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EMBEDDINGS OF LORENTZ-TYPE SPACES INVOLVING WEIGHTED

INTEGRAL MEANS

AMIRAN GOGATISHVILI, MARTIN KŘEPELA, LUBOŠ PICK AND FILIP SOUDSKÝ

Abstract. We characterize embeddings between Lorentz-type spaces defined with respect to two dif-
ferent weighted means. In particular, we establish two-sided estimates of the optimal constant C in the

inequality(∫ ∞
0

(∫ t

0
f∗(s)p2u2(s) ds

)m2
p2

w2(t) dt

) 1
m2

≤ C

(∫ ∞
0

(∫ t

0
f∗(s)p1u1(s) ds

)m1
p1

w1(t) dt

) 1
m1

,

where m1,m2, p1, p2 ∈ (0,∞), u1, u2, w1, w2 are weights on (0,∞) and m2 > p2. The most innovative

part consists of the fact that possibly different general inner weights u1 and u2 are allowed. Proofs are
based on a combination of duality techniques with weighted inequalities for iterated operators involving

integrals and suprema.

1. Introduction and the main result

In this paper we study weighted inequalities of the form

(1.1)

(∫ ∞
0

(∫ t

0

f∗(s)p2u2(s) ds

)m2
p2

w2(t) dt

) 1
m2

≤ C

(∫ ∞
0

(∫ t

0

f∗(s)p1u1(s) ds

)m1
p1

w1(t) dt

) 1
m1

,

where m1,m2, p1, p2 are positive real numbers and u1, u2, w1, w2 are weights, that is, measurable non-
negative functions on (0,∞) and m2 > p2. The inequality is required to hold with some positive constant
C for all scalar measurable functions f defined on a σ-finite measure space (R, µ). By f∗ we denote the
non-increasing rearrangement of f , given by

f∗(t) = inf{λ ∈ R : µ({x ∈ R : |f(x)| > λ}) ≤ t} for t ∈ (0,∞).

Our main goal is to establish easily verifiable necessary and sufficient conditions on the parameters
m1,m2, p1, p2 ∈ (0,∞) and the weights u1, u2, w1, w2 for which (1.1) holds and to give two-sided estimates
of the optimal constant C.

We denote by M(R, µ) the set of all µ-measurable functions on R whose values belong to [−∞,∞].
We also define M+(R, µ) = {g ∈M(R, µ) : g ≥ 0}.

The inequality (1.1) can be viewed as a continuous embedding between appropriate function spaces.
As usual, we say that a (quasi-)normed space X is embedded into another such space, Y , if X ⊂ Y and
the identity operator is continuous from X to Y . We denote by GΓm,p

u,w the collection of all functions
f ∈M(R, µ) such that

‖f‖GΓm,p
u,w

:=

(∫ ∞
0

(∫ t

0

f∗(s)pu(s) ds

)m
p

w(t) dt

) 1
m

<∞,

where m, p ∈ (0,∞) and w, u are weights (on (0,∞). Under this notation, (1.1) is equivalent to the
continuous embedding

(1.2) GΓm1,p1
u1,w1

↪→ GΓm2,p2
u2,w2

.
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Moreover, the norm of the embedding (1.2) coincides with the optimal (smallest) constant C that ren-
ders (1.1) true.

The study of function spaces involving weights and rearrangements goes back to early 1950’s, when the
fundamental paper of Lorentz [41] appeared, followed later by [42]. In [41], the space Λp(v) was defined
as the set of all f ∈M(R, µ) for which the functional

‖f‖Λp(v) :=

(∫ ∞
0

f∗(t)pv(t) dt

) 1
p

is finite, where p ∈ (0,∞) and v is a weight on (0,∞). These spaces proved to be indispensable in a wide
range of disciplines of mathematical analysis, in particular in theory of interpolation, theory of operators
of harmonic analysis and theory of partial differential equations. A major breakthrough in the theory
was seen in 1990, when Ariño and Muckenhoupt in [2] characterized those parameters p ∈ (1,∞) and
weights v for which the Hardy–Littlewood maximal operator is bounded on Λp(v), and Sawyer in [47]
developed a duality concept for spaces Λp(v). Among other results, Sawyer obtained a generalization
of the theorem of Ariño and Muckenhoupt to the situation in which two possibly different exponents
and two possibly different weights are allowed. He also reformulated the action of the maximal operator
on weighted Lebesgue spaces restricted to the cone of non-decreasing functions in terms of embeddings
between function spaces by introducing the space Γp(v) as the family of all f ∈ M(R, µ) for which the
functional

‖f‖Γp(v) :=

(∫ ∞
0

f∗∗(t)pv(t) dt

) 1
p

is finite, where f∗∗ is the maximal non-increasing rearrangement of f , defined by

(1.3) f∗∗(t) =
1

t

∫ t

0

f∗(s) ds for t ∈ (0,∞).

For every f ∈ M(R, µ) and every t ∈ (0,∞), the estimate f∗(t) ≤ f∗∗(t) holds. As a consequence, one
trivially has Γp(v) ↪→ Λp(v) for any p and v.

During the 1990’s, the spaces Λp(v) and Γp(v) were put under a serious scrutiny under the common
label classical Lorentz spaces. Their basic functional properties as well as embedding relations between
them were characterized. It would be next to impossible to give a complete account of the literature
which is available to this subject nowadays. Let us quote at least the efforts of M. Carro, A. Garćıa
del Amo, M. Gol’dman, H. Heinig, L. Maligranda, J. Mart́ın, C. Neugebauer, R. Oinarov, J. Soria, G.
Sinnamon, V.D. Stepanov that resulted in a long series of papers, see [4, 7, 8, 9, 10, 24, 31, 32, 33, 34,
40, 44, 45, 48, 51, 52, 53, 54]. The first attempt to survey the situation in the field was given in [7] where
the contemporary state of the art was described. Since then, however, important new results have been
obtained and things have changed essentially again.

A significant progress in the study of classical Lorentz spaces was made in the early 2000’s due to
the efforts of Sinnamon [49, 50] and to the development of a new approach based on discretization and
anti-discretization techniques in [25]. Using these new techniques, embeddings of classical Lorentz spaces
in cases that had resisted for years were finally characterized, the notable last missing case being added
in [6]. This rounded off one particular level of results.

As a consequence of these advances, the field could have been explored deeper (see e.g. [5, 6, 26, 27]).
One of the most important innovations was the involvement of function spaces involving inner weighted
means. In order to describe such function spaces, let us first consider the weighted version of (1.3),
namely

(1.4) f∗∗u (t) =
1

U(t)

∫ t

0

f∗(s)u(s) ds for t ∈ (0,∞),

where u is a given weight on (0,∞) and

U(t) :=

∫ t

0

u(s) ds for t ∈ (0,∞).
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Given p ∈ (0,∞) and another weight, v, on (0,∞), we define the space Γp
u(v) as the collection of all

functions f ∈M(R, µ) such that

‖f‖Γp
u(v) :=

(∫ ∞
0

f∗∗u (t)pv(t) dt

) 1
p

<∞.

Some effort was spent in order to recover general embedding results for classical Lorentz spaces by methods
that would avoid the powerful but technically complicated discretization-antidiscretization scheme, but
only with a partial success (see e.g. [29, 30, 19]). A recent overview of the field of embeddings of classical
Lorentz spaces can be found in [46, Chapter 10].

There exists plenty of motivation for studying relations between classical Lorentz spaces in great
detail. For example, in the recent work [1], information about classical Lorentz spaces is used in order to
investigate the continuity properties of local solutions to the n-Laplace equation

−div(|∇u|n−2∇u) = f(x) in Ω,

where Ω is a bounded open subset of Rn.

Recently, new spaces came into play, for a good reason. Given two parameters m, p ∈ (0,∞) and
a weight v, on (0,∞), the space GΓ(p,m, v) is defined as the the collection of all functions f ∈M(R, µ)
such that

‖f‖GΓ(p,m,v) :=

(∫ b

0

(∫ t

0

f∗(s)p ds

)m
p

v(t) dt

) 1
m

<∞.

These spaces turn out to be important among other reasons because of their intimate connection to the
so-called grand Lebesgue spaces and their slightly younger relatives called small Lebesgue spaces. The
grand Lebesgue space was introduced by Iwaniec and Sbordone in [35] in connection with integrability
properties of Jacobians. Since it is a relatively complicated structure, it took some time before its dual
was characterized. This was done by Fiorenza in [14]. In that paper also the small Lebesgue spaces were
introduced. It was shown later by Fiorenza and Karadzhov in [15] that the norm in the small Lebesgue
space can be equivalently expressed in terms of the functional governing the GΓ(p,m,w) space with
appropriate parameters and weights. Further results in this direction were obtained e.g. in [16, 17, 18].
The associate space of GΓ(p,m,w) was then completely characterized in [28].

The techniques in the background of many of the results mentioned inevitably involve weighted in-
equalities involving Hardy-type integral operators. However, we also witness a still growing importance
of weighted inequalities involving supremum operators. These operators have been studied recently (see
e.g. [11], [23] or [21]) in connection with several problems in analysis including action of fractional maxi-
mal operators, optimality of function spaces in Sobolev embeddings, or the interpolation theory, but the
available results are far from being complete.

In [25], the characterization of the embeddings of the form

(1.5) Γq
u(w) ↪→ Γp

u(v),

where p, q ∈ (0,∞) and u, v, w are weights on (0,∞), was completed. It was an important step ahead and
applications followed instantly, but it still suffered from the principal restriction that the inner weight u
had to be the same on both sides of the embedding.

On the side of applications, there exists a significant desire for two-sided estimates of optimal constants
in embeddings of the type (1.5) with two possibly different inner weights. The motivation arises usually
in tasks that involve, in a way, two possibly different integral mean operators. To give at least one
example, let us recall the long-time extensive research of the optimality of function spaces in Sobolev-type
embeddings, carried out e.g. in [13, 36, 37, 38, 12]. For instance, the considerations in [38, Theorem 3.1],
where the explicit formula for the optimal rearrangement-invariant function norm in a Sobolev inequality
is sought and the known implicit one is reduced to a formula involving an integral mean with respect to
another weight function, show that characterizations of embeddings of the form (1.1) are useful.

Most of the functions which we shall deal with will be defined on (0,∞). If this is the case, then (R, µ)
is the interval (0,∞) endowed with the one-dimensional Lebesgue measure λ1, and we shall write just M
and M+ instead of M((0,∞), λ1) and M+((0,∞), λ1) respectively.
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Let u1, u2, w1 and w2 be weights on (0,∞) and t ∈ (0,∞). We will use the following notation:

U1(t) =

∫ t

0

u1(s) ds, U2(t) =

∫ t

0

u2(s) ds, W1(t) =

∫ t

0

w1(s) ds, W2(t) =

∫ t

0

w2(s) ds.

Further, let p1, p2,m1,m2 ∈ (1,∞). We define

ϕ(t) =

∫ t

0

U1(s)
m1
p1 w1(s) ds+ U1(t)

m1
p1

∫ ∞
t

w1(s) ds for t ∈ (0,∞).

Note that, for every t ∈ (0,∞), one has ϕ(t) = ‖χ(0,t)‖GΓ
m1,p1
u1,w1

(0,∞). We also set

σ(t) =
U1(t)

m2
1

p1(m1−p2)
−1
u1(t)

∫ t

0
U1(s)

m1
p1 w1(s) ds

∫∞
t
w1(s) ds

ϕ(t)
m1

m1−p2
+1

, t ∈ (0,∞).

Throughout the paper, the expressions of the form 0 · ∞ or 0
0 are taken as zero. For p ∈ (1,∞), we

define p′ = p
p−1 . We write A ≈ B when the ratio A/B is bounded from below and from above by positive

constants independent of appropriate quantities appearing in expressions A and B.

We shall now state the principal result of the paper.

Theorem 1.1. Let p1, p2,m1,m2 ∈ (1,∞). Assume that m2 > p2. Let u1, u2, w1 and w2 be weights.
Assume that

• u1 is strictly positive,

∫ t

0

u1(s) ds <∞ for all t ∈ (0,∞),

∫ ∞
0

u1(t) dt =∞,

•
∫ t

0

w1(s)U1(s)
m1
p1 ds <∞,

∫ ∞
t

w1(s)U1(s)
m1
p1 ds =∞ for all t ∈ (0,∞),

•
∫ t

0

w1(s) ds =∞,

∫ ∞
t

w1(s) ds <∞ for all t ∈ (0,∞).

Let

(1.6) C = sup
f∈M

(∫∞
0

(∫ t

0
f∗(s)p2u2(s) ds

)m2
p2
w2(t) dt

) 1
m2

(∫∞
0

(∫ t

0
f∗(s)p1u1(s) ds

)m1
p1
w1(t) dt

) 1
m1

.

(a) Let p1 ≤ p2 and m1 ≤ p2. Then

C ≈ B1,

where

B1 = sup
t∈(0,∞)

(∫ t

0
U2(s)

m2
p2 w2(s) ds+ U2(t)

m2
p2

∫∞
t
w2(s) ds

) 1
m2

ϕ(t)
1

m1

.

(b-i) Let p1 ≤ p2, m1 > p2 and m1 ≤ m2. Then

C ≈ B2 +B3,

where

B2 = sup
t∈(0,∞)

(
U1(t)−

p2
p1

m1
m1−p2

∫ t

0

σ(s) ds+

∫ ∞
t

U1(s)−
p2
p1

m1
m1−p2 σ(s) ds

)m1−p2
m1p2

(∫ t

0

U2(s)
m2
p2 w2(s) ds

) 1
m2

and

B3 = sup
t∈(0,∞)

(∫ t

0

sup
y∈(s,t)

U2(y)
m1

m1−p2 U1(y)
− p2m1

p1(m1−p2)σ(s) ds

)m1−p2
m1p2

(∫ ∞
t

w2(s) ds

) 1
m2

.

(b-ii) Let p1 ≤ p2, m1 > p2 and m1 > m2. Then

C ≈ B4 +B5 +B6 +B7,
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where

B4 =

∫ ∞
0

(∫ ∞
t

U1(s)−
p2
p1

m1
m1−p2 σ(s) ds

)m1(m2−p2)

p2(m1−m2)

U1(t)−
p2
p1

m1
m1−p2

×
(∫ t

0

U2(s)
m2
p2 w2(s) ds

) m1
m1−p2

σ(t) dt

)m1−m2
m1m2

,

B5 =

∫ ∞
0

sup
s∈(t,∞)

U1(s)
− m1m2

p1(m1−m2)

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) m1
m1−m2

(∫ t

0

σ(s) ds

)m1(m2−p2)

p2(m1−m2)

σ(t) dt


m1−m2
m1m2

,

B6 =

(∫ ∞
0

sup
s∈(t,∞)

U2(s)
m1m2

p2(m1−m2)U1(s)
− m1m2

p1(m1−m2)

(∫ ∞
s

w2(y) dy

) m1
m1−m2

×
(∫ t

0

σ(s) ds

)m1(m2−p2)

p2(m1−m2)

σ(t) dt


m1−m2
m1m2

and

B7 =

(∫ ∞
0

sup
s∈(t,∞)

U2(s)
m1

m1−p2 U1(s)
− m1p2

p1(m1−p2)

(∫ ∞
s

w2(y) dy

) m1
m1−m2

×

(∫ t

0

sup
y∈(s,t)

U2(y)
m1

m1−p2 U1(y)
− m1p2

p1(m1−p2)σ(s) ds

)m1(m2−p2)

p2(m1−m2)

σ(t) dt


m1−m2
m1m2

.

(c-i) Let p1 > p2, m1 ≤ p2 and p1 ≤ m2. Then

C ≈ B8 +B9,

where

B8 = sup
t∈(0,∞)

U1(t)
1
p1

ϕ(t)
1

m1

sup
s∈(t,∞)

U1(s)−
1
p1

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) 1
m2

and

B9 = sup
t∈(0,∞)

U1(t)
1
p1

ϕ(t)
1

m1

sup
s∈(t,∞)

(∫ ∞
s

w2(y) dy

) 1
m2
(∫ s

t

U2(y)
p1

p1−p2 U1(y)−
p1

p1−p2 u1(y) dy

) p1−p2
p1p2

.

(c-ii) Let p1 > p2, m1 ≤ p2 and p1 > m2. Then

C ≈ B10 +B11 +B12,

where

B10 = sup
t∈(0,∞)

(∫ t

0
U2(s)

m2
p2 w2(s) ds

) 1
m2

ϕ(t)
1

m1

,

B11 = sup
t∈(0,∞)

U1(t)
1
p1

(∫∞
t

(∫ s

0
U2(y)

m2
p2 w2(y) dy

) m2
p1−m2

U2(s)
m2
p2 w2(s)U1(s)−

m2
p1−m2 ds

) p1−m2
p1m2

ϕ(t)
1

m1

and

B12 = sup
t∈(0,∞)

U1(t)
1
p1

(∫∞
t

(∫ s

t
U2(y)

p1
p1−p2 U1(y)−

p1
p1−p2 u1(y) dy

)m2(p1−p2)

p2(p1−m2) (∫∞
s
w2(y) dy

) m2
p1−m2 w2(t) dt

) p1−m2
p1m2

ϕ(t)
1

m1

.
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(d-i) Let p2 < m1 < p1 ≤ m2. Then

C ≈ B13 +B14 +B15,

where

B13 = sup
t∈(0,∞)

(∫ t

0

σ(s) ds

)m1−p2
m1p2

U1(t)−
1
p1

(∫ t

0

U2(s)
m2
p2 w2(s) ds

) 1
m2

,

B14 = sup
t∈(0,∞)

(∫ ∞
t

U1(s)
− m1p2

p1(m1−p2)σ(s) ds

)m1−p2
m1p2

(∫ t

0

U2(s)
m2
p2 w2(s) ds

) 1
m2

and

B15 = sup
t∈(0,∞)

(∫ ∞
t

w2(s) ds

) 1
m2

∫ t

0

(∫ t

s

U1(y)−
p1

p1−p2 U2(y)
p1

p1−p2 u1(y) dy

)m1(p1−p2)

p1(m1−p2)

σ(s) ds


m1−p2
m1p2

.

(d-ii) Let p2 < m1 ≤ m2 < p1. Then

C ≈ B14 +B15 +B16,

where

B16 = sup
t∈(0,∞)

(∫ t

0

σ(s) ds

)m1−p2
m1p2

(∫ ∞
t

U1(s)−
m2

p1−m2

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) m2
p1−m2

U2(s)
m2
p2 w2(s) ds

) p1−m2
p1m2

+ sup
t∈(0,∞)

(∫ t

0

σ(s) ds

)m1−p2
m1p2

∫ ∞
t

(∫ ∞
s

U1(y)−
p1

p1−p2 U2(y)
p1

p1−p2 u1(y) dy

)m2(p1−p2)

p2(p1−m2)

×
(∫ ∞

s

w2(y) dy

) m2
p1−m2

w2(s) ds

) p1−m2
p1m2

.

(d-iii) Let p2 < m2 < m1 < p1. Then

C ≈ B17,
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where

B17 =

∫ ∞
0

(∫ t

0

U2(s)
m2
p2 w2(s) ds

) m1
m1−m2

(∫ ∞
t

U1(s)
− m1p2

p1(m1−p2)σ(s) ds

)m1(m2−p2)

p2(m1−m2)

U1(t)
− m1p2

p1(m1−p2)σ(t) dt


m1−m2
m1m2

+

∫ ∞
0

(∫ ∞
t

U1(s)−
m2

p1−m2

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) m2
p1−m2

U2(s)
m2
p2 w2(s) ds

)m1(p1−m2)

p1(m1−m2)

×
(∫ t

0

σ(s) ds

)m1(m2−p2)

p2(m1−m2)

σ(t) dt


m1−m2
m1m2

+

∫ ∞
0

∫ ∞
t

(∫ ∞
s

U1(y)−
p1

p1−p2 U2(y)
p1

p1−p2 u1(y) dy

)m2(p1−p2)

p2(p1−m2)
(∫ ∞

s

w2(y) dy

) m2
p1−m2

w2(s) ds


m1(p1−m2)

p1(m1−m2)

×
(∫ t

0

σ(s) ds

)m1(m2−p2)

p2(m1−m2)

σ(t) dt


m1−m2
m1m2

+

∫ ∞
0

∫ t

0

(∫ t

s

U1(y)−
p1

p1−p2 U2(y)
p1

p1−p2 u1(y) dy

) p1−p2
p1

σ(s) ds


m2(m1−p2)

p2(m1−m2)

×
(∫ ∞

t

w2(s) ds

) m2
m1−m2

w2(t) dt


m1−m2
m1m2

.

The cases when either m2 < p2 or m2 > p2, m1 > p2, p1 > p2 and m1 ≥ p1 remain open. In the case
when m2 = p2, the space GΓm2,p2

u2,w2
degenerates to a classical Lorentz space of type Λ for which everything

is known ([25]).

The key ingredient of the proof of Theorem 1.1 is a combination of duality techniques with embedding
results for classical Lorentz spaces and estimates of optimal constants in weighted inequalities involving
iterated integral and supremum operators. Detailed analysis of separate cases leads to the need of
necessary and sufficient conditions for various, quite different in nature, inequalities, of which only some
are known. Interestingly, some of these results have been obtained only quite recently, such as [20], for
instance. Even more interestingly, some are not known at all and will appear here for the first time.

The proof can be naturally expected to be quite technical and to involve plenty of computation. There
is hardly any way to avoid it. We shall therefore do our best to simplify the notation, shorten the
formulas, and make the exposition as reader-friendly as possible.

The paper is organized as follows. In the next section we collect the necessary background material. We
intend to save the reader plenty of tedious work since the relevant results are scattered over literature with
inconsistent notation. We also characterize several inequalities involving iterated integral and supremum
operators which are not available and will also be needed in the proofs. In the last section we present
the proof of Theorem 1.1.

2. Background material

In this section we collect background results that will be used in the proof of the main theorem.
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We begin with the well-known duality principle in weighted Lebesgue spaces. If p ∈ (1,∞), f ∈ M+

and v is a weight on (0,∞), then

(2.1)

(∫ ∞
0

f(t)pv(t) dt

) 1
p

= sup
h∈M+

∫∞
0
f(t)h(t) dt(∫∞

0
h(t)p′v(t)1−p′ dt

) 1
p′
.

Let us now recall a quantified version of classical Hardy inequalities.

Theorem 2.1 ([3, Theorem 1] and [43, Theorem 1.3.1]). Let 1 < p, q <∞ and let u, v, w be weights on
(0,∞). Let

K = sup
f∈M+

(∫∞
0

(∫ t

0
f(s)u(s) ds

)q
w(t) dt

) 1
q

(∫∞
0
f(t)pv(t) dt

) 1
p

.

(a) Let 1 < p ≤ q <∞. Then K ≈ A1, where

A1 = sup
t∈(0,∞)

(∫ ∞
t

w(s) ds

) 1
q
(∫ t

0

u(s)p
′
v(s)1−p′ ds

) 1
p′

.

(b) Let 1 < q < p <∞. Then K ≈ A2, where

A2 =

∫ ∞
0

(∫ ∞
t

w(s) ds

) p
p−q

(∫ t

0

u(s)p
′
v(s)1−p′ ds

) p(q−1)
p−q

u(t)p
′
v(t)1−p′ dt


p−q
pq

.

Theorem 2.2 ([3, Theorem 2] and [43, Theorem 1.3.2]). Let 1 < p, q < ∞ and let v and w be weights
on (0,∞). Let

K = sup
f∈M+

(∫∞
0

(∫∞
t
f(s) ds

)q
w(t) dt

) 1
q(∫∞

0
f(t)pv(t) dt

) 1
p

.

(a) Let 1 < p ≤ q <∞. Then K ≈ A1, where

A1 = sup
t∈(0,∞)

(∫ t

0

w(s) ds

) 1
q
(∫ ∞

t

v(s)1−p′ ds

) 1
p′

.

(b) Let 1 < q < p <∞. Then K ≈ A2, where

A2 =

∫ ∞
0

(∫ t

0

w(s) ds

) p
p−q

(∫ ∞
t

v(s)1−p′ ds

) p(q−1)
p−q

v(t)1−p′ dt


p−q
pq

.

We now turn our attention to inequalities involving supremum operators.

Theorem 2.3 ([23, Theorem 4.1(i) and Theorem 4.4]). Let 0 < p, q <∞. Let u be a continuous weight

and let v, w and % be weights such that 0 <
∫ t

0
v(s) ds <∞ and 0 <

∫ t

0
w(s) ds <∞ for every t ∈ (0,∞).

Let

K = sup
g∈M+

(∫∞
0

sup
s∈(t,∞)

u(s)q
(∫ s

0
g(y)%(y) dy

)q
w(t) dt

) 1
q

(∫∞
0
g(t)pv(t) dt

) 1
p

.

(a) Let 1 < p ≤ q <∞. Then K ≈ A1, where

A1 = sup
t∈(0,∞)

(
sup

s∈(t,∞)

u(s)q
∫ s

0

w(y) dy +

∫ ∞
t

sup
y∈(s,∞)

u(y)qw(s) ds

) 1
q (∫ t

0

%(s)p
′
v(s)1−p′ ds

) 1
p′

.

(b) Let 1 ≤ p <∞ and 0 < q < p. Then K ≈ A2 +A3, where

A2 =

∫ ∞
0

sup
s∈(t,∞)

u(s)q

(∫ ∞
t

sup
y∈(s,∞)

u(y)qw(s) ds

) q
p−q (∫ t

0

%(s)p
′
v(s)1−p′ ds

) q(p−1)
p−q

w(t) dt


p−q
pq
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and

A3 =

∫ ∞
0

sup
s∈(t,∞)

u(s)
pq

p−q

(∫ s

0

%(y)p
′
v(y)1−p′ dy

) q(p−1)
p−q

(∫ t

0

w(s) ds

) q
p−q

w(t) dt


p−q
pq

.

One of the most important ingredients of the proof of the main theorem will be the following quantified
version of an embedding between classical Lorentz spaces in a certain particular case.

Theorem 2.4 ([25, Theorem 4.2]). Let u, v, w be weights on [0,∞). Let p, q ∈ (0,∞). Assume that the
following conditions are satisfied:

• limt→∞ U(t) =∞,

•
∫∞

0
v(s)

U(s)p+U(t)p ds <∞ for every t ∈ (0,∞),

•
∫ 1

0
v(s)
U(s)p ds =∞,

•
∫∞

1
v(s) ds =∞.

Let

K = sup
f∈M+

(∫∞
0
f∗(t)qw(t) dt

) 1
q(∫∞

0
f∗∗u (t)pv(t) dt

) 1
p

.

(a) If 0 < p ≤ q <∞ and 1 ≤ q <∞, then

K ≈ A1,

where

A1 = sup
t∈(0,∞)

W (t)
1
q(

V (t) + U(t)p
∫∞
t
U(s)−pv(s) ds

) 1
p

.

(b) If 1 ≤ q < p <∞, then

K ≈ A2,

where

A2 =

(∫ ∞
0

supy∈(t,∞) U(y)−
pq

p−qW (y)
p

p−q V (t)U(t)
pq

p−q +p−1u(t)
∫∞
t
U(s)−pv(s) ds(

V (t) + U(t)p
∫∞
t
U(s)−pv(s) ds

) p
p−q +1

dt

) p−q
pq

.

(c) If 0 < p ≤ q < 1, then

K ≈ A3,

where

A3 = sup
t∈(0,∞)

W (t)
1
q + U(t)

(∫∞
t
W (s)

q
1−qw(s)U(s)−

q
1−q ds

) 1−q
q

(
V (t) + U(t)p

∫∞
t
U(s)−pv(s) ds

) 1
p

.

(d) If 0 < q < 1 and 0 < q < p, then

K ≈ A4,

where

A4 =

∫ ∞
0

(
W (t)

1
1−q + U(t)

q
1−q
∫∞
t
W (s)

q
1−qw(s)U(s)−

q
1−q ds

) p(1−q)
p−q

(
V (t) + U(t)p

∫∞
t
U(s)−pv(s) ds

) p
p−q +1

×

× V (t)U(t)p−1u(t)

∫ ∞
t

U(s)−pv(s) ds dt

) p−q
pq

.

We now recall characterization of a weighted inequality involving a kernel operator.
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Theorem 2.5 ([45, Theorems 1.1 and 1.2]). Let 1 < p, q <∞ and let v and w be weights. Let

K = sup
f∈M+

(∫∞
0

(∫ t

0
h(s)

∫ t

s
u(y) dy ds

)q
w(t) dt

) 1
q

(∫∞
0

(f(t))pv(t) dt
) 1

p

.

(a) Let 1 < p ≤ q <∞. Then K ≈ A1 +A2, where

A1 = sup
t∈(0,∞)

(∫ ∞
t

(∫ t

s

u(y) dy

)q

w(s) ds

) 1
q (∫ t

0

v(s)1−p′ ds

) 1
p′

and

A2 = sup
t∈(0,∞)

(∫ ∞
t

w(s) ds

) 1
q

(∫ t

0

(∫ t

s

u(y) dy

)p′

v(s)1−p′ ds

) 1
p′

.

(b) Let 1 < q < p <∞. Then K ≈ A3 +A4, where

A3 =

∫ ∞
0

((∫ ∞
s

(∫ t

s

u(y) dy

)q

w(s) ds

)(∫ t

0

v(s)1−p′ ds

)q−1
) p

p−q

v(t)1−p′ dt


p−q
pq

and

A4 =

∫ ∞
0

(∫ ∞
t

w(s) ds

)(∫ t

0

(∫ t

s

u(y) dy

)p′

v(s)1−p′ ds

)p−1


q
p−q

w(t) dt


p−q
pq

.

Now we shall present a quantified version of a weighted inequality involving a specific combination of
a supremum operator and an integral operator.

Theorem 2.6 ([39, Theorem 6]). Let v and w be weights on (0,∞) and let u be a continuous weight on
(0,∞). Let

K = sup
g∈M+

(∫∞
0

sup
s∈(t,∞)

u(s)q
(∫∞

s
g(y) dy

)q
w(t) dt

) 1
q

(∫∞
0
g(s)pv(s) ds

) 1
p

.

(a) Assume that 1 < p ≤ q <∞. Then

K ≈ A1,

where

A1 = sup
t∈(0,∞)

(∫ t

0

sup
y∈(s,t)

u(y)qw(s) ds

) 1
q (∫ ∞

t

v(s)1−p′ ds

) 1
p′

.

(b) Assume that 1 < p <∞ and 0 < q < p <∞. Then

K ≈ A2 +A3,

where

A2 =

∫ ∞
0

sup
s∈(t,∞)

u(s)
pq

p−qW (t)
q

p−qw(t)

(∫ ∞
t

v(s)1−p′ ds

) q(p−1)
p−q

dt


p−q
pq

and

A3 =

∫ ∞
0

sup
s∈(t,∞)

u(s)q
(∫ ∞

s

v(y)1−p′ dy

) q(p−1)
p−q

(∫ t

0

sup
y∈(s,t)

u(y)qw(s) ds

) q
p−q

w(t) dt


p−q
pq

.

At one stage of the proof of the main result, a reformulation of conditions on weights will be required.
This will be done through the following elementary lemma.
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Lemma 2.7. Let w, u be weights. Assume that∫ ∞
0

u(t) dt =∞.

Let 0 < q < 1. Then, for every t ∈ (0,∞), one has

W (t)
1
q + U(t)

(∫ ∞
t

W (s)
q

1−qw(s)U(s)−
q

1−q ds

) 1−q
q

≈ U(t)

(∫ ∞
t

W (s)
1

1−qU(s)−
1

1−q u(s) ds

) 1−q
q

,

in which the constants of equivalence depend only on q.

Proof. Fix t ∈ (0,∞). Integration by parts yields∫ ∞
t

W (s)
q

1−qw(s)U(s)−
1

1−q ds(2.2)

= q

∫ ∞
t

W (s)
1

1−qU(s)−
1

1−q u(s) ds+ (1− q)

(
lim
y→∞

W (y)
1

1−q

U(y)
q

1−q

− W (t)
1

1−q

U(t)
q

1−q

)
.

Therefore, we immediately have∫ ∞
t

W (s)
q

1−qw(s)U(s)−
1

1−q ds

≤ q
∫ ∞
t

W (s)
1

1−qU(s)−
1

1−q u(s) ds+ (1− q) lim
y→∞

W (y)
1

1−qU(y)−
q

1−q .

Next,

lim
y→∞

W (y)
1

1−qU(y)−
q

1−q ≤ sup
t≤y<∞

W (y)
1

1−qU(y)−
q

1−q

= q
1−q sup

t≤y<∞
W (y)

1
1−q

∫ ∞
y

U(s)−
1

1−q u(s) ds

≤ q
1−q sup

t≤y<∞

∫ ∞
y

W (s)
1

1−qU(s)−
1

1−q u(s) ds

= q
1−q

∫ ∞
t

W (s)
1

1−qU(s)−
1

1−q u(s) ds.

Altogether, we obtain

(2.3)

∫ ∞
t

W (s)
q

1−qw(s)U(s)−
1

1−q ds ≤ 2q

∫ ∞
t

W (s)
1

1−qU(s)−
1

1−q u(s) ds.

We also have

W (t)
1

1−q = W (t)
1

1−qU(t)
q

1−qU(t)−
q

1−q

= 1−q
q W (t)

1
1−qU(t)

q
1−q

∫ ∞
t

U(s)−
1

1−q u(s) ds

≤ 1−q
q U(t)

q
1−q

∫ ∞
t

W (s)
1

1−qU(s)−
1

1−q u(s) ds.

Raising the inequality to 1−q
q , we get

(2.4) W (t)
1
q ≤ ( 1−q

q )
1−q
q U(t)

(∫ ∞
t

W (s)
1

1−qU(s)−
1

1−q u(s) ds

) 1−q
q

.

Altogether, (2.3) and (2.4) imply

W (t)
1
q + U(t)

(∫ ∞
t

W (s)
q

1−qw(s)U(s)−
q

1−q ds

) 1−q
q

≤ CqU(t)

(∫ ∞
t

W (s)
1

1−qU(s)−
1

1−q u(s) ds

) 1−q
q

in which

Cq =
(

1−q
q

) 1−q
q

+ (2q)
1−q
q .
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Conversely, by (2.2) again, we have∫ ∞
t

W (s)
1

1−qU(s)−
1

1−q u(s) ds

≤ 1
q

∫ ∞
t

W (s)
q

1−qw(s)U(s)−
q

1−q ds+
(

1−q
q

) 1−q
q W (t)

1
1−q

U(t)
q

1−q

.

Raising this estimate to 1−q
q and multiplying it by U(t), we obtain

U(t)

(∫ ∞
t

W (s)
1

1−qU(s)−
1

1−q u(s) ds

) 1−q
q

≤
(

1
q

) 1−q
q

U(t)

(∫ ∞
t

W (s)
q

1−qw(s)U(s)−
q

1−q ds

) 1−q
q

+
(

1−q
q

) 1−q
q

W (t)
1
q .

The proof is complete. �

We finish this section with two theorems in which we characterize weighted inequalities involving
iteration of two integral operators.

Theorem 2.8. Assume that p, q,m ∈ (1,∞) and q < m. Let u, v, w be weights on (0,∞). Let

K = sup
g∈M+

(∫∞
0

(∫∞
t

(∫∞
s
g(y) dy

)q
u(s) ds

)m
q w(t) dt

) 1
m

(∫∞
0
g(s)pv(s) ds

) 1
p

.

(a) Let 1 < p ≤ q <∞. Then
K ≈ A1,

where

A1 = sup
t∈(0,∞)

(∫ ∞
t

v(s)1−p′ ds

) 1
p′
(∫ t

0

(∫ t

s

u(y) dy

)m
q

w(s) ds

) 1
m

.

(b) Let 1 < q < p <∞ and p ≤ m. Then

K ≈ A1 +A2,

where

A2 = sup
t∈(0,∞)

∫ ∞
t

(∫ ∞
s

u(y) dy

) p
p−q

(∫ ∞
s

v(y)1−p′ dy

) p(q−1)
p−q

v(s)1−p′ ds


p−q
pq (∫ t

0

w(s) ds

) 1
m

.

(c) Let 1 < q < p <∞ and m < p. Then

K ≈ A3 +A4,

where

A3 =

∫ ∞
0

∫ ∞
t

(∫ ∞
s

u(y) dy

) p
p−q

(∫ ∞
s

v(y)1−p′ dy

) p(q−1)
p−q

v(s)1−p′ ds


m(p−q)
q(p−m)

W (s)
m

p−mw(s) ds


p−m
pm

and

A4 =

∫ ∞
0

(∫ ∞
t

v(s)1−p′ ds

) p(m−1)
p−m

(∫ t

0

(∫ t

s

u(y) dy

)m
q

w(s) ds

) p
p−m

v(t)1−p′ dt


p−m
pm

.

Proof. We first observe that, by (2.1), one has

K = sup
g∈M+

sup
h∈M+

(∫∞
0
h(t)

∫∞
t

(∫∞
s
g(y) dy

)q
u(s) ds dt

) 1
q(∫∞

0
g(s)pv(s) ds

) 1
p

(∫∞
0
h(s)

m
m−qw(s)−

q
m−q ds

)m−q
mq

.
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Interchanging suprema and using the Fubini theorem, we obtain

(2.5) K = sup
h∈M+

1(∫∞
0
h(s)

m
m−qw(s)−

q
m−q ds

)m−q
mq

sup
g∈M+

(∫∞
0

(∫∞
s
g(y) dy

)q ∫ s

0
h(t) dt u(s) ds

) 1
q(∫∞

0
g(s)pv(s) ds

) 1
p

.

Let 1 < p ≤ q <∞. Then, by Theorem 2.2(a), we get

sup
g∈M+

(∫∞
0

(∫∞
s
g(y) dy

)q ∫ s

0
h(t) dt u(s) ds

) 1
q(∫∞

0
g(s)pv(s) ds

) 1
p

≈ sup
t∈(0,∞)

(∫ t

0

u(s)

∫ s

0

h(y) dy ds

) 1
q
(∫ ∞

t

v(s)1−p′ ds

) 1
p′

.

Plugging this to (2.5), we get

K ≈ sup
h∈M+

sup
t∈(0,∞)

(∫ t

0
u(s)

∫ s

0
h(y) dy ds

) 1
q
(∫∞

t
v(s)1−p′ ds

) 1
p′

(∫∞
0
h(s)

m
m−qw(s)−

q
m−q ds

)m−q
mq

.

Now we interchange the suprema again, apply the Fubini theorem and raise all the expressions to q. We
obtain

Kq ≈ sup
t∈(0,∞)

(∫ ∞
t

v(s)1−p′ ds

) q
p′

sup
h∈M+

∫ t

0
h(s)

∫ t

s
u(y) dy ds(∫∞

0
h(s)

m
m−qw(s)−

q
m−q ds

)m−q
m

.

By (2.1), this yields K ≈ A1, proving the assertion in the case (a).

Let now 1 < q < p <∞. Then, by Theorem 2.1(b), we have

Kq ≈ sup
h∈M+

(∫∞
0

(∫ t

0
u(s)

∫ s

0
h(y) dy ds

) p
p−q

(∫∞
t
v(s)1−p′ ds

) p(q−1)
p−q

v(t)1−p′ dt

) p−q
p

(∫∞
0
h(s)

m
m−qw(s)−

q
m−q ds

)m−q
m

.

Consequently, by the Fubini theorem,

Kq ≈ sup
h∈M+

(∫∞
0

(∫ t

0
h(y)

∫ t

y
u(s) ds dy

) p
p−q

(∫∞
t
v(s)1−p′ ds

) p(q−1)
p−q

v(t)1−p′ dt

) p−q
p

(∫∞
0
h(s)

m
m−qw(s)−

q
m−q ds

)m−q
m

.

Now, in the case (b) the assertion follows from Theorem 2.5(a) and in the case (c) from Theorem 2.5(b).
�

Theorem 2.9. Assume that m, p, q ∈ (1,∞) and let u, v, w and % be weights on (0,∞). Assume that
q < m. Let

K = sup
g∈M+

(∫∞
0

(∫∞
t

(∫ s

0
g(y)%(y) dy

)q
u(s) ds

)m
q w(t) dt

) 1
m

(∫∞
0
g(s)pv(s) ds

) 1
p

.

(a) If p ≤ q < m, then

K ≈ sup
t∈(0,∞)

W (t)
1
m

(∫ ∞
t

u(s) ds

) 1
q
(∫ t

0

%(s)p
′
v(s)1−p′ ds

) 1
p′

+ sup
t∈(0,∞)

(∫ ∞
t

(∫ ∞
s

u(y) dy

)m
q

w(s) ds

) 1
m (∫ t

0

%(s)p
′
v(s)1−p′ ds

) 1
p′

.
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(b) If q < p ≤ m, then

K ≈ sup
t∈(0,∞)

(∫ ∞
t

(∫ ∞
s

u(y) dy

)m
q

w(s) ds

) 1
m (∫ t

0

%(s)p
′
v(s)1−p′ ds

) 1
p′

+ sup
t∈(0,∞)

W (t)
1
m

∫ ∞
t

(∫ ∞
s

u(y) dy

) p
p−q

(∫ s

0

%(y)p
′
v(y)1−p′ dy

) p(q−1)
p−q

%(s)p
′
v(s)1−p′ ds


p−q
pq

.

(c) If q < m < p, then

K ≈

∫ ∞
0

(∫ t

0

%(s)p
′
v(s)1−p′ ds

)m(p−1)
p−m

(∫ ∞
t

(∫ ∞
s

u(y) dy

)m
q

w(s) ds

) m
p−m (∫ ∞

t

u(y) dy

)m
q

w(t) dt


p−m
mp

+

∫ ∞
0

∫ ∞
t

(∫ ∞
s

u(y) dy

) p
p−q

(∫ s

0

%(y)p
′
v(y)1−p′

) p(q−1)
p−q

%(s)p
′
v(s)1−p′ ds


m(p−q)
q(p−m)

W (t)
m

p−mw(t) dt


p−m
mp

.

Proof. The proof can be done in the same way as that of Theorem 2.8. �

We note that the assertion of Theorem 2.9 can be also extracted from [22], where however the charac-
terizing conditions are formulated in modified way and where a completely different proof is presented.

3. Proof of the main result

Proof of Theorem 1.1. As the first step of our analysis we will express the value of C in a modified way.
For every fixed g ∈M+, set

A(g) = sup
h∈M+

(∫∞
0
h∗(t)

p2
p1 u2(t)

∫∞
t
g(s) ds dt

) p1
p2(∫∞

0
h∗∗u1

(t)
m1
p1 w1(t)U1(t)

m1
p1 dt

) p1
m1

,

where we apply the notation introduced in (1.4). We claim that

(3.1) C = sup
g∈M+

A(g)
1
p1(∫∞

0
g(t)

m2
m2−p2 w2(t)−

p2
m2−p2 dt

)m2−p2
m2p2

.

Indeed, fix f ∈ M. Since m2

p2
> 1, we can apply (2.1) to p = m2

p2
and v = w2. Then p′ = m2

m2−p2
and

1− p′ = − p2

m2−p2
, and so we get

(∫ ∞
0

(∫ t

0

f∗(s)p2u2(s) ds

)m2
p2

w2(t) dt

) 1
m2

= sup
g∈M+

(∫∞
0
g(t)

∫ t

0
f∗(s)p2u2(s) ds dt

) 1
p2

(∫∞
0
g(s)

m2
m2−p2 w2(s)−

p2
m2−p2 ds

)m2−p2
m2p2

.

By the Fubini theorem, this turns into(∫ ∞
0

(∫ t

0

f∗(s)p2u2(s) ds

)m2
p2

w2(t) dt

) 1
m2

= sup
g∈M+

(∫∞
0
f∗(s)p2u2(s)

∫∞
s
g(t) dt ds

) 1
p2(∫∞

0
g(s)

m2
m2−p2 w2(s)−

p2
m2−p2 ds

)m2−p2
m2p2

.

Plugging this into (1.6), we get

C = sup
f∈M

1(∫∞
0

(∫ t

0
f∗(s)p1u1(s) ds

)m1
p1
w1(t) dt

) 1
m1

sup
g∈M+

(∫∞
0
f∗(s)p2u2(s)

∫∞
s
g(t) dt ds

) 1
p2(∫∞

0
g(s)

m2
m2−p2 w2(s)−

p2
m2−p2 ds

)m2−p2
m2p2

.
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On interchanging suprema, this yields

C = sup
g∈M+

1(∫∞
0
g(s)

m2
m2−p2 w2(s)−

p2
m2−p2 ds

)m2−p2
m2p2

sup
f∈M

(∫∞
0
f∗(s)p2u2(s)

∫∞
s
g(t) dt ds

) 1
p2(∫∞

0

(∫ t

0
f∗(s)p1u1(s) ds

)m1
p1
w1(t) dt

) 1
m1

.

Now, for a change, fix g ∈M+. Given f ∈M, set h = |f |p1 . Then f∗ = (h∗)
1
p1 , and we have

sup
f∈M

(∫∞
0
f∗(s)p2u2(s)

∫∞
s
g(t) dt ds

) 1
p2(∫∞

0

(∫ t

0
f∗(s)p1u1(s) ds

)m1
p1
w1(t) dt

) 1
m1

= sup
h∈M

(∫∞
0
h∗(t)

p2
p1 u2(t)

∫∞
t
g(s) ds dt

) 1
p2(∫∞

0
h∗∗u1

(t)
m1
p1 w1(t)U1(t)

m1
p1 dt

) 1
m1

.

The quantity on the right-hand side now equals A(g)
1
p1 . This establishes (3.1).

We next observe that, for every fixed g ∈M+, one has

A(g) = sup
h∈M

(∫∞
0
h∗(t)qw(t) dt

) 1
q(∫∞

0
h∗∗u (t)pv(t) dt

) 1
p

with

(3.2) p =
m1

p1
, q =

p2

p1

and

(3.3) w(t) = u2(t)

∫ ∞
t

g(s) ds, v(t) = U1(t)
m1
p1 w1(t), u(t) = u1(t), t ∈ (0,∞).

Now, the quantity A(g) can be equivalently evaluated in terms of parameters p, q and weights u, v, w via
Theorem 2.4 (we note that the assumptions of that theorem are fulfilled). However, the expressions in
cases (c) and (d) are not in a satisfactory form and we have to modify them through Lemma 2.7. The
reason will become apparent soon - roughly speaking, we need to get rid of all the expressions that involve
w and have to replace them by those involving W instead. Thus, by Lemma 2.7, we get

(c) if 0 < p ≤ q < 1, then

A(g) ≈ sup
t∈(0,∞)

U(t)
(∫∞

t
W (s)

1
1−qU(s)−

1
1−q u(s) ds

) 1−q
q

(
V (t) + U(t)p

∫∞
t
U(s)−pv(s) ds

) 1
p

,

and
(d) if 0 < q < 1 and 0 < q < p, then

A(g) ≈

∫ ∞
0

U(t)
pq

p−q +p−1V (t)
(∫∞

t
W (s)

1
1−qU(s)−

1
1−q u(s) ds

)− p(q−1)
p−q ∫∞

t
U(s)−pv(s) ds(

V (t) + U(t)p
∫∞
t
U(s)−pv(s) ds

) p
p−q +1

dt


p−q
pq

.

Our next step is “translation” of expressions characterizing A(g) in cases (a)-(d) into the language of
the parameters and weights occurring in Theorem 1.1 via (3.2) and (3.3). These expressions depend on
g in a somewhat concealed way, namely through the weight w. It will be useful to note that

ϕ(t) = V (t) + U(t)p
∫ ∞
t

U(s)−pv(s) ds

and

W (t) =

∫ t

0

g(s)U2(s) ds+ U2(t)

∫ ∞
t

g(s) ds.

We obtain the following reformulations of A(g):
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(a) if p1 ≤ p2 and m1 ≤ p2, then

A(g) ≈ sup
t∈(0,∞)

(∫ t

0
g(s)U2(s) ds+ U2(t)

∫∞
t
g(s) ds

) p1
p2

ϕ(t)
p1
m1

,

(b) if p1 ≤ p2 and m1 > p2, then

A(g) ≈

(∫ ∞
0

sup
s∈(t,∞)

U1(s)
− m1p2

p1(m1−p2)

(∫ s

0

g(y)U2(y) dy + U2(s)

∫ ∞
s

g(y) dy

) m1
m1−p2

σ(t) dt

) p1(m1−p2)
m1p2

,

(c) if p1 > p2 and m1 ≤ p2, then

A(g) ≈ sup
t∈(0,∞)

U1(t)
(∫∞

t

(∫ s

0
g(y)U2(y) dy + U2(s)

∫∞
s
g(y) dy

) p1
p1−p2 U1(s)−

p1
p1−p2 u1(s) ds

) p1−p2
p2

ϕ(t)
p1
m1

,

and
(d) if p1 > p2 and m1 > p2, then

A(g) ≈

∫ ∞
0

(∫ ∞
t

(∫ s

0

g(y)U2(y) dy + U2(s)

∫ ∞
s

g(y) dy

) p1
p1−p2

U1(s)−
p1

p1−p2 u1(s) ds

)m1(p1−p2)

p1(m1−p2)

σ(t) dt


p1(m1−p2)

m1p2

.

Now, let us introduce an abbreviated notation. We will write, for g ∈M,

‖g‖ =

(∫ ∞
0

g(t)
m2

m2−p2 w2(t)−
p2

m2−p2 dt

)m2−p2
m2

,

and set

D = sup
g∈M+

A(g)
p2
p1

‖g‖
.

Then, by (3.1),

C ≈ D
1
p2 .

It follows from the above estimates that
(a) if p1 ≤ p2 and m1 ≤ p2, then D ≈ D1 +D2, where

D1 = sup
g∈M+

1

‖g‖
sup

t∈(0,∞)

∫ t

0
g(s)U2(s) ds

ϕ(t)
p2
m1

and

D2 = sup
g∈M+

1

‖g‖
sup

t∈(0,∞)

U2(t)
∫∞
t
g(s) ds

ϕ(t)
p2
m1

,

(b) if p1 ≤ p2 and m1 > p2, then D ≈ D3 +D4, where

D3 = sup
g∈M+

1

‖g‖

(∫ ∞
0

sup
s∈(t,∞)

U1(s)
− m1p2

p1(m1−p2)

(∫ s

0

g(y)U2(y) dy

) m1
m1−p2

σ(t) dt

)m1−p2
m1

,

and

D4 = sup
g∈M+

1

‖g‖

(∫ ∞
0

sup
s∈(t,∞)

U1(s)
− m1p2

p1(m1−p2)U2(s)
m1

m1−p2

(∫ ∞
s

g(y) dy

) m1
m1−p2

σ(t) dt

)m1−p2
m1

,

(c) if p1 > p2 and m1 ≤ p2, then D ≈ D5 +D6, where

D5 = sup
g∈M+

1

‖g‖
sup

t∈(0,∞)

U1(t)
p2
p1

(∫∞
t

(∫ s

0
g(y)U2(y) dy

) p1
p1−p2 U1(s)−

p1
p1−p2 u1(s) ds

) p1−p2
p1

ϕ(t)
p1
m1

,
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and

D6 = sup
g∈M+

1

‖g‖
sup

t∈(0,∞)

U1(t)
p2
p1

(∫∞
t

(
U2(s)

∫∞
s
g(y) dy

) p1
p1−p2 U1(s)−

p1
p1−p2 u1(s) ds

) p1−p2
p1

ϕ(t)
p1
m1

,

(d) if p1 > p2 and m1 > p2, then D ≈ D7 +D8, where

D7 = sup
g∈M+

1

‖g‖

∫ ∞
0

(∫ ∞
t

(∫ s

0

g(y)U2(y) dy

) p1
p1−p2

U1(s)−
p1

p1−p2 u1(s) ds

)m1(p1−p2)

p1(m1−p2)

σ(t) dt


m1−p2

m1

and

D8 = sup
g∈M+

1

‖g‖

∫ ∞
0

(∫ ∞
t

(
U2(s)

∫ ∞
s

g(y) dy

) p1
p1−p2

U1(s)−
p1

p1−p2 u1(s) ds

)m1(p1−p2)

p1(m1−p2)

σ(t) dt


m1−p2

m1

.

Our final task is to establish two-sided estimates for D1–D8. We shall treat each case separately.

Case (a). Assume that m1 ≤ p2 and p1 ≤ p2. Interchanging the suprema, we have

D1 = sup
t∈(0,∞)

1

ϕ(t)
p2
m1

sup
g∈M+

∫ t

0
g(s)U2(s) ds

‖g‖
.

We now fix t ∈ (0,∞) and apply (2.1) to

p =
m2

p2
, f = U2χ(0,t) and v = w2.

We then arrive at

D1 = sup
t∈(0,∞)

1

ϕ(t)
p2
m1

(∫ t

0

U2(s)
m2
p2 w2(s) ds

) p2
m2

.

Similarly,

D2 = sup
t∈(0,∞)

U2(t)

ϕ(t)
p2
m1

sup
g∈M+

∫∞
t
g(s) ds

‖g‖
.

Using (2.1) with a fixed t ∈ (0,∞) once again, this time to

p =
m2

p2
, f = χ(t,∞) and v = w2,

we get

D2 = sup
t∈(0,∞)

U2(t)

ϕ(t)
p2
m1

(∫ ∞
t

w2(s) ds

) p2
m2

.

Taking the p2-roots, we get the assertion of the theorem in case (a).

Case (b). Assume that m1 > p2 and p1 ≤ p2. To characterize D3 and D4, we have to distinguish two
subcases depending on the comparison of m1 and m2.

Case (b-i). Assume that m1 ≤ m2. Then, by Theorem 2.3(a), applied to

p =
m2

m2 − p2
, q =

m1

m1 − p2
, u = U

− p2
p1

1 , v = U
− m2

m2−p2
2 w

− p2
m2−p2

2 , % = U2 and w = σ,

we arrive at

D3 ≈ sup
t∈(0,∞)

(
sup

s∈(t,∞)

U1(s)−
p2
p1

m1
m1−p2

∫ s

0

σ(y) dy +

∫ ∞
t

sup
y∈(s,∞)

U1(y)−
p2
p1

m1
m1−p2 σ(s) ds

)m1−p2
m1

×

×
(∫ t

0

U2(s)
m2
p2 w2(s) ds

) p2
m2

.
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By monotonicity of U1, we get

D3 ≈ sup
t∈(0,∞)

(
sup

s∈(t,∞)

U1(s)−
p2
p1

m1
m1−p2

∫ s

0

σ(y) dy +

∫ ∞
t

U1(s)−
p2
p1

m1
m1−p2 σ(s) ds

)m1−p2
m1

×

×
(∫ t

0

U2(s)
m2
p2 w2(s) ds

) p2
m2

.

By the subadditivity of the supremum, one has, for a fixed t ∈ (0,∞),

sup
s∈(t,∞)

U1(s)−
p2
p1

m1
m1−p2

∫ s

0

σ(y) dy +

∫ ∞
t

U1(y)−
p2
p1

m1
m1−p2 σ(y) dy

≈ sup
s∈(t,∞)

(
U1(s)−

p2
p1

m1
m1−p2

∫ s

0

σ(y) dy +

∫ ∞
s

U1(y)−
p2
p1

m1
m1−p2 σ(y) dy

)
= sup

s∈(t,∞)

∫ ∞
0

min
{
U1(y)−

p2
p1

m1
m1−p2 , U1(s)−

p2
p1

m1
m1−p2

}
σ(y) dy.

Using the monotonicity of U1 once again, we conclude that the last expression is decreasing in s ∈ (0,∞).
Hence,

sup
s∈(t,∞)

U1(s)−
p2
p1

m1
m1−p2

∫ s

0

σ(y) dy +

∫ ∞
t

U1(y)−
p2
p1

m1
m1−p2 σ(y) dy

≈
∫ ∞

0

min
{
U1(y)−

p2
p1

m1
m1−p2 , U1(t)−

p2
p1

m1
m1−p2

}
σ(y) dy

= U1(t)−
p2
p1

m1
m1−p2

∫ t

0

σ(y) dy +

∫ ∞
t

U1(s)−
p2
p1

m1
m1−p2 σ(s) ds.

Altogether,

D3 ≈ sup
t∈(0,∞)

(
U1(t)−

p2
p1

m1
m1−p2

∫ t

0

σ(y) dy +

∫ ∞
t

U1(s)−
p2
p1

m1
m1−p2 σ(s) ds

)m1−p2
m1

(∫ t

0

U2(s)
m2
p2 w2(s) ds

) p2
m2

.

Further, by Theorem 2.6(a), applied to

p =
m2

m2 − p2
, q =

m1

m1 − p2
, u = U2U

− p2
p1

1 , v = w
− p2

m2−p2
2 and w = σ,

we get

D4 ≈ sup
t∈(0,∞)

(∫ t

0

sup
y∈(s,t)

U2(y)
m1

m1−p2 U1(y)
− m1p2

p1(m1−p2)σ(s) ds

)m1−p2
m1

(∫ ∞
t

w2(s) ds

) p2
m2

.

Combining all the estimates obtained and taking the roots we establish the assertion of the theorem in
the case (b-i).

Case (b-ii). Assume now that m1 > m2 (while still m1 > p2 and p1 ≤ p2). By Theorem 2.3(b),
applied to

p =
m2

m2 − p2
, q =

m1

m1 − p2
, u = U

− p2
p1

1 , v = U
− m2

m2−p2
2 w

− p2
m2−p2

2 , % = U2 and w = σ,

and observing that this time 1 < q < p <∞, we get

D3 ≈ D31 +D32,
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where

D31 =

∫ ∞
0

(∫ ∞
t

U1(s)−
p2
p1

m1
m1−p2 σ(s) ds

)m1(m2−p2)

p2(m1−m2)

U1(t)−
p2
p1

m1
m1−p2

×
(∫ t

0

U2(s)
m2
p2 w2(s) ds

) m1
m1−p2

σ(t) dt

) p2(m1−m2)
m1m2

and

D32 =

∫ ∞
0

sup
s∈(t,∞)

U1(s)
− m1m2

p1(m1−m2)

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) m1
m1−m2

(∫ t

0

σ(s) ds

)m1(m2−p2)

p2(m1−m2)

σ(t) dt


p2(m1−m2)

m1m2

.

By Theorem 2.6(b), applied to

p =
m2

m2 − p2
, q =

m1

m1 − p2
, u = U2U

− p2
p1

1 , v = w
− p2

m2−p2
2 and w = σ

we obtain

D4 ≈ D41 +D42,

where

D41 =

(∫ ∞
0

sup
s∈(t,∞)

U2(s)
m1m2

p2(m1−m2)U1(s)
− m1m2

p1(m1−m2)

(∫ ∞
s

w2(y) dy

) m1
m1−m2

×
(∫ t

0

σ(s) ds

)m1(m2−p2)

p2(m1−m2)

σ(t) dt


p2(m1−m2)

m1m2

and

D42 =

(∫ ∞
0

sup
s∈(t,∞)

U2(s)
m1

m1−p2 U1(s)
− m1p2

p1(m1−p2)

(∫ ∞
s

w2(y) dy

) m1
m1−m2

×

(∫ t

0

sup
y∈(s,t)

U2(y)
m1

m1−p2 U1(y)
− m1p2

p1(m1−p2)σ(s) ds

)m1(m2−p2)

p2(m1−m2)

σ(t) dt


p2(m1−m2)

m1m2

.

Combining the estimates and taking the roots, we obtain the assertion of the theorem in the case (b-ii).

Case (c). Assume that m1 ≤ p2 and p1 > p2. We start by interchanging the suprema in the definition
of D5 and D6. We get

D5 = sup
t∈(0,∞)

U1(t)
p2
p1

ϕ(t)
p1
m1

sup
g∈M+

(∫∞
t

(∫ s

0
g(y)U2(y) dy

) p1
p1−p2 U1(s)−

p2
p1−p2 u1(s) ds

) p1−p2
p1

‖g‖
,

and

D6 = sup
t∈(0,∞)

U1(t)
p2
p1

ϕ(t)
p1
m1

sup
g∈M+

(∫∞
t

(∫∞
s
g(y) dy

) p1
p1−p2 U2(s)

p1
p1−p2 U1(s)−

p2
p1−p2 u1(s) ds

) p1−p2
p1

‖g‖
.

We will distinguish two subcases. This time, the decisive factor is the comparison between p1 and p2.

Case (c-i). Assume that p1 ≤ m2 (while still m1 ≤ p2 and p1 > p2). Fix t ∈ (0,∞). Applying
Theorem 2.1(a) to the parameters

p =
m2

m2 − p2
, q =

p1

p1 − p2
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and the weights

u = U2, v = w
− p2

m2−p2
2 and w(s) = U1(s)−

p1
p1−p2 u1(s)χ(t,∞)(s), s ∈ (0,∞),

we get

sup
g∈M+

(∫∞
t

(∫ s

0
g(y)U2(y) dy

) p1
p1−p2 U1(s)−

p1
p1−p2 u1(s) ds

) p1−p2
p1

‖g‖

≈ sup
s∈(0,∞)

(∫ ∞
s

U1(y)−
p1

p1−p2 u1(y)χ(t,∞)(y) dy

) p1−p2
p1

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) p2
m2

.

Since

sup
s∈(0,∞)

(∫ ∞
s

U1(y)−
p1

p1−p2 u1(y)χ(t,∞)(y) dy

) p1−p2
p1

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) p2
m2

= max

{
sup

s∈(0,t)

(∫ ∞
t

U1(y)−
p1

p1−p2 u1(y) dy

) p1−p2
p1

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) p2
m2

;

sup
s∈(t,∞)

(∫ ∞
s

U1(y)−
p1

p1−p2 u1(y) dy

) p1−p2
p1

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) p2
m2

}

= sup
s∈(t,∞)

(∫ ∞
s

U1(y)−
p1

p1−p2 u1(y) dy

) p1−p2
p1

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) p2
m2

,

calculating the first integral we finally arrive at

sup
g∈M+

(∫∞
t

(∫ s

0
g(y)U2(y) dy

) p1
p1−p2 U1(s)−

p1
p1−p2 u1(s) ds

) p1−p2
p1

‖g‖
≈ sup

s∈(t,∞)

U1(s)−
p2
p1

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) p2
m2

.

Similarly, by Theorem 2.2(a), applied to

p =
m2

m2 − p2
, q =

p1

p1 − p2
, v = w

− p2
m2−p2

2 and w(s) = U2(s)
p1

p1−p2 U1(s)−
p1

p1−p2 u1(s)χ(t,∞)(s), s ∈ (0,∞),

we get

sup
g∈M+

(∫∞
t

(∫∞
s
g(y) dy

) p1
p1−p2 U2(s)

p1
p1−p2 U1(s)−

p2
p1−p2 u1(s) ds

) p1−p2
p1

‖g‖
≈

≈ sup
s∈(t,∞)

(∫ s

t

U2(y)
p1

p1−p2 U1(y)−
p1

p1−p2 u1(y) dy

) p1−p2
p1

(∫ ∞
s

w2(y) dy

) p2
m2

.

The obtained estimates hold for every fixed t ∈ (0,∞). Hence, plugging them into the definitions of D5

and D6, we get

D5 ≈ sup
t∈(0,∞)

U1(t)
p2
p1

ϕ(t)
p2
m1

sup
s∈(t,∞)

U1(s)−
p2
p1

(∫ s

0

U2(y)
m2
p2 w2(y) dy

) p2
m2

and

D6 ≈ sup
t∈(0,∞)

U1(t)
p2
p1

ϕ(t)
p2
m1

sup
s∈(t,∞)

(∫ s

t

U2(y)
p1

p1−p2 U1(y)−
p1

p1−p2 u1(y) dy

) p1−p2
p1

(∫ ∞
s

w2(y) dy

) p2
m2

.

Combining the estimates and taking the roots, we get the assertions of the theorem in case (c-i).
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Case (c-ii). Assume that p1 ≤ m2 (and m1 ≤ p2 and p1 > p2 remain in power). By Theorem 2.1(b),
applied to the same set of parameters as in the case (c-i), we obtain

D5 ≈ sup
t∈(0,∞)

(∫ t

0
U2(s)

m2
p2 w2(s) ds

) p2
m2

ϕ(t)
p2
m1

+ sup
t∈(0,∞)

U1(t)
p2
p1

(∫∞
t

(∫ s

0
U2(y)

m2
p2 w2(y) dy

) m2
p1−m2

U2(s)
m2
p2 w2(s)U1(s)−

m2
p1−m2 ds

) p2(p1−m2)
p1m2

ϕ(t)
p2
m1

.

By Theorem 2.2(b), again applied to the same array of parameters as in the case (c-i), we get

D6 ≈ sup
t∈(0,∞)

U1(t)
p2
p1

(∫∞
t

(∫ s

t
U2(y)

p1
p1−p2 U1(y)−

p1
p1−p2 u1(y) dy

)m2(p1−p2)

p2(p1−m2) (∫∞
s
w2(y) dy

) m2
p1−m2 w2(t) dt

) p2(p1−m2)
p1m2

ϕ(t)
p2
m1

.

Case (d). Assume that m1 > p2 and p1 > p2. Here we shall distinguish three subcases.

Case (d-i). Assume that p2 < m1 < p1 ≤ m2.

By Theorem 2.9(a), applied to

p =
m2

m2 − p2
, q =

p1

p1 − p2
, m =

m1

m1 − p2
, % = U2, w = σ, u = U

− p1
p1−p2

1 u1 and v = w
− p2

m2−p2
2 ,

we get

D7 ≈ sup
t∈(0,∞)

(∫ t

0

σ(s) ds

)m1−p2
m1

U1(t)−
p2
p1

(∫ t

0

U2(s)
m2
p2 w2(s) ds

) p2
m2

+ sup
t∈(0,∞)

(∫ ∞
t

U1(s)
− m1p2

p1(m1−p2)σ(s) ds

)m1−p2
m1

(∫ t

0

U2(s)
m2
p2 w2(s) ds

) p2
m2

By Theorem 2.8(a), applied to

p =
m2

m2 − p2
, q =

p1

p1 − p2
, m =

m1

m1 − p2
, w = σ, u = U

p1
p1−p2

2 U
− p1

p1−p2
1 u1, v = w

− p2
m2−p2

2 ,

we get

D8 ≈ sup
t∈(0,∞)

(∫ ∞
t

w2(s) ds

) p2
m2

∫ t

0

(∫ t

s

U1(y)−
p1

p1−p2 U2(y)
p1

p1−p2 u1(y) dy

)m1(p1−p2)

p1(m1−p2)

σ(s) ds


m1−p2

m1

.

The assertion of the theorem in the case (d-i) now follows by the usual combination of estimates and
taking the roots.

Case (d-ii). Assume that p2 < m1 ≤ m2 < p1.

We follow the same line of argument as in case (d-i), applying this time Theorem 2.9(b) to evaluate
D7 and Theorem 2.8(b) to evaluate D8.

Case (d-iii). Assume that p2 < m2 < m1 < p1.

Again, the assertion can be proved as in the case (d-i). This time we use Theorem 2.9(c) for D7 and
Theorem 2.8(c) for D8.

The proof of the theorem is complete. �
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[39] M. Křepela, Integral conditions for Hardy-type operators involving suprema, Preprint, 2015.
[40] S. Lai, Weighted norm inequalities for general operators on monotone functions, Trans. Amer. Math. Soc. 340 (1993),

811–836.

[41] G.G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 1 (1951), 411–429.
[42] G.G. Lorentz, Relations between function spaces, Proc. Amer. Math. Soc. 12 (1961), 112–132.

[43] V.G. Maz’ya, Sobolev Spaces, Springer, Berlin, 2011.

[44] C.J. Neugebauer, Weighted norm inequalities for averaging operators of monotone functions, Publ Mat 35 (1992),
429–447.

[45] R. Oinarov, Two-sided estimates for the norm of some classes of integral operators. (Russian), Trudy Mat. Inst.
Steklov. 204 (1993), 240–250, Translation in Proc. Steklov Inst. Math. 3 (204) (1994), 205–214.
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