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Abstract

We consider the inviscid incompressible limits of the rotating com-
pressible Navier-Stokes system for a barotropic fluid. We show that the
limit system is represented by the rotating incompressible Euler equation
on the whole space.
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1 Introduction
In this paper we consider the scaled compressible Navier-Stokes system for a
barotropic rotating fluid occupying an arbitrary open set Ω ⊂ R3, namely

∂t%+ divx(%u) = 0, (1.1) mass

∂t (%u) + divx (%u⊗ u) = − 1
Ma2∇xp(%) +

1
Re

divxS(∇xu)− (%u× ω) , (1.2) momentum

S = S(∇xu) = µ

(
∇xu +∇t

xu−
2
3
divxuI

)
+ η divxuI, µ > 0, η ≥ 0, (1.3) stress

with the following far field conditions for the density and the velocity field

lim
|x|→∞

%(x, t) = 1, lim
|x|→∞

u(x, t) = 0. (1.4) bound2

There are two unknowns: the density % = % (x, t) and the velocity field u =
u (x, t) of the fluid, functions of the spatial position x ∈ R3 and the time t ∈ R.
The scaled system contains two characteristic numbers: Ma, the Mach number
and Re, the Reynolds number.

The Mach number is the ratio between the characteristic speed of the fluid
and the speed of sound. The low Mach number limit means that the fluids
becomes incompressible. The Reynolds number is defined as the ratio of inertial
forces to viscous forces. By the high Reynolds number limit the viscosity of fluid
becomes negligible.

The shear viscosity coefficient µ and the bulk viscosity coefficient η are as-
sumed to be constant, p is a scalar function termed pressure, given function
of the density p = p (%), ω = [0, 0, 1] is the angular velocity and the quantity
(%u× ω) represents the Coriolis force. The effect of the centrifugal force is ne-
glected. This is a standard simplification adopted, for instance, in models of
atmosphere or astrophysics (see [22, 23, 24]).

We will consider the case when Ma = ε and Re = ε−1. Our aim is to
identify the system of equations in the limit of ε → 0, meaning the inviscid,
incompressible limit. More precisely, we want to show that the weak solution of
the Navier-Stokes system converges to the classical solution of the corresponding
rotating incompressible Euler system, namely

∂tv + v · ∇v + v × ω +∇xΠ = 0, divxv = 0. (1.5) euler

The incompressible inviscid limit was investigated by Lions and Masmoudi
[31] in the case of well-prepared initial data (see also [32, 33]). A different
approach by using Strichartz’s estimates for the linear wave equation has been
developed by Schochet [39]. For the application of the Strichartz’s estimates in
the case of low Mach number limit the reader can refer to the work of Desjardins
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and Grenier [5]. Incompressible inviscid limit in the case of ill-prepared initial
data was study by Masmoudi [34] in the whole space case and also in the case
with periodic boundary conditions.

We consider a fluid in a rotating frame only in the whole space R3. Com-
paring with article of Masmoudi [34] we used a different technique based on the
relative energy inequality and weak-strong uniqueness, see [15].

The relative energy inequality was introduced by Dafermos [3] and in the
fluid context was introduced by Germain [21]. Deriving the relative energy in-
equality for sufficient smooth test functions and proving the weak-strong unique-
ness it gives us very powerful and elegant tool for the purpose of measuring the
stability of a solution compared to another solution with a better regularity.
This method was developed by E. Feireisl, A. Novotný and co-workers in the
framework of singular limits problems (see for example [11], [13],[15] and [20]
and references therein). For the using of the relative energy inequality in other
contexts, the reader can refer to [1], [3], [14], [16], [17], [21], [35], [38], [41] and
reference therein.

The paper is organized as follows. Section 2 will be devoted to the weak
and classical solutions of the Navier-Stokes and Euler systems, respectively. In
Section 3 we will discuss the acoustic waves generated by the compressibility
of the fluid. In Section 4 we prove the convergence of the weak solution of the
Navier-Stokes system to the classical solution of the Euler system through the
use of the relative energy inequality.

2 Weak and classical solutions
In this section we introduce the definition of weak solutions for the compressible
Navier-Stokes system (1.1 - 1.3). In particular, we define the so-called bounded
energy weak solution (see [9], [18] and [37]) and we discuss the global-in-time
existence. Finally, we discuss the global existence of the classical solution of the
incompressible Euler system (1.5).

The introduction of the bounded energy weak solution is motivated by the
following discussion. In [4] it was shown the existence of weak solutions to
the compressible Navier-Stokes equations on unbounded domain satisfying the
differential form of the energy inequality (and consequently the integral form)
for a barotropic fluid with finite mass. While the existence of weak solutions for
a fluid with infinite mass remains an open question. Weak solutions satisfying
the differential form of the energy inequality are usually termed finite energy
weak solutions (see [1], [15], [19], [26] and [37]), while weak solutions satisfying
the integral form of the energy inequality are usually termed bounded energy
weak solutions (see [9], [18] and [37]).

Because our analysis will be performed in the whole space R3 under the
condition that the mass of the fluid is infinite (see relation 1.4), we have to
use the integral form of the energy inequality and consequently to deal with
bounded energy weak solutions.
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2.1 Bounded energy weak solution
Multiplying (formally) the equation (1.2) by u and integrating by parts, we
deduce the energy inequality in its integral form

E(τ) +
ˆ τ

0

ˆ
Ω

S (∇xu) : ∇xu dxdt ≤ E0 (2.1) ei

where the total energy E is given by the formula

E = E [%,u] (t) =
ˆ

Ω

1
2
% |u|2 +H(%)dx, (2.2) e

with E0 the initial energy, and

H(%) =
1

γ − 1
(%γ − γ%+ γ − 1) (2.3) h

the Helmholtz free energy (see [9], [11] and [37]). The parameter γ is the adia-
batic index or heat capacity ratio.

Now, we define the so-called bounded energy weak solution of the compress-
ible Navier-Stokes system (1.1 - 1.3) (see [18] and [37]).

be Definition 1. (Bounded energy weak solution) Let Ω ⊂ R3 be an arbitrary
open set. We say that [%,u] is a bounded energy weak solution of the com-
pressible Navier-Stokes system (1.1 - 1.3) in the time-space cylinder (0, T )× Ω
if

% ∈ L∞
(
(0, T ) , L1(Ω)

)
, % ≥ 0 a.e. in (0, T )× Ω,

H(%) ∈ L∞((0, T ) , L1(Ω)),

u ∈ L2

(
(0, T ) ,

(
D1,2

0 (Ω)
)3
)
, % |u|2 ∈ L∞

(
(0, T ) , L1(Ω)

)
.

The continuity equation (1.1) holds in D′((0, T )×Ω). The momentum equation
(1.2) holds in D′((0, T )×Ω). The energy inequality (2.1) holds for a.a. τ ∈ (0, T )
with E defined by

E =
ˆ

Ω

1
2
|%u|2

%
1{x;%>0} +H(%)dx (2.4) e_r

and E0 defined by

E0 =
ˆ

Ω

1
2
|%0u0|2

%0
1{x;%0>0} +H(%0)dx. (2.5) e_r0

Remark 2. Here, the space D1,2
0 (Ω) is a completion of D(Ω) - the space of

smooth functions compactly supported in Ω - with respect to the norm

‖v‖2D1,2
0 (Ω) =

ˆ
Ω

|∇v|2 dx.
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Now, the following theorem concerns with the global-in-time existence of
bounded energy weak solution (see [9] and [18]).

thm: 1 Theorem 3. (Global-in-time existence of bounded energy weak solution) Let
Ω ⊂ R3 be an arbitrary open set. Let the pressure p be given by a general
constitutive law satisfying

p ∈ C1 [0,∞) , p(0) = 0,
1
a
%γ−1 − b ≤ p′(%) ≤ a%γ−1 + b, for all % > 0

(2.6) pressure
with

a > 0, b ≥ 0, γ >
3
2
.

Let the initial data %0, u0 satisfy

%0 ∈ L1(Ω), H(%0) ∈ L1(Ω), %0 ≥ 0 a.e. in Ω,

%0u0 ∈
(
L1 (Ω)

)3 such that
|%0u0|2

%0
1{x;%0>0} ∈ L1 (Ω)

and such that %0u0 = 0 whenever x ∈ {%0 = 0} . (2.7) id

Then the problem (1.1 - 1.3) admits at least one bounded energy weak solution
[%,u] on (0, T ) × Ω in the sense of Definition 1. Moreover [%,u] satisfy the
energy inequality (2.1).

Remark 4. The first existence result for problem (1.1 - 1.3) was obtained by
Lions [30] in the case when Ω ⊂ R3 is a domain with smooth and compact
boundary and flow is isentropic p(%) ≈ %γ with γ ≥ 9

5 . This result was extended
to more physical case to γ > 3

2 in [19] in the case when Ω is a bounded smooth
domain. Existence for certain classes of unbounded domains was shown in [37]
(see also [30]).

Remark 5. Theorem 3 in [9] and [18] concerns the existence of a bounded energy
weak solution for a given external force f(x, t), bounded and measurable function
of the time t ∈ (0, T ) and the spatial coordinate x ∈ Ω. Its validity in the
presence of the Coriolis force is maintained since this force is considered a sort of
perturbation for the compressible Navier-Stokes system (see for example [14, 16]
and reference therein).

2.2 Classical solutions to the Euler system - target system
For the solvability of the system (1.5) with the initial data v(0) = v0, we report
the following result (see [42]):
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thm: 2 Theorem 6. Let s ∈ R satisfy s > 3
2 + 1. Then, for 0 < T < ∞ and

v0 ∈ W s,2
(
R3
)

satisfying divxv0 = 0, there exists a positive parameter Ω0 =
Ω0(s, T, ‖v0‖W s,2) such that if |ω| ≥ Ω0 then the system (1.5) possesses a unique
classical solution v satisfying

v ∈ C
(
[0, T ] ;W s,2(R3; R3)

)
,

∂tv ∈ C
(
[0, T ] ;W s−1,2(R3; R3)

)
,

∇Π ∈ C
(
[0, T ] ;W s,2(R3; R3)

)
. (2.8) reg

Remark 7. The global existence stated above was proved in [25] for the initial
data in W s,2

(
R3
)

with s > 7/2.

Remark 8. Theorem 6 deals with inviscid flows in a rotating frame under the
condition of fast rotation. In terms of scale analysis (see [36]), if we define by U
and L the characteristic velocity and length scale of the fluid, we can estimate
the order of magnitude of the non-linear term and the rotational term in the
equation (1.5) as follows

v · ∇v ∼ O

(
U2

L

)
, (2.9) vel

v × ω ∼ O (ΩU) , (2.10) om

where

ω ∼ O (Ω) ∼ O

(
U

L

)
, (2.11) omega

with Ω characteristic angular velocity. Comparing (2.9) and (2.10), we have

U

L
∼ Ω. (2.12) comp

Fast rotation implies

U

ΩL
� 1 (2.13) fast

and we can neglect the non-linear term in (1.5), obtaining

∂tv + v × ω +∇xΠ = 0, divxv = 0. (2.14) euler_lin

These are linear equations. In other words, fast rotation leads to averaging
mechanism that weakens the nonlinear effects. This of course prevents singu-
larity allowing the life span of the solution to extend (see [2] and references
therein).
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3 Acoustic waves
An oscillatory motion with small amplitude in a compressible fluid is called an
acoustic wave. Hence, the compressibility of the fluid allows the propagation
of acoustic waves. Consequently, acoustic waves should definitely disappear in
the incompressible limit regime. In the following, we introduce the acoustic
system related to the equations (1.1) and (1.2) and we discuss the decay of
acoustic waves in the limit of Mach number tends to zero introducing the so-
called dispersive estimate (see [5], [12], [34] and [40]).

For a physical explanations of acoustic wave, the reader can consult Falkovich
[6] and Landau-Lifshitz [27].

3.1 Acoustic system
Assuming the perturbation of the density is small, we can write the acoustic
system related to the equations (1.1) and (1.2) by the following linear relations
(see [11], [17] and [28, 29]):

ε∂ts+4Ψ = 0, ε∂t∇Ψ + a∇xs = 0, a = p′(1) > 0, (3.1) ac_1

with the initial data

s(0) = %
(1)
0 , ∇xΨ(0) = ∇xΨ0 = u0 − v0 (3.2) ac_2

where v0 = H[u0] and H denotes the Helmholtz projection into the space of
solenoidal functions.

3.2 Regularization
For the purpose of our work (see the next Section) and the use of the estimates
(3.6) and (3.7) for the acoustic waves decay, it is convenient to regularize the
initial data (3.2) in the following way

%
(1)
0 = %

(1)
0,η = χη ?

(
ψη%

(1)
0

)
, ∇xΨ0 = ∇xΨ0,η = χη ? (ψη∇xΨ0) , η > 0,

(3.3) smooth
where {χη} is a family of regularazing kernels and ψη ∈ C∞0 (R3) are standards
cut-off functions. Consequently, the acoustic system posses a (unique) smooth
solution [s,Ψ] and the quantities ∇xΨ and s are compactly supported in R3

(see [12]).

3.3 Energy and decay of acoustic waves
The total change in energy of the fluid caused by the acoustic wave is given by
the integral

ˆ
R3

(
1
2
a |s|2 +

1
2
|∇xΨ|2

)
dx, (3.4) den_ac
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where the integrand may be regarded as the density of sound energy (see [27]).
It is easy to verify (see [27]) that the density of sound energy is conserved in
time, namely [ˆ

R3

(
1
2
a |s|2 +

1
2
|∇xΨ|2

)
(t, ·) dx

]t=τ

t=0

= 0. (3.5) ac_en

In addition, we have the following energy estimates (see [12])

‖∇xΨ(t, ·)‖W k,2(R3;R3) + ‖s (t, ·)‖W k,2(R3)

≤ c

(
‖∇xΨ0‖W k,2(R3;R3) +

∥∥∥%(1)
0

∥∥∥
W k,2(R3)

)
, k = 0, 1, ..., (3.6) en_est

for any t > 0. Instead, concerning the decay of the acoustic waves in the
incompressible limit, the following dispersive estimates hold (see [5], [12], [34]
and [40])

‖∇xΨ(t, ·)‖W k,p(R3;R3) + ‖s (t, ·)‖W k,p(R3)

≤ c(1 +
t

ε
)−( 1

q−
1
p )
(
‖∇xΨ0‖W k,q(R3;R3) +

∥∥∥%(1)
0

∥∥∥
W k,q(R3)

)
, (3.7) disp_est

2 ≤ p ≤ ∞,
1
p

+
1
q

= 1, k = 0, 1, ....

4 Convergence
In this section we introduce the relative energy functional with the associated
relative energy inequality. Then, we present the main result and a priori esti-
mates. Finally, we perform the convergence to the incompressible Euler system.
Fixing η > 0, our goal is to perform the limit for ε→ 0.

4.1 Relative energy inequality
We introduce the relative energy functional

E(%,u | r,U) =
ˆ

R3

[
1
2
% |(u−U)|2

+
1
ε2

(H (%)−H ′ (r) (%− r)−H (r))
]

dx (4.1) entr_funct

along with the relative energy inequality associated to the Navier-Stokes system
(1.1 - 1.3)

[E(%,u | r,U)]t=τ
t=0

8



+ε
ˆ τ

0

ˆ
R3
S (∇xu−∇xU) : (∇xu−∇xU)dxdt ≤

ˆ τ

0

R(%,u, r,U)dt, (4.2) entr_ineq

where the remainder R is expressed as follows

R(%,u, r,U) =
ˆ

R3
% (∂tU + u · ∇xU) · (U− u)dx

+ε
ˆ

R3
S(∇xU) : (∇xU−∇xu)dx

+
1
ε2

ˆ
R3

((r − %) ∂tH
′(r) +∇xH

′(r) · (rU− %u))dx

− 1
ε2

ˆ
R3

(p(%)− p(r))divxUdx

+
ˆ

R3
(%u× ω) · (U− u) dx := I1 + ...+ I5 (4.3) rem

and for all smooth functions r, U such that

r > 0, r − 1 ∈ C∞c
(
[0, T ]× R3

)
, U ∈ C∞c

(
[0, T ]× R3; R3

)
. (4.4) test

It can be shown (see [15]) that any bounded energy weak solution [%,u] to
the compressible Navier-Stokes system (1.1 - 1.3) satisfies the relative energy
inequality for any pair of sufficiently smooth test functions r, U as in (4.4). As
mentioned before, the relative energy functional (4.1) can be used to measure
the stability of the solutions [%,u] as compared to the test functions [r,U]. The
particular choice of [r,U] will be clarified later.

4.2 Main result
The main result of the present paper can be stated as follows:

thm: 3 Theorem 9. Let M > 0 be a constant. Let the pressure p satisfy the hypothesis
(2.6) and, in addition, assume p ∈ C3(0,∞). Let the initial data [%0,u0] for the
Navier-Stokes system (1.1 - 1.3) be of the following form

%(0) = %0,ε = 1 + ε%
(1)
0,ε, u(0) = u0,ε, (4.5) well data

∥∥∥%(1)
0,ε

∥∥∥
L2∩L∞(R3)

+ ‖u0,ε‖L2(R3;R3) ≤M (4.6) data bound

and satisfying the assumption (3.3). Let all the requirements of Theorem 6 be
satisfied with the initial datum for the Euler system v0 = H[u0]. Let [s,Ψ] be
the solution of the acoustic system (3.1) with the initial data (3.3). Then,
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‖√% (u− v −∇Ψ) (τ, ·)‖2L2(R3;R3)

+
∥∥∥∥%− 1

ε
(τ, ·)− s(τ, ·)

∥∥∥∥2

L2(R3)

+
∥∥∥∥%− 1
ε2/γ

(τ, ·)− s(τ, ·)
ε(2/γ)−1

∥∥∥∥γ

Lγ(R3)

≤ c

(
‖u0,ε − v0‖2L2(R3;R3) +

∥∥∥%(1)
0,ε − %

(1)
0

∥∥∥2

L2(R3)

)
, τ ∈ [0, T ] , (4.7) th

for any weak solutions [%,u] of the compressible Navier-Stokes system (1.1 -
1.3).

Thanks to the compactness of the acoustic waves and their decay due to the
dispersive estimates, a consequence of the above Theorem is the following:

cor: 4 Corollary 10. Let all the requirements of Theorem 9 be satisfied. Assume that

%
(1)
0,ε → %

(1)
0 in L2(R3), u0,ε → u0 in L2(R3; R3) when ε→ 0.

Then

ess sup
τ∈[0,T ]

‖√% (u− v) (τ, ·)‖2L2(R3;R3) → 0 when ε→ 0,

ess sup
τ∈[0,T ]

‖%− 1‖2L2(R3) → 0 when ε→ 0,

ess sup
τ∈[0,T ]

‖%− 1‖γ
Lγ(R3) → 0 when ε→ 0,

for any weak solutions [%,u] of the compressible Navier-Stokes system (1.1 - 1.3)
and [r,U] sufficiently smooth test functions.

Here and hereafter, the symbol c will denote a positive generic constant,
independent by ε, usually found in inequalities, that will not have the same
value when used in different parts of the text. The rest of the paper is devoted
to the proof of Theorem 9.

In accordance with the energy inequality (2.1), we have

ess sup
τ∈[0,T ]

‖%(τ, ·)‖Lγ∩L1(R3) ≤ c(M), (4.8) unif_bound0

ess sup
τ∈[0,T ]

‖√%u(τ, ·)‖L2(R3;R3) ≤ c(M), (4.9) unif_bound1

From (4.8) and (4.9), we obtain

‖%u(τ, ·)‖Lq(R3;R3) = ‖√%√%u(τ, ·)‖Lq(R3;R3)
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≤ ‖√%(τ, ·)‖L2γ(R3) ‖
√
%u(τ, ·)‖L2(R3;R3) , (4.10) interp

with

q =
2γ
γ + 1

. (4.11) q

We conclude that

ess sup
τ∈[0,T ]

‖%u(τ, ·)‖Lq(R3;R3) ≤ c(M), q =
2γ
γ + 1

. (4.12) unif_bound2

Moreover, introducing (see [21])

I(%, r) = H (%)−H ′ (r) (%− r)−H (r) , (4.13) I

we observe that the map % → I(%, r) is, for any fixed r > 0, a strictly convex
function on (0,∞) with global minimum equal to 0 at % = r, which grows at
infinity with the rate %γ . Consequently, the integral

´
Ω
I (%, r) (τ, x) dx in (4.2)

provides a control of (%− r) (τ, ·) in L2 over the sets {x : |%− r| (τ, x) < 1} and
in Lγ over the sets {x : |%− r| (τ, x) ≥ 1} So, for any r in a compact set (0,∞),
there holds

I(%, r) ≈ |%− r|2 1{|%−r|<1} + |%− r|γ 1{|%−r|≥1}, ∀% ≥ 0, (4.14) I_2

in the sense that I(%, r) gives an upper and lower bound in term of the right-
hand side quantity (see [1], [20] and [41]). Therefore, we have the following
uniform bounds

ess sup
τ∈[0,T ]

∥∥[(%− 1) (τ, ·)] 1{|%−1|<1}
∥∥

L2(R3)
≤ c(M)ε, (4.15) unif_bound3

ess sup
τ∈[0,T ]

(∥∥[(%− 1) (τ, ·)] 1{|%−1|≥1}
∥∥

Lγ(R3)

)
≤ c(M)ε2/γ , (4.16) unif_bound4

where we have set r = 1 and U = 0 in the relative energy inequality (4.2). Now,
the basic idea is to apply (4.2) to [r,U] = [1 + εs,v +∇xΨ]. We fix η. For the
initial data we have

[E(%,u | r,U)](0) =
ˆ

R3

1
2
%0,ε |u0,ε − u0|2 dx

+
ˆ

R3

1
ε2

[
H
(
1 + ε%

(1)
0,ε

)
− εH ′

(
1 + ε%

(1)
0

)(
%
(1)
0,ε − %

(1)
0

)
−H

(
1 + ε%

(1)
0

)]
dx,

(4.17) initial data conv
where u0 = H[u0] +∇Ψ0. Given (4.5) and (4.6), for the first term on the right
hand side of the equality (4.17) we have
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ˆ
R3

1
2
%0,ε |u0,ε − u0|2 dx

≤
ˆ

R3

1
2

∣∣∣1 + ε%
(1)
0,ε

∣∣∣ |u0,ε − u0|2 dx

≤
ˆ

R3

1
2
|u0,ε − u0|2 dx+

ˆ
R3

1
2

∣∣∣ε%(1)
0,ε

∣∣∣ |u0,ε − u0|2 dx

≤
ˆ

R3

1
2
|u0,ε − u0|2 dx+ ε

∥∥∥%(1)
0,ε

∥∥∥
L∞(R3)

ˆ
R3

1
2
|u0,ε − u0|2 dx

≤ c(M) (1 + ε) ‖u0,ε − u0‖2L2(R3;R3) . (4.18) initial data conv1

For the second term on the right hand side of the equality (4.17), setting a =
1 + ε%

(1)
0,ε and b = 1 + ε%

(1)
0 and observing that

H(a) = H(b) +H ′(b)(a− b) +
1
2
H ′′(ξ)(a− b)2, ξ ∈ (a, b) ,

|H(a)−H ′(b)(a− b)−H(b)| ≤ c |a− b|2 ,

we have

ˆ
R3

1
ε2

[
H
(
1 + ε%

(1)
0,ε

)
− εH ′

(
1 + ε%

(1)
0

)(
%
(1)
0,ε − %

(1)
0

)
−H

(
1 + ε%

(1)
0

)]
dx

≤ c(M)
ˆ

R3

1
ε2

(∣∣∣ε(%(1)
0,ε − %

(1)
0

)∣∣∣2) dx

≤ c(M)
∥∥∥%(1)

0,ε − %
(1)
0

∥∥∥2

L2(R3)
. (4.19) initial data conv2

Finally, we can conclude

[E(%,u | r,U)](0) ≤ c(M)[(1 + ε) ‖u0,ε − u0‖2L2(R3;R3) +
∥∥∥%(1)

0,ε − %
(1)
0

∥∥∥2

L2(R3)
].

Now, we decompose I1 into

I1 =
ˆ τ

0

ˆ
R3
% [(∂tU + U · ∇xU) · (U− u)]dxdt

−
ˆ τ

0

ˆ
R3
%∇xU · (U− u) · (U− u)dxdt. (4.20) conv

For the second term on the right hand side of (4.20), thanks to the Sobolev
imbedding theorem, the Minkowski inequality, (2.8) and the dispersive estimate
(3.7), we have
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ˆ τ

0

ˆ
R3
%∇xU · (U− u) · (U− u)dxdt

≤
ˆ τ

0

ˆ
R3
% |∇xU| · |(U− u)|2 dxdt

≤
ˆ τ

0

E
∥∥∇xv +∇2

xΨ
∥∥

L∞(R3;R3)
dt,

≤
ˆ τ

0

E ‖∇xv‖L∞(R3;R3) dt+
ˆ τ

0

E
∥∥∇2

xΨ
∥∥

L∞(R3;R3)
dt,

≤ c

ˆ τ

0

Edt+ c(M) [ε (log (ε+ τ)− log (ε))] , (4.21)

The first term on the right hand side of (4.20) can be rewritten as follows
ˆ τ

0

ˆ
R3
% [(∂tU + U · ∇xU) · (U− u)]dxdt

=
ˆ τ

0

ˆ
R3
%(U− u) · (∂tv + v · ∇xv)dxdt

+
ˆ τ

0

ˆ
R3
%(U− u) · ∂t∇xΨdxdt

+
ˆ τ

0

ˆ
R3
%(U− u)⊗∇xΨ : ∇xvdxdt

+
ˆ τ

0

ˆ
R3
%(U− u)⊗ v : ∇2

xΨdxdt

+
ˆ τ

0

ˆ
R3
%(U− u) · ∇x |∇xΨ|2 dxdt. (4.22) conv3

In view of uniform bound (4.12), (2.8) and dispersive estimate (3.7), the last
three integrals can be estimated as follows

ˆ τ

0

ˆ
R3
%(U−u)⊗∇xΨ : ∇xvdxdt =

ˆ τ

0

ˆ
R3
%(v+∇xΨ−u)⊗∇xΨ : ∇xvdxdt

=
ˆ τ

0

ˆ
R3

(%v)⊗∇xΨ : ∇xvdxdt

+
ˆ τ

0

ˆ
R3

(%∇xΨ)⊗∇xΨ : ∇xvdxdt

−
ˆ τ

0

ˆ
R3

(%u)⊗∇xΨ : ∇xvdxdt

13



≤ c

ˆ τ

0

‖%‖L1 ‖v‖L∞ ‖∇xΨ‖L∞ ‖∇xv‖L∞ dt

+c
ˆ τ

0

‖%‖L1 ‖∇xΨ‖L∞ ‖∇xΨ‖L∞ ‖∇xv‖L∞ dt

+c
ˆ τ

0

‖%u‖
L

2γ
γ+1

‖∇xΨ‖
L

2γ
γ−1

‖∇xv‖L∞ dt

≤ c(M)

[
ε (log (ε+ τ)− log (ε)) +

(
ε2

ε+ τ
− ε

)
+

(
γ (ε+ τ)

(
ε+τ

ε

)−1/γ

γ − 1
− γε

γ − 1

)]
;

(4.23) 1th
similarly to (4.23),

ˆ τ

0

ˆ
R3
%(U− u)⊗ v : ∇2

xΨdxdt =
ˆ τ

0

ˆ
R3
%(v +∇xΨ− u)⊗ v : ∇2

xΨdxdt

≤ c(M)

[
ε (log (ε+ τ)− log (ε)) +

(
ε2

ε+ τ
− ε

)
+

(
γ (ε+ τ)

(
ε+τ

ε

)−1/γ

γ − 1
− γε

γ − 1

)]
(4.24) 2th

and

ˆ τ

0

ˆ
R3
%(U− u) · ∇x |∇xΨ|2 dxdt =

ˆ τ

0

ˆ
R3
%(v +∇xΨ− u) · ∇x |∇xΨ|2 dxdt

≤ c(M)

[(
ε2

ε+ τ
− ε

)
+

(
ε3

2 (ε+ τ)2
− ε

)
+

(
εγ

(
ε+ τ

ε

)−1/γ

− εγ

)]
.

(4.25) 3th
Using (1.5), for the first term of (4.22), we have

ˆ τ

0

ˆ
R3
%(U− u) · (∂tv + v · ∇xv)dxdt

= −
ˆ τ

0

ˆ
R3
%(U− u) · ∇xΠdxdt−

ˆ τ

0

ˆ
R3

(U− u) · (ω × %v) dxdt

=
ˆ τ

0

ˆ
R3
%u ·∇xΠdxdt−

ˆ τ

0

ˆ
R3
%U ·∇xΠdxdt−

ˆ τ

0

ˆ
R3

(U−u) ·(ω × %v) dxdt.

(4.26) conv4
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Regarding the first integral on the right hand side of (4.26), as a consequence
of the estimate (4.12), we have

%u→ w weakly-(*) in L∞
(
0, T ;L2γ/γ+1(R3; R3)

)
, (4.27) press_conv2

where w denotes the weak limit of the composition. Now, taking the limit in
the weak formulation of the continuity equation

ε

ˆ τ

0

ˆ
R3

(
%− 1
ε

)
∂tϕdxdt+

ˆ τ

0

ˆ
R3
%u∇xϕdxdt = 0 (4.28) weak_cont

for sufficiently smooth ϕ, thanks to the estimate (4.15) and (4.16) we deduce
that

ˆ τ

0

ˆ
R3

w · ∇xϕdxdt = 0 (4.29) weak_cont_0

when ε→ 0. We may infer that
ˆ τ

0

ˆ
R3
%u · ∇xΠdxdt→

ˆ τ

0

ˆ
R3

w · ∇xΠdxdt = 0. (4.30) conv_0

For the second integral on the right hand side of (4.26), we have∣∣∣∣ˆ τ

0

ˆ
R3
%U · ∇xΠdxdt

∣∣∣∣ ≤ ∣∣∣∣ˆ τ

0

ˆ
R3

(%− 1) ·U · ∇xΠdxdt
∣∣∣∣

+
∣∣∣∣ˆ τ

0

ˆ
R3

U · ∇xΠdxdt
∣∣∣∣ . (4.31) split

For the first integral on the right-hand side of (4.31), thanks to (2.8), the esti-
mate (3.7) and the uniform bounds (4.15) and (4.16), we have

ˆ τ

0

ˆ
R3

(%− 1) ·U · ∇xΠdxdt

≤ cε

ˆ τ

0

∥∥∥∥[%− 1
ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

· ‖v +∇xΨ‖L2(R3;R3) · ‖∇xΠ‖L∞(R3;R3) dt

≤ cε

ˆ τ

0

∥∥∥∥[%− 1
ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

· ‖v‖L2(R3;R3) · ‖∇xΠ‖L∞(R3;R3) dt

+cε
ˆ τ

0

∥∥∥∥[%− 1
ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

·‖∇xΨ‖L2(R3;R3) ·‖∇xΠ‖L∞(R3;R3) dt ≤ c(M)ε

(4.32) press_conv2-1
and
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ˆ τ

0

ˆ
R3

(%− 1) ·U · ∇xΠdxdt

≤ c

ˆ τ

0

∥∥[%− 1]1{|%−1|≥1}
∥∥

Lγ(R3)
· ‖(v +∇xΨ) · ∇xΠ‖

L
γ

γ−1 (R3;R3)
dt

≤ c

ˆ τ

0

∥∥[%− 1]1{|%−1|≥1}
∥∥

Lγ(R3)
· ‖v · ∇xΠ‖

L
γ

γ−1 (R3;R3)
dt

+c
ˆ τ

0

∥∥[%− 1]1{|%−1|≥1}
∥∥

Lγ(R3)
· ‖∇xΨ · ∇xΠ‖

L
γ

γ−1 (R3;R3)
dt. (4.33) press_conv2-2

Thanks to the following interpolation inequalities

‖∇xΨ · ∇xΠ‖
L

γ
γ−1 (R3;R3)

≤ ‖∇xΨ · ∇xΠ‖
γ−1

γ

L1(R3;R3) ‖∇xΨ · ∇xΠ‖1−
γ−1

γ

L∞(R3;R3)

≤ ‖∇xΨ‖
γ−1

γ

L2(R3;R3) ‖∇xΠ‖
γ−1

γ

L2(R3;R3) ‖∇xΨ · ∇xΠ‖1/γ
L∞(R3;R3)

≤ c(M) ‖∇xΨ · ∇xΠ‖1/γ
L∞(R3;R3) ≤ c(M) ‖∇xΨ‖1/γ

L∞(R3;R3) · ‖∇xΠ‖1/γ
L∞(R3;R3)

≤ c(M) ‖∇xΨ‖1/γ
L∞(R3;R3) , (4.34) int_1

‖v · ∇xΠ‖
L

γ
γ−1 (R3;R3)

≤ ‖v · ∇xΠ‖
γ−1

γ

L1(R3;R3) ‖v · ∇xΠ‖1−
γ−1

γ

L∞(R3;R3)

≤ ‖v‖
γ−1

γ

L2(R3;R3) ‖∇xΠ‖
γ−1

γ

L2(R3;R3) ‖v · ∇xΠ‖1/γ
L∞(R3;R3)

≤ c ‖v · ∇xΠ‖1/γ
L∞(R3;R3) ≤ c ‖v‖1/γ

L∞(R3;R3) · ‖∇xΠ‖1/γ
L∞(R3;R3) ≤ c, (4.35) int_2

and the estimate (3.7), for the integral in (4.33) we have,
ˆ τ

0

∥∥[%− 1]1{|%−1|≥1}
∥∥

Lγ(R3)
· ‖v · ∇xΠ‖

L
γ

γ−1 (R3;R3)
dt

+
ˆ τ

0

∥∥[%− 1]1{|%−1|≥1}
∥∥

Lγ(R3)
· ‖∇xΨ · ∇xΠ‖

L
γ

γ−1 (R3;R3)
dt

≤ c(M)ε2/γ + c(M)ε2/γ

ˆ τ

0

‖∇xΨ‖1/γ
L∞(R3;R3) dt
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≤ c(M)ε2/γ + c(M)ε2/γ

(
γ (ε+ τ)

(
ε+τ

ε

)−1/γ

γ − 1
− γε

γ − 1

)
. (4.36) press_conv2-3

For the second integral on the right-hand side of (4.31), we have

ˆ τ

0

ˆ
R3

U · ∇xΠdxdt =
ˆ τ

0

ˆ
R3

v · ∇xΠdxdt+
ˆ τ

0

ˆ
R3
∇xΨ · ∇xΠdxdt. (4.37) press_conv2-4

Performing integration by parts in the first term on the right-hand side of (4.37),
we have

ˆ τ

0

ˆ
R3

divxv ·Πdxdt = 0

thanks to incompressibility condition, divxv = 0. For the second term on the
right-hand side of (4.37) using integration by parts and acoustic equation (3.1),
we have

ˆ τ

0

ˆ
R3
∇xΨ · ∇xΠdxdt = −

ˆ τ

0

ˆ
R3
4Ψ ·Πdxdt

= ε

ˆ τ

0

ˆ
R3
∂ts ·Πdxdt

= ε

[ˆ
R3
s ·Πdx

]t=τ

t=0

− ε

ˆ τ

0

ˆ
R3
s · ∂tΠdxdt, (4.38) phi_p

that it goes to zero for ε→ 0. For the second term of (4.22), we have
ˆ τ

0

ˆ
R3
%(U− u) · ∂t∇xΨdxdt

= −
ˆ τ

0

ˆ
R3
%u · ∂t∇xΨdxdt+

ˆ τ

0

ˆ
R3
%v · ∂t∇xΨdxdt

+
1
2

ˆ τ

0

ˆ
R3
%∂t |∇xΨ|2 dxdt, (4.39) u_phi_1

where
ˆ τ

0

ˆ
R3
%v · ∂t∇xΨdxdt

=
ˆ τ

0

ˆ
R3

(%− 1)v · ∂t∇xΨdxdt+
ˆ τ

0

ˆ
R3

v · ∂t∇xΨdxdt. (4.40) u_phi_2

We use the acoustic equation (3.1) to rewrite the first term above as follows
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ˆ τ

0

ˆ
R3

(%− 1)v · ∂t∇xΨdxdt

= −a
ˆ τ

0

ˆ
R3

%− 1
ε

v · ∇xsdxdt, (4.41) s_phi

where, thanks to (2.8), (3.7), (4.15) and (4.16), we have
ˆ τ

0

ˆ
R3

%− 1
ε

v · ∇xsdxdt

≤
ˆ τ

0

∥∥∥∥[%− 1
ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

‖v‖L2(R3;R3) ‖∇xs‖L∞(R3;R3) dt ≤ c(M)ε (log (ε+ τ)− log (ε))

(4.42) s_rho_v
and

ˆ τ

0

ˆ
R3

%− 1
ε

v · ∇xsdxdt

≤
ˆ τ

0

∥∥∥∥[%− 1
ε

]
1{|%−1|≥1}

∥∥∥∥
Lγ(R3)

‖v‖
L

γ
γ−1 (R3;R3)

‖∇xs‖L∞(R3;R3) dt

≤ c(M)ε
2
γ (log(ε+ τ)− log(ε)) , (4.43) vs

where we used the following interpolation inequality for v

‖v‖
L

γ
γ−1 (R3;R3)

≤ ‖v‖
γ−1

γ

L1(R3;R3) ‖v‖
1− γ−1

γ

L∞(R3;R3)

≤ ‖v‖
γ−1

γ

L2(R3;R3) ‖v‖
γ−1

γ

L2(R3;R3) ‖v‖
1/γ
L∞(R3;R3) ≤ c.

For the second term in (4.40), performing integration by parts, we have
ˆ τ

0

ˆ
R3

divxv · ∂tΨdxdt = 0 (4.44) div_phi

thanks to incompressibility condition, divxv = 0. Regarding I2, we have

|I2| ≤
ε

2

ˆ τ

0

ˆ
R3

(S(∇xU)− S(∇xu)) : (∇xU−∇xu) dxdt

+cε
ˆ τ

0

ˆ
R3
|S(∇xU)|2 dxdt, (4.45) diss

where we used Young inequality and the following Korn inequality

ˆ
R3
|∇xU−∇xu|2 dx ≤ c

ˆ
R3

(S(∇xU)− S(∇xu)) : (∇xU−∇xu) dx.
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The first term on the right-hand side of (4.45) can be absorbed by the second
term on the left-hand side in the relation (4.2). For the second term on the
right-hand side of (4.45), in view of (2.8) and (3.6), we have

cε

ˆ τ

0

ˆ
R3
|S(∇xU)|2 dxdt ≤ c(M)ε. (4.46) diss3

Regarding the terms I3 and I4 we deal with the following analysis. First, we
have

ˆ
R3
∇xH

′(r) · rUdx = −
ˆ

R3
p(r)divxUdx (4.47) grad_H

that it will cancel with its counterpart in I4. Next,

1
ε2

ˆ τ

0

ˆ
R3
∇xH

′(r) · (%u) dxdt =
1
ε

ˆ τ

0

ˆ
R3
H ′′(r)∇xs · (%u) dxdt

=
ˆ τ

0

ˆ
R3

H ′′(1 + εs)−H ′′(1)
ε

∇xs · (%u)dxdt+
1
ε

ˆ τ

0

ˆ
R3
p′(1)∇xs · (%u) dxdt.

(4.48) grad_H_p
Observing that

H ′′(1 + εs)−H ′′(1)
ε

= H ′′′(ξ)s, ξ ∈ (1, 1 + εs) ,∣∣∣∣H ′′(1 + εs)−H ′′(1)
ε

∣∣∣∣ ≤ cs,

the first term on the right-hand side of (4.48) can be estimated in the following
way

ˆ τ

0

ˆ
R3

H ′′(1 + εs)−H ′′(1)
ε

∇xs · (%u)dxdt

≤ c

ˆ τ

0

‖s‖L∞ ‖∇xs‖
L

2γ
γ−1 (R3;R3)

‖%u‖
L

2γ
γ+1 (R3;R3)

dt

≤ c(M)

(
εγ

(
ε+ τ

ε

)−1/γ

− εγ

)
. (4.49) H3

For the second integral on the right-hand side, using the acoustic equation (3.1),
we get

1
ε

ˆ τ

0

ˆ
R3
p′(1)∇xs · (%u) dxdt

= −
ˆ τ

0

ˆ
R3

(%u) · ∂t∇xΨdxdt (4.50) ps
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that it will cancel with its counterpart in (4.39). Now, we write

1
ε2

ˆ τ

0

ˆ
R3

[(r − %) ∂tH
′(r)− p(%)divxU]dxdt

=
1
ε

ˆ τ

0

ˆ
R3

(r − %)H ′′(r)∂tsdxdt

− 1
ε2

ˆ τ

0

ˆ
R3
p(%)4Ψdxdt

=
ˆ τ

0

ˆ
R3

(1− %)
ε

H ′′(r)∂tsdxdt+
ˆ τ

0

ˆ
R3
sH ′′(r)∂tsdxdt

− 1
ε2

ˆ τ

0

ˆ
R3
p(%)4Ψdxdt. (4.51) oth

The last term on the right-hand side can be split as follows

− 1
ε2

ˆ τ

0

ˆ
R3
p(%)4Ψdxdt

= − 1
ε2

ˆ τ

0

ˆ
R3

[p(%)− p(1)]4Ψdxdt

− 1
ε2

ˆ τ

0

ˆ
R3
p(1)4Ψdxdt. (4.52) oth_1

Using integration by parts, we have

− 1
ε2

ˆ τ

0

ˆ
R3
∇xp(1)∇xΨdxdt = 0. (4.53) oth_2

Now, we have

− 1
ε2

ˆ τ

0

ˆ
R3

[p(%)− p(1)]4Ψdxdt

= −
ˆ τ

0

ˆ
R3

[p(%)− p′(1)(%− 1)− p(1)]
ε2

4Ψdxdt

−
ˆ τ

0

ˆ
R3

p′(1)(%− 1)
ε2

4Ψdxdt. (4.54) oth_3

Then, the following estimates hold

∣∣∣∣ˆ τ

0

ˆ
R3

[p(%)− p′(1)(%− 1)− p(1)]
ε2

4Ψdxdt
∣∣∣∣ ≤ c

ˆ τ

0

E ‖4Ψ‖L∞(R3;R3) dt.

(4.55) oth_4
Now, we have
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1
2

ˆ τ

0

ˆ
R3
%∂t |∇xΨ|2 dxdt

=
1
2

ˆ τ

0

ˆ
R3

(%− 1) ∂t |∇xΨ|2 dxdt+
1
2

ˆ τ

0

ˆ
R3
∂t |∇xΨ|2 dxdt

=
1
2

ˆ τ

0

ˆ
R3

(%− 1) ∂t |∇xΨ|2 dxdt+
[
1
2

ˆ
R3
|∇xΨ|2 dx

]t=τ

t=0

, (4.56) phi

where, using (3.1) in the first term on the right-hand side, we have

ε

2

ˆ τ

0

ˆ
R3

(%− 1)
ε

∂t |∇xΨ|2 dxdt = a

ˆ τ

0

ˆ
R3

(%− 1)
ε

∇xΨ · ∇xsdxdt (4.57) phi_dec

Now, using (3.7), (4.15) and (4.16) in (4.57), we have
ˆ τ

0

ˆ
R3

(%− 1)
ε

∇xΨ · ∇xsdxdt

≤
ˆ τ

0

∥∥∥∥[ (%− 1)
ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

‖∇xΨ‖L2(R3) ‖∇xs‖L∞(R3) dt ≤ c(M)ε (log(ε+ τ)− log(ε))

(4.58) rho_phi
and

ˆ τ

0

ˆ
R3

(%− 1)
ε

∇xΨ · ∇xsdxdt

≤
ˆ τ

0

∥∥∥∥[ (%− 1)
ε

]
1{|%−1|≥1}

∥∥∥∥
Lγ(R3)

‖∇xΨ‖
L

γ
γ−1 (R3)

‖∇xs‖L∞(R3) dt

≤ c(M)ε2/γ

(
γ

(
ε+ τ

ε

)−1/γ

− γ

)
. (4.59) rho_phi_2

where we have used the following interpolation inequality for ∇xΨ

‖∇xΨ‖
L

γ
γ−1 (R3;R3)

≤ ‖∇xΨ‖
γ−1

γ

L1(R3;R3) ‖∇xΨ‖1−
γ−1

γ

L∞(R3;R3)

≤ ‖∇xΨ‖
γ−1

γ

L2(R3;R3) ‖∇xΨ‖
γ−1

γ

L2(R3;R3) ‖∇xΨ‖1/γ
L∞(R3;R3) ≤ c(M) ‖∇xΨ‖1/γ

L∞(R3;R3) .

Now, collecting the remained terms, we write
ˆ τ

0

ˆ
R3

(1− %)
ε

H ′′(r)∂tsdxdt+
ˆ τ

0

ˆ
R3
sH ′′(r)∂tsdxdt
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−
ˆ τ

0

ˆ
R3

p′(1)(%− 1)
ε2

4Ψdxdt. (4.60) p1

For the first integrals in (4.60), it is possible to show (see [17]) that,∣∣∣∣ˆ τ

0

ˆ
R3

(1− %)
ε

H ′′(r)∂tsdxdt
∣∣∣∣

≤
ˆ τ

0

ˆ
R3

(%− 1)
ε2

p′(1)4Ψdxdt+ c(M)
ˆ τ

0

E ‖4Ψ‖L∞(R3;R3) dt, (4.61) p2

where the first term on the right hand side of the inequality it will cancel with
its counterpart in (4.60). While, for the second integral in (4.60) we have

∣∣∣∣ˆ τ

0

ˆ
R3
sH ′′(r)∂tsdxdt

∣∣∣∣ ≤ p′(1)
[
1
2

ˆ
R3
s2dx

]t=τ

t=0

+c(M)
ˆ τ

0

E ‖4Ψ‖L∞(R3;R3) dt.

(4.62) p4
From (4.55), (4.61), (4.62) we need to estimate the following term

ˆ τ

0

E ‖4Ψ‖L∞(R3;R3) dt ≤ c(M) [ε (log (ε+ τ)− log (ε))] . (4.63) p4’

Finally, regarding I5, we have

ˆ τ

0

ˆ
R3

(%u× ω) · (v − u) dxdt−
ˆ τ

0

ˆ
R3

(%v × ω) · (v − u)dxdt

=
ˆ τ

0

ˆ
R3

(%u× ω) · vdxdt+
ˆ τ

0

ˆ
R3

(%v × ω) · udxdt

=
ˆ τ

0

ˆ
R3

(%u× ω) · vdxdt−
ˆ τ

0

ˆ
R3

(%u× ω) · vdxdt = 0 (4.64) rot1

and, thanks to (2.8), (3.7), (4.8) and (4.12), we have
ˆ τ

0

ˆ
R3

(%u× ω) · ∇xΨdxdt

≤
ˆ τ

0

‖%u‖
L

2γ
γ+1 (R3;R3)

‖∇xΨ‖
L

2γ
γ−1 (R3;R3)

dt

≤ c(M)

(
γ (ε+ τ)

(
ε+τ

ε

)−1/γ

γ − 1
− γε

γ − 1

)
(4.65) rot2

and
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ˆ τ

0

ˆ
R3

(%v × ω) · ∇xΨdxdt

≤
ˆ τ

0

‖%‖Lγ(R3) ‖v‖
γ

γ−1

L∞(R3;R3) ‖∇xΨ‖L∞(R3;R3) dt

≤ c(M)ε (log(ε+ τ)− log(ε)) . (4.66) rot3

Combining the previous estimates and letting ε→ 0 we can rewrite (4.2) as

[E(%,u | r,U)](τ) ≤ [E(%,u | r,U)](0) + c(M)
ˆ τ

0

Edt (4.67) gronwall

In virtue of the integral form of the Gronwall inequality, we have

[E(%,u | r,U)](τ) ≤ ([E(%,u | r,U)](0))
(
1 + c(M)τec(M)τ

)
for τ ∈ [0, T ] ,

(4.68) proof
where the quantity

(
1 + c(M)τec(M)τ

)
is bounded for fixed τ ∈ [0, T ]. Theorem

9 is proved and, consequently, Corollary 10.
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