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Abstract

The aim of the paper is to extend the result by Novotný and Nečasová
[19] to the case of dissipative measure-valued solution and derive a relative
energy inequality.

1 Formulation of the problem

We consider the compressible non-Newtonian system of power-law type. The
aim of paper is to extend the result given by Novotný and Nečasová [19] to
the more general case of measure-valued solution and derive relative energy
inequality for this system.

Before stating the problem let us first explain the meaning of a measure-
valued solution. It is a map which gives for every point in the domain a prob-
ability distribution of values and the equation is satisfied only in an average
sense. In case that the probability distribution reduced to a point mass almost
everywhere in the domain it means that measure valued solution is a weak so-
lution of the problem, see e.g. the case of incompressible non-Newtonian case
in work of Nečas et al. [13] or Bellout and Bloom [4].

The advantage of measure-valued solutions is the property that in many
cases, the solutions can be obtained from weakly convergent sequences of ap-
proximate solutions.

Measure-valued solutions for systems of hyperbolic conservations laws were
initially introduced by DiPerna [6]. He used Young measures to pass to limit
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in the artificial viscosity term. In the case of the incompressible Euler equa-
tions, DiPerna and Majda [7] also proved global existence of measure-valued
solutions for any initial data with finite energy. They introduced generalized
Young measures to take into account oscillation and concentration phenomena.
Thereafter the existence of measure-valued solutions was finally shown for fur-
ther models of fluids, e.g. compressible Euler and Navier-Stokes equations [18].
The measure-valued solution to the non-Newtonian case was proved by Novotný
and Nečasová [19]. The generalization was given by Alibert and Bouchité [2].
More details can be found in [16], [17] and [21].

Recently, weak-strong uniqueness for generalized measure-valued solutions of
isentropic Newtonian Euler equations were proved in [11]. Inspired by previous
results, the concept of dissipative measure-valued solution was finally applied
to the barotropic compressible Navier-Stokes system [12].

We will consider the motion of the fluid is governed by the following system
of equations

∂t̺+ divx(̺u) = 0 in (0, T )× Ω, (1.1)

∂t(̺u) + divx(̺u⊗ u) + ∇xp = divxS in (0, T )× Ω, (1.2)

where ̺ is the mass density and u is the velocity field, functions of the spatial
position x ∈ R

3 and the time t ∈ R. The scalar function p is termed pressure,
given function of the density. In particular, we consider the isothermal case,
namely p = λ̺, with λ > 0 a constant. The stress tensor is given by

Sij = βul,lδij + 2ωei,j(u), (1.3)

where

β = β

(
û, divxu, det

(
∂ui

∂xj

))
, ω = ω

(
û, divxu, det

(
∂ui

∂xj

))
, (1.4)

and

û =
√
ei,j(u)ei,j(u), ei,j(u) =

1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
,

β ≥ −
2

3
ω, ω ≥ 0.

We consider the Dirichlet boundary conditions

u = 0 in (0, T )× ∂Ω (1.5)

and initial data

u(0) = u0, ̺(0) = ̺0. (1.6)
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We consider the following hypothesis:

2ω

(
û, divxu, det

(
∂ui

∂xj

))
|û|2

+β

(
û, divxu, det

(
∂ui

∂xj

))
divxu divxu ≥ k2 |û|

γ
, (1.7)

2ω

(
û, divxu, det

(
∂ui

∂xj

))
eij(u)

+β

(
û, divxu, det

(
∂ui

∂xj

))
divxu δij ≤ k1 |û|

γ−1
, (1.8)

for i, j ∈ 1, 2, 3 with k1, k2 > 0, γ ≤ γ < γ + 1, γ ≥ 2. Further, we assume the
existence of a positive function ϑ(eij) such that

∂ϑ

∂eij
= 2ω

(
û, divxu, det

(
∂ui

∂xj

))
eij(u) + δijβ

(
û, divxu, det

(
∂ui

∂xj

))
divxu.

(1.9)
Remark 1. We consider power-law type of fluids. For more details see [13].

2 Mathematical preliminaries

We define φ(t) = et − t − 1 and φ2(t) = et
2

− 1 the Young functions and by
ψ(t) = (1 + t) ln (1 + t) − t, and ψ1/2(t) the complementary Young functions to
them. The corresponding Orlicz spaces are Lφ(Ω), Lφ2

(Ω), Lψ(Ω), Lψ1/2
(Ω).

These are Banach spaces equipped with a Luxembourg norm

‖u‖Lf (Ω) = inf
h

{
h > 0;

ˆ

Ω

f

(
|u(x)|

h

)
dx ≤ 1

}
< +∞, (2.1)

where f stands for φ1, φ2, ψ, ψ1/2. Let C (Ω) be the set of bounded contin-
uous functions which are defined in Ω. We denote Cψ , Cφ, Cψ1/2

and Cφ2

the closure of C (Ω) in Lψ(Ω), Lφ(Ω), Lψ1/2
(Ω), and Lφ2

(Ω), respectively.
We have (Cφ (Ω))

∗
= Lψ(Ω), (Cψ (Ω))

∗
= Lφ(Ω), (Cφ2

(Ω))
∗

= Lψ1/2
(Ω),(

Cψ1/2
(Ω)
)∗

= Lφ2
(Ω), where Cψ, Cφ, Cψ1/2

and Cφ2
are separable Banach

spaces. Further, ψ, ψ1/2 satisfy the △2-condition and we have Cψ (Ω) = Lψ(Ω),

Cψ1/2
(Ω) = Lφ2

(Ω). L∞
w

(
QT ,M

(
R
N2

))
denotes the spaces of all weakly

measurable mappings from QT into M
(
R
N2

)
with finite L∞

(
QT ,M

(
R
N2

))

norm; ν ∈ L∞

(
QT ,M

(
R
N2

))
is a weakly measurable map if and only if

(x, t) → (νx,t, g(x, t)) is Lebesgue measurable inQT for every g ∈ L1
(
QT , C0

(
R
N2

))
;

N is dimension. We define by Lp(Ω),W l,p(Ω) (resp. W
l,p
0 ), 0 ≤ l, p < +∞,

the usual Lebesque space, Sobolev spaces. We denote V k = W k,2 ∩ W
1,2
0 ,

QT = Ω × (0, T ).
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Remark 2. For more details about Orlicz spaces see [15].

Definition 3. (Measure-valued solution) Let (̺, v, ν) be such that

̺ ∈ L∞(I, Lψ), (2.2)

v ∈ L2(I, Vk) ∩ L
γ(I,W 1,γ

0 ), (2.3)

ν ∈ L∞
w

(
QT ,M

(
R
N2
))

, (2.4)

the functions

σij , β (σ̂,Trσ, det (σ)) Trσ, ω (σ̂,Trσ, det (σ)) σij (2.5)

are ν-integrable in R
N2

(Trσ = σii) and
ˆ

RN2

σijdνt,x(σ) =
∂ui

∂xj
, a.e. in QT . (2.6)

Then, we define a measured-valued solution for the system (1.1) - (1.9) in the
sense of DiPerna [6], in the following way:

−

ˆ

QT

̺ui
∂ϕi

∂t
dxdt−

ˆ

QT

̺uiujϕi,jdxdt−
ˆ

Ω0

̺0u0ϕi(0)dx− k

ˆ

QT

̺ϕi,idxdt

+

ˆ

QT

dxdt
(
ˆ

RN2

β (σ̂,Trσ, det (σ))Trσδij + 2ω (σ̂,Trσ, det (σ))σijdνt,x (σ)

)
ϕi,j = 0,

(2.7)
for all ϕ ∈ C∞

(
Qt
)
, ϕ(t) ∈W

1,γ
0 (Ω) and for any t ∈ I, ϕ(t) = 0.

Remark 4. In the Definition 3 the Young measures are defined for the gradient
of the velocity field. In the next Section the measures are considered for the
density and the velocity field.

Theorem 5. Let u0 ∈ Vk, ̺0 ∈ Cd(Ω), ̺0 > ε > 0, d = 1, 2, .... Let assump-
tions (1.7) - (1.9) be satisfied, k > N . Then, there exists (̺, u) and a family of
a probability measure νx,t on R

N2

with properties such that

(i) ν ∈ L∞
w

(
QT ,R

N2
)
, ‖νx,t‖ = 1, for a.e. (x, t) ∈ QT ;

(ii) supp νx,t ⊂ R
N2

, for a.e. (x, t) ∈ QT ;

(iii) u ∈ Lγ(I,W 1,γ
0 ) ∩ Lγ

(
I,W

1,α
0

)
, αγ > N, α < 1;

(iv) ̺ ∈ L∞(I, Lψ(Ω)) ∩ L2(I,W−1,2);
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(v) ̺u ∈ Lγ(I,W−α,γ), αγ > N, α < 1, γ + γ−1 = 1;

(vi) ̺uiuj ∈ Lγ(I,W−α,γ)

and such that (̺, u, ν) satisfies (2.7).

Proof. To prove the existence of measure-valued solutions we introduce the fol-
lowing approximation scheme (multipolar fluid introduced by Nečas and Šilhavý,
[20])

τij = −pδij +

k−1∑

s=0

τ
(s,v)
ij , (2.8)

where

τ
(s,v)
ij = τ

(s,v,lin)
ij + Sij , (2.9)

with

τ
(s,v,lin)
ij = (−1)s (µs1△

sul,lδij + 2µs2△
seij(u)) . (2.10)

The second law of thermodynamics requires additional stress tensors with the
power on an elementary surface

dSτνii1...imj
∂mui

∂xi1 ...∂xim
νj .

The higher stress tensors are defined as follows

τνii1...imj = Sym

(
k−1∑

r=m

(−1)
r+m

△r−m ∂mqriim
∂xi1 ...∂xim−1

∂xj

)
, (2.11)

where

qsij = µs1

(
∂ul

∂xl

)
δij + 2µs2eij(u) (2.12)

and symmetrization is taken with respect to (i1, ..., im). We assume that µs1 and
µs2 are constants and

µs1 ≥ −
2

3
µs2, µs2 > 0, 0 ≤ s ≤ k − 2,

µk−1
1 > −

2

3
µk−1

2 , µk−1
2 > 0. (2.13)

We denote
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((v, w)) =

ˆ

Ω

(
k−1∑

s=0

(
2µs2

∂seij(v)

∂xi1 ...∂xis

∂seij(w)

∂xi1 ...∂xis
+

+µs1
∂serr(w)

∂xi1 ...∂xis

∂sell(v)

∂xi1 ...∂xis

))
dx. (2.14)

Moreover, we consider

µs1 > −
2

3
µs2, (s = 0, ..., k − 2) . (2.15)

The system is defined by the following equations:

∂̺

∂t
+
∂ (̺ui)

∂xi
= 0, (2.16)

∂ (̺ui)

∂t
+
∂ (̺uiuj)

∂xj
−
∂τvij

∂xj
= −k

∂̺

∂xi
, (2.17)

with the initial data

u (0) = u0, ̺ (0) = ̺0 (2.18)

and boundary conditions

u = 0 on ∂Ω × I, [[v, w]] = 0 on ∂Ω × I, (2.19)

where

[[v, w]] =

k−1∑

m=1

ˆ

∂Ω

τνii1...imj
∂wmi

∂xi1 ...∂xim
νjdS. (2.20)

Weak formulation of (2.17) reads

ˆ

QT

∂ (̺ui)

∂t
ϕi −

ˆ

QT

̺uiujϕi,j +

ˆ T

0

((u, ϕ))+

+

ˆ

QT

β

(
û, divxu, det

(
∂ui

∂xj

))
divxu

∂ϕi

∂xi
+

+2

ˆ

QT

ω

(
û, divxu, det

(
∂ui

∂xj

))
eij(u)

∂ϕi

∂xj
− k

ˆ

QT

̺
∂ϕi

∂xi

=

ˆ

QT

̺biϕi, ∀ϕ ∈ L2
(
I, Vk ∩W

1,γ
0

)
. (2.21)

Let us formulate the existence and uniqueness results for the approximation
scheme:
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Lemma 6. Assume that u0 ∈ Vk and ̺0 ∈ Cd
(
Ω
)
, where ̺0 > ε > 0 and

d = 1, 2, ..... Let assumptions (1.7) - (1.9) be satisfied, k > N . Then, there
exists at least one solution (̺, u) of (2.16) - (2.17) satisfying (2.21) such that

̺ ∈ L∞ (I,W p,q) , (2.22)

where

p = min (d, k − 2) , 1 ≤ q ≤ 6 (N = 3) , 1 ≤ q <∞ (N = 2) , (2.23)

∂̺

∂t
∈ L2

(
I,W p−1,q

)
, (2.24)

u ∈ L2 (I, Vk) ∩ L
∞
(
I,W k,2 (Ω)

)
, (2.25)

∂u

∂t
∈ L2 (QT ) , (2.26)

u ∈ Lγ
(
I,W

1,γ
0 (Ω)

)
. (2.27)

Moreover, assuming that θ(eij) satisfying (1.9) is continuously differentiable in
R
N2

. Then, in the class of solutions satisfying (2.22) - (2.27), there exists at
most one solution of the problem (2.16) - (2.21).

Proof. The methods of characteristic applying to the continuity equations to-
gether with Galerkin approach on the momentum equation we get existence of
solution. For more details on the proof see [19].

Passing with higher viscosity in the limit the most problematic point is to
find a representation in terms of

ˆ

QT

β

(
ûµ, divxûµ, det

(
∂ui

∂xj

))
u
µ
i,iϕi,i+

+2

ˆ

QT

ω

(
ûµ, divxûµ, det

(
∂ui

∂xj

))
u
µ
i,jϕi,j (2.28)

We follow the classical theory introduced by Ball [3]. We define for each (x, t) ∈
QT a sequence

ν
j
x,t ≡ δ∇vj(x,t), (2.29)

where δx is the Dirac measure which lives in the point x ∈ R
N2

(
∇vµ (x, t) ∈ R

N2

)

and let us put

νj : (x, t) ∈ QT → ν
j
x,t. (2.30)
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Since
{
νj
}

is uniformly bounded in L∞
w

(
QT ;M

(
R
N2

))
, thanks to the repre-

sentation theorem
([
L1
(
QT ;C0

(
R
N2
))]∗

≈ Lw

(
QT ;M

(
R
N2
)))

(2.31)

and the separability of νj , we have ν ∈ L∞
w

(
QT ;M

(
R
N2

))
such that

νj → ν, weakly− ∗ in L∞
w

(
QT ;M

(
R
N2
))

. (2.32)

Let us recall the special case of the Ball theorem (see [3]).

Lemma 7. Let ∇vj : QT → R
N2

be uniformly bounded in Lγ (QT ) and let the
continuous function τ : R

N2

→ R satisfy

c |σ̂γ | ≤ τ (σ̂,Trσ, det σ) ≤ c (1 + |σ̂|)
γ−1

, (2.33)

where γ > γ − 1 and

sup
j=1,2,...

ˆ

QT

η (|(σ̂,Trσ, det σ)|)dxdt <∞ (2.34)

with η being Young function. Then,

‖νx,t‖ = 1, a.e. in R
N2

(2.35)

and

τ (σ̂,Trσ, det σ) → (τ, νx,t) =

ˆ

RN2

τ (σ̂,Trσ, det σ) dνx,t (σ) (2.36)

weakly - * in Lη (QT ).

Applying Lemma 7 with η (ξ) = ξγ/(γ−1), we get

ˆ

QT

[β (û, divσ, det σ)]
γ/(γ−1) dxdt ≤

ˆ

QT

|σ̂γ |dxdt ≤ const., (2.37)

which give us the measure-valued solution in the sense of DiPerna.

3 Dissipative measure-valued solutions to the com-

pressible isothermal system

We introduce the concept of dissipative measure-valued solution to the system
(1.1) - (1.2) in the spirit of [11] and [12].
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Definition 8. We say that a parameterized measure {νt,x}(t,x)∈(0,T )×Ω,

ν ∈ L∞
w

(
(0, T )× Ω;P

(
[0,∞) × R

N
))
, 〈νt,x; s〉 ≡ ̺, 〈νt,x; v〉 ≡ u,

is a dissipative measure-valued solution of the compressible Navier-Stokes sys-
tem (1.1) - (1.2) in (0, T ) × Ω, with the initial conditions ν0 and dissipation
defect D,

D ∈ L∞ (0, T ) , D ≥ 0,

if the following holds.
(i) Continuity equation. There exist a measure rC ∈ L1

(
[0, T ] ,M

(
Ω
))

and
χ ∈ L1 (0, T ) such that for a.a. τ ∈ (0, T ) and every ψ ∈ C1

(
[0, T ]× Ω

)
,

∣∣〈rC (τ) ;∇xψ
〉∣∣ ≤ χ (τ)D (τ) ‖ψ‖C1(Ω) (3.1)

and
ˆ

Ω

〈νt,x; s〉ψ (τ, ·)dx−

ˆ

Ω

〈ν0; s〉ψ (0, ·)dx

=

ˆ τ

0

ˆ

Ω

[〈νt,x; s〉 ∂tψ + 〈νt,x; sv〉 · ∇xψ] dxdt+
ˆ τ

0

〈
rC ;∇xψ

〉
dt. (3.2)

(ii) Momentum equation.

u = 〈νt,x; v〉 ∈ L2
(
0, T ;W 1,2

0

(
Ω; RN

))

and there exists a measure rM ∈ L1
(
[0, T ] ,M

(
Ω
))

and ξ ∈ L1 (0, T ) such that
for a.a. τ ∈ (0, T ) and every ϕ ∈ C1

(
[0, T ]× Ω; RN

)
, ϕ|∂Ω = 0,

∣∣〈rM (τ) ;∇xϕ
〉∣∣ ≤ ξ (τ)D (τ) ‖ϕ‖C1(Ω) (3.3)

and
ˆ

Ω

〈νt,x; sv〉ϕ (τ, ·)dx−

ˆ

Ω

〈ν0; sv〉ϕ (0, ·)dx

=

ˆ τ

0

ˆ

Ω

[〈νt,x; sv〉 ∂tϕ+ 〈νt,x; s (v ⊗ v)〉 : ∇xϕ+ 〈νt,x; p(s)〉 divxϕ] dxdt

−

ˆ τ

0

ˆ

Ω

S

(
û, divxu, det

(
∂ui

∂xj

))
: ∇xϕdxdt+

ˆ τ

0

〈
rM ;∇xϕ

〉
dt. (3.4)

(iii) Energy inequality.
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ˆ

Ω

〈
νt,x;

(
1

2
s |u|

2
+ P (s)

)〉
dx+

ˆ τ

0

ˆ

Ω

S

(
û, divxu, det

(
∂ui

∂xj

))
: ∇xu dxdt

+D (τ) ≤

ˆ

Ω

〈
ν0;

(
1

2
s |u|

2
+ P (s)

)〉
dx, for a.e. τ ∈ (0, T ),

where P (s) = (1+ s) ln(1+ s)− s. Moreover, the following version of Poincare’s
inequality holds

ˆ τ

0

ˆ

Ω

〈
νt,x; |v − u|

2
〉

dxdt ≤ cD (τ) .

We introduce the relative energy functional

E (̺, u | r, U) =

ˆ

Ω

[
1

2
̺ |u− U |

2
+ P (̺) − P ′(r)(̺ − r) − P (r)

]
dx, (3.5)

P (̺) = (1 + ̺) ln(1 + ̺) − ̺.

In fact it is shown in [8] that any finite energy weak solution (̺, u) to the
compressible newtonian barotropic Navier-Stokes system satisfies the relative
energy inequality for any pair (r, U) of sufficiently smooth test functions such
that r > 0 and U |∂Ω = 0 and this inequality is an essential tool in order to
prove the convergence to a target system. For other details see [9].

In the framework of dissipative measure-valued solution (in the spirit of [11]
and [12]) we define the functional

Emv (̺, u, | r, U) ≡

ˆ

Ω

〈
νt,x;

1

2
s |v − U |2 + P (s) − P ′(r)(̺ − r) − P (r)

〉
dx.

Theorem 9. Let the parameterized measure {νt,x}(t,x)∈(0,T )×Ω with

ν ∈ L∞
w

(
(0, T )× Ω;P

(
[0,∞) × R

N
))
, 〈νt,x; s〉 ≡ ̺, 〈νt,x; v〉 ≡ u,

be a dissipative measure-valued solution to the compressible non-Newtonian sys-
tem (1.1) - (1.2) with the initial condition ν0 and dissipation defect D. Then,
(s, ν) satisfies the following relative energy inequality

Emv +

ˆ τ

0

ˆ

Ω

S

(
û, divxu, det

(
∂ui

∂xj

))
(e(u) − e(U)) + D(τ)

≤

ˆ

Ω

〈
ν0,x;

(
1

2
s |v − U(0, ·)|

2

)
+ P (s) − P ′(r0)(s− r0) − P (r0)

〉
dx

+

ˆ τ

0

R(s, v, r, U)(t)dt (3.6)
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for a.a. τ ∈ (0, T ) and any pair of test functions (r, U) such that U ∈ C1([0, T ]×
Ω, Rn), U |∂Ω = 0, r ∈ C∞

c (QT ), r > 0, where

R(s, v, r, U)(t) = −

ˆ

Ω

(〈νt,x; sv〉 ∂tU + 〈νt,x; sv ⊗ v〉 · ∇xU) dx

ˆ τ

0

ˆ

Ω

(〈νt,x;−p(s)〉 divxU) dx

ˆ

Ω

(〈νt,x; s〉U∂tU + 〈νt,x; sv〉 · U · ∇xU) dx

−

ˆ τ

0

ˆ

Ω

〈
νt,x; (1 −

s

r
)
〉
p′(r)∂tr − 〈νt,x : sv〉 ·

p′(r)

r
∇xrdx

+

ˆ τ

0

〈
rM ;∇xU

〉
dt+

ˆ τ

0

ˆ

Ω

〈
rC ;

1

2
∇x |U |2 −∇xP

′(r)

〉
dx. (3.7)

Proof. Using the continuity equation (3.2) with test function 1
2 |U |

2, we get
ˆ

Ω

1

2
〈νt,x; s〉 |U |

2
(τ, ·)dx−

ˆ

Ω

1

2
〈ν0; s〉 |U |

2
(0, ·)dx

=

ˆ τ

0

ˆ

Ω

[〈νt,x; s〉U∂tU + 〈νt,x; sv〉 · U · ∇xU ] dxdt+

ˆ τ

0

〈
rC ;

1

2
∇xU

〉
dt,

(3.8)
provided U ∈ C1

(
[0, T ]× Ω; RN

)
. Testing (3.2) by P ′(r)

ˆ

Ω

〈νt,x; s〉P
′(r) (τ, ·)dx−

ˆ

Ω

〈ν0; s〉P
′(r) (0, ·)dx

=

ˆ τ

0

ˆ

Ω

[〈νt,x; s〉P
′′(r)∂tr + 〈νt,x; sv〉P

′′(r) · ∇xr] dxdt+
ˆ τ

0

〈
rC ;∇xP

′(r)
〉
dt

=

ˆ τ

0

ˆ

Ω

[
〈νt,x; s〉

p′(r)

r
∂tr + 〈νt,x; sv〉

p′(r)

r
· ∇xr

]
dxdt+

ˆ τ

0

〈
rC ;∇xP

′(r)
〉
dt,

(3.9)
provided r ∈ C1

(
[0, T ]× Ω; RN

)
. Moreover, we use (3.4) tested by U

ˆ

Ω

〈νt,x; sv〉U (τ, ·)dx−

ˆ

Ω

〈ν0; sv〉U (0, ·)dx

=

ˆ τ

0

ˆ

Ω

[〈νt,x; sv〉 ∂tU + 〈νt,x; s (v ⊗ v)〉 : ∇xU + 〈νt,x; p(s)〉divxU ] dxdt
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−

ˆ τ

0

ˆ

Ω

S

(
û, divxu, det

(
∂ui

∂xj

))
: ∇xUdxdt+

ˆ τ

0

〈
rM ;∇xU

〉
dt, (3.10)

for any U ∈ C1
(
[0, T ]× Ω; RN

)
, U |∂Ω = 0. Summing up (3.8) - (3.10), we get

(3.6) - (3.7).
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