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Abstract

We compare three finite element based methods for two-sided bounds
of eigenvalues of symmetric elliptic operators. The first method is known
as eigenvalue inclusions and it is described in [6]. The second method
is based on Crouzeix–Raviart nonconforming finite element method [11]
and the third one is a combination of the a priori-a posteriori inequalities
with complementarity based estimators [25]. We briefly describe all three
methods and use them to solve two numerical examples. We compare
their accuracy, computational performance, and generality.
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1 Introduction

The standard conforming finite element discretization of symmetric elliptic eigen-
value problems [3, 7] is very efficient and since it is a special case of the Ritz-
Galerkin method, it yields natural upper bounds on the exact eigenvalues. In-
terestingly, lower bounds are much more difficult to compute. The problem of
lower bounds attracts attention for many decades. The lower bound of Temple
[26] from 1928 was generalized by Kato [18] in 1949 and subsequently by Har-
rell [12]. Further lower bounds are due to Lehmann [20, 21]. More recently a
method of eigenvalue inclusions was developed, see [5] and the overview in [23].
These lower bounds are, however, formulated in an abstract way using linear
operators on Hilbert spaces and it is not straightforward to use these results in

∗The author gratefully acknowledges the institutional support RVO 67985840.
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the context of the finite element method. A practical approach how to compute
the eigenvalue inclusions by the finite element method is described in [6] and
we use this approach below as the first method for the comparison.

In 2013 Carstensen and Gedicke [11] published a lower bound based on
Crouzeix–Raviart finite elements. We choose this method as the second one
for the comparison. Let us note that there exist several methods for lower
bounds on eigenvalues based on nonconforming finite elements, see e.g. [2, 22,
1, 16, 17, 30]. However, the distinctive feature of the chosen method is that
it does not require an a priori information about the spectrum and provides
guaranteed lower bounds even on rough meshes. The third method, we present
and compare is based on a combination of a priori-a posteriori inequalities [19]
with complementarity based estimators, see [25, 24].

Generality of the chosen methods varies. The method based on Crouzeix–
Raviart elements is the least general, because it is designed specifically for the
Laplace eigenvalue problem with homogeneous Dirichlet boundary conditions.
This is also the reason, why we choose this type of problem for the comparison.
We seek eigenvalues λi and eigenfunctions ui 6= 0, i = 1, 2, . . . , defined in an
open domain Ω ⊂ R2 such that

−∆ui = λiui in Ω, (1)

ui = 0 on ∂Ω.

The weak formulation of this problem is based on the Sobolev space V = H1
0 (Ω)

of square integrable functions with square integrable distributional derivatives
and zero traces on the boundary ∂Ω. Note that due to the well posedness, we
assume Ω to be Lipschitz domain. Denoting the L2(Ω) inner product by (·, ·),
the weak formulation reads: find λi ∈ R and ui ∈ V , ui 6= 0, such that

(∇ui,∇v) = λi(ui, v) ∀v ∈ V. (2)

It is well known [3, 7] that the eigenvalues λi are positive, tend to infinity, and
form a countable sequence. We consider the natural enumeration 0 < λ1 ≤
λ2 ≤ · · · and repeat the eigenvalues according to their multiplicity. Our goal is
to use the three chosen methods and compute the lower and the upper bound
for the first m eigenvalues.

The subsequent Sections 2–4 describe the three methods we compare. Sec-
tion 5 presents the numerical performance of the three methods on a square
domain, where the analytic solution is known. Section 6 provides the results for
a dumbbell shaped domain, where the analytic solution is not available. Finally,
Section 7 draws the conclusions.

2 The method of eigenvalue inclusions

In this section, we describe the method from [6] and we will refer to it as the
inclusions method. The upper bound on eigenvalues is obtained by the standard
conforming finite element method. For simplicity we consider Ω to be a polygon.
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We denote the standard finite element triangulation of Ω by Th, and define the
lowest-order finite element space

Vh = {vh ∈ V : vh|K ∈ P1(K) ∀K ∈ Th}, (3)

where P1(K) is the space of affine functions on the triangle K. The finite
element approximation of problem (1) consists of seeking eigenvalues Λh,i ∈ R
and eigenfunctions uh,i ∈ Vh such that

(∇uh,i,∇vh) = Λh,i(uh,i, vh) ∀vh ∈ Vh. (4)

It is well known that the approximate eigenvalues Λh,i provide upper bounds
on the exact eigenvalues: λi ≤ Λh,i for all i = 1, 2, . . . .

The lower bounds on eigenvalues are based on the result provided in [6,
Theorem 2.1]. For the readers’ convenience, we present this result here as The-
orem 1. Note that W = H(div,Ω) denotes the space of square integrable vector
fields with square integrable divergence.

Theorem 1. Let (ũi, σ̃i) ∈ V ×W , i = 1, 2, . . . , n, and ρ > 0, γ > 0 be
arbitrary. Define matrices M ,N ∈ Rn×n with entries

M ij = (∇ũi,∇ũj) + (γ − ρ)(ũi, ũj),

N ij = (∇ũi,∇ũj) + (γ − 2ρ)(ũi, ũj) + ρ2(σ̃i, σ̃j) + (ρ2/γ)(ũi + div σ̃i, ũj + div σ̃j).

Suppose, that the matrix N is positive definite, and let

µ1 ≤ µ2 ≤ · · · ≤ µn

be the eigenvalues of the generalized eigenvalue problem

Myi = µiNyi, i = 1, 2, . . . , n.

Then, for all i such that µi < 0, the interval

[ρ− γ − ρ/(1− µi), ρ− γ)

contains at least i eigenvalues of the continuous problem (2).

Functions ũi ∈ V and σ̃i ∈ W in Theorem 1 are in general arbitrary,
but in order to obtain accurate bounds, they should approximate the exact
eigenfunction ui and the corresponding flux λ−1

i ∇ui, respectively. The natural
choice for ũi is the finite element approximation uh,i. The choice of σ̃i is based
on the complementarity technique [28, 29], also known as the dual finite elements
[13, 14, 15]. It is proposed in [6] to set σ̃i = σh,i, where σh,i is a solution of
a saddle point problem solved by the mixed finite element method. We denote
by Pk(K) the space of polynomials of degree at most k on the triangle K ∈ Th
and by

RTk(K) = [Pk(K)]2 ⊕ xPk(K) (5)
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the Raviart–Thomas space on the element K ∈ Th. The flux reconstruction σh,i

is sought in the Raviart–Thomas space

Wh = {σh ∈H(div,Ω) : σh|K ∈ RTk(K) ∀K ∈ Th},

and the Lagrange multipliers in

Qh = {qh ∈ L2(Ω) : qh|K ∈ Pk(K) ∀K ∈ Th}.

The mixed finite element problem then reads: find (σh,i, qh,i) ∈Wh ×Qh such
that

(σh,i,wh) + (qh,i,divwh) = 0 ∀wh ∈Wh, (6)

(divσh,i, ϕ) = (−uh,i, ϕ) ∀ϕ ∈ Qh, (7)

where uh,i ∈ Vh is the finite element approximation (4).
Paper [6] proposes to choose k = 0 for linear finite elements, see (3). How-

ever, this choice seems to be suboptimal and we observed slow speed of conver-
gence in test examples. Therefore, we choose k = 1 in what follows.

To obtain lower bounds on eigenvalues based on Theorem 1, we need an
a priori information about the eigenvalues. Namely, if ρ − γ ≤ λL for some
index L ≥ 2 then Theorem 1 provides lower bounds

ρ− γ − ρ/(1− µi) ≤ λL−i ∀i = 1, 2, . . . ,min{L− 1, n}. (8)

Thus, if we know an a priori lower bound on at least one exact eigenvalue then
we can compute lower bounds on eigenvalues below this one by (8).

In the numerical examples below, we use rough lower bounds λi, i = 1, 2, . . . ,m+
1 for the first m+1 eigenvalues. Utilizing this information, we compute accurate
lower bounds on the first m eigenvalues as follows.

1. We compute the standard finite element approximations (4) of the first
m eigenpairs (Λh,i, uh,i) ∈ R × Vh, i = 1, 2, . . . ,m. This provides upper
bounds Λh,i, i = 1, 2, . . . ,m, on the exact eigenvalues.

2. We find σh,i ∈Wh by solving (6)–(7).

3. For all n = 1, 2, . . . ,m, we apply Theorem 1 with ũi = uh,i, σ̃i = σh,i,
i = 1, 2, . . . , n, γ(n) = ‖uh,n + divσh,n‖L2(Ω) and ρ(n) = λn+1 + γ. We

assemble matrices M (n) and N (n) and find the eigenvalues µ
(n)
1 ≤ µ(n)

2 ≤
· · · ≤ µ

(n)
n . The assumptions of the positive definiteness of N (n) and of

the negativity of µ
(n)
i , are easy to check and if they are satisfied then

we obtain the lower bound (8). In particular, we choose L = n + 1 and
i = n+ 1− j in (8) and get

`incl
j,n = ρ− γ − ρ/

(
1− µ(n)

n+1−j

)
≤ λj , j = 1, 2, . . . , n.

As the final lower bound, we take the largest of these values, namely

`incl
j = max{`incl

j,n , n = j, j + 1, . . . ,m}, j = 1, 2, . . . ,m.
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Note that here we provide the description of the method of eigenvalue in-
clusions tailored to the test problem (1). In [6], the method is described for the
Laplace eigenvalue problem with mixed homogeneous Dirichlet and Neumann
boundary conditions. However, it is clearly not limited to such simple problems
and can be straightforwardly generalized to problems with reaction terms and
with variable diffusion and reaction coefficient.

3 The method based on Crouzeix–Raviart ele-
ments

In this section, we describe the method from [11] and we will refer to it as
the CR method, because it is based on Crouzeix–Raviart finite elements. We
consider the triangulation Th of Ω as above. Further, we define the space of
piecewise affine and in general discontinuous functions as

P1(Th) = {vh ∈ L2(Ω) : vh|K ∈ P1(K)}.

We also denote by Eh the set of all edges in Th and define the standard Crouzeix–
Raviart finite element space as

V CR
h = {vh ∈ P1(Th) : vh is continuous in the midpoint of each edge γ ∈ Eh}.

The Crouzeix–Raviart approximate eigenpairs (λCR
h,i , u

CR
h,i ) ∈ R×V CR

h , uCR
h,i 6=

0, of problem (1) are defined by the relation

(∇uCR
h,i ,∇vh) = λCR

h,i (uCR
h,i , vh) ∀vh ∈ V CR

h . (9)

The approximate eigenvalues λCR
h,i are often below the exact eigenvalues λi, but

not always. Especially on very rough meshes it is not difficult to construct an
example such that λCR

h,i is above λi, see [11]. However, explicit estimates of
the interpolation constant enable to construct simple lower bounds on exact
eigenvalues. It is proved in [11, Theorem 3.2 and 5.1] that

`CR
i ≤ λi for `CR

i =
λCR
h,i

1 + κ2λCR
h,i h

2
max

, ∀i = 1, 2, . . . , (10)

where κ2 = 1/8+ j−2
1,1 , symbol j1,1 stands for the first positive root of the Bessel

function of the first kind, and hmax = maxK∈Th diamK is the largest of all
diameters of elements in the triangulation Th. Note that κ2 is a universal con-
stant and we use the bound κ2 ≤ 0.1932 in the subsequent numerical examples
to compute the guaranteed lower bounds.

Let us note that problem (9) is equivalent to the matrix eigenvalue problem

AuCR
i = λCR

h,iBu
CR
i , (11)

where matrices A,B ∈ RNCR×NCR

have entries Ajk = (∇ϕj ,∇ϕk) and Bjk =
(ϕj , ϕk), functions ϕj , j = 1, 2, . . . , NCR, are the standard edge-based Crouzeix–
Raviart basis functions in V CR

h , and NCR = dimV CR
h . The entries of the vector
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uCR
i are then coefficients in the expansion of the approximate eigenfunction uCR

h,i

in this basis, i.e. uCR
h,i =

∑NCR

j=1

(
uCR
i

)
j
ϕj . The point is that the lower bound

(10) is valid only if λCR
h,i and uCR

h,i satisfy equality (9) exactly. This is however
never the case in practice, because the round-off and iteration errors prevent us
to solve the matrix eigenvalue problem (11) exactly. Nevertheless, the approach
presented in [11] solves this problem as well.

If (λ̃CR
h,i , ũ

CR
h,i ) ∈ R×V CR

h is an arbitrary approximation of the exact eigenpair

and if r = AũCR
i − λ̃CR

h,iBũ
CR
i with ũCR

h,i =
∑NCR

j=1

(
ũCR
i

)
j
ϕj is the correspond-

ing algebraic residual then [11, Theorems 3.1 and 5.1] provide lower bounds

˜̀CR
i ≤ λi for ˜̀CR

i =
λCR
h,i − ‖r‖B−1

1 + κ2
(
λCR
h,i − ‖r‖B−1

)
h2

max

, ∀i = 1, 2, . . . , (12)

where ‖r‖2B−1 = r>B−1r. The lower bound (12) is valid if ‖r‖B−1 < λ̃CR
h,i

and if λ̃CR
h,i is closer to the exact discrete eigenvalue λCR

h,i than to any other

discrete eigenvalue λCR
h,j , j 6= i. This closeness assumption is difficult to verify,

because the exact discrete eigenvalues are not know. If the eigenvalues are
tightly clustered then this assumption can be violated even if the residual r is
relatively small. Note that in the numerical examples below, we have ‖r‖B−1

always below 10−10 and hence the correction (12) has virtually no effect in
comparison with (10).

Concerning the upper bound on eigenvalues, we can well use the standard
conforming finite element approximations given by (4). This would, however,
mean to solve one more matrix eigenvalue problem. Therefore the authors of [11]
propose to use a conforming interpolation of the already computed nonconform-
ing eigenfunction ũCR

h,i . They use the interpolation operator ICM : V CR
h → V ∗h ,

where V ∗h = {vh ∈ V : vh|K ∈ P1(K) ∀K ∈ T ∗h } and T ∗h is the uniform (red)
refinement of the triangulation Th such that all triangles in Th are refined into
four similar subtriangles of T ∗h . The interpolation ICM was proposed in [10], see
also [11]. If Nh stands for the set of all vertices of the triangulation Th and Eh
for the set of all edges in Th and if vCR

h ∈ V CR
h is arbitrary then

(
ICMv

CR
h

)
(z) =

 0 if z lies on ∂Ω,
vCR
h (z) if z is the midpoint of an edge γ ∈ Eh, γ 6⊂ ∂Ω,
vmin(z) if z ∈ Nh \ ∂Ω.

The function vmin is determined by a one-dimensional minimization on the patch
ω∗z of elements from T ∗h sharing the vertex z. We set Vz = {vh ∈ C(ω∗z) :
vh|K ∈ P1(K) for all K ∈ T ∗h , K ⊂ ω∗z, and vh = vCR

h on ∂ω∗z} and determine
vmin ∈ Vz as the unique minimizer of

min
vh∈Vz

∥∥∇vCR
h −∇vh

∥∥
L2(ω∗

z)
.

Then, the Rayleigh quotients constructed from u∗h,i = ICMũ
CR
h,i provide the

upper bounds in a standard way.
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In particular, since our goal is to obtain lower and upper bounds for the first
m eigenvalues, we proceed as follows.

1. We solve the Crouzeix–Raviart eigenvalue problem (9) for i = 1, 2, . . . ,m.
The resulting eigenpairs polluted by the round-off and iteration errors are
denoted by λ̃CR

h,i and ũCR
h,i .

2. We use these approximations and compute lower bounds ˜̀CR
i by (12) for

i = 1, 2, . . . ,m.

3. We construct the uniform (red) refinement T ∗h of the mesh Th and inter-
polants u∗h,i = ICMũ

CR
h,i for i = 1, 2, . . . ,m.

4. Using the standard Ritz-Galerkin method, we assemble matrices S,Q ∈
Rm×m with entries Sj,k = (∇u∗h,j ,∇u∗h,k) and Qj,k = (u∗h,j , u

∗
h,k) and

solve the matrix eigenvalue problem

Syi = Λ∗iQyi, i = 1, 2, . . . ,m.

We sort these eigenvalues such that Λ∗1 ≤ Λ∗2 ≤ · · · ≤ Λ∗m and we have the
upper bounds

λi ≤ Λ∗i for i = 1, 2, . . . ,m.

4 The complementarity method

In this section, we describe the method introduced in [25] and we will refer
to it as the complementarity method. It is based on the standard conforming
finite element approximation (4). Lower bounds on eigenvalues are obtained by
the method of a priori-a posteriori inequalities [19] using the complementarity
technique and local flux reconstruction [8].

We consider the triangulation Th of the domain Ω as above and the finite
element approximate eigenpair (Λh,i, uh,i) ∈ R × Vh as in (4). Based on the
gradient ∇uh,i of the approximate eigenvector, we construct a suitable flux
qh,i ∈H(div,Ω). This flux is constructed by solving small mixed finite element
problems on patches of elements sharing a single vertex. Let z ∈ Nh be a vertex
in Th and let Tz be the set of those elements in Th that z is one of their vertices.
By ωz = int

⋃
{K : K ∈ Tz} we denote the patch of elements sharing the vertex

z. If z is an interior vertex then we set Γext
ωz

= ∂ωz and if z lies on the boundary
∂Ω then we set Γext

ωz
= ∂ωz \ ∂Ω. We denote by nωz the unit outward facing

normal vector to ∂ωz and define spaces

Wz =
{
wh ∈H(div, ωz) : wh|K ∈ RT1(K) ∀K ∈ Tz and wh · nωz = 0 on Γext

ωz

}
and

P∗1 (Tz) =

{
{vh ∈ P1(Tz) :

∫
ωz
vh dx = 0} for interior vertices z ∈ Nh \ ∂Ω,

P1(Tz) for boundary vertices z ∈ Nh ∩ ∂Ω.
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We recall that spaces RTk(K) were introduced in (5) and P1(Tz) stands for the
space of piecewise affine and in general discontinuous functions. Further, we
denote by ψz the standard piecewise affine and continuous finite element hat
function associated with the vertex z ∈ Nh. Function ψz has value one at z
and vanishes at all other vertices of the triangulation Th. We also introduce the
residual

rz,i = Λh,iψzuh,i −∇ψz · ∇uh,i.

The flux reconstruction qh,i ∈H(div,Ω) is then defined as

qh,i =
∑
z∈Nh

qz,i, (13)

where qz,i ∈ Wz together with dz,i ∈ P∗1 (Tz) solves the mixed finite element
problem

(qz,i,wh)ωz − (dz,i,divwh)ωz = (ψz∇uh,i,wh)ωz ∀wh ∈Wz, (14)

−(div qz,i, ϕh)ωz = (rz,i, ϕh)ωz ∀ϕh ∈ P∗1 (Tz). (15)

The reconstructed flux qh,i is used to define the error estimator

ηi =
∥∥∇uh,i − qh,i∥∥L2(Ω)

.

This is further used to define the lower bound on the lowest eigenvalue

`cmpl
1 =

(
−η1 +

√
η2

1 + 4Λh,1

)2

/4 (16)

and the lower bound on the higher eigenvalues

`cmpl
i = Λh,i

(
1 + λ

−1/2
1 ηi

)−1

, i = 2, 3, . . . , (17)

where λ1 is a lower bound on λ1. It is natural to choose λ1 = `cmpl
1 , but due to

consistency with the inclusion method, we will use in the subsequent numerical
examples an a priori known rough lower bound λ1 on the first eigenvalue.

For a given i = 1, 2, . . . , the lower bound `cmpl
i is proved in [25] to be below

the exact eigenvalue λi if the relative closeness assumption

Λh,i ≤ 2
(
λ−1
i + λ−1

i+1

)−1
(18)

is satisfied. This assumption is difficult to verify unless lower bounds on the
exact eigenvalues are known. Similarly, as in the case of the inclusion method,
the validity of the relative closeness assumption is an a priori information needed
to guarantee that the computed bounds are really below the exact eigenvalues.
However, this a priori information is of a different nature than the a priori
information in the inclusion method. The relative closeness assumption requires
the standard finite element approximation Λh,i to be sufficiently close to the
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a priori the largest exact the smallest
lower bound lower bound eigenvalue upper bound

λ1 1.652893 1.999982 2 2.000006
λ2 4.132231 4.999429 5 5.000034
λ3 4.132231 4.999549 5 5.000034
λ4 6.611570 7.997871 8 8.000100
λ5 8.264463 9.996874 10 10.000162
λ6 8.264463 9.996874 10 10.000162
λ7 10.743802 12.994457 13 13.000281
λ8 10.743802 12.994457 13 13.000281
λ9 14.049587 16.991093 17 17.000457
λ10 14.049587 16.991093 17 17.000457

Table 1: The analytical a priori lower bounds, the largest computed lower
bounds, the exact values, and the smallest computed upper bounds of the first
10 eigenvalues for the square domain.

exact eigenvalue λi. The sufficient accuracy depends on the size of the spectral
gap λi+1 − λi. In contrast, the inclusion method requires a guaranteed lower
bound on at least one eigenvalue.

To summarize, we apply the complementary method as follows.

1. We compute the standard finite element approximations (Λh,i, uh,i) ∈ R×
Vh, i = 1, 2, . . . ,m, of the first m eigenpairs according to (4). This provides
upper bounds Λh,i, i = 1, 2, . . . ,m, on the exact eigenvalues.

2. For all i = 1, 2, . . . ,m and all vertices z ∈ Nh, we solve local patch prob-
lems (14)–(15) and construct the flux qh,i as in (13).

3. We evaluate lower bounds `cmpl
i using (16) for i = 1 and (17) for i =

2, 3, . . . ,m.

5 Numerical results – a square domain

In this section we compute two sided bounds of the first m = 10 eigenvalues of
problem (1) in a square Ω = (0, π)2. We compute these bounds by using the
three methods described in Sections 2–4 and compare their numerical perfor-
mance. In the square domain, the exact eigenvalues and eigenfunctions are well
known. They are given by

λj,k = j2 + k2, uj,k(x, y) = sin(jx) sin(ky), j, k = 1, 2, . . . ,

and the first 10 exact eigenvalues are listed in the fourth column of Table 1.
Notice that four out of the first six distinct eigenvalues are doubled.

As we mentioned in Section 2, for the method of eigenvalue inclusions we
require a priori known lower bounds on the first m+ 1 eigenvalues. If the exact

9



eigenvalues for the domain Ω were not known then we can find lower bounds
by enclosing Ω into a rectangle Ω̂ with lengths of sides L1 and L2. For this
rectangle, we can easily find the eigenvalues analytically:

λ̂j,k = π2
(
j2L−2

1 + k2L−2
2

)
, j, k = 1, 2, . . . .

Since Ω ⊂ Ω̂, the eigenvalues on Ω̂ are smaller than the eigenvalues on Ω.
Due to consistency with the next numerical example, we use this approach for

the analytic lower bounds also for the square Ω, although the exact eigenvalues
are known. In this particular case, we enclose Ω into a square with side length
1.1π. Consequently, we obtain analytic lower bounds in the form

λ̂j,k = (10/11)2λj,k, j, k = 1, 2, . . . .

Their approximate numerical values are presented in the second column of Ta-
ble 1.

For all three methods we use the same triangulations. The initial rough
triangulation is shown in Figure 1 (left). Then we obtain a sequence of nested
meshes by successive uniform (red) refinement. This means that we refine each
triangle of the original mesh into four similar subtriangles.

Given a mesh Th of this sequence, we use it for all three methods to compute
the lower and upper bound of eigenvalues. The methods, however, use different
types of finite elements and consequently, they require to solve matrix problems
of different sizes. Therefore, we compare their accuracy with respect to the
number of degrees of freedom corresponding to the largest matrix problem that
has to be solved. To be more specific, we choose Nmix = dimWh + dimQh

to be the reference number of degrees of freedom for the inclusions method,
because the mixed finite element problem (6)–(7) is considerably larger than
problem (4) and its solution consumes most of the computational time. For
the CR method, we naturally choose NCR = dimV CR

h as the reference number
of degrees of freedom, although the upper bound computed by this method
requires the refined mesh T ∗h and the interpolation ICMũ

CR
h,i with more degrees

of freedom then NCR. This interpolation, however, can be done locally on
patches and does not consume the majority of the computational time. Finally,
for the complementarity method we choose N conf = dimVh as the reference
number of degrees of freedom. This method also requires the construction of
fluxes qh,i which corresponds to a larger number of degrees of freedom, but
again these fluxes can be computed efficiently by solving small local problems
on patches.

The most accurate results, i.e. the largest lower bounds and the smallest
upper bounds we computed, are provided in Table 1. In Figure 2 we resent
the sizes of eigenvalue enclosures, i.e. the differences between the computed
upper and lower bound. More precisely the enclosure sizes for the eigenvalue
λi are given by Λh,i − `incl

i for the inclusions method, by Λ∗i − ˜̀CR
i for the CR

method, and by Λh,i−`cmpl
i for the complementarity method. Figure 2 shows the

convergence of these enclosures as the mesh is uniformly refined and the number
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Figure 1: Initial triangulations of the square domain (left) and the dumbbell
shaped domain (right).

of degrees of freedom increases. We immediately observe that if N stands for the
respective number of degrees of freedom then the enclosures converge as O(N−1)
for the inclusion and CR methods and as O(N−1/2) for the complementarity
method, see the experimental orders of convergence indicated in Figure 2. If
h = maxK∈Th diamK stands for the standard mesh size parameter then this
corresponds to the expected O(h2) convergence of the inclusion and CR methods
and to the suboptimal O(h) convergence of the complementarity method. This
suboptimal convergence is caused by the suboptimal rate of convergence of the
lower bound `cmpl

i , because the upper bound provided by the standard finite
element approximation Λh,i is known to converge quadratically [3, 7].

We also observe that the CR method provides the smallest eigenvalue en-
closure with respect to the needed number of degrees of freedom. The inclusion
method closely follows for the smaller eigenvalues. However, for larger eigen-
values the inclusion method legs behind and for λ9 and λ10 it even fails to
converge and it does not provide an acceptable accuracy of the lower bound.
This is caused by too rough a priori lower bounds. For the lower bound on
λ1 the method utilizes all a priori lower bounds λ2, . . . , λ11 and combining all
this information yields accurate bounds. However, for λ10 we can use only the
a priori lower bound λ11, which is so rough that it lies even below λ9 = λ10 and
prevents the method to obtain accurate results. The complementarity method
exhibits the best results on rough meshes, but its accuracy on finer meshes is
not competitive with the other methods due to its slow speed of convergences.

Further, we observe that the enclosure sizes of the lower eigenvalues are
smaller than the enclosure sizes of the higher eigenvalues. All methods pro-
vide less accurate results as the index of the eigenvalue increases. This effect
is highlighted in our results, because we present the absolute sizes of the enclo-
sures. However, we would observe the loss of accuracy for the higher eigenvalues
even if we plotted relative sizes of enclosures weighted by sizes of corresponding
eigenvalues.
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Figure 2: Convergence of enclosure sizes for the inclusions, CR, and comple-
mentary methods. The panels correspond to eigenvalues λ1, λ2, λ4, λ5, λ7, and
λ9, respectively. The convergence curves for eigenvalues λ3, λ6, λ8, and λ10 are
very similar to the curves for λ2, λ5, λ7, and λ9, respectively, because these
four eigenvalues are multiple with multiplicity two. The triangles indicate the
experimental orders of convergence.
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a priori the largest the smallest
lower bound lower bound upper bound

λ1 1.197531 1.955284 1.955879
λ2 1.790123 1.960219 1.960760
λ3 2.777778 4.798073 4.801187
λ4 4.160494 4.827345 4.830269
λ5 4.197531 4.995027 4.996958
λ6 4.790123 4.995043 4.996972
λ7 5.777778 7.982102 7.987241
λ8 5.938272 7.982176 7.987308
λ9 7.160494 9.347872 9.358706
λ10 8.111111 9.502020 9.512035

Table 2: The analytically computed a priori lower bounds, the largest com-
puted lower bounds, and the smallest computed upper bounds on the first 10
eigenvalues for the dumbbell shaped domain.

6 Numerical results – a dumbbell shaped do-
main

In this section, we will apply the three methods described in Sections 2–4 to
compute the lower and upper bounds on the first m = 10 eigenvalues of a
problem proposed in [27]. It is the eigenvalue problem (1) posed in the dumbbell
shaped domain Ω = (0, π)2∪ [π, 5π/4]× (3π/8, 5π/8)∪ (5π/4, 9π/4)× (0, π), see
Figure 1 (right). This is a more realistic example, where the exact eigenvalues
are not known.

The a priori lower bounds for the inclusions methods are obtained by en-
closing the domain Ω into the rectangle Ω̂ = (0, 9π/4) × (0, π), where we can
analytically find the eigenvalues. These a priori lower bounds together with the
largest lower bounds and the smallest upper bounds computed are presented in
Table 2. We observe that although the two-sided bounds are quite tight, the
enclosing intervals overlap for λ5 and λ6 and for λ7 and λ8. On the chosen level
of accuracy, we cannot decide whether these two pairs are multiple or isolated
eigenvalues. On the other hand, λ1 and λ2 as well as λ3 and λ4 are tight pairs
of eigenvalues and the computed two-sided bounds are sufficiently accurate to
show that they are all isolated.

We use the same methodology as in the previous section and compare the
three methods. The initial triangulation is depicted in Figure 1 (right). Fig-
ures 3–4 present the sizes of the eigenvalue enclosures for eigenvalues λ1, λ2, . . . ,
λ10 and their dependence on the number of degrees freedom. We recall that
the number of degrees of freedom corresponds to Nmix = dimWh + dimQh

for the inclusions method, to NCR = dimV CR
h for the CR method, and to

N conf = dimVh for the complementarity method.
We again observe that the CR method provides the most accurate results

with respect to the needed number of degrees of freedom. The convergence rates
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Figure 3: Enclosure sizes obtained by the inclusions, CR, and complementarity
methods for eigenvalues λ1, λ2, . . . , λ6 on the dumbbell shaped domain. The
triangles indicate the experimental orders of convergence.
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Figure 4: Enclosure sizes obtained by the inclusions, CR, and complementarity
methods for eigenvalues λ7, λ8, . . . , λ10 on the dumbbell shaped domain. The
triangles indicate the experimental orders of convergence.
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are in several cases spoiled by the singularities of eigenvectors at the reentrant
corners of the domain. The optimal rates could be achieved by the adaptive
mesh refinement, but this is not the goal of this paper. In any case, we clearly
observe that the speed of convergence of the complementarity method is roughly
half of the speed of the other two methods. On the other hand, the comple-
mentarity method provides the best results on the roughest meshes. As in the
previous example, the inclusions method yields only slightly less accurate re-
sults than the CR method for the smallest eigenvalues. However, for larger
eigenvalues its accuracy deteriorates and for λ7, λ9, and λ10 it even fails to
converge. This is probably caused by too rough a priori lower bounds of the
exact eigenvalues. In accordance with the previous example we also observe
that the absolute sizes of eigenvalue enclosures increase for higher eigenvalues
for all three methods.

7 Conclusions

We computed two-sided bounds of the first ten eigenvalues of the Dirichlet
Laplacian for two numerical examples. For this purpose, we employed the inclu-
sion, the CR, and the complementarity method on a series of uniformly refined
meshes and compared the results.

The most accurate lower bounds with respect to the chosen numbers of
degrees of freedom were obtained for the CR method. This fact can be expected,
because the CR method is tailored specifically to the solved Laplace eigenvalue
problem with Dirichlet boundary conditions. This makes the method the most
specialized and least general out of the three compared methods. Moreover, it is
not clear how the CR method could be generalized to problems with Neumann
and mixed boundary conditions, to problems with variable coefficients, or to
different types of eigenvalue problems such as the Steklov eigenvalue problem.
Another slight disadvantage is the fact that dimension of V CR

h is still larger
than the dimension of Vh, which is used as a base space for the other two
methods. On the other hand, the distinctive feature the CR method is that
it does not require any a pripori information about the exact eigenvalues. It
provides guaranteed lower bounds even on rough meshes and it takes into the
account also the error caused by the matrix eigenvalue solver. However, here
the method requires a closeness assumption that cannot be verified unless the
exact eigenvalues of the matrix eigenvalue problem are known. In any case, the
CR method is very promising and investigation of its possible generalizations
seems to be very desirable.

The inclusions method lags only closely behind the CR method in terms of
the accuracy especially for the smallest eigenvalues. The disadvantage of the in-
clusion method is the solution of the large mixed finite element problem (6)–(7).
If the fluxes σh,i were computed locally and efficiently as in the complementarity
method than the convergence curves of the inclusions method would be shifted
considerably to the left, see Figures 2, 3 and 4, and the method would easily
outperform the CR method. The other serious disadvantage of the method is
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the need of the a priori lower bounds on eigenvalues. As we saw especially in
the case of the larger eigenvalues, its accuracy strongly depends on the quality
of these a priori lower bounds. In [6], the authors propose to use the homotopy
method to obtain these a priori lower bounds. The homotopy method, however,
seems to be difficult to automatize in the context of the finite element method.
On the other hand, the advantage of the inclusions method is its generality and
the fact that it is well developed in the literature. It can be generalized even to
indefinite problems and to problems with essential spectrum. For example, its
variant was used in [4] to find eigenvalue enclosures for the Maxwell eigenvalue
problem.

The complementarity method provides the best results on rough meshes.
However, its accuracy on finer meshes is not competitive due to its slow speed
of convergence. It also requires an a priori information about the exact eigen-
values, but it is in the form of the relative closeness assumption (18). Since
the standard finite element approximations Λh,i given by (4) converge to λi, its
is clear that this assumption will eventually be satisfied on a sufficiently fine
mesh. In addition, if the computed lower bounds are sufficiently accurate then
they can be used to verify the validity of the relative closeness assumption. The
complementarity method is quite general and it can be applied to symmetric
elliptic problems with mixed boundary conditions, variable coefficients, and var-
ious types of eigenvalue problems. It requires a flux reconstruction by solving
small mixed finite element problems on patches of elements. Their solution
takes certain computation time, but these problems are independent and can
be easily solved in parallel. If the suboptimal rate of convergence is improved
and the current research indicates that it is possible [9], then the complemen-
tarity method will be as competitive as the other two methods even in terms of
accuracy.

An interesting question is whether the computed lower bounds are really
below the exact eigenvalues. Let us first consider the hypothetical case of exact
arithmetic. The inclusion method provides guaranteed lower bounds even if the
corresponding matrix problem is not solved exactly, because the approximation
ũi and σ̃i in Theorem 1 can be arbitrary. However, the crucial requirement is
the knowledge of the a priori lower bounds. The CR method provides guaran-
teed lower bounds (10) if the matrix eigenvalue problem (11) is solved exactly.
However, even in the case of the exact arithmetic the iterative matrix algo-
rithms produce iteration errors and the practical lower bound (12) should be
employed. The bound (12) is valid if the computed eigenvalue λ̃CR

i is closer to
the exact discrete eigenvalue λCR

i than to any other discrete eigenvalue. This
assumption is difficult to verify, because the exact discrete eigenvalues are in-
accessible. The guaranteed knowledge of its validity is an a priori information,
which is in a sense of the same kind as the a priori information required by the
other two methods. The complementarity method provides guaranteed lower
bounds in a similar spirit as the other two methods. Numerical inaccuracies in
the flux reconstruction qh,i are irrelevant, because any flux reconstruction lying
in H(div,Ω) yields guaranteed lower bounds. The only relevant condition is
the validity of the relative closeness assumption (18). However, it is guaranteed
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only if an a priori knowledge about the exact eigenvalues is available.
Thus, to conclude, all these methods require an a priori information about

the spectrum in order to guarantee the lower bounds even in the hypothetical
case of the exact arithmetic. To overcome the problem of round-off errors in the
floating-point arithmetic, it is proposed, for example in [5] and [6], to verify the
computed bounds by using the interval arithmetic. In any case, the performed
numerical experiments indicate that all the methods are quite robust in provid-
ing lower bounds on exact eigenvalues. For example, we used the known exact
eigenvalues and verified that all methods really produced lower bounds on the
exact eigenvalues in all computed cases.

To conclude, we are convinced that two-sided bounds of eigenvalues are
highly relevant to compute, because they enable reliable control of the accuracy
of the computed approximations. We believe that the presented methods are of
practical value, because they are applicable in the context of the standard finite
element method. We also believe that the presented results enable practitioners
to choose the most suitable method for their purposes. Finally, we believe
that these results encourage them to compute both upper and lower bounds on
eigenvalues, because these enable full control of the accuracy and yield highly
reliable numerical results.
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