(X) are such that spC1 = spC2, then spG(C1) = spG(C2).

In the next section, we shall frequently profit from the following basic structural state-
ment.

Theorem 6.2. Let (X, ‖·‖) be a (rather non-separable) Banach space. Then the following
assertions are mutually equivalent.

(i) X is an Asplund space.

(ii) X admits an Asplund generator.

(iii) There exists a rich rectangle-family A ⊂ S@A(X × X∗) such that Y1 ⊂ Y2 whenever
V1 × Y1, V2 × Y2 ∈ A and V1 ⊂ V2, and for every V × Y ∈ A the assignment Y 3 x∗ 7−→
x∗|V ∈ V ∗ is a surjective isometry.

(iv) There exists a cofinal rectangle-family A ⊂ S@A(X×X∗) such that for every V ×Y ∈ A
the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗ is a surjection.

Proof. (i)=⇒(ii). In order not to get lost in the case of general Asplund space, assume
first that the norm ‖ · ‖ on X is Fréchet smooth, or more generally, that there exists a
smooth function f : X → R, with continuous derivative f ′ such that f ′(V )|V is dense in
V ∗ for every subspace V of X; note that this easily implies that X is Asplund. Define
then G : C(X) −→ C(X∗) by

C(X) 3 C 7−→ f ′
(
spQC

)
=: G(C) ∈ C(X∗).

It remains to verify the properties (a), (b), (c), and (d) in Definition 6.1. As regards
(a), fix any C ∈ C(X) and any non-zero v∗ in ( spC)∗. Let any ε > 0 be given. The
properties of f provide a v ∈ spQC such that

∥∥v∗ − f ′(v)|sp C

∥∥ < ε. But f ′(v) belongs

to G(C). And, as ε > 0 was arbitrary, we get that v∗ belongs G(C)| sp C . Thus (a) is
verified. As regards (b), let C1, C2, . . . be as in the premise. Because our generator G is
“monotone”, it is enough to prove the inclusion “⊂”. So, pick any x∗ in G(C1∪C2∪ · · · ).
Since C1 ⊂ C2 ⊂ · · · , there is m ∈ N so big that x∗ belongs to G(Cm). We thus verified
(b). The claim (c) follows immediately from the fact that f ′(X) is dense in X∗ and from
the definition of G. The last property (d) is guaranteed by the continuity of f ′.

If we are facing a general Asplund space (and we do not have at hand a function as
above), we must work harder. Either, we use [CF1, Propositions 1 and 2], based on Ch.
Stegall’s ideas (and proved without use of Simons’ lemma), or we exploit an information
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from [FG]; see also [CF1, Remark 2] (where Simons’ lemma is needed!). More concretely,
using symbols Λ and L from [CF1], define a generator G : C(X) −→ C(X∗) by

C(X) 3 C 7−→ Λ
(
L

(
spQC ∩BX

))
=: G(C) ∈ C(X∗).

Now (a) in Definition 6.1 follows from [CF1, Proposition 1] and the proof of it. (We
actually get a stronger inclusion that

(
spC

)∗ ⊂ G(C) | sp C .) (b) follows immediately
from the very definition of our G, the definition of Λ,L, and from the monotonicity of the
sequence C1, C2, . . . (c) follows immediately from [CF1, Proposition 1]. (d) follows easily
from the properties of Λ and L and from the definition of G. We thus proved that (ii)
holds in a general Asplund space.

(ii)=⇒(iii). Let G : C(X) −→ C(X∗) be a generator in X. Define A ⊂ S@A(X ×X∗)
as the family consisting of all “rectangles” spC × spG(C), with C ∈ C(X), such that the
assignment

spG(C) 3 x∗ 7−→ x∗| sp C ∈ (spC)∗ (6.1)

is a surjective isometry. We shall show that A is a rich family.
As regards the cofinality of A, fix any V × Y ∈ S@A(X ×X∗). Since G is a generator,

the condition (c) guarantees that there is C0 ∈ C(X) so big that C0 ⊃ V and G(C0) ⊃ Y .
Assume that for somem ∈ N we already found countable sets C0 ⊂ C1 ⊂ · · · ⊂ Cm−1 ⊂ X.
Realizing that spQG(Cm−1) is countable, we find Cm ∈ S(X) such that Cm ⊃ Cm−1 and
that ‖x∗‖ = sup 〈x∗, Cm ∩ BX〉 for every x∗ ∈ spQG(Cm−1). Do so for every m ∈ N and
put finally C := C0 ∪ C1 ∪ · · · . Clearly C ∈ C(X) and also spC × spG(C) ⊃ V × Y . It
remains to show that the assignment (6.1), with our just constructed C, is a surjective
isometry.

Take any x∗ ∈ spQG(C). Realizing that x∗ is a linear combination of finitely many
elements from G(C) and that C0 ⊂ C1 ⊂ · · · , the property (b) of G provides an m ∈ N
so big that x∗ belongs to spQG(Cm−1). But then, from the construction above,

‖x∗‖ = sup 〈x∗, Cm ∩BX〉 ≤ sup〈x∗, spC ∩BX〉 =
∥∥x∗| sp C

∥∥ ≤ ‖x∗‖.

And, as spG(C) = spQG(C), we get that
∥∥x∗| sp C

∥∥ = ‖x∗‖ for every x∗ ∈ spG(C). We
proved that the assignment (6.1) with our C is isometrical.

Now, fix any v∗ ∈ (spC)∗. By (a) from Definition 6.1, there is a sequence (x∗n) in G(C)
so that

∥∥v∗−x∗i | sp C

∥∥ −→ 0 as n→∞. By the isometric property of (6.1) just proved, we
have that ‖x∗i − x∗j‖ =

∥∥x∗i | sp C − x∗j | sp C

∥∥ −→ 0 as i, j → ∞. Put x∗ := limi→∞ x∗i ; then

x∗ ∈ G(C) ⊂ spG(C) and v∗ = x∗| sp C . This shows the surjectivity of the assignment
(6.1) with our C. This way, we proved that spC × spG(C) belongs to A, and hence, the
family A is cofinal.

For checking the σ-completeness of A, consider any increasing sequence V1× Y1, V2×
Y2, . . . of elements in A. Then, clearly, V1 × Y1 ∪ V2 × Y2 ∪ · · · is of form V ×Y and this is
an element of S@A(X×X∗). Also, clearly, V = V1 ∪ V2 ∪ · · · and Y = Y1 ∪ Y2 ∪ · · · . From
the definition of A, for every i ∈ N find Ci ∈ C(X) such that Vi = spCi and Yi = spG(Ci).
Put C := C1 ∪ C2 ∪ · · · ; then C ∈ C(X). Since V1 ⊂ V2 ⊂ · · · and Y1 ⊂ Y2 ⊂ · · · , some
rather boring reasoning, profiting from the properties (b) and (d) of G in Definition 6.1,
guarantees that V = spC and Y = spG(C). (Hint: Replace the sequence C1, C2, . . . by
the increasing one C1, C1 ∪ C2, C1 ∪ C2 ∪ C3, . . .) Hence, by (a), V ∗ ⊂ Y |V .
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It remains to verify that the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗ is a surjective isometry.
As regards the isometric property, we recall that for every i ∈ N the rectangle Vi × Yi

belongs to A, and so for every x∗ ∈ Yi we have

‖x∗‖ =
∥∥x∗|Vi

∥∥ ≤ ∥∥x∗|V ∥∥ ≤ ‖x∗‖.

It then follows, using the density of Y1 ∪ Y2 ∪ · · · in Y , that ‖x∗‖ =
∥∥x∗|V ∥∥ for every

x∗ ∈ Y . Now, once having the information just proved, we have that Y |V = Y |V (⊂ V ∗),
and hence V ∗ = Y |V . Therefore, summarizing all the above, we are sure that our A is a
rich family.

Finally, consider any V1×Y1, V2×Y2 in A such that V1 ⊂ V2. From the very definition
of A we find C1, C2 ∈ C(X) such that spC1 = V1 and spC2 = V2. Then

C2 ⊂ C1 ∪ C2 ⊂ spC1 ∪ spC2 = V1 ∪ V2 = V2 = spC2,

and so spC2 ⊂ sp (C1 ∪ C2) ⊂ spC2. Now (d) in Definition 6.1 gives that spG(C2) =
spG(C1 ∪ C2), and so

Y2 = spG(C1 ∪ C2)
(b)
= sp

(
G(C1) ∪G(C1 ∪ C2)

)
⊃ spG(C1) = Y1.

We completely proved (iii).

(iii)=⇒(iv) is trivial.

(iv)=⇒(i). Assume (iv) holds. Let Z ∈ S(X) be arbitrary. From the cofinality of A,
find V × Y ∈ A such that V × Y ⊃ Z × {0}. Then V ∗, being the image of Y (∈ S(X∗)),
is itself separable. It then follows that Z∗, the quotient of V ∗, must be also separable.
Now it remains to use the aforementioned characterization of the Asplund property, and
thus (i) follows.

Remark 6.3. Assume that the norm ‖ · ‖ on X is Fréchet smooth and define f := ‖ · ‖2.
Then for every subspace V ⊂ X we get that V ∗ ⊂ f ′(V )|V but not V ∗ ⊂ f ′(V ) |V .
Indeed, this stronger inclusion seems to be a privilege of only some V ’s; we can find them
by playing a suitable “volleyball” with countably many steps, see the proof of (ii)⇒(iii)
above. (Fortunately, these “selected/better” V ’s form a rich family in S(X).) From this,
and from the proof of implication (i)⇒(ii) above, it follows that the Stegall’s approach is
somehow stronger, see [CF1, Proposition 1]. Likewise, the Stegall’s approach is stronger
than that from [FG], see [CF1, Remark 2].

It can be useful to extend Theorem 6.2 to the following statement.

Theorem 6.4. Let (Z, ‖·‖) be a Banach space, (X, ‖·‖) an Asplund space, and T : Z → X
a bounded linear operator. Then there exists a rich block-family AT in Z ×X ×X∗ such
that Y1 ⊂ Y2 whenever U1×V1×Y1, U2×V2×Y2 ∈ AT and U1×V1 ⊂ U2×V2, and that for
every U×V×Y in AT we have T (U) ⊂ V , the restriction assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗

is a surjective isometry, and ‖T ∗x∗‖ =
∥∥(T |U)∗(x∗|V )

∥∥ for every x∗ ∈ Y .

Proof. It is easy (and left to a reader) to check that the rectangle-family RT consisting
of all U × V ∈ S@A(Z ×X) such that T (U) ⊂ V is rich in Z ×X. Denote

R1 :=
{
U×V ×Y : U× V ∈ RT and Y ∈ S(X∗)

}
,
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R2 :=
{
U×V ×Y : U ∈ S(Z) and V × Y ∈ A

}
where A is from Theorem 6.2. Clearly, both these families are rich, and therefore R :=
R1 ∩ R2 is a rich block-family in S@A@A(Z×X×X∗). Clearly, every triple U×V ×Y in R
possesses the first two properties from the conclusion of our theorem. Now, define the
family

AT :=
{
U×V ×Y ∈ R : ‖T ∗x∗‖ =

∥∥(T |U)∗(x∗|V )
∥∥ for every x∗ ∈ Y

}
.

This family has all the three required properties. Thus, it remains to check that AT is
rich.

As regards the cofinality of AT , consider any M ∈ S(Z×X×X∗). From the cofinality
of R, find U0×V0×Y0 in R such that U0×V0×Y0 ⊃M . We shall construct an increasing
sequence Um×Vm×Ym, m ∈ N, in R as follows. Let m ∈ N and assume that we have
already found Um−1×Vm−1×Ym−1. Using the separability of Ym−1 find Cm−1 ⊂ C(Z)
such that Cm−1 ⊃ Um−1 and ‖T ∗x∗‖ = sup 〈T ∗x∗, Cm−1 ∩ BZ〉 for every x∗ ∈ Ym−1.
Find Um×Vm×Ym in R so big that it contains (Um−1 ∪ Cm−1)×Vm−1×Ym−1. Doing
so for every m ∈ N, put finally U :=

⋃
Um , V :=

⋃
Vm , and Y :=

⋃
Ym . Clearly,

U×V ×Y =
⋃
Um×Vm×Ym ⊃ M . The σ-completeness of R guarantees that U×V ×Y

lies in R. Now fix any m ∈ N and any x∗ ∈ Ym−1. We can estimate

‖T ∗x∗‖ = sup
〈
T ∗x∗, Cm−1 ∩BZ

〉
≤ sup

〈
T ∗x∗, BU

〉
= sup

〈
x∗, T (BU)

〉
= sup

〈
(x∗|V ), (T |U)(BU)

〉
=

∥∥(T |U)∗(x∗|V )
∥∥ ≤ ‖T ∗x∗‖ .

Thus ‖T ∗x∗‖ =
∥∥(T |U)∗(x∗|V )

∥∥ for every x∗ from
⋃
Ym, and finally, for every x∗ from Y .

We verified AT is cofinal.
As regards the σ-completeness of AT , consider any increasing sequence U1×V1×

Y1, U2×V2×Y2, . . . in AT . Put U :=
⋃
Ui , V :=

⋃
Vi , and Y :=

⋃
Yi . Clearly,

U×V ×Y =
⋃
Ui×Vi×Yi . As R was rich, our U×V ×Y belongs to it. Take any i ∈ N

and any x∗ ∈ Yi. We can estimate

‖T ∗x∗‖ =
∥∥(T |Ui

)∗(x∗|Vi
)
∥∥ = sup

〈
(T |Ui

)∗(x∗|Vi
), BUi

〉
= sup

〈
x∗|Vi

, T (BUi
)
〉

≤ sup
〈
x∗|V , T (BU)

〉
= sup

〈
x∗|V , (T |U)(BU)

〉
=

∥∥(T |U)∗(x∗|V )
∥∥ ≤ ‖T ∗x∗‖.

Thus ‖T ∗x∗‖ =
∥∥(T |U)∗(x∗|V )

∥∥ holds for every x∗ from
⋃
Yi, and finally for every x∗ from

Y . We proved that AT is σ-complete.
The other properties of AT follow from similar properties of A proclaimed in Theo-

rem 6.2.

Remark 6.5. Of course, Theorem 6.4 can be easily extended to several spaces Z1, . . . , Zk

and to operators Ti : Zi → X, i = 1, . . . , k.
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7 Separable reduction of Fréchet subdifferentiability

in Asplund spaces

This section brings a new approach. The novelty is that, under the (small) price of restrict-
ing to the framework of Asplund spaces, for separable reductions of statements involving
Fréchet subdifferentials we do not need to translate these statements into terms

of the primal space X. This is a drastic simplification when comparing with the so
far existing proofs; see [FI2]. In addition we get “isometric” statements, which again
substantially improve those from [FI2].

Theorem 7.1. Let (X, ‖ · ‖) be a (rather non-separable) Asplund space and let f : X −→
(−∞,+∞] be any proper function. Then there exists a rich rectangle-family R ⊂ S@A(X×
X∗) such that Y1 ⊂ Y2 whenever V1×Y1, V2×Y2 ∈ R and V1 ⊂ V2, with further properties
that for every V × Y ∈ R the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗ is an isometry from
Y |V onto V ∗ and for every v ∈ V we have that(

∂Ff(v) ∩ Y
)
|V =

(
∂Ff(v)

)
|V = ∂F (f |V )(v) .

Proof. We obviously have that(
∂Ff(v) ∩ Y

)
|V ⊂

(
∂Ff(v)

)
|V ⊂ ∂F (f |V )(v).

It remains to prove that ∂F (f |V )(v) ⊂
(
∂Ff(v) ∩ Y

)
|V holds for every v ∈ V . For

x ∈ X, x∗ ∈ X∗, r ∈ R, 0 < δ1 < δ2, and V ⊂ X we define

IV (x, x∗, r, δ1, δ2) := inf

{
1

‖h‖
(
f(x+ h)− r − 〈x∗, h〉

)
: h ∈ V and δ1 < ‖h‖ < δ2

}
;

if V = X, we omit the index V . Further for each such cortege x, x∗, r, δ1, δ2 and each
γ > 0, if I(x, x∗, r, δ1, δ2) > −∞, we find a vector h(x, x∗, r, δ1, δ2, γ) ∈ X such that

1

‖h(x, x∗, r, δ1, δ2, γ)‖
(
f(x+ h(x, x∗, r, δ1, δ2, γ))− r − 〈x∗, h(x, x∗, r, δ1, δ2, γ)〉

)
< I(x, x∗, r, δ1, δ2) + γ.

(7.1)

Let A ⊂ S@A(X ×X∗) be the rich family found in Theorem 6.2. We define a family R
as that consisting of all V × Y ∈ A satisfying

I(x, x∗, r, δ1, δ2) = IV (x, x∗, r, δ1, δ2) whenever x ∈ V, x∗ ∈ Y, r ∈ R, and 0 < δ1 < δ2.
(7.2)

We shall prove that R is cofinal in S(X × X∗). Let Q denote the set of all rational
numbers and put Q+ = Q ∩ (0,+∞). Fix any Z ∈ S(X ×X∗). Since A is rich, there is
V0×Y0 ∈ A such that V0×Y0 ⊃ Z. Find countable sets C0, D0 contained and dense in V0

and Y0, respectively. We shall construct increasing sequences Y0×V0, V1×Y1, V2×Y2, . . .
in A, and C0×D0, C1×D1, C2×D2, . . . in C@A(X ×X∗) such that Ci = Vi, Di = Yi for
every i ∈ N, and having some extra properties described below. Let m ∈ N be arbitrary
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and assume that we have already found Vm−1, Ym−1, Cm−1, Dm−1. From the cofinality of
A we find Vm × Ym ∈ A such that Vm contains the (countable) set

C̃ := Cm−1∪
{
h(x, x∗, q, δ1, δ2, γ) : x ∈ Cm−1, x

∗ ∈ Dm−1, q ∈ Q, δ1, δ2, γ ∈ Q+, and δ1 < δ2
}

and Ym ⊃ Ym−1. Find then a countable set C̃ ⊂ Cm ⊂ Vm such that Cm = Vm and
a countable set Dm−1 ⊂ Dm ⊂ Ym so that Dm = Ym. Do so subsequently for every
m ∈ N. Put V := V0 ∪ V1 ∪ V2 ∪ · · · and Y := Y0 ∪ Y1 ∪ Y2 ∪ · · · . The σ-completeness of
A guarantees that V × Y belongs to R.

We shall show that V × Y ∈ R. This means that we have to verify (7.2). So, fix
any cortege x, x∗, r, δ1, δ2 as there. Consider any h ∈ X such that δ1 < ‖h‖ < δ2. We
have to show that 1

‖h‖(f(x + h) − r − 〈x∗, h〉) ≥ IV (x, x∗, r, δ1, δ2). This inequality is

trivially satisfied if IV (x, x∗, r, δ1, δ2) = −∞ Further assume that this is not so. Pick some
δ′1, δ

′
2 ∈ Q such that δ1 < δ′1 < ‖h‖ < δ′2 < δ2. It is easy to check that V = C0 ∪ C1 ∪ · · ·

and Y = D0 ∪D1 ∪ · · · . Find x0 ∈ C0, x1 ∈ C1, . . . and x∗0 ∈ D0, x
∗
1 ∈ D1, . . . such that

‖xi − x‖ −→ 0 and ‖x∗i − x∗‖ −→ 0 as i → ∞. Consider any fixed γ ∈ Q+ . Pick q ∈ Q
such that |q − r| < γ‖h‖. Denote N1 :=

{
i ∈ N : ‖xi − x‖ < min{δ′1 − δ1, δ2 − δ′2}

}
; this

is a co-finite set in N. Now, take any k ∈ V , with δ′1 < ‖k‖ < δ′2. For i ∈ N1 we have
δ1 < ‖xi − x+ k‖ < δ2 and then we can estimate

1

‖k‖
(
f(xi + k)− q − 〈x∗i , k〉

)
=
‖k + xi − x‖

‖k‖
· 1

‖k + xi − x‖
(
f(x+ (xi − x+ k))− r − 〈x∗, xi − x+ k〉

)
+

1

‖k‖
(
〈x∗, xi − x+ k〉 − 〈x∗i , k〉

)
+
r − q

‖k‖

≥
(
1 + si

‖xi − x‖
‖k‖

)
IV (x, x∗, r, δ1, δ2)−

1

δ1

(
‖x∗‖‖xi − x‖+ δ2‖x∗ − x∗i ‖

)
− γ

δ2
δ′1

(7.3)

where si = 1 if IV (x, x∗, r, δ1, δ2) ≤ 0 and si = −1 otherwise. It then follows that

IV (xi, x
∗
i , q, δ

′
1, δ

′
2) ≥

(
1 + si

‖xi − x‖
δ1

)
IV (x, x∗, r, δ1, δ2)

− 1

δ1

(
‖x∗‖‖xi − x‖+ δ2‖x∗ − x∗i ‖

)
− γ

δ2
δ′1
> −∞ ,

(7.4)

and, in particular IV (xi, x
∗
i , q, δ

′
1, δ

′
2) > −∞, holds for every i ∈ N1.

Now, put

N2 :=
{
i ∈ N1 : δ′1<‖h+ x− xi‖<δ′2 and 〈x∗i , x− xi〉+ 〈x∗i − x∗, h〉>−‖h‖γ

}
; (7.5)
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this is still a co-finite set in N. Using (7.1), for every i ∈ N2 we can estimate,

1

‖h‖
(
f(x+ h)− r − 〈x∗, h〉

)
=
‖x− xi + h‖

‖h‖
· 1

‖x− xi + h‖
(
f(xi + (x− xi + h))− q − 〈x∗i , x− xi + h〉

)
+

1

‖h‖
(
〈x∗i , x− xi〉+ 〈x∗i − x∗, h〉

)
+
q − r

‖h‖

>
‖x− xi + h‖

‖h‖
I(xi, x

∗
i , q, δ

′
1, δ

′
2)− γ − γ

≥ ‖x− xi + h‖
‖h‖

[
1

‖h(xi, x∗i , q, δ
′
1, δ

′
2, γ)‖

(
f
(
xi + h(· · · )

)
− q −

〈
x∗i , h(· · · )

〉)
− γ

]
− 2γ

≥ ‖x− xi + h‖
‖h‖

[
IV

(
xi, x

∗
i , q, δ

′
1, δ

′
2,

)
− γ

]
− 2γ;

(7.6)

here · · · meant the cortege xi, x
∗
i , q, δ

′
1, δ

′
2, γ. Now, plugging here (7.4), and then letting

N2 3 i→∞, we get that

1

‖h‖
(
f(x+ h)− r − 〈x∗, h〉

)
≥ IV (x, x∗, r, δ1, δ2)− 3γ − γ

δ2
δ′1
,

Finally, realizing that γ ∈ Q+ could be arbitrarily small, we get that 1
‖h‖

(
f(x+ h)− r −

〈x∗, h〉
)
≥ IV (x, x∗, r, δ1, δ2). This, of course, implies that I(x, x∗, r, δ1, δ2) ≥ IV (x, x∗, r, δ1, δ2).

The proof of σ-completeness of R is very similar to (but a bit different from) the proof
of cofinality. Let V1,×Y1, V2×Y2, . . . be an increasing sequence of elements in our R. We
have to verify that V1 × Y1 ∪ V2 × Y2 ∪ · · · also belongs to R. Clearly, this set is of form
V × Y . As A is σ-complete, V × Y ∈ A. It remains to verify (7.2). So, fix any cortege
x, x∗, r, δ1, and δ2 as there. Consider any h ∈ X such that δ1 < ‖h‖ < δ2. We have to show
that 1

‖h‖(f(x + h) − r − 〈x∗, h〉) ≥ IV (x, x∗, r, δ1, δ2). This inequality is trivially satisfied

if IV (x, x∗, r, δ1, δ2) = −∞. Further assume that this is not so. Pick some δ′1, δ
′
2 ∈ Q

such that δ1 < δ′1 < ‖h‖ < δ′2 < δ2. It is easy to check that V = V1 ∪ V2 ∪ · · · and
Y = Y1 ∪ Y2 ∪ · · · . Find x1 ∈ V1, x2 ∈ V2, . . . and x∗1 ∈ Y1, x

∗
2 ∈ Y2, . . . such that

‖xi − x‖ −→ 0 and ‖x∗i − x∗‖ −→ 0 as i → ∞. Consider any fixed γ ∈ Q+. Pick q ∈ Q
such that |q − r| < γ‖h‖. Denote N1 :=

{
i ∈ N : ‖xi − x‖ < min{δ′1 − δ1, δ2 − δ′2}

}
; this

is a co-finite set in N. Now, take any k ∈ V , with δ′1 < ‖k‖ < δ′2. For i ∈ N1 we have
δ1 < ‖xi − x+ k‖ < δ2 and then we can estimate (This chain is exactly as (7.3).)

1

‖k‖
(
f(xi + k)− q − 〈x∗i , k〉

)
=

‖k + xi − x‖
‖k‖

· 1

‖k + xi − x‖
(
f(x+ (xi − x+ k))− r − 〈x∗, xi − x+ k〉

)
+

1

‖k‖
(
〈x∗, xi − x+ k〉 − 〈x∗i , k〉

)
+
r − q

‖k‖

≥
(
1 + si

‖xi − x‖
‖k‖

)
IV (x, x∗, r, δ1, δ2)−

1

δ1

(
‖x∗‖‖xi − x‖+ δ2‖x∗ − x∗i ‖

)
− γ

δ2
δ′1
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where si = 1 if IV (x, x∗, r, δ1, δ2) ≤ 0 and si = −1 otherwise. It then follows that (This is
exactly as (7.4).)

IV (xi, x
∗
i , q, δ

′
1, δ

′
2) ≥

(
1 + si

‖xi − x‖
δ1

)
IV (x, x∗, r, δ1, δ2)

− 1

δ1

(
‖x∗‖‖xi − x‖+ δ2‖x∗ − x∗i ‖

)
− γ

δ2
δ′1
> −∞,

(7.7)

and, in particular IV (xi, x
∗
i , q, δ

′
1, δ

′
2) > −∞, holds for every i ∈ N1.

Now, put (This N2 is defined exactly as in (7.5).)

N2 :=
{
i ∈ N1 : δ′1 < ‖h+ x− xi‖ < δ′2 and 〈x∗i , x− x〉+ 〈x∗i − x∗, h〉>−‖h‖γ

}
;

this is still a co-finite set in N. Using (7.7), for every i ∈ N2 we can estimate (The
following chain is a bit different from (7.6).)

1

‖h‖
(
f(x+ h)− r − 〈x∗, h〉

)
=

‖x− xi + h‖
‖h‖

· 1

‖x− xi + h‖
(
f(xi + (x− xi + h))− q − 〈x∗i , x− xi + h〉

)
+

1

‖h‖
(
〈x∗i , x− xi〉+ 〈x∗i − x∗, h〉

)
+
q − r

‖h‖

>
‖x− xi + h‖

‖h‖
I(xi, x

∗
i , q, δ

′
1, δ

′
2)− γ − γ

=
‖x− xi + h‖

‖h‖
IVi

(xi, x
∗
i , q, δ

′
1, δ

′
2)− 2γ (as (xi, x

∗
i ) ∈ Vi × Yi ∈ R and (7.2) holds)

≥ ‖x− xi + h‖
‖h‖

IV (xi, x
∗
i , q, δ

′
1, δ

′
2)− 2γ.

Now, plugging here (7.7), and then letting N2 3 i→∞, we get that

1

‖h‖
(
f(x+ h)− r − 〈x∗, h〉

)
≥ IV (x, x∗, r, δ1, δ2)− 2γ − γ

δ2
δ′1
,

Finally, realizing that γ ∈ Q+ could be arbitrarily small, we get that 1
‖h‖

(
f(x+ h)− r −

〈x∗, h〉
)
≥ IV (x, x∗, r, δ1, δ2). This, of course, implies that I(x, x∗, r, δ1, δ2) ≥ IV (x, x∗, r, δ1, δ2).

We proved that R is σ-complete, and therefore R is a rich rectangle family in X ×X∗.

That Y1 ⊂ Y2 whenever V1 × Y1, V2 × Y2 ∈ R and V1 ⊂ V2, follows immediately from
the same property shared by A.

It remains to prove that our R “works”. So, pick any V × Y ∈ R. We know from
Theorem 6.2 that Y 3 x∗ 7−→ x∗|V ∈ V ∗ is (an isometry) onto. Assume there is (v, v∗) ∈
V ×V ∗ such that v∗ ∈ ∂F (f |V )(v). Find (a unique) x∗ ∈ Y such that x∗|V = v∗. We shall
show that x∗ ∈ ∂Ff(v). So, fix any ε > 0. Find δ > 0 such that f(v+k)−f(v)−〈v∗, k〉 >
−ε‖k‖ whenever k ∈ V and 0 < ‖k‖ < δ; then IV (v, v∗, f(v), δ1, δ) ≥ −ε. Now, let h ∈ X
be any vector such that 0 < ‖h‖ < δ. Pick δ1 ∈ (0, ‖h‖). Then we have

1

‖h‖
(
f(v + h)− f(v)− 〈x∗, h〉

)
≥ I(v, x∗, f(v), δ1, δ) = IV (v, v∗, f(v), δ1, δ) ≥ −ε
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by (7.2). We proved that x∗ belongs to ∂f(v), and so v∗ belongs to
(
∂Ff(v)∩ Y

)
|V . The

reverse inclusion is obvious.

Corollary 7.2. Let (X, ‖ ·‖) be a (rather non-separable) Asplund space and let f : X −→
(−∞,+∞] be any proper function. Then there exists a rich family Q ⊂ S(X) such that
for every V ∈ Q and for every v ∈ V we have:

(i) ∂Ff(v) 6= ∅ if (and only if) ∂F (f |V )(v) 6= ∅.
(ii) ∂Ff(v) \ {0} 6= ∅ if (and only if) ∂F (f |V )(v) \ {0} 6= ∅.
(iii) f is Fréchet differentiable at v if (and only if) f |V is Fréchet differentiable at v; and
in this case ‖f ′(v)‖ =

∥∥(f |V )′(v)
∥∥.

Proof. Let R and R′ be rich rectangle-families found in Theorem 7.1 for the functions f
and −f , respectively. Let Q be the “projection” of R ∩R′ on the first coordinate, that
is, put

Q :=
{
V ∈ S(X) : V × Y ∈ R ∩R′ for some Y ∈ S(X∗)

}
.

It is easy check that Q is rich. It works. Indeed, take any V ∈ Q and any v ∈ V .
Find Y ∈ S(X∗) so that V × Y is in R ∩ R′. Then (i) and (ii) immediately follow
from Theorem 7.1. Further, assume that f |V is Fréchet differentiable at v and put v∗ :=
(f |V )′(v). This implies that v∗ ∈ ∂F (f |V )(v) and −v∗ ∈ ∂F ((−f)|V )(v). Find (the unique)
x∗ ∈ Y such that x∗|V = v∗ and ‖x∗‖ = ‖v∗‖; then (−x∗)|V = −v∗. Now, by Theorem 7.1,
x∗ ∈ ∂Ff(v) and −x∗ ∈ ∂F (−f)(v). It then easily follows that f is Fréchet differentiable
at v, with f ′(v) = x∗ and ‖f ′(v)‖ = ‖x∗‖ = ‖v∗‖ = ‖(f |V )′(v)‖.

Corollary 7.3. (see, e.g. [FM]) Let (X, ‖ · ‖) be an Asplund space, let f : X −→
(−∞,+∞] be a lower semicontinuous function, and g : X −→ (−∞,+∞] be a function
uniformly continuous in a vicinity of a certain x ∈ X. Then:

(i) The set {x ∈ X : ∂Ff(x) 6= ∅} is dense in the domain of f .

(ii) If x∗ ∈ ∂F (f + g)(x), then for every ε > 0 there are x1, x2 ∈ X, x∗1 ∈ ∂Ff(x1), and
x∗2 ∈ ∂Fg(x2) such that ‖x1 − x‖ < ε, ‖x2 − x‖ < ε, and ‖x∗1 + x∗2 − x∗‖ < ε.

Proof. Assume first that X is separable. Find an equivalent Fréchet smooth norm | · |, see
e.g. [DGZ, pages 48, 43] arbitrarily close to ‖ · ‖. Then proceed as in [I1] and [M, Section
2.2], using Borwein-Preiss or Deville-Godefroy-Zizler smooth variational principles [Ph,
Section 4].

Second, assume that X is non-separable. As regards (i), combine the just proved
separable statement with Corollary 7.2 (i). To prove (ii), assume that x∗ ∈ ∂F (f + g)(x)
and let ε > 0 be given. By Theorem 7.1, find rich families R1, R2 corresponding to f, g,
respectively, and put R := R1 ∩ R2. Find V × Y ∈ R so big that it contains (x, x∗).
Using the validity of the separable statement, find x1, x2 ∈ V, v∗1 ∈ ∂F (f |V )(x1), and
v∗2 ∈ ∂F (g|V )(x2) such that ‖x1 − x‖ < ε, ‖x2 − x‖ < ε, and ‖v∗1 + v∗2 − x∗|V ‖ < ε. Now,
the conclusion of Theorem 7.1 provides unique x∗1 ∈ ∂Ff(x1) ∩ Y and x∗2 ∈ ∂Fg(x2) ∩ Y
such that x∗i |V = v∗i , i = 1, 2. Hence, using the isometric property of the restriction
mapping Y 3 ξ 7−→ ξ|V , we conclude that ‖x∗1 + x∗2 − x∗‖ = ‖v∗1 + v∗2 − x∗|V ‖ < ε.
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Let (X, ‖ · ‖) be a Banach space, let Ω ⊂ X, and let x ∈ Ω. The Fréchet normal cone
NF (x,Ω) of Ω at x is defined as the Fréchet subdifferential of the indicator function ιΩ at
x; note that NF (x,Ω) always contains 0. By an extremal system in X we understand any
triple (Ω1,Ω2, x) such that Ω1,Ω2 are subsets of X, the point x lies in Ω1 ∩Ω2, and there
are ε > 0 and sequences (a1

n), (a2
n) inX satisfying that (a1

n+Ω1)∩(a2
n+Ω2)∩(x+εBX) = ∅

for every n ∈ N.

Corollary 7.4. (see, e.g., [FM]) Let (X, ‖ · ‖) be an Asplund space and let (Ω1,Ω2, x) be
an extremal system of closed sets in X. Then:

(i) The set
{
x ∈ X : NF (x,Ω1) 6= {0}

}
is dense in the boundary of Ω1.

(ii) The Fréchet extremal principle for the triple (Ω1,Ω2, x) holds, that is, for every ε > 0
there are x1, x2 ∈ X such that ‖x1−x‖ < ε, ‖x2−x‖ < ε and there are x∗i ∈ NF (xi,Ωi)+
εBX∗ , i = 1, 2, such that ‖x∗1‖+ ‖x∗2‖ = 1, and x∗1 + x∗2 = 0.

The proof is very similar to that of Corollary 7.3, once we have at hand the “separable”
statements.

Now, we present a strengthening of the main result of the paper [FI2] provided that the
space in question is Asplund; see Theorem 5.1. It should be noted that the requirement of
Asplund property is not a big restriction, once we realize that Fréchet (sub)differentiability
is not always guaranteed in non-Asplund spaces, see [M, page 197].

Theorem 7.5. Let k ∈ N, let X be a non-separable Asplund space, let Z1, . . . , Zk be
Banach spaces, let Ti : Zi → X, i = 1, . . . , k, be bounded linear operators, and let f
be a proper extended real-valued function on X. Then there exists a rich block-family
R ⊂ S@A@A(Z1 × · · · × Zk × X) such that, for every U1 × · · · × Uk × V ∈ R we have
T1(U1) ⊂ V, . . . , Tk(Uk) ⊂ V and there is Y ∈ S(X∗) such that:

(i) The assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗ is an isometry onto V ∗;

(ii) ∂F (f |V )(v) =
(
∂Ff(v) ∩ Y

)
|V =

(
∂Ff(v)

)
|V for every v ∈ V ; and

(iii)
∥∥T ∗i x∗∥∥ =

∥∥(
Ti|Ui

)∗
(x∗|V )

∥∥ for every x∗ ∈ Y and i = 0, 1, . . . , k (where Z0 := X and
T0 is the identity operator on X).

Proof. Putting together Theorem 6.4 and Remark 6.5, we find a rich block-family AT1,...,Tk

in Z1 × · · · × Zk ×X ×X∗ with the properties similar as the family AT in Theorem 6.4
has. Let R′ be the rich family in X ×X∗ found in Theorem 7.1. Define

R :=
{
U1×· · ·×Uk×V : U1×· · ·×Uk×V×Y ∈ AT1,...,Tk

and V×Y ∈ R′ for some Y ∈ S(X∗)
}
.

Clearly, R is cofinal. And from the “monotonicity” property of AT1,...,Tk
we easily get that

R is σ-complete. The properties (i), (ii), (iii) are clearly satisfied.
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Rend. Circ. Math. Palermo, 33 (1984), 122–133

39



40

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

