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Abstract. We study the Bonsall cone spectral radius and the approximate point spec-

trum of (in general non-linear) positively homogeneous, bounded and supremum pre-

serving maps, defined on a max-cone in a given normed vector lattice. We prove that the

Bonsall cone spectral radius of such maps is always included in its approximate point

spectrum. Moreover, the approximate point spectrum always contains a (possibly trivial)

interval. Our results apply to a large class of (nonlinear) max-type operators.

We also generalize a known result that the spectral radius of a positive (linear) opera-

tor on a Banach lattice is contained in the approximate point spectrum. Under additional

generalized compactness type assumptions our results imply Krein-Rutman type results.
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1. Introduction

Max-type operators (and corresponding max-plus type operators and their tropical

versions known also as Bellman operators) arise in a large field of problems from the theory

of differential and difference equations, mathematical physics, optimal control problems,

discrete mathematics, turnpike theory, mathematical economics, mathematical biology,

games and controlled Markov processes, generalized solutions of the Hamilton-Jacobi-

Bellman differential equations, continuously observed and controlled quantum systems,

discrete and continuous dynamical systems, ... (see e.g. [31], [23], [30], [29], [4] and the

references cited there). The eigenproblem of such operators obtained so far substantial

attention due to its applicability in the above mentioned problems (see e.g. [31], [23], [4],

[3] [25], [2], [32], [13], [14], [36], [16], [35], [40] and the references cited there). However,

there seems to be a lack of more general treatment of spectral theory for such operators,

eventhough the spectral theory for nonlinear operators on Banach spaces is already quite

well developed (see e.g. [11], [10], [12], [17], [18], [19], [20], [21], [39] and the references
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cited there). One of the reasons for this might lie in the fact that these operators behave

nicely on a suitable subcone (or subsemimodule), but less nicely on the whole (Banach)

space. Therefore it appears, that it is not trivial to directly apply this known non-linear

spectral theory to obtain satisfactory information on a restriction to a given cone of a

max-type operator. The Bonsall cone spectral radius plays the role of the spectral radius

in this theory (see e.g. [31], [32], [4], [24], [22], [36] and the references cited there).

In this article we study the Bonsall cone spectral radius and the approximate point

spectrum of positively homogeneous, bounded and supremum preserving maps, defined

on a max-cone in a given normed vector lattice. We prove that the Bonsall cone spectral

radius of such maps is always included in its approximate point spectrum. Moreover,

the approximate point spectrum always contains a (possibly trivial) interval. Our results

apply to a large class of max-type operators (and their isomorphic versions). Our main

interests are results on suitable cones in Banach spaces and Banach lattices. However,

since the completeness of the norm does not simplify our proofs, we state our results

in the setting of normed spaces and normed vector lattices. Under suitable generalized

compactness type assumptions our results imply Krein-Rutman type results.

The paper is organized as follows. In Section 2 we recall basic definitions and facts that

we will need in our proofs. In Section 3 we prove our results in the setting of max-cones

in normed vector lattices, while in Section 4 we apply our techniques in the setting of

normal convex cones in normed spaces. The main results of Section 3 are Theorem 3.6

and its generalization Theorem 3.7 and the main result of Section 4 are Theorems 4.1 and

4.2.

2. Preliminaries

A subset C of a real vector space X is called a cone (with vertex 0) if tC ⊂ C for all

t ≥ 0, where tC = {tx : x ∈ C}. A map T : C → C is called positively homogeneous (of

degree 1) if T (tx) = tT (x) for all t ≥ 0 and x ∈ C. We say that the cone C is pointed if

C ∩ (−C) = {0}.
A convex pointed cone C of X induces on X a partial ordering ≤, which is defined by

x ≤ y if and only if y−x ∈ C. In this case C is denoted by X+ and X is called an ordered

vector space. If, in addition, X is a normed space then it is called an ordered normed

space. If, in addition, the norm is complete, then X is called an ordered Banach space.

A convex cone C of X is called a wedge. A wedge induces on X (by the above relation)

a vector preordering ≤ (which is reflexive, transitive, but not necessary antisymmetric).

We say that the cone C is proper if it is closed, convex and pointed. A cone C of a

normed space X is called normal if there exists a constant M such that ‖x‖ ≤ M‖y‖
whenever x ≤ y, x, y ∈ C. A convex and pointed cone C = X+ of an ordered normed

space X is normal if and only if there exists an equivalent monotone norm ||| · ||| on X,

i.e., |||x||| ≤ |||y||| whenever 0 ≤ x ≤ y (see e.g. [9, Theorem 2.38]). Every proper cone C

in a finite dimensional Banach space is necessarily normal.
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If X is a normed linear space, then a cone C in X is said to be complete if it is a

complete metric space in the topology induced by X. In the case when X is a Banach

space this is equivalent to C being closed in X.

If X is an ordered vector space, then a cone C ⊂ X+ is called a max-cone if for every

pair x, y ∈ C there exists a supremum x ∨ y (least upper bound) in C. We consider here

on C an order inherited from X+. A map T : C → C preserves finite suprema on C

if T (x ∨ y) = Tx ∨ Ty (x, y ∈ C). If T : C → C preserves finite suprema, then it is

monotone (order preserving) on C, i.e., Tx ≤ Ty whenever x ≤ y, x, y ∈ C .

An ordered vector space X is called a vector lattice (or a Riesz space) if every two

vectors x, y ∈ X have a supremum and infimum (greatest lower bound) in X. A positive

cone X+ of a vector lattice X is called a lattice cone.

Note that by [9, Corollary 1.18] a pointed convex cone C = X+ of an ordered vector

space X is a lattice cone for the vector subspace C −C generated by C in X, if and only

if C is a max cone (in this case a supremum of x, y ∈ C exists in C if only if it exists in

X; and suprema coincide). Moreover, if x, y, z, u ∈ C, then

(x− y) ∨ (z − u) = (x+ u) ∨ (y + z)− (y + u)

holds in C − C.

If X is a vector lattice, then the absolute value of x ∈ X is defined by |x| = x∨(−x). A

vector lattice is called a normed vector lattice (a normed Riesz space) if |x| ≤ |y| implies

‖x‖ ≤ ‖y‖. A complete normed vector lattice is called a Banach lattice. A positive cone

X+ of a normed vector lattice X is proper and normal.

In a vector lattice X the following Birkhoff’s inequality for x1, . . . , xn, y1, . . . , yn ∈ X
holds:

(1) |
n∨
j=1

xj −
n∨
j=1

yj| ≤
n∑
j=1

|xj − yj|.

For the theory of vector lattices, Banach lattices, cones, wedges, cone preserving operators

and applications e.g. in financial mathematics we refer the reader to the books [1], [9],

[7], [41], [6], [26], [5] and the references cited there.

Let X be a normed space and C ⊂ X a non-zero cone. Let T : C → C be positively

homogeneous and bounded, i.e.,

‖T‖ := sup

{
‖Tx‖
‖x‖

: x ∈ C, x 6= 0

}
<∞.

It is easy to see that ‖T‖ = sup{‖Tx‖ : x ∈ C, ‖x‖ ≤ 1} and ‖Tm+n‖ ≤ ‖Tm‖ · ‖T n‖
for all m,n ∈ N. It is well known that this implies that the limit limn→∞ ‖T n‖1/n exists

and is equal to infn ‖T n‖1/n. The limit r(T ) := limn→∞ ‖T n‖1/n is called the Bonsall cone

spectral radius of T . The approximate point spectrum σap(T ) of T is defined as the set

of all s ≥ 0 such that inf{‖Tx− sx‖ : x ∈ C, ‖x‖ = 1} = 0.
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For x ∈ C define the local cone spectral radius by rx(T ) := lim supn→∞ ‖T nx‖1/n.

Clearly rx(T ) ≤ r(T ) for all x ∈ C. It is known that the equality

(2) sup{rx(T ) : x ∈ C} = r(T )

is not valid in general. In [31] there is an example of a proper cone C in a Banach space

X and a positively homogeneous and continuous (hence bounded) map T : C → C such

that sup{rx(T ) : x ∈ C} < r(T ). A recent example of such kind, where T is in addition

monotone, is obtained in [22, Example 3.1]. However, if C is a normal, complete, convex

and pointed cone in a normed space X and T : C → C is positively homogeneous,

monotone and continuous, then [32, Theorem 3.3], [31, Theorem 2.2] and [22, Theorem

2.1] ensure that (2) is valid.

If X is a Banach lattice, C ⊂ X+ a max-cone and T : C → C a mapping which is

bounded, positively homogeneous and preserves finite suprema, then the equality (2) is

not necessary valid as the following example shows.

Example 2.1. Let X = l2 with a standard orthonormal basis {e1, e2, . . . }. Let C =

{
∨n
j=1 αjej : n ≥ 1, α1, . . . αn ≥ 1}. Define T : C → C by T (

∨n
j=1 αjej) =

∨n−1
j=1 αj+1ej

(the backward shift). It is easy to see that r(T ) = 1 and rx(T ) = 0 for each x ∈ C. It

also holds that σap(T ) = [0, 1].

Some additional examples of maps for which (2) is not valid can be found in [22].

Let C be a cone in a normed space X and T : C → C. Then T is called Lipschitz if

there exists L > 0 such that ‖Tx− Ty‖ ≤ L‖x− y‖ for all x, y ∈ C.

3. Results on max-cones in normed vector lattices

As noted in Example 2.1 it may happen that sup{rx(T ) : x ∈ C} < r(T ) in the case

when C is a max-cone. We will prove in Theorem 3.6 that the Bonsall cone spectral radius

of a bounded, positively homogeneous, finite suprema preserving mapping T : C → C,

defined on a max-cone C in a normed vector lattice, is contained in its approximate point

spectrum. Moreover, we will show that the interval [sup{rx(T ) : x ∈ C}, r(T )] is included

in σap(T ) for such maps T .

We shall need the following three lemmas.

Lemma 3.1. Let X be a normed vector lattice and let x1, . . . , xn, y1, . . . , yn ∈ X. Then∥∥∥ n∨
j=1

xj −
n∨
j=1

yj

∥∥∥ ≤ n∑
j=1

‖xj − yj‖.

Proof. By (1) we have∥∥∥ n∨
j=1

xj −
n∨
j=1

yj

∥∥∥ =
∥∥∥ | n∨

j=1

xj −
n∨
j=1

yj|
∥∥∥ ≤ ∥∥∥ n∑

j=1

|xj − yj|
∥∥∥
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≤
n∑
j=1

‖ |xj − yj| ‖ =
n∑
j=1

‖xj − yj‖,

which completes the proof. �

Lemma 3.2. Let X be a vector lattice and xj, yj ∈ X for j = 1, . . . , n. Then

(3)
n∨
j=1

xj −
n∨
j=1

yj ≤
n∨
j=1

(xj − yj).

If, in addition, X is a normed vector lattice and xj ≥ yj ≥ 0 for j = 1, . . . , n, then

(4) ‖
n∨
j=1

xj −
n∨
j=1

yj‖ ≤ ‖
n∨
j=1

(xj − yj)‖.

Proof. We have
n∨
j=1

xj =
n∨
j=1

(xj − yj + yj) ≤
n∨
j=1

(xj − yj) +
n∨
j=1

yj.

which proves (3). If X is a normed vector lattice and xj ≥ yj ≥ 0 for j = 1, . . . , n, then∨n
j=1 xj ≥

∨n
j=1 yj and this implies (4). �

Lemma 3.3. Let X be a normed space and let C ⊂ X be a non-zero cone. If T : C → C

is positively homogeneous and Lipschitz, then r(T ) ≥ t for all t ∈ σap(T ).

Proof. Since T (0) = 0 and T is Lipschitz it follows that T is also bounded and so r(T )

is well defined. If t ∈ σap(T ), then there exists a sequence (xk) of unit vectors such that

limk→∞ ‖Txk − txk‖ = 0. By induction it follows that limk→∞ ‖T jxk − tjxk‖ = 0 for all

j ∈ N. Indeed,

‖T jxk − tjxk‖ ≤ ‖T jxk − T j−1(txk)‖+ ‖T j−1(txk)− tjxk‖

≤ Lj−1‖Txk − txk‖+ t‖T j−1xk − tj−1xk‖ → 0

as k →∞, by the induction assumption. Here L denotes the Lipschitzity constant of T .

It follows that ‖T j‖ ≥ limk→∞ ‖T jxk‖ = tj and so r(T ) ≥ t. �

The following example shows that in Lemma 3.3 we can not replace the property that

”T is Lipschitz” by a weaker property that ”T is bounded”.

Example 3.4. Let X = `∞ with the standard basis xn, yn, zn (n = 1, 2, . . . ). More

precisely, the elements of X are formal sums

x =
∞∑
n=1

(αnxn + βnyn + γnzn)

with real coefficients αn, βn, γn such that

‖x‖ := sup{|αn|, |βn|, |γn| : n = 1, 2, . . . } <∞.

Then X is a Banach lattice with the natural order.
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Let

C =
{ ∞∑
j=1

(αjxj + βjyj + γjzj) ∈ X : αj, γj ≥ 0, βj = jαj + jγj for all j
}
.

Then C is a closed max-cone (moreover convex and normal). Let T : C → C be defined

by

T
( ∞∑
j=1

(αjxj + βjyj + γjzj)
)

=
∞∑
j=1

(jαjyj + αjzj).

Clearly ‖T‖ ≤ 1, T is positively homogeneous and preserves (all) suprema.

For k ∈ N let uk = k−1xk + yk. Then ‖uk‖ = 1 and Tuk = yk +k−1zk. So ‖Tuk−uk‖ =

k−1 and 1 ∈ σap(T ). On the other hand T 2 = 0 and so r(T ) = 0.

Note that T is not Lipschitz, since ‖Tuk − uk‖ = k−1 but ‖T 2uk − Tuk‖ = ‖Tuk‖ = 1.

The following technical lemma is essentially needed in the proofs of our main results

Theorem 3.6, Theorem 3.7, Theorem 4.1 and Theorem 4.2.

Lemma 3.5. Let ε > 0 and K ≥ 1. Then there exists n ∈ N with the following property:

if (αk)
∞
k=0 is a sequence of real numbers such that 0 ≤ αk ≤ Kk for all k, αn ≥ 1/2 and

lim supk→∞ α
1/k
k ≤ 1, then there exist m ∈ N and nonnegative numbers βk, (k = 0, 1, . . . ),

such that

β0 ≤ ε,

|βk+1 − βk| ≤ 2ε,

βk < βk+1 (for all k = 0, 1, . . . ,m− 1),

βk > βk+1 (for all k = m,m+ 1, . . .),

αmβm = 1, αkβk ≤ 1 (for all k),

lim
k→∞

αkβk+1 = 0.

Proof. Choose m0 ∈ N such that (1 + ε)m0 > 2ε−1. Choose n > m0 such that (1 + ε)n >

2Km0(1+ε)m0 . Let (αk) be a sequence of nonnegative numbers satisfying the assumptions.

Set γk = αn(1 + ε)|k−n|. Then γn = αn ≥ 1/2. Let m ∈ N satisfy
αm
γm

= max
k

αk
γk

(such an m exists since limk→∞
αk

γk
= α−1n limk→∞

αk

(1+ε)k−n = 0). In particular, we have
αm

γm
≥ αn

γn
= 1 and αm ≥ γm ≥ αn ≥ 1/2.

We show that m ≥ m0. Suppose the contrary that m < m0. Then n ≥ m, since

otherwise n < m < m0 provides a contradiction. We have αm ≤ Km and

γm = αn(1 + ε)n−m. So

αm
γm
≤ Km

αn(1 + ε)n−m
<

2Km0(1 + ε)m0

(1 + ε)n
< 1,

a contradiction. So m ≥ m0.
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Set βk = α−1m (1 + ε)−|k−m|. Clearly αmβm = 1 and βm = α−1m ≤ 2. We have

β0 = α−1m (1 + ε)−m ≤ 2(1 + ε)−m0 < ε. Clearly limk→∞ αkβk+1 = 0.

For k = 0, 1, . . . ,m− 1 we have βk < βk+1 and

βk+1−βk = α−1m
(
(1+ε)−(m−k−1)− (1+ε)−(m−k)

)
= α−1m (1+ε)k−m(1+ε−1) ≤ εα−1m ≤ 2ε.

Similarly, for k = m,m+ 1, . . . we have βk > βk+1 and

βk − βk+1 = α−1m
(
(1 + ε)−(k−m) − (1 + ε)−(k+1−m)

)
= α−1m (1 + ε)m−k−1ε ≤ 2ε.

Finally, for each k we have αk

γk
≤ αm

γm
. So

αkβk ≤
αmγkβk
γm

=
αn(1 + ε)|k−n|

αn(1 + ε)|m−n|(1 + ε)|k−m|
≤ 1

and the proof is complete. �

The following theorem is one of the main results of this section.

Theorem 3.6. Let X be a normed vector lattice, let C ⊂ X+ be a non-zero max-cone.

Let T : C → C be a mapping which is bounded, positively homogeneous and preserves

finite suprema. Let sup{rx(T ) : x ∈ C} ≤ t ≤ r(T ). Then t ∈ σap(T ).

In particular, r(T ) ∈ σap(T ).

Proof. If t = 0, then for each x ∈ C, ‖x‖ = 1 we have limn→∞ ‖T nx‖1/n = 0. For each

ε > 0 there exists k ≥ 0 such that ‖T k+1x‖ < ε‖T kx‖. If u = Tkx
‖Tkx‖ then ‖u‖ = 1 and

‖Tu‖ < ε.

So without loss of generality we may assume that t = 1.

We distinguish two cases:

I. Suppose that sup{‖
∨n
j=0 T

jx‖ : x ∈ C, ‖x‖ ≤ 1, n ∈ N} =∞.

Let k ∈ N. Find xk ∈ C, ‖xk‖ ≤ 1 and nk ∈ N such that ‖
∨nk

j=0 T
jxk‖ > k. Find

tk ∈ (1, 1 + k−1) such that t−nk−1
k > 1/2. Find rk > nk such that ‖T

rk+1xk‖
t
rk+1

k

< 1. Set

yk :=
∨rk
j=0

T jxk
tj+1
k

. Then ‖yk‖ ≥ ‖t−nk−1
k

∨nk

j=0 T
jxk‖ ≥ k/2.

Set uk = yk
‖yk‖

. Then ‖uk‖ = 1 and by Lemma 3.1 it follows

‖Tuk − uk‖ ≤ ‖Tuk − tkuk‖+ (tk − 1)‖uk‖ = ‖yk‖−1
∥∥∥ rk∨
j=0

T j+1xk

tj+1
k

−
rk∨
j=0

T jxk

tjk

∥∥∥+ (tk − 1)

≤ ‖yk‖−1
∥∥∥T rk+1xk

trk+1
k

− xk
∥∥∥+ k−1 ≤ 2‖yk‖−1 + k−1 ≤ 5

k
→ 0

as k →∞. Hence 1 ∈ σap(T ).

II. Suppose that

M0 := sup
{∥∥∥ n∨

j=0

T jx
∥∥∥ : x ∈ C, ‖x‖ ≤ 1, n ∈ N

}
<∞.
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Let ε > 0 and K := ‖T‖. Let n be the number constructed in Lemma 3.5. We have

‖T n‖ ≥ r(T n) = r(T )n ≥ 1. Find x ∈ C such that ‖x‖ = 1 and ‖T nx‖ ≥ 1/2. Let

αk = ‖T kx‖.
By Lemma 3.5, there exist m ∈ N and nonnegative numbers βk such that β0 ≤ ε,

|βk+1− βk| ≤ 2ε, βk < βk+1 for all k = 0, 1, . . . ,m− 1, βk > βk+1 for all k = m,m+ 1, . . .,

αmβm = 1, αkβk ≤ 1 for all k and limk→∞ αkβk+1 = 0.

Fix r > m such that βr < ε‖T r−1x‖−1.
Set u =

∨r
k=0 βkT

kx. Since u ≥ βmT
mx, we have ‖u‖ ≥ βm‖Tmx‖ = 1. By Lemma 3.1

and Lemma 3.2 we have

‖Tu− u‖ =
∥∥∥ r∨
k=0

βkT
k+1x−

r∨
k=0

βkT
kx
∥∥∥

≤
∥∥∥β0x∥∥∥+

∥∥∥ m∨
k=1

T kxβk −
m∨
k=1

T kxβk−1

∥∥∥+
∥∥∥ r∨
k=m+1

T kxβk−1 −
r∨

k=m+1

T kxβk

∥∥∥+
∥∥∥βrT r+1x

∥∥∥
≤ ε+

∥∥∥ m∨
k=1

T kx(βk − βk−1)
∥∥∥+

∥∥∥ r∨
k=m+1

T kx(βk−1 − βk)
∥∥∥+ εK2 ≤ ε+ 4εM0 + εK2 → 0

as ε→ 0. Hence 1 ∈ σap(T ). �

The proof above shows more. Namely, the following more general result is proved in

the same way.

Theorem 3.7. Let X be a normed vector lattice, let C ⊂ X+ be a non-zero max-cone.

Let T : C → C be a mapping which is bounded, positively homogeneous and preserves

finite suprema. Let C ′ ⊂ C be a bounded subset satisfying ‖T n‖ = sup{‖T nx‖ : x ∈ C ′}
for all n. Then

[sup{rx(T ) : x ∈ C ′}, r(T )] ⊂ σap(T ).

Theorem 3.6 and Lemma 3.3 imply the following result.

Corollary 3.8. Let X be a normed vector lattice and let C ⊂ X+ be a non-zero max-

cone. If T : C → C is a Lipschitz, positively homogeneous mapping which preserves finite

suprema, then r(T ) = max{t : t ∈ σap(T )}.

From Theorem 3.6 also the following corollary follows.

Corollary 3.9. Let X be a normed vector lattice and let C ⊂ X+ be a non-zero max-

cone. Let T : C → C be a bounded, positively homogeneous mapping which preserves

finite suprema. Then rx(T ) ∈ σap(T ) for each x ∈ C, x 6= 0.

Proof. Let x ∈ C, x 6= 0. Let

K = {
n∨
j=0

αjT
jx : n ∈ N, αj ≥ 0 (j = 0, 1, . . . , n)}.
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Clearly K is a non-zero max-cone, TK ⊂ K. Let y ∈ K, y =
∨n
j=0 αjT

jx for some

n, α0, . . . , αn.

Let k ∈ N. We have

‖T ky‖ ≤
n∑
j=0

αj‖T k+jx‖ ≤ max
j
αj · (n+ 1) max{‖T k+jx‖ : j = 0, 1, . . . , n}

and

‖T ky‖1/k ≤ (max
j
αj)

1/k · (n+ 1)1/k max{‖T k+jx‖ : j = 0, 1, . . . , n}1/k → rx(T )

as k →∞. So ry(T ) ≤ rx(T ). Thus sup{ry(T ) : y ∈ K} = rx(T ) ≤ r(T |K). By Theorem

3.6, rx(T ) ∈ σap(T |K) ⊂ σap(T ). �

Remark 3.10. (i) As shown in Example 3.4, in Corollary 3.8 the assumption ”T is

Lipschitz” can not be replaced by a weaker assumption ”T is bounded”.

(ii) An inspection of the proofs, or an application of the above results, show that

Theorems 3.6 and 3.7 and Corollaries 3.8 and 3.9 hold under slightly weaker assumptions

on X. It suffices that X is a ordered normed space, C ⊂ X+ a non-zero max-cone and

X+−X+ a normed vector lattice (equivalently X+ is a max-cone and there exists a lattice

norm on X+ −X+).

Let us consider the following example from [31].

Example 3.11. Let X = C[0, 1], C = X+ and let T : X → X be a bounded linear

operator defined by T (x)(s) = sx(s). The map T : C → C also preserves finite suprema

(maxima) (and is Lipschitz and positively homogeneous) on C. As pointed out in [31],

r(T ) = 1 and T (x) 6= x for all x ∈ C, x 6= 0. However, 1 ∈ σap(T ) and the approximate

sequence of vectors (xk)k∈N ⊂ C, ‖xk‖ = 1, is given by xk(s) = sk, since

‖Txk − xk‖ =
kk

(k + 1)k+1
→ 0

as k →∞.

Remark 3.12. Under additional compactness type assumptions on T , Theorem 3.6 im-

plies Krein-Rutman type results. As is well known, and also shown by Example 3.11,

some additional assumptions are necessary to obtain such results. Let X, C and T be as

in Theorem 3.6, where C is also closed. If, in addition, T is compact (and continuous)

and r(T ) > 0, then there exists y ∈ C, y 6= 0 such that Ty = r(T )y. Moreover, for each

nonzero t ∈ σap(T ) there exists an eigenvector in C.

Indeed, there exists a sequence (xk) ⊂ C, ‖xk‖ = 1, with Txk − txk → 0. Passing to a

subsequence if necessary one can assume that Txk → y for some y ∈ C. Clearly txk → y,

y 6= 0 and Ty = ty.

It is not hard to see that the same holds if we replace the assumption that ”T is

compact” by the assumption that ”T is power compact” (i.e., that there exists m ∈ N
such that Tm is compact).
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The results on the existence an eigenvector x ∈ C for a non-linear operator T corre-

sponding to r(T ) are known also under more general compactness type assumptions on T

(see e.g. [31, Theorem 3.4, Theorem 3.10]), [32, Theorem 4.4], [11, Theorem 10.6]). We

illustrate the usefulness of our Theorem 3.7 by giving an alternative proof of [31, Theorem

3.4] in the case of max-cones in Banach lattices and providing additional information in

this case (Theorem 3.14). Moreover, we do not need to assume the completeness of the

norm. In our proof we apply some of the ideas from [17]. On the other hand, the proof

of [31, Theorem 3.4] was based on a lemma from fixed point index theory ([31, Lemma

3.2], [37, Theorem 2.1]).

To do this, we firstly recall some notions from [31]. If X is a normed space, let ν denote

a homogeneous generalized measure of non-compactness on X (as defined in [31, Section

3]), i.e., ν is a map which assigns to each bounded subset of X a non-negative, finite

number ν(A) and satisfies the following five conditions:

(i) ν(A) = 0 if and only if A is compact,

(ii) ν(A+B) ≤ ν(A) + ν(B),

(iii) ν(co(A)) = ν(A),

(iv) ν(A ∪B) = max{ν(A), ν(B)},
(v) ν(λA) = λν(A) if λ ≥ 0.

Here we denote A + B = {a + b : a ∈ A, b ∈ B}, and co(A) denotes the smallest closed

convex set containing A.

Let X be normed vector lattice, let C ⊂ X+ be a non-zero closed max-cone and assume

that T : C → X is a continuous and positively homogeneous mapping (and thus bounded).

Let

νC(T ) = inf{λ > 0 : ν(T (A)) ≤ λν(A) for every bounded set A ⊂ C}

and

wC(T ) = sup{λ > 0 : ν(T (A)) ≥ λν(A) for every bounded set A ⊂ C},

where inf ∅ = ∞ and sup ∅ = 0. Note that wC(I) = νC(I) = 1 if dim(X) = ∞. In this

case we also have

(5) wC(tI − T ) ≥ t− νC(T )

for t ≥ 0. Indeed,

t = wC(tI) = wC(tI − T + T ) ≤ wC(tI − T ) + νC(T ),

which establishes (5).

If T : C → C, let

(6) βν(T ) = lim
n→∞

νC(T n)1/n = inf
n∈N

νC(T n)1/n,
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if νC(T n) <∞ except for finitely many n. (If νC(T n) =∞ for infinitely many n one may

define βν(T ) =∞.) The quantity βν(T ) was called the cone essential radius of T in [31],

but this terminology was changed in [32] due to its imperfections.

Example 3.13. [31, Examples on p. 14 and 15] Let X be a normed space and A a

bounded subset of X. By α(A) we denote the classical Kuratowski-Darbo generalized

measure of noncompactness, i.e.,

α(A) = inf{δ > 0 : there exist k ∈ N and Si ⊂ X, i = 1, . . . , k

with diam(Si) ≤ δ such that A = ∪ki=1Si},
where diam denotes the diameter of the set. In the case X = C(W ), where (W,d) is a

metric space, let us denote for δ > 0

γδ(A) = sup{|x(t)− x(s)| : x ∈ A,with t, s ∈ W satisfying d(t, s) ≤ δ}.

Then

γ(A) = inf
δ>0

γδ(A) = lim
δ→0+

γδ(A)

defines a generalized measure of noncompactness that satisfies α(A) ≤ γ(A) ≤ 2α(A).

Consequently, βα = βγ. However, there exist nonequivalent measures of non-compactness

(see [33], [34]) and this is one of the flaws of the quantity βν(T ).

The following result is a version of [31, Theorem 3.4] for max-cones in normed vector

lattices, which provides more information than [31, Theorem 3.4] even for e.g. max-cones

in Banach lattices.

Theorem 3.14. Let X be a normed vector lattice with dim(X) =∞ and let C ⊂ X+ be

a non-zero closed max-cone. Let T : C → C be a mapping which is continuous, positively

homogeneous and preserves finite suprema and let C ′ ⊂ C be a bounded subset satisfying

‖T n‖ = sup{‖T nx‖ : x ∈ C ′} for all n. Further, assume that ν is a homogeneous

generalized measure of non-compactness on X.

If t ∈ [sup{rx(T ) : x ∈ C ′}, r(T )] satisfies t > βν(T ), then there exists a nonzero x ∈ C
such that Tx = tx.

Proof. By Theorem 3.7 we have t ∈ σap(T ), so there exists a sequence (xk)k∈N ⊂ C,

‖xk‖ = 1, such that ‖(tI − T )xk‖ → 0 as k →∞. Denote A = {xk : k ∈ N}.
First assume that νC(T ) < t. By (5) we have wC(tI − T ) ≥ t − νC(T ) > 0. It follows

from

wC(tI − T )ν(A) ≤ ν((tI − T )A) = 0

that ν(A) = 0 and so A has a compact closure. Therefore, there exist z ∈ C, ‖z‖ = 1 and

a subsequence (xkj) ⊂ C such that xkj → z as j →∞ and so Tz = tz.

Since βν(T ) < t, there exists m ∈ N such that νC(Tm) < tm by (6). We also have

sup{rx(Tm) : x ∈ C ′} = (sup{rx(T ) : x ∈ C ′})m ≤ tm ≤ r(T )m = r(Tm)
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(see e.g. the proof of [31, Proposition 2.1]). By the above proved assertion there exists

y ∈ C, ‖y‖ = 1 such that Tmy = tmy. Define S = t−1T . Now the nonzero vector

x = y ∨ Sy ∨ · · · ∨ Sm−1y ∈ C

satisfies Sx = x and so Tx = tx. �

We call a max cone C ⊂ X+ σ-order complete if for any (xn)n∈N ⊂ C, such that xn ≤ y

for some y ∈ X+ and all n ∈ N, there exists ∨∞n=1xn ∈ C. In the following result we give

some sufficient conditions for the existence of x in a max-cone C such that rx(T ) = r(T ).

Proposition 3.15. Let X be a normed ordered space such that X+ is complete. Let C ⊂
X+ be a σ-order complete normal max-cone and let T : C → C be a bounded, positively

homogeneous, monotone mapping. Then there exists x ∈ C such that rx(T ) = r(T ).

Proof. The statement is trivial if r(T ) = 0. So without loss of generality we may assume

that r(T ) = 1. Then for each k ∈ N we have ‖T k‖ ≥ r(T k) = 1. Find xk ∈ C such that

‖xk‖ = 1 and ‖T kxk‖ ≥ 1/2. Set x =
∨∞
k=1 k

−2xk. Then x ∈ C, T kx ≥ k−2T kxk and so

M‖T kx‖ ≥ k−2‖T kxk‖ ≥
1

2k2
,

where M is the constant from the definition of a normal cone. So

rx(T ) = lim supk ‖T kx‖1/k ≥ 1 = r(T ). Hence rx(T ) = r(T ). �

Our results can be applied to various max-type operators (and to the corresponding

max-plus type operators and their tropical versions known also as Bellman operators)

arising in diverse areas of mathematics and related applications (see e.g. [31], [23], [30],

[29], [4] and the references cited there). We point out the following example that was

studied in detail in [31] and [32].

Example 3.16. Given a > 0, consider the following max-type kernel operators T :

C[0, a]→ C[0, a] of the form

(T (x))(s) = max
t∈[α(s),β(s)]

k(s, t)x(t),

where x ∈ C[0, a] and α, β : [0, a]→ [0, a] are given continuous functions satisfying α ≤ β.

The kernel k : S → [0,∞) is a given non-negative continuous function, where S denotes

the compact set

S = {(s, t) ∈ [0, a]× [0, a] : t ∈ [α(s), β(s)]}.

It is clear that for C = C+[0, a] it holds TC ⊂ C. We will denote the restriction T |C
again by T . The eigenproblem of these operators arises in the study of periodic solutions

of a class of differential-delay equations

εy′(t) = g(y(t), y(t− τ)), τ = τ(y(t)),

with state-dependent delay (see e.g. [31]).
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By [31, Proposition 4.8] and its proof the operator T : C → C is a positively ho-

mogeneous, Lipschitz map that preserves finite suprema. Hence by Corollary 3.8 it

follows that r(T ) = max{t : t ∈ σap(T )}. By [31, Theorem 4.3] it also holds that

r(T ) = limn→∞ b
1/n
n = infn≥1 b

1/n
n , where bn = ‖T n‖ = maxσ∈Sn kn(σ),

kn(σ) = k(s0, s1)k(s1, s2) · · · k(sn−1, sn)

and

Sn = {(s0, s1, s2, . . . , sn) : s0 ∈ [0, a], si ∈ [α(si−1), β(si−1)], i = 1, 2, . . . , n}

Recall that certain Krein-Rutman type results were proved for T : C → C in [31,

Theorems 4.1, 4.2 , 4.4, Corollaries 4.21, 4.22], i.e., under suitable additional conditions

on α, β and k (suitable generalized compactness type conditions on T ), there exists x ∈ C,

x 6= 0, such that Tx = r(T )x. However, it was also shown in [31, Proposition 4.23] that

there are also reasonable conditions on α, β and k for which such an eigenvector x does

not exist.

We also consider the following related example.

Example 3.17. Let M be a nonempty set and let X be the set of all bounded real

functions on M . With the norm ‖f‖∞ = sup{|f(t)| : t ∈ M} and natural operations X

is a normed vector lattice. Let C = X+ be the positive cone.

Let k : M ×M → [0,∞) satisfy sup{k(t, s) : t, s ∈M} <∞.

Let T : C → C be defined by (Tf)(s) = sup{k(s, t)f(t) : t ∈ M} and so ‖T‖ =

sup{k(t, s) : t, s ∈ M}. Clearly C is a max-cone, T is bounded, positive homogeneous

and preserves finite maxima. So Theorem 3.6 applies. Moreover, T is Lipschitz. So by

Corollaries 3.8 and 3.9 we have that r(T ) = max{t : t ∈ σap(T )} and rx(T ) ∈ σap(T ) for

each x ∈ C, x 6= 0. Note also that r(T ) = re(T ), where e(t) = 1 for all t ∈M .

In particular, if M is the set of all natural numbers N, our results apply to infinite

bounded non-negative matrices A = [a(i, j)] (i.e., a(i, j) ≥ 0 for all i, j ∈ N and ‖A‖ =

supi,j∈N a(i, j) <∞). In this case, X = l∞ and C = l∞+ . We denote TA = T and we have

‖TA‖ = ‖A‖ = sup
j∈N
‖TAej‖,

where {ej : j ∈ N} is the set of standard basis vectors. By Theorem 3.7 the following

result follows.

Corollary 3.18. Let A be an infinite bounded non-negative matrix and let

sup{rej(TA) : j ∈ N} ≤ t ≤ r(TA). Then t ∈ σap(TA).

Proof. The set C ′ = {ej : j ∈ N} satisfies the conditions of Theorem 3.7, which gives the

result. �

The following example shows that in general sup{rej(TA) : j ∈ N} 6= r(TA).
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Example 3.19. Consider the left (backward) shift TA : C → C, C = l∞+ ,

TA(x1, x2, x3, . . .) = (x2, x3, x4, . . .),

i.e., TAe1 = 0 and TAej = ej−1 for all j ≥ 2. Then rej(TA) = 0 for each basis element ej,

but r(TA) = 1. We also have σap(TA) = [0, 1] = σp(TA), where

σp(TA) = {t ≥ 0 : TAx = tx for some x ∈ C, ‖x‖ = 1}.

On the other hand, for its restriction TA|c+0 , to the positive cone of the space of null

convergent sequences c+0 , we have r(TA|c+0 ) = 1, σp(TA|c+0 ) = [0, 1) and σap(TA|c+0 ) = [0, 1].

Note that this again shows, in particular, that some compactness type assumptions in

Remark 3.12 and in Theorem 3.14 are necessary.

Remark 3.20. The special case of Example 3.17 when M = {1, . . . , n} for some n ∈ N
is well known and studied under the name max-algebra (an analogue of linear algebra).

Together with its isomorphic versions (max-plus algebra and min-plus algebra also known

as tropical algebra) it provides an attractive way of describing a class of non-linear prob-

lems appearing for instance in manufacturing and transportation scheduling, information

technology, discrete event-dynamic systems, combinatorial optimization, mathematical

physics, DNA analysis, ... (see e.g. [14], [15], [36], [35] [13], [16], [38] and the references

cited there).

In particular, for a non-negative n × n matrix A it holds (see e.g. [36, Theorem 2.7])

that

σap(TA) = σp(TA) = {t : there exists j ∈ {1, . . . , n}, t = rej(TA)}.
However, as Example 3.19 shows, an analogue of this result is not valid for infinite bounded

non-negative matrices.

4. Results on normal convex cones in normed spaces

Next we prove the analogues of Theorems 3.6 and 3.7 for positively homogeneous,

additive and Lipschitz maps defined on normal wedges in normed spaces. This result

generalizes and extends an implicitly known result that for a positive linear operator T

on a Banach lattice X there exists a positive sequence of approximative vectors for the

usual spectral radius (see e.g. the proof of Krein-Rutman’s theorem [1, Theorem 7.10]).

We do not assume the completeness of the norm, we do not assume that the space X is a

lattice and we also do not need to assume that the wedge C is closed. In the proof we apply

a technique of the proof of Theorem 3.6 and we include it for the sake of completeness.

Theorem 4.1. Let X be a normed space, C ⊂ X a non-zero normal wedge and let

T : C → C be positively homogeneous, additive and Lipschitz. If

sup{rx(T ) : x ∈ C} ≤ t ≤ r(T ),

then t ∈ σap(T ).

In particular, r(T ) ∈ σap(T ). Moreover, r(T ) = max{t : t ∈ σap(T )}.
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Proof. By Lemma 3.3 we have r(T ) ≥ t for all t ∈ σap(T ).

Let sup{rx(T ) : x ∈ C} ≤ t ≤ r(T ). Similarly as in the proof of Theorem 3.6 we may

assume without loss of generality that t = 1.

We distinguish two cases:

I. Suppose that sup{‖
∑n

j=0 T
jx‖ : x ∈ C, ‖x‖ = 1, n ∈ N} =∞.

Let k ∈ N. Find nk and xk ∈ C such that ‖xk‖ = 1 and ‖
∑nk

j=0 T
jxk‖ > k. Find

tk ∈ (1, 1 + k−1) such that t−nk−1
k > 1/2. Find rk > nk such that ‖T

rkxk‖
t
rk
k

< 1. Set

yk :=
∑rk

j=0
T jxk
tj+1
k

. Then M‖yk‖ ≥ ‖t−nk−1
k

∑nk

j=0 T
jxk‖ ≥ k/2, where M is the constant

from the definition of a normal cone.

Set uk = yk
‖yk‖

. Then ‖uk‖ = 1. Since T is additive, positively homogeneous and

Lipschitz with a Lipschitz constant L, we have

‖Tuk−uk‖ ≤ ‖Tuk− tkuk‖+(tk−1)‖uk‖ = ‖yk‖−1
∥∥∥T ( rk∑

j=0

T jxk

tj+1
k

)
−

rk∑
j=0

T jxk

tjk

∥∥∥+(tk−1)

≤ ‖yk‖−1
(∥∥∥T ( rk∑

j=0

T jxk

tj+1
k

)
− T

(
rk∑
j=1

T j−1xk

tjk

)∥∥∥+ 1

)
+ (tk − 1)

≤ 2M

k

(
L
∥∥∥ rk∑
j=0

T jxk

tj+1
k

−
rk∑
j=1

T j−1xk

tjk

∥∥∥+ 1

)
+ k−1 =

2M

k

(
L
∥∥∥T rkxk
trk+1
k

∥∥∥+ 1

)
+ k−1

<
2M(L+ 1) + 1

k
→ 0

as k →∞. Hence 1 ∈ σap(T ).

II. Suppose that M0 := sup{‖
∑n

j=0 T
jx‖ : x ∈ C, ‖x‖ = 1, n ∈ N} <∞.

Let ε > 0 and K = ‖T‖. Let n ∈ N be the number constructed in Lemma 3.5. We have

‖T n‖ ≥ r(T n) = r(T )n ≥ 1, so there exists x ∈ C such that ‖x‖ = 1 and ‖T nx‖ ≥ 1/2.

Write αk = ‖T kx‖.
Let m ∈ N and βk (k ≥ 0) be the numbers constructed in Lemma 3.5 , i.e., βk ≥ 0,

β0 ≤ ε, |βk+1 − βk| ≤ 2ε, βk < βk+1 for all k = 0, 1, . . . ,m − 1, βk > βk+1 for all

k = m,m+ 1, . . ., αkβk ≤ 1, αmβm = 1, limk→∞ αkβk+1 = 0.

Fix r > m such that βr < ε‖T r−1x‖−1.
Set u =

∑r
k=0 βkT

kx. Since u ≥ βmT
mx, we have M‖u‖ ≥ βm‖Tmx‖ = 1. We have

‖Tu− u‖ =
∥∥∥T ( r∑

k=0

βkT
kx

)
−

r∑
k=0

βkT
kx
∥∥∥

≤
∥∥∥T ( r∑

k=0

βkT
kx

)
−

r∑
k=1

βkT
kx
∥∥∥+

∥∥∥β0x∥∥∥
≤ L

∥∥∥ r∑
k=0

βkT
kx−

r∑
k=1

βkT
k−1x

∥∥∥+ ε
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≤ L

(∥∥∥βrT rx∥∥∥+
∥∥∥m−1∑
k=0

T kx(βk+1 − βk)
∥∥∥+

∥∥∥ r−1∑
k=m

T kx(βk − βk+1)
∥∥∥)+ ε

≤ L(Kε+ 4εM0M) + ε→ 0

as ε→ 0. Hence 1 ∈ σap(T ). �

Similarly as Theorem 3.7, the following more general result is proved in a similar way.

Theorem 4.2. Let X be a normed space, C ⊂ X a non-zero normal wedge and let

T : C → C be positively homogeneous, additive and Lipschitz. Let C ′ ⊂ C be a bounded

subset satisfying ‖T n‖ = sup{‖T nx‖ : x ∈ C ′} for all n. Then

[sup{rx(T ) : x ∈ C ′}, r(T )] ⊂ σap(T )

and r(T ) = max{t : t ∈ σap(T )}.

Remark 4.3. In fact, in the setting of Theorems 4.1 and 4.2 the map T extends to a

bounded linear operator on the normed space C − C. Note that in general C − C is not

a lattice. Moreover, the obtained approximate eigenvectors are in C.

Corollary 4.4. Let X be a normed space with a non-zero normal wedge C ⊂ X. If

T : C → C is positively homogeneous, additive and Lipschitz, then rx(T ) ∈ σap(T ) for

each x ∈ C.

Proof. Let x ∈ C and let K be the smallest wedge generated by x invariant for T , i.e.,

K = {
∑n

j=0 αjT
jx : n ∈ N, α0, . . . , αn ≥ 0}.

Let y =
∑n

j=0 αjT
jx ∈ K. Then ‖T ky‖ ≤

∑n
j=0 αj‖T k+jx‖ and it is easy to see that

ry(T |K) ≤ rx(T ) ≤ r(T |K). By Theorem 4.1, rx(T ) ∈ σap(T |K) ⊂ σap(T ). �

Remark 4.5. Let X, C and T be as in Theorem 4.2. Under additional compactness type

assumptions from Remark 3.12 or Theorem 3.14, Theorem 4.2 implies Krein-Rutman type

results, i.e., the existence of an eigenvector x ∈ C, x 6= 0 such that Tx = tx. We omit the

details. As is well-known and also illustrated by Examples 3.11 and 3.19, such additional

assumptions are necessary.

The following result is essentially known, see e.g. [32, Theorem 3.3], [22, Theorem 2.1]

and [31, Theorem 2.2 and remarks after it]. The sketch of the proof is included for the

sake of completeness.

Proposition 4.6. Let X be a normed space and C ⊂ X a non-zero normal complete

wedge. Let T : C → C be bounded and positively homogeneous. If, in addition,

(i) T is monotone on C or

(ii) T is continuous and additive on C,

then there exists x ∈ C such that rx(T ) = r(T ).
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Proof. Without loss of generality we assume that r(T ) = 1 and for each k ∈ N choose

xk ∈ C as in the proof of Proposition 3.15. Define x =
∑∞

k=1 k
−2xk ∈ C. If T satisfies (i)

or (ii), it follows that Tx ≥ k−2Txk. Conclude the proof as in the proof of Proposition

3.15. �

Remark 4.7. Similarly as in [31, Remark on p.12], a slight generalization of Proposition

4.6 is possible. Namely, if C1 ⊂ C are given wedges and T satisfies the conditions

of Theorem 4.6 with respect to the wedge C as stated. Additionally, we assume that

TC1 ⊂ C1, where the wedge C1 is complete. Then there exists x ∈ C1 that equals the

Bonsall cone spectral radius of T with respect to C1.

As pointed out (and applied) in [31] and [32, Theorem 3.3], the main reason for this

generalization is that it may happen that a non-linear map is monotone with respect to

the (pre)ordering ≤C , but it is not monotone with respect to the (pre)ordering ≤C1 (see,

for instance, [27] and the ”renormalization operators” which occur in discussing diffusion

on fractals).
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