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Decay estimates for linearized unsteady
incompressible viscous flows around rotating and

translating bodies.
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Abstract

We consider the time-dependent Oseen sytem with rotational terms. This
system is a linearized model for the flow of a viscous incompressible fluid
around a rigid body moving at a constant velocity and rotating with constant
angular velocity. We present results on temporal and spatial decay of solutions
to this system in the whole space. The spatial asymptotics we establish exhibit
a wake.
AMS subject classifications. 35Q30, 65N30, 76D05.
Key words. whole space, viscous incompressible flow, rotating body, funda-
mental solution, Navier-Stokes system.

1 Introduction

Consider the motion of a viscous incompressible fluid around a rigid body translating
with constant velocity and rotating at constant angular velocity. Suppose the fluid
flow is described with respect to a coordinate system in which the body is at rest
and whose origin is located at the center of gravity of the body. Then the flow in
question is usually represented by a modified Navier-Stokes system which reads like
this:

∂tv − ν ∆xv + (v · ∇x)v − (U + ω × x) · ∇xv + ω × v +∇xq = F, (1.1)

divxv = 0 in (R3\D)× (0, T ).
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Here D ⊂ R3 is a bounded domain representing the rigid body. The function
v denotes the velocity field of the fluid, and the function q its pressure field. The
vector U describes the constant translation of the body, and the vector ω its constant
angular velocity. We suppose that U and ω are parallel. The function F stands for
an exterior force exerted on the fluid, and the parameter ν ∈ (0,∞) characterizes
the viscosity of the fluid. By a suitable normalization and some changes of variables
(see [16]), system (1.1) may be rewritten in the form

∂tu−∆zu + τ ∂z1u + τ(u · ∇z)u− (% e1 × z) · ∇zu + % e1 × u +∇zσ = f, (1.2)

divzu = 0,

where τ ∈ (0,∞) is the Reynolds number and % ∈ R\{0} the Taylor number.
In recent years, many articles dealt with flows around a rotating body. As

examples we mention [10, 13, 11, 12, 17, 18, 21, 14, 20]. In the present context,
an article by Chen and Miyakava [1] is relevant. These authors proved existence
of a global weak solution to (1.1) in the whole space Rn with n = 2 and n = 3,
and derived algebraic decay rates (as t →∞) for the kinetic energy associated with
this solution. They assumed F = 0, ν = 1 but considered nonzero initial data and
admitted the case that U and ω are functions depending on time, and need not be
parallel. We will show results related to those in [1], but pertaining to the Oseen
system with rotational terms, that is, to the following system obtained by dropping
the nonlinearity in (1.2),

∂tu−∆xu + τ ∂x1u− (% e1 × x) · ∇xu + % e1 × u +∇xσ = f, (1.3)

divxu = 0.

Under the assumption that f does not depend on time and decays in an appropriate
way, we will study the asymptotics of U(x) − u(x, t) and ∇x

(
U(x) − u(x, t)

)
with

respect to both the space variable x and the time variable t, where u is the velocity
part of a solution to (1.3) with initial data zero, and U the velocity part of a solution
to the stationary variant of (1.3), that is,

−∆U + τ ∂1U − (% e1 × x) · ∇xU + % e1 × U +∇Π = f, (1.4)

div U = 0.

The decay bounds we obtain for U(x) − u(x, t) exhibit a wake. In addition, they
imply optimal rates of spatial decay for u(x, t) when |x| → ∞. These rates are
uniform with respect to t. Our estimates of U(x)− u(x, t) further yield that u( · , t)
converges to U with respect to a weighted W 1,∞-norm, which we will denote by
‖ ‖1,∞,w,ε. The rate of this convergence is t−ε, where ε may be arbitrarily chosen in
(0, 1/2) but enters into the definition of ‖ ‖1,∞,w,ε. This convergence result means in
particular that U is unconditionally asymptotically stable with respect to the norm
‖ ‖1,∞,w,ε. For more details on our results we refer to Theorem 3.2, Corollary 3.3 and
the comments in Section 4.
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2 Notations, definitions and auxiliary results

If A ⊂ R3, we write Ac for the complement R3\A of A. The symbol | | denotes
the Euclidean norm of R3 and also the length of a multiindex from N3

0, that is,
|α| := α1 + α2 + α3 for α ∈ N3

0. The open ball centered at x ∈ R3 and with radius
r > 0 is denoted by Br(x). If x = 0, we will write Br instead of Br(0). Put
e1 := (1, 0, 0). Let x× y denote the usual vector product of x, y ∈ R3.

The parameters τ ∈ (0,∞) and % ∈ R\{0} will be kept fixed throughout. Put
sτ (x) := 1 + τ (|x| − x1) for x ∈ R3. Define the matrix Ω ∈ R3×3 by

Ω := %

 0 0 0
0 0 −1
0 1 0

 ,

so that % e1 × x = Ω · x for x ∈ R3. By the symbol C, we denote constants only
depending on τ or ω. We write C(γ1, ..., γn) for constants that additionally depend
on parameters γ1, ..., γn ∈ R, for some n ∈ N.

For p ∈ [1,∞) and for open sets A ⊂ R3, we write W 1,p(A) for the usual Sobolev
space of order 1 and exponent p. If B ⊂ R3 is open, define W 1,p

loc (B) as the set of all
functions g : B 7→ R such that g|U ∈ W 1,p(U) for any open set U ⊂ R3 with U ⊂ B.
If V is a normed space whose norm is denoted by ‖ ‖V , and if n ∈ N, we equip

the product space V n with a norm ‖ ‖(n)
V defined by ‖v‖(n)

V :=
(∑n

j=1 ‖vj‖2
V

)1/2

for

v ∈ V n. But for simplicity, we will write ‖ ‖V instead of ‖ ‖(n)
V .

Let K denotes usual fundamental solution to the heat equation,

K(x, t) = (4πt)−3/2e−|x|
2/(4t) for x ∈ R3, t ∈ (0,∞). (2.1)

Recall that the Kummer function 1F1(1, · , · ) is given by

1F1(1, c, u) :=
∞∑

n=0

(Γ(c)/Γ(u + c))un for all u ∈ R, c ∈ (0,∞),

where Γ denotes the usual Gamma function. We put

Hjk(x) := xjxk|x|−2 for x ∈ R3 \ {0},
Λjk(x, t) := K(x, t)(δjk −Hjk(x)− 1F1(1, 5/2, |x|2/(4t)))(δjk/3−Hjk(x))

for x ∈ R3 \ {0}, t ∈ (0,∞), j, k ∈ {1, 2, 3}. In what follows, the letter Γ will stand
for a matrix-valued function defined by

(Γjk(y, z, t))1≤j,k≤3 := (Λrs(y − τte1 − e−tΩ · z, t))1≤r,s≤3 · e−tΩ

for y, z ∈ R3, t ∈ (0,∞) with y − τte1 − e−tΩ · z 6= 0.
This function is the velocity part of the fundamental solution to (1.3) introduced

by Guenther, Thomann [22]. Our following lemma restates [3, Corollary 3.1].

Lemma 2.1. The function Γjk may be extended continuously to a function from
C∞(

R3 × R3 × (0,∞)
)
.
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We will use the ensuing technical lemmas:

Lemma 2.2. (see [4, Lemma 2.9]) Let x ∈ R3, t ∈ R. Then

|etΩ · x| = |x|, (etΩ · x)1 = x1, etΩ · e1 = e1.

Lemma 2.3. (see [2, Lemma 4.8]) For x, y ∈ R3 we have

sτ (x− y)−1 ≤ C (1 + |y|)sτ (x)−1.

Lemma 2.4. (see [9, Lemma 4.3]) Let β ∈ (1,∞). Then∫
∂Br

sτ (x)−βdox ≤ C(β)r for r ∈ (0,∞).

Lemma 2.5. (see [4], Lemma 2.4) Let S ∈ (0,∞), x ∈ Bc
S. Then

|x| ≥ C(S)sτ (x).

Lemma 2.6. (see [3, Lemma 3.2])

|∂β
y Γjk(y, z, t)|+ |∂β

z Γjk(y, z, t)| ≤ C(|y − τte1 − etΩ · z|2 + t)−3/2−|β|/2 (2.2)

for y, z ∈ R3, t ∈ (0,∞), β ∈ N3
0 with |β| ≤ 1.

Lemma 2.7. (see [3, Theorem 3.1]) Let k ∈ {0, 1}, R ∈ (0,∞), y, z ∈ BR with
y 6= z. Then∫ ∞

0

(|y − τte1 − e−tΩ · z|2 + t)−3/2−k/2dt ≤ C(R) |y − z|−1−k. (2.3)

Due to the preceding lemma and by (2.2), we may define

Zjk(y, z, T ) :=

∫ ∞

T

Γjk(y, z, t)dt

for T ∈ [0,∞), y, z ∈ R3 with y 6= z, 1 ≤ j, k ≤ 3. The function Z( · , · , 0) is the
velocity part of the fundamental solution of (1.3) proposed by Guenther, Thomann
[22].

Lemma 2.8. Let j, k ∈ {1, 2, 3}, T ∈ [0,∞). Then Zjk( · , · , T ) ∈ C1
(
(R3 × R3) \

{(x, x) : x ∈ R3}
)
, and

∂ynZjk(y, z, T ) =

∫ ∞

T

∂ynΓjk(y, z, t)dt, ∂znZjk(y, z, T ) =

∫ ∞

T

∂znΓjk(y, z, t)dt (2.4)

for y, z ∈ R3 with y 6= z, n ∈ {1, 2, 3}. If R ∈ (0,∞), y, z ∈ BR with y 6= z, α ∈ N3
0

with |α| ≤ 1, we have

|∂α
y Zjk(y, z, T )|+ |∂α

z Zjk(y, z, T )| ≤ C(R) |y − z|−1−|α|. (2.5)
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Proof: The proof of [4, Lemma 2.15] carries over to the present situation (T ∈
[0,∞) instead of T = 0). Note that (2.5) follows from (2.4) and (2.3). �

Theorem 2.9. Let S, δ ∈ (0,∞), ν ∈ (1,∞), T ∈ (0,∞) and 0 ≤ ε < ν − 1, or
T = 0 and ε = 0. Then∫ ∞

T

(|y − τe1 − e−tΩ · z|2 + t)−νdt ≤ C(S, δ, ε, ν)T−ε(|y|sτ (y))−ν+ε+1/2 (2.6)

for y ∈ Bc
(1+δ)S, z ∈ BS.

Moreover,

|∂α
y Zjk(y, z, T )|+ |∂α

z Zjk(y, z, T )| ≤ C(s, δ, ε) T−ε(|y|sτ (y))−1−|α|/2+ε (2.7)

for j, k ∈ {1, 2, 3}, α ∈ N3
0 with |α| ≤ 1, y ∈ Bc

(1+δ)S, z ∈ BS,

|∂α
y Zjk(y, z, T )|+ |∂α

z Zjk(y, z, T )| ≤ C(s, δ, ε) T−ε(|z|sτ (z))−1−|α|/2+ε (2.8)

for y ∈ BS, z ∈ Bc
(1+δ)S and j, k, α as above.

Proof: In the case T = 0, ε = 0, Theorem 2.9 restates [4, Theorem 2.19]. Now
suppose that T > 0 and 0 ≤ ε < ν − 1. Then the statement of the theorem may be
reduced to the preceding reference. In fact, take y, z as in (2.6). Then∫ ∞

T

(|y − τe1 − e−tΩ · z|2 + t)−νdt ≤
∫ ∞

T

(|y − τe1 − e−tΩ · z|2 + t)−ν+ε t−εdt ≤

≤ T−ε

∫ ∞

T

(|y − τe1 − e−tΩ · z|2 + t)−ν+εdt.

Since −ν + ε < −1, we may now use [4, Theorem 2.19] with ν replaced by ν − ε,
obtaining (2.6). The estimates in (2.7) and (2.8) follow from (2.2), (2.4), (2.6) and
Lemma 2.2. �

3 Volume potentials

We will study the volume potentials involving the kernel Z( · , T ).

Lemma 3.1. Let p ∈ (1,∞), q ∈ (1, 2), T ∈ [0,∞), f ∈ Lp
loc(R3)3 with f |Bc

S ∈
Lq(Bc

S) for some S ∈ (0,∞). Then, for j, k ∈ {1, 2, 3}, α ∈ N3
0 with |α| ≤ 1, we

have ∫
R3

∫ ∞

T

|∂α
y Γ(y, z, t)| dt |fk(z)|dz < ∞ for a.e. y ∈ R3. (3.1)

We define R(f)( · , T ) : R3 7→ R3 by putting

Rj(f)(y, T ) :=

∫
R3

3∑
k=1

∫ ∞

T

Γjk(y, z, t)dt fk(z)dz =

∫
R3

3∑
k=1

Zjk(y, z, T ) fk(z)dz
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for y ∈ R3 such that (3.1) holds; otherwise we set Rj(t)(y, T ) := 0 (1 ≤ j ≤ 3).
Then R(f)( · , T ) ∈ W 1,1

loc (R3)3 and

∂lRj(f)(y, T ) =

∫
R3

3∑
k=1

∂yl
Zjk(y, z, T ) fk(z)dz (3.2)

for j, l ∈ {1, 2, 3} and for a.e. y ∈ R3. Moreover, if f ∈ L1(R3)3, we have

|∂αR(f)(y, T )| ≤ CT− 1
2
− |α|

2 ‖f‖1 for α ∈ N3
0 with |α| ≤ 1, y ∈ R3. (3.3)

Proof: In view of (2.7) and (2.8) with ε = 0, and due to Lemma 2.8, all the

statements of Lemma 3.1 except (3.3) may be proved in exactly the same way,
without any modification, as analogous statements in [4, Lemma 3.1]. As for (3.3),
we use (2.2) to obtain for y ∈ R3, 1 ≤ j, k ≤ 3 that∫

R3

∫ ∞

T

|∂α
y Γjk(y, z, t)|dt |f(z)| dz

≤ C

∫
R3

∫ ∞

T

(|y − τte1 − e−tΩ · z|2 + t)−3/2−|α|/2dt |f(z)| dz

≤ C

∫
R3

∫ ∞

T

t−3/2−|α|/2dt |f(z)| dz ≤ CT−1/2−|α|/2‖f‖1.

Inequality (3.3) now follows with (3.2) and (2.4). �

Theorem 3.2. Let T ∈ (0,∞), S, S1, γ ∈ (0,∞) with S1 < S, p ∈ (1,∞), A ∈
[2,∞), B ∈ R, 0 < ε < 1/2 + |α|/2, f : R3 7→ R3 measurable with

f |BS1 ∈ Lp(BS1)
3, |f(z)| ≤ γ |z|−Asτ (z)−B for z ∈ Bc

S1
, A + min{1, B} ≥ 3.

Let i, j ∈ {1, 2, 3}, y ∈ Bc
S. Then

|Rj(f)(y, T )| ≤ C(S, S1, A,B, ε)T−ε (‖f |BS1‖1 + γ) (3.4)(
|y|sτ (y)

)−1+ε
lA,B(y),

|∂yi
Rj(f)(y, T )| ≤ C(S, S1, A,B, ε)T−ε (‖f |BS1‖1 + γ) (3.5)(

|y|sτ (y)
)−3/2+ε

sτ (y)max(0, 7/2−A−B−2ε) lA,B(y),

where

lA,B(y) =

{
1 if A + min{1, B} > 3

max(1, ln |y|) if A + min{1, B} = 3
(3.6)

Proof: We modify the proof of [4, Theorem 3.1]. Since A ≥ 2, we have
f |Bc

S1
∈ Lq(Bc

S1
)3 for any q ∈ (3/2,∞). But f |BS1 ∈ Lp(BS1)

3, so we get, say,

f ∈ L
min{p,2}
loc (R3)3. Therefore f satisfies the assumptions of Lemma 3.1, hence

R(f)( · , T ) is well defined, belongs to W 1,1
loc (R3)3 and verifies (3.2).
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By (2.7), we find for k ∈ {1, 2, 3}, α ∈ N3
0 with |α| ≤ 1 that∫

BS1

|∂α
y Zjk(y, z, T )||f(z)| dz ≤ C(S, S1, ε)T

−ε
(
|y|sτ (y)

)−1−|α|/2+ε‖f |BS1‖1. (3.7)

We further get with (2.4), (2.2), a change of variables and Lemma 2.2 that

Aα :=

∫
Bc

S1

|∂α
y Zjk(y, z, T )||f(z)| dz (3.8)

≤ Cγ

∫ ∞

T

∫
Bc

S1

(|y − τ te1 − e−tΩ · z|2 + t)−3/2−|α|/2 |z|−Asτ (z)−B dz dt

= Cγ

∫ ∞

T

∫
Bc

S1

(|y − τ te1 − x|2 + t)−3/2−|α|/2 |x|−Asτ (e
tΩ · x)−B dx dt

= CγT−ε

∫
Bc

S1

∫ ∞

T

(|y − τ te1 − x|2 + t)−3/2−|α|/2+ε dt|x|−Asτ (x)−B dx.

The preceding integral over Bc
S1

is split into a sum of integrals over Bc
S1
∩ BS/2(y)

and Bc
S1
\BS/2(y), respectively. In order to estimate the integral over Bc

S1
∩BS/2(y),

we observe that for x ∈ R3, the term (|y − τ te1 − x|2 + t)−3/2−|α|/2+ε is bounded
by (|y − τ te1 − x|2 + t)−2 if |y − τ te1 − x|2 + t ≤ 1. Else it may be bounded by
min{1, t−3/2−|α|/2+ε}. Thus we get by (2.3) with y − z in the place of y and with
z = 0 that∫

Bc
S1
∩BS/2(y)

∫ ∞

T

(|y − τ te1 − x|2 + t)−3/2−|α|/2+ε dt|x|−Asτ (x)−B dx

≤
∫

Bc
S1
∩BS/2(y)

∫ ∞

T

(
(|y − τ te1 − x|2 + t)−2 + min{1, t−3/2−|α|/2+ε}

)
dt

|x|−Asτ (x)−B dx

≤ C(S)

∫
Bc

S1
∩BS/2(y)

(
|y − x|−2 +

∫ ∞

0

min{1, t−3/2−|α|/2+ε}
)

dt
)
|x|−Asτ (x)−B dx

≤ C(S, ε)

∫
Bc

S1
∩BS/2(y)

(|y − x|−2 + 1) |x|−Asτ (x)−B dx,

where we used the assumption ε < 1/2 + |α|/2 in the last inequality. On the other
hand, we apply (2.6) with y, ν replaced by y − x, −3/2 − |α|/2 + ε, respectively,
and with z = 0, ε = 0, to obtain∫ ∞

T

(|y − τ te1 − x|2 + t)−3/2−|α|/2+ε dt ≤ C(S, ε)
(
|y − x|sτ (y − x)

)−1−|α|/2+ε

for x ∈ Bc
S1
\BS/2(y). Here the assumption ε < 1/2 + |α|/2 is again relevant. Now

we may deduce from (3.8),

Aα ≤ C(S, ε)γT−ε
(∫

Bc
S1
∩BS/2(y)

(|y − x|−2 + 1) |x|−Asτ (x)−B dx (3.9)

+

∫
Bc

S1
\BS/2(y)

(
|y − x|sτ (y − x)

)−1−|α|/2+ε |x|−Asτ (x)−B dx
)
.
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Next we observe that for x ∈ BS/2(y), we have |x| ≥ |y|−|y−x| ≥ |y|−S/2 ≥ |y|/2,
and by Lemma 2.3,

sτ (x)−1 ≤ C(1 + |y − x|)sτ (y)−1 ≤ C(S)sτ (y)−1.

For x ∈ BS/2(y)c, we find

|y − x| = |y − x|/2 + |y − x|/2 ≥ S/4 + |y − x|/2
≥ min{S/4, 1/2}(1 + |y − x|),

and for x ∈ Bc
S1

we get |x| ≥ C(S1) (1 + |x|). Therefore from (3.9),

Aα ≤ C(S, S1, A,B, ε)T−εγ
(
|y|−Asτ (y)−B

∫
BS/2(y)

(|y − x|−2 + 1) dx (3.10)

+

∫
Bc

S1
\BS/2(y)

(
(1 + |y − x|)sτ (y − x)

)−1−|α|/2+ε
(1 + |x|)−Asτ (x)−B dx

)
≤ C(S, S1, A,B, ε)γT−ε

(
|y|−Asτ (y)−B

+

∫
R3

(
(1 + |y − x|)sτ (y − x)

)−1−|α|/2+ε
(1 + |x|)−Asτ (x)−B dx

)
.

By Lemma 2.5 and because y ∈ Bc
S, A− 3/2 > 0, A + B ≥ A + min{1, B} ≥ 3, we

further observe that

|y|−Asτ (y)−B ≤ C(S, A)|y|−3/2sτ (y)−A+3/2−B ≤ C(S, A)|y|−3/2sτ (y)−3/2. (3.11)

Moreover, by the proof of [19, Theorem 3.1] we get∫
R3

(
(1+ |y−x|)sτ (y−x)

)−1+ε
(1+ |x|)−Asτ (x)−B dx ≤ C(ε)

(
|y|sτ (y)

)−1+ε
lA,B(y).

Similarly, the proof of [19, Theorem 3.2] yields∫
R3

(
(1 + |y − x|)sτ (y − x)

)−3/2+ε
(1 + |x|)−Asτ (x)−B dx

≤ C(ε)
(
|y|sτ (y)

)−3/2+ε
sτ (y)max(0, 7/2−A−B−2ε) lA,B(y).

The two preceding estimates together with (3.7), (3.10) and (3.11) imply (3.4) and
(3.5). �

Corollary 3.3. Consider the situation of Theorem 3.2. Assume in addition that
A + min{1, B} > 3, T > 0 and ε < 1/2. Then f ∈ L1(R3)3.

For v ∈ W 1,1
loc (R3)3, define

‖v‖1,∞,w,ε := sup{|v(x)| [(1 + |x|) sτ (x)]1−ε : x ∈ R3}

+ sup{|∇v(x)| [(1 + |x|) sτ (x)]3/2−ε sτ (x)−max(0, 7/2−A−B−2ε) : x ∈ R3}.

Then

‖R(f)( · , T )‖1,∞,w,ε ≤ C(S, S1, A,B, ε) (‖f‖1 + γ) max{T−ε, T−1}.
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Proof: Put B∗ := min{1, B}, δ := min{(A−2)/2, (A+B∗−3)/2}. The assump-
tion A + B∗ > 3 implies A > 2, so δ > 0 and −A + 2 − δ < 0. Thus we get with
Lemma 2.5 that

|x|−Asτ (x)−B ≤ |x|−2−δ|x|−A+2+δsτ (x)−B ≤ C(S1) |x|−2−δsτ (x)−A−B+2+δ (3.12)

for x ∈ Bc
S1

. We further observe that −A−B+2+δ ≤ −A−B∗+2+δ < −1, where
the last inequality follows from the choice of δ and the assumption A+B∗ > 3. Now
Lemma 2.4 and (3.12) yield

∫
Bc

S1

|f | dx < ∞, so we may conclude f ∈ L1(R3)3 in

view of the assumption f |BS1 ∈ Lp(BS1)
3. At this point (3.3) implies

|∂α
y R(f)(y, T )| ≤ C(S1) T−1/2−|α|/2‖f‖1 for y ∈ BS1 , α ∈ N0 with |α| ≤ 1. (3.13)

Obviously 1 ≥ C(S1) (1+ |y|) sτ (y) for y ∈ BS1 and |y| ≥ C(S1) (1+ |y|) for y ∈ Bc
S1

.
Thus Corollary 3.3 follows from Theorem 3.2 and inequality (3.13). �

4 Comments.

Let f ∈ C∞
0 (R3)3. It is implicit in the proof of [3, Theorem 4.2] that the function

U := R(f)( · , 0) is the velocity part of a classical solution to the stationary problem
(1.4) in the whole space R3. On the other hand, according to [22, Theorem 1.2], the
velocity part u of a solution to (1.3) in R3 × (0,∞) with initial data zero is given
by u(x, t) :=

∫ t

0

∫
R3 Γ(x, z, t− s) f(z) dz ds.

But U−u( · , T ) = R(f)( · , T ) for T > 0, so Theorem 3.2 yields a decay estimate
of U(x) − u(x, t) with respect to the space variable x and the time variable t. In
addition, the function R(f)( · , 0) is known to satisfy all the statements of Theorem
3.2 with ε = 0 ([4, Theorem 3.1]). Therefore these statements with ε = 0 carry over
to u( · , t), yielding pointwise spatial decay estimates of u( · , t) which are uniform
with respect to t ∈ (0,∞). These estimates are optimal in the sense that the
fundamental solution of the stationary Oseen system (without rotational terms)
decays with those same rates ([19]). The powers of sτ appearing in the estimates
stated in Theorem 3.2 should be considered as a mathematical manifestation of the
wake extending behind a body which moves in a viscous incompressible fluid.

Corollary 3.3 means that U − u( · , t) converges to zero for t → ∞ with respect
to the weighted W 1,∞-norm ‖ ‖1,∞,w,ε. As already mentioned in Section 1, this
convergence result means in particular that U is unconditionally asymptotically
stable with respect to this norm. The notion of stability which we refer to here is
the one introduced in [15, Definition 5.2] in a Hilbert space setting. Obviously it
may also be used in the context of Banach spaces.
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Tôhoku Math. J., 58 (2006), 129–147.

[11] Farwig, R., Hishida, T., Müller, D., Lq-Theory of a singular “winding”
integral operator arising from fluid dynamics, Pacific J. Math., 215 (2004),
297–312.

10
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