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NEW GUARANTEED LOWER BOUNDS ON EIGENVALUES

BY CONFORMING FINITE ELEMENTS

TOMÁŠ VEJCHODSKÝ AND IVANA ŠEBESTOVÁ

Abstract. We provide two new methods for computing lower bounds of
eigenvalues of symmetric elliptic second-order differential operators with mixed
boundary conditions of Dirichlet, Neumann, and Robin type. The methods
generalize ideas of Weinstein’s and Kato’s bounds and they are designed for a
simple and straightforward implementation in the context of the standard finite
element method. These lower bounds are obtained by a posteriori error esti-
mators based on local flux reconstructions, which can be naturally utilized for
adaptive mesh refinement. We derive these bounds, prove that they estimate
the exact eigenvalues from below, and illustrate their practical performance by
a numerical example.

1. Introduction

We consider the problem of finding eigenvalues λi ∈ R and nonzero eigenfunc-
tions ui ∈ V , i = 1, 2, . . . , such that

a(ui, v) = λib(ui, v) ∀v ∈ V, (1.1)

where a is the inner product in the real Hilbert space V and b is a symmetric
positive semidefinite bilinear form on V , see Section 2 for details. Considering
arbitrary numbers λ∗,i ∈ R and functions u∗,i ∈ V , b(u∗,i, u∗,i) = 1, which are
supposed to approximate eigenpairs λi, ui, we introduce representatives wi ∈ V
of residuals uniquely determined by the identity

a(wi, v) = a(u∗,i, v)− λ∗,ib(u∗,i, v) ∀v ∈ V. (1.2)

Representatives wi cannot be determined exactly in general, but we can compute
estimates of their energy norm. In the context of the finite element method for
symmetric elliptic second-order differential operators, we can efficiently recon-
struct the flux ∇u∗,i and compute an accurate guaranteed upper bound ηi on the
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T. Vejchodský gratefully acknowledges the support of Neuron Fund for Support of Science,
project no. 24/2016, and the institutional support RVO 67985840.
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2 TOMÁŠ VEJCHODSKÝ AND IVANA ŠEBESTOVÁ

energy norm of wi:

‖wi‖a ≤ ηi. (1.3)

This enables to compute the following explicit lower bounds on the eigenvalue
λn:

ℓn =
1

4

(
−ηn +

√
η2n + 4λ∗,n

)2
, (1.4)

Ln = λ∗,n

(
1 + νλ∗,n

s∑

i=n

η2i
λ2∗,i(ν − λ∗,i)

)−1

, (1.5)

where ν is assumed to satisfy λ∗,s < ν for some index s ≥ n. Quantity ℓn is proved
to be below λn if λn−1λn ≤ λ2∗,n ≤ λnλn+1, see Theorem 2.3 below. Similarly, Ln

is a lower bound on λn if λ∗,s < ν ≤ λs+1 and if λ∗,i, u∗,i, i = n, n+1, . . . , s, solve
a discrete eigenvalue problem, see Theorem 2.5 below.
Lower bound ℓn is quite general and robust, but its convergence in terms of

ηn is linear, which is suboptimal. Lower bound Ln converges with the optimal
quadratic speed, but it requires an additional parameter ν to be chosen, which
may be complicated in some cases. The accuracy of Ln depends on the size of
ν − λ∗,s and this size is limited by the spectral gap λs+1 − λs. Therefore we try
to choose s ≥ n such that the spectral gap λs+1 − λs is relatively large.
Lower bounds ℓn and Ln are inspired by Weinstein’s [15, Corollary 6.20] and

Kato’s [23] bounds, respectively. However, Weinstein’s and Kato’s bounds are
standardly formulated for an abstract operator on a Hilbert space and it is not
immediately clear, how to use them in practical computations, especially if the
trial functions do not posses extra regularity such that the elliptic operator can
be applied pointwise. Therefore, we modify these classical results in a nontrivial
way such that they can be straightforwardly used for the eigenvalue problem
(1.1) and consequently in the context of the finite element method with the
standard regularity of trial functions. The finite element method as a special
case of the Galerkin method is well known to provides guaranteed upper bounds
on eigenvalues and, thus, in combination with bounds ℓn and Ln we obtain two-
sided bounds and full control of accuracy. For a nice survey of existing eigenvalue
bounds including Weinstein’s and Kato’s bounds and for their generalizations we
refer to [36].
The difficult problem of lower bounds of eigenvalues have already been studied

for decades and several different approaches were developed. Recently, the non-
conforming finite element methods were proposed [5, 21, 22, 28, 29, 31, 32, 38, 49].
These approaches provide typically an asymptotic lower bound in the sense that
the lower bound is guaranteed only if the corresponding discretization mesh is
sufficiently fine. Guaranteed lower bound for Laplace eigenvalues with homoge-
neous Dirichlet boundary conditions are obtained even on coarse meshes in [14]
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by using the Crouzeix–Raviart nonconforming finite elements. Paper [30] im-
proves this result by removing the separation condition for higher eigenvalues. A
generalization of these ideas to a biharmonic operator is provided in [13].
A lower bound on the smallest eigenvalue is obtained in [39] by a nonoverlap-

ping decomposition of the domain into subdomains, where the exact eigenvalues
are known. In a sense similar method is proposed in [27]. It is based on an over-
lapping decomposition of the domain into geometrically simple subdomains and
it yields a lower bound on the smallest eigenvalue for homogeneous Neumann or
mixed Neumann-Dirichlet boundary conditions. A lower bound on the smallest
eigenvalue for a triangle is obtained in [24] using a scaling. An interesting gener-
alization of the method of eigenvalue inclusions [8, 35] for the Maxwell operator
is provided in [7]. Reference [20] includes both estimators of eigenvalues and
corresponding eigenfunctions.
In [42] we propose another approach based on a combination of the method of a

priori-a posteriori inequalities [43, 26] and a complementarity technique [46, 47].
The method in [42] yields a linearly convergent lower bound on the principal
eigenvalue and it is based on a global flux reconstructions. Bounds ℓn and Ln

given by (1.4) and (1.5), respectively, improve this result in several aspects. They
are applicable for arbitrary eigenvalues, the bound Ln is quadratically convergent,
and the flux is reconstructed locally, which enables an efficient and naturally par-
allel implementation. Note that the used local flux reconstruction was originally
proposed in [11] for source problems and we modify it for eigenvalue problems.
The rest of the paper is organized as follows. Section 2 presents Weinstein’s and

Kato’s method in a general weak setting and proves the lower bounds. Section 3
introduces a particular eigenvalue problem for a symmetric second-order elliptic
differential operator, proves its well posedness and briefly describes its finite ele-
ment discretization. Section 4 derives a general guaranteed upper bound (1.3) on
the representative of the residual based on the complementarity approach. Sec-
tion 5 defines the local flux reconstruction and proves its properties. Section 6
illustrates the practical performance of the new lower bounds using the dumbbell
shaped domain example. Finally, Section 7 draws the conclusions.

2. Lower bounds in the abstract setting

This section briefly describes the rigorous mathematical setting of the eigen-
value problem (1.1). The generality of this setting enables to treat the standard
types of eigenvalue problems such as the Dirichlet, Neumann, Steklov, etc. in a
unified manner.
Let V be a real Hilbert space with a scalar product a(u, v) for u, v ∈ V . In

particular the form a(u, v) is continuous, bilinear, symmetric and positive definite.
Further, let a form b(u, v) for u, v ∈ V be continuous, bilinear, symmetric, and
positive semidefinite, i.e. b(v, v) ≥ 0 for all v ∈ V . We use notation ‖v‖2a = a(v, v)
and |v|2b = b(v, v) for the norm induced by the scalar product a and the seminorm
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induced by the bilinear form b, respectively. We assume that the seminorm | · |b is
compact with respect to the norm ‖ · ‖a, i.e. from any sequence bounded in ‖ · ‖a,
we can extract a subsequence which is Cauchy in | · |b. Under these assumptions
we consider the eigenvalue problem (1.1) and summarize its properties in the
following theorem.

Theorem 2.1. Under the above assumptions, problem (1.1) has the following
properties.

(a) There exists (at most) countable (and possibly empty) sequence of eigen-
values

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·

and the corresponding eigenfunctions can be normalized as

b(ui, uj) = δij , ∀i, j = 1, 2, . . . , N∞, (2.1)

where N∞ is the number of eigenvalues. If it is infinite, we set N∞ = ∞.
(b) The space V can be decomposed as

V = M⊕K, (2.2)

where M = span{u1, u2, . . . } is the linear span of all eigenfunctions,
dimM = N∞, and K = {v ∈ V : |v|b = 0}. Consequently, any func-
tion v ∈ V can be uniquely decomposed as

v = vM + vK, where vM ∈ M and vK ∈ K. (2.3)

(c) The decomposition (2.2) satisfies

a(v, u) = 0 ∀v ∈ M, ∀u ∈ K, (2.4)

b(v, u) = 0 ∀v ∈ V, ∀u ∈ K. (2.5)

(d) Any function v ∈ V satisfies

|v|2b =
N∞∑

i=1

|b(v, ui)|
2, (2.6)

‖v‖2a = ‖vM‖2a + ‖vK‖2a with ‖vM‖2a =
N∞∑

i=1

λi|b(v, ui)|
2, (2.7)

where vM ∈ M and vK ∈ K are given by (2.3).

Proof. To prove (a), we first mention that whenever λi, ui is an eigenpair of (1.1)
then λi > 0 and |ui|b > 0, because 0 < ‖ui‖

2
a = λi|ui|

2
b . In order to use the

spectral theory of compact operators, we define the solution operator S : V → V
by the identity

a(Su, v) = b(u, v) ∀v ∈ V. (2.8)

It is an elementary exercise to prove that the compactness of | · |b with respect
to ‖ · ‖a is equivalent to the compactness of the solution operator S. Thus, the
Hilbert–Schmidt spectral theorem [19, Theorem 4, Chapter II, section 3] applied
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to S provides the existence of the countable sequence of eigenvalues and the
corresponding orthogonal system of eigenfunctions.
Statement (b) is another consequence of the Hilbert–Schmidt spectral theorem,

because it claims that V = M ⊕ kerS, where kerS = {v ∈ V : Sv = 0} is the
kernel of S. Thus, it remains to show the equality K = kerS. If u ∈ K then

|b(u, v)| ≤ |u|b|v|b = 0 ∀v ∈ V. (2.9)

Thus, a(Su, v) = b(u, v) = 0 for all v ∈ V and Su = 0. On the other hand, if
u ∈ kerS then 0 = a(Su, u) = b(u, u) = |u|2b and u ∈ K.

To prove identity (2.4) in (c), we express v ∈ M as v =
∑N∞

i=1 ciui and proceed
as follows:

a(v, u) =
N∞∑

i=1

cia(ui, u) =
N∞∑

i=1

ciλib(ui, u) =
N∞∑

i=1

ciλia(ui, Su) = 0,

where the last equality holds, because u ∈ K = kerS. Identity (2.5) has already
been proved in (2.9).
Finally, the equalities in (d) follow from the splitting (2.3). Since b(v, uK) =

a(v, SuK) = 0 for all uK ∈ K = kerS and all v ∈ V , we obtain |v|b = |vM|b.
The expansion vM =

∑N∞

i=1 ciui with ci = b(v, ui) = a(v, ui)/λi and the Parseval’s

identity |vM|2b =
∑N∞

i=1 c
2
i yields (2.6). Similarly, by (2.4) we obtain ‖v‖2a =

‖vM‖2a + ‖vK‖2a and easy computation gives ‖vM‖2a =
∑N∞

i=1 c
2
iλi, which shows

(2.7). �

Properties listed in Theorem 2.1 enable to prove an estimate of a certain dis-
tance between an arbitrary number λ∗,n ∈ R and the exact spectrum.

Theorem 2.2. Let λi, i = 1, 2, . . . , be eigenvalues of (1.1). Let u∗,n ∈ V \ {0}
and λ∗,n ∈ R be arbitrary. Consider wn ∈ V given by (1.2). Then

min
i

|λi − λ∗,n|
2

λi
≤

‖wn‖
2
a

|u∗,n|2b
. (2.10)

Proof. By (2.7) and (1.2) we express

‖wn‖
2
a − ‖wK

n ‖
2
a =

N∞∑

i=1

λi|b(wn, ui)|
2 =

N∞∑

i=1

|a(wn, ui)|
2

λi

=
N∞∑

i=1

|a(u∗,n, ui)− λ∗,nb(u∗,n, ui)|
2

λi
=

N∞∑

i=1

|λi − λ∗,n|
2

λi
|b(u∗,n, ui)|

2. (2.11)

Thus,

‖wn‖
2
a ≥ min

i

|λi − λ∗,n|
2

λi

N∞∑

i=1

|b(u∗,n, ui)|
2

and Parseval’s identity (2.6) immediately yields the statement (2.10). �
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Next we prove that Theorem 2.2 yields a lower bound for the eigenvalue λn,
provided an approximation λ∗,n is not far away from λn in the sense that

√
λn−1λn ≤ λ∗,n ≤

√
λnλn+1. (2.12)

Theorem 2.3. Let u∗,n ∈ V , |u∗,n|b = 1, be arbitrary and let λ∗,n ∈ R satisfies
the closeness condition (2.12). Further, let there be ηn ∈ R such that wn ∈ V
given by (1.2) satisfies (1.3). Then ℓn defined in (1.4) satisfies

ℓn ≤ λn. (2.13)

Proof. For brevity, let us put λ∗ = λ∗,n and u∗ = u∗,n. Let us notice that condition
(2.12) implies that λiλn ≤ λ2∗ for all i = 1, 2, . . . , n− 1 and that λ2∗ ≤ λnλi for all
i = n + 1, n + 2, . . . , N∞. Consequently, inequality λ2∗(λi − λn) ≤ λnλi(λi − λn)
holds true for all i = 1, 2, . . . , N∞. This inequality is however equivalent to

(λn − λ∗)
2

λn
≤

(λi − λ∗)
2

λi
∀i = 1, 2, . . . , N∞.

Hence, using this estimate in (2.10), bound (1.3), and assumption |u∗,n|b = 1, we
immediately obtain

(λn − λ∗)
2

λn
≤ η2n.

This can be rewritten as the quadratic inequality λ2n−
(
2λ∗+η

2
n

)
λn+λ

2
∗ ≤ 0 and

this inequality can only be satisfied if (2.13) holds true. �

Lower bound ℓn is quite universal and robust, but its convergence with respect
to ηn is linear, which is suboptimal. However, inspired by Kato’s bound [23] we
are able to derive a quadratically convergent lower bound. Before we do it, we
introduce an auxiliary lemma.

Lemma 2.4. Let u∗ ∈ V and λ∗ ∈ R be arbitrary and let w ∈ V be given by

a(w, v) = a(u∗, v)− λ∗b(u∗, v) ∀v ∈ V, (2.14)

see (1.2). Then components uK∗ and wK defined in (2.3) satisfy

‖uK∗ ‖a = ‖wK‖a. (2.15)

Moreover,
N∞∑

i=1

|b(u∗, ui)|
2

λi
=

1

λ2∗

(
‖w‖2a + 2λ∗|u∗|

2
b − ‖u∗‖

2
a

)
. (2.16)

Proof. Using v = wK in (2.14) and orthogonalities (2.4) and (2.5), we obtain
‖wK‖2a = a(uK∗ , w

K). Similarly, by using v = uK∗ in (2.14), we have a(wK, uK∗ ) =
‖uK∗ ‖

2
a and equality (2.15) is proved.



NEW GUARANTEED LOWER BOUNDS ON EIGENVALUES 7

Using (2.11), (2.7), and (2.6), we obtain equality

‖w‖2a − ‖wK‖2a =
N∞∑

i=1

(
λi − 2λ∗ +

λ2∗
λi

)
|b(u∗, ui)|

2

= ‖u∗‖
2
a − ‖uK∗ ‖

2
a − 2λ∗|u∗|

2
b + λ2∗

N∞∑

i=1

|b(u∗, ui)|
2

λi
.

Identity (2.16) now follows by employing (2.15) and a simple rearrangement. �

Theorem 2.5. Let ũ∗,i ∈ V for i = r, r + 1, . . . , s be arbitrary. Let Ṽ∗ =

span{ũ∗,r, ũ∗,r+1, . . . , ũ∗,s}. Let λ∗,i > 0 and u∗,i ∈ Ṽ∗, |u∗,i|b = 1, i = r, r +
1, . . . , s, be the eigenvalues sorted in ascending order and the corresponding eigen-
functions of problem

a(u∗,i, v∗) = λ∗,ib(u∗,i, v∗) ∀v∗ ∈ Ṽ∗. (2.17)

Let there exist ν > 0 satisfying

λs−1 ≤ λ∗,s < ν ≤ λs+1, (2.18)

where λs+1 is the eigenvalue of (1.1). Further, let wi ∈ V be given by (1.2) and
let ηi > 0 bounds ‖wi‖a for all i = r, r + 1, . . . , s as in (1.3). Then Ln defined in
(1.5) satisfies

Ln ≤ λn (2.19)

for all n = r, r + 1, . . . , s.

Proof. Since (2.17) corresponds to a generalized matrix eigenvalue problem with
a symmetric and positive definite matrix, eigenfunctions u∗,r, u∗,r+1, . . . , u∗,s form
an orthogonal system:

a(u∗,i, u∗,j) = λ∗,iδij and b(u∗,i, u∗,j) = δij ∀i, j = r, r + 1, . . . , s. (2.20)

Let n ∈ {r, r+1, . . . , s} be arbitrary. Let us consider a function z∗ =
∑s

i=n γiu∗,i,
where coefficients γi are uniquely determined by requirements b(z∗, ui) = 0 for
i = n+1, n+2, . . . , s and

∑s
i=n γ

2
i = 1. Using (2.20), we easily derive expressions

‖z∗‖
2
a =

s∑

i=n

λ∗,iγ
2
i and |z∗|

2
b = 1. (2.21)

Now, we consider wz ∈ V given by

a(wz, v) = a(z∗, v)− λ∗,nb(z∗, v) ∀v ∈ V (2.22)
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and work out an expression for ‖wz‖a. Using (2.22), definition of z∗, and (1.2),
we have

‖wz‖2a = a(z∗, w
z)− λ∗,nb(z∗, w

z) =
s∑

i=n

γi [a(u∗,i, w
z)− λ∗,nb(u∗,i, w

z)]

=
s∑

i=n

γi [a(wi, w
z) + (λ∗,i − λ∗,n)b(u∗,i, w

z)] . (2.23)

Considering i ∈ {n, n+1, . . . , s}, we notice that identities (1.2) and (2.20) easily
imply a(u∗,j, wi) = 0 and a(wj, wi) = −λ∗,jb(u∗,j , wi) for all j = n, n + 1, . . . , s.
Consequently, using (2.22) with v = wi and definition of z∗, we derive equality

a(wi, w
z) =

s∑

j=n

γj [a(u∗,j, wi)− λ∗,nb(u∗,j , wi)] =
s∑

j=n

γj
λ∗,n
λ∗,j

a(wj, wi). (2.24)

Setting v = u∗,i in (2.22), using definition of z∗ and orthogonality (2.20), we have

a(u∗,i, w
z) = a(z∗, u∗,i)− λ∗,nb(z∗, u∗,i) = γi(λ∗,i − λ∗,n). (2.25)

The last auxiliary step is to take v = wz in (1.2) and utilize (2.24) and (2.25) to
obtain

λ∗,ib(u∗,i, w
z) = a(u∗,i, w

z)− a(wi, w
z) = γi(λ∗,i − λ∗,n)−

s∑

j=n

γj
λ∗,n
λ∗,j

a(wj, wi).

(2.26)
Finally, we substitute (2.24) and (2.26) into (2.23) and after straightforward
manipulations we arrive at

‖wz‖2a =
s∑

i=n

γ2i
(λ∗,i − λ∗,n)

2

λ∗,i
+ λ2∗,n

s∑

i=n

s∑

j=n

γiγj
λ∗,iλ∗,j

a(wi, wj). (2.27)

The following chain of inequalities leads to the lower bound (2.19). Due to
the (2.18) we easily verify that (λi−λn)(λi−ν) ≥ 0 for all i ≤ n and all i ≥ s+1.
Combining this with the definition of z∗, we have

0 ≤
N∞∑

i=1

1

λi
(λi − λn)(λi − ν)|b(z∗, ui)|

2 =
N∞∑

i=1

(
λi − (λn + ν) +

λnν

λi

)
|b(z∗, ui)|

2.

Employing identities (2.7), (2.6), and (2.16) with w = wz defined by (2.22),
λ∗ = λ∗,n, and u∗ = z∗, we obtain

0 ≤ ‖z∗‖
2
a − ‖zK∗ ‖

2
a − (λn + ν)|z∗|

2
b +

λnν

λ2∗,n

(
‖wz‖2a + 2λ∗,n|z∗|

2
b − ‖z∗‖

2
a

)
.
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Now, we substitute relations (2.21) and (2.27) into this inequality, use that fact
that ‖zK∗ ‖

2
a ≥ 0 and derive

0 ≤
s∑

i=n

λ∗,iγ
2
i − λn − ν +

λnν

λ2∗,n

(
s∑

i=n

γ2i
(λ∗,i − λ∗,n)

2

λ∗,i

+λ2∗,n

s∑

i=n

s∑

j=n

γiγj
λ∗,iλ∗,j

a(wi, wj) + 2λ∗,n −
s∑

i=n

λ∗,iγ
2
i

)
.

Using identity
∑s

i=n γ
2
i = 1, we rearrange this inequality as

s∑

i=n

(ν − λ∗,i)γ
2
i ≤

λn
λ∗,n

[
s∑

i=n

λ∗,n
λ∗,i

(ν − λ∗,i)γ
2
i + νλ∗,n

s∑

i=n

s∑

j=n

γiγj
λ∗,iλ∗,j

a(wi, wj)

]
.

(2.28)
The first sum on the right hand side can be estimated as

s∑

i=n

λ∗,n
λ∗,i

(ν − λ∗,i)γ
2
i ≤

s∑

i=n

(ν − λ∗,i)γ
2
i , (2.29)

because λ∗,n ≤ λ∗,i < ν for all i = n, n + 1, . . . , s. The double sum on the right
hand side of (2.28) can be bounded using a(wi, wj) ≤ ‖wi‖a‖wj‖a ≤ ηiηj and the
Cauchy–Schwarz inequality as

s∑

i=n

s∑

j=n

γiγj
λ∗,iλ∗,j

a(wi, wj) ≤

(
s∑

i=n

|γi|
ηi
λ∗,i

)2

≤

(
s∑

i=n

(ν − λ∗,i)γ
2
i

)(
s∑

i=n

η2i
λ2∗,i(ν − λ∗,i)

)
. (2.30)

Estimating the right-hand side of (2.28) by (2.29) and (2.30) and dividing by∑s
i=n(ν − λ∗,i)γ

2
i , we end up with inequality

1 ≤
λn
λ∗,n

(
1 + νλ∗,n

s∑

i=n

η2i
λ2∗,i(ν − λ∗,i)

)
,

which is equivalent to (2.19). �

Let us make a few remarks about the result presented in Theorem 2.5. First,
choosing n = s, the bound (2.19) simplifies to

λ∗,n

(
1 +

ν

λ∗,n(ν − λ∗,n)
η2n

)−1

≤ λn.

Second, accurate estimates ηi of the representatives of residuals ‖wi‖a are com-
puted by the flux reconstruction approach, which we describe in details below in
Section 5.
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Third, lower bound (2.19) depends on ν, which is required to satisfy (2.18).
This condition cannot be guaranteed unless a lower bound on λs+1 is known. If
an analytic (and perhaps rough) lower bound on λs+1 is known, we can use (2.19)
to compute more accurate lower bounds on λs and smaller eigenvalues. However,
a priori known lower bounds on eigenvalues are rare in practice. In Section 6
we illustrate how to compute the needed lower bound by a homotopy method
described in [34, 35].
A practical approach in applications, where the lower bounds need not to be

guaranteed, is to set ν = ℓs+1 computed by (1.4). The bound ℓs+1 is guaranteed to
be below λs+1 under the closeness condition (2.12), but this condition cannot be
verified unless lower bounds on the corresponding eigenvalues are already known.
However, resolving the eigenvalue problem with sufficient accuracy provides a
good confidence that the closeness condition holds true. In Section 6 we illustrate
how to use the computed lower bounds to verify a posteriori if the closeness
condition is likely to hold. In addition, we mention that the closeness condition
(2.12) is just a sufficient condition in Theorem 2.3 and the bound (1.4) can
be below the exact eigenvalue even if the closeness condition is not satisfied.
Numerical experiments we performed indicate that this is actually very common
situation in practical computations, see Section 6 below.
The fourth remark concerns the optimal use of Theorem 2.5. Estimate (2.19)

provides s − r + 1 lower bounds on eigenvalues λr, λr+1, . . . , λs, respectively.
In particular, we can use the lower bound on λs as a new value of ν and use
Theorem 2.5 again to obtain new lower bounds on λr, λr+1, . . . , λs−1. This
process can be repeated s− r times using for ν the best lower bound computed
so far, see [35]. As the final lower bounds we naturally choose the largest one
computed. In Section 6 below, we combine this recursive process with the lower
bound (1.4) to obtain sharper bounds on rough meshes.
Finally, we remark that Theorem 2.5 requires the exact equality in (2.17). If

we compute approximate eigenfunctions ũ∗,i using standard approaches based on
the finite element discretization, we can usually take u∗,i = ũ∗,i and the error in
identity (2.17) is on the level of machine precision. If not, then we suggest to
compute u∗,i by solving the (small) eigenvalue problem (2.17) by a direct method.
Of course, the exact equality in (2.17) cannot be reached due to round-off errors,
but this issue can be solved by the interval arithmetics as suggested in [34, 35],
for example.

3. Lower bounds for symmetric elliptic operators

This section introduces a symmetric elliptic eigenvalue problem for second-
order partial differential operators with mixed boundary conditions and all nec-
essary assumptions. It also briefly describes its finite element discretization.
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We consider the following eigenvalue problem: find λn > 0 and un 6= 0 such
that

− div(A∇un) + cun = λnβ1un in Ω,

(A∇un) · nΩ + αun = λnβ2un on ΓN, (3.1)

un = 0 on ΓD.

In order to formulate this problem in a weak sense, we consider Ω ⊂ R
2 to be a

Lipschitz domain with boundary ∂Ω split into two relatively open disjoint parts
ΓN and ΓD. Symbol nΩ stands for the unit outward normal vector. Diffusion
matrix A ∈ [L∞(Ω)]2×2, reaction coefficient c ∈ L∞(Ω) and coefficients β1 ∈
L∞(Ω), α, β2 ∈ L∞(ΓN) are assumed to be piecewise constant. Further, we
assume β1 ≥ 0 and β2 ≥ 0. Note that the assumption of piecewise constant
coefficients and of the two-dimensionality of the domain are not essential. They
are needed due to technical reasons connected with the flux reconstruction. In
order to guarantee the symmetry and ellipticity, we assume c ≥ 0 and α ≥ 0 and
the matrix A to be symmetric and uniformly positive definite, i.e. we assume
existence of a constant C > 0 such that

ξTA(x)ξ ≥ C|ξ|2 ∀ξ ∈ R
2 and for almost all x ∈ Ω,

where | · | stands for the Euclidean norm.
Defining the usual space

V = {v ∈ H1(Ω) : v = 0 on ΓD}, (3.2)

we introduce the following weak formulation of (3.1): find λn > 0 and un ∈ V \{0}
such that

a(un, v) = λnb(un, v) ∀v ∈ V, (3.3)

where

a(u, v) = (A∇u,∇v) + (cu, v) + (αu, v)ΓN
, (3.4)

b(u, v) = (β1u, v) + (β2u, v)ΓN
, (3.5)

(·, ·) stands for the L2(Ω), and (·, ·)ΓN
for the L2(ΓN) inner products.

We assume the form a(u, v) to be a scalar product in V . This is the case if at
least one of the following conditions is satisfied: (a) c > 0 on a subset of Ω of
positive measure, (b) α > 0 on a subset of ΓN of positive measure, (c) measure
of ΓD is positive. In agreement with the notation introduced above, we denote
by ‖·‖a and |·|b the norm induced by a(·, ·) and the seminorm induced by b(·, ·),
respectively.
The following theorem shows the validity of the crucial compactness assump-

tion. Consequently, eigenproblem (3.3) is well defined and posses all properties
listed in Theorem 2.1.
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Theorem 3.1. Let bilinear forms a(·, ·) and b(·, ·) be defined by (3.4) and (3.5)
with the above listed requirements on the coefficients. Let a(·, ·) be a scalar product
in V . Then the seminorm | · |b is compact with respect to the norm ‖ · ‖a.

Proof. Notice that the definition (3.5) of the form b(u, v) for u, v ∈ V is under-
stood as follows

b(u, v) = (β1Iu, Iv)L2(Ω) + (β2γu, γv)L2(ΓN),

where I : V → L2(Ω) is the identity mapping and γ : V → L2(ΓN) the trace
operator. The identity I is compact due to Rellich theorem [1, Theorem 6.3] and
the compactness of the trace operator γ is proved in [25, Theorem 6.10.5]; see
also [9].
Compactness of I and γ implies that from any sequence {vn} ⊂ V bounded in

‖ · ‖a we can extract a subsequence {vnk
} such that {Ivnk

} is Cauchy in L2(Ω)
and {γvnk

} is Cauchy in L2(ΓN). Since

|v|2b ≤ max
{
‖β1‖L∞(Ω), ‖β2‖L∞(ΓN)

}(
‖Iv‖2L2(Ω) + ‖γv‖2L2(ΓN)

)
∀v ∈ V,

we immediately see that the subsequence {vnk
} is Cauchy in | · |b as well. �

We discretize the eigenvalue problem (3.3) by the standard conforming finite
element method. To avoid technicalities with curved elements, we assume the
domain Ω to be polygonal and consider a conforming (face-to-face) triangular
mesh Th consisting of closed triangles called elements. Further, we define the
finite element space

Vh = {vh ∈ V : vh|K ∈ Pp(K), ∀K ∈ Th}, (3.6)

where Pp(K) stands for the space of polynomials of degree at most p on the
triangle K ∈ Th. With this notation, the finite element approximation of the
eigenvalue problem (3.3) reads: Find λh,n > 0 and uh,n ∈ Vh \ {0} such that

a(uh,n, vh) = λh,nb(uh,n, vh) ∀vh ∈ Vh. (3.7)

4. Guaranteed bounds based on the complementary energy

Lower bounds ℓn and Ln given by (1.4) and (1.5), respectively, require a com-
putable guaranteed upper bounds ηn on the energy norm ‖wn‖a of the represen-
tative of the residual defined in (1.2). In this section, we show how to compute
this ηn. The technique described here is based on the complementary energy (or
two energy principle), which can be traced back to the hypercircle method [44],
see also [2, 10, 40]. In this section, we provide an estimate that is close to optimal
with respect to the data computed solely on individual elements. We achieve this
by combining several possibilities how to estimate various terms involved.
Let V be given by (3.2) and let λ∗,n > 0 and u∗,n ∈ V \ {0} be an arbitrary

approximation of an eigenpair of (3.1). Further, let q ∈ H(div,Ω) be an arbitrary
vector field. Let us note that the quality of the resulting error bound depends
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heavily on an appropriate choice of q. A particular way how to compute suitable
q efficiently is described below in Section 5. However, the result presented in this
section is valid for q ∈ H(div,Ω) independently on the way it is constructed.
First, we introduce certain notation. Based on λ∗,n, u∗,n, q, we define flux F ,

residual r in Ω, and boundary residual g on ΓN as

F = A∇u∗,n − q,

r = cu∗,n − λ∗,nβ1u∗,n − div q, (4.1)

g = αu∗,n − λ∗,nβ2u∗,n + q · nΩ.

Then, we compute their various norms for every element K ∈ Th:

FK = ‖A−1/2
K F‖K , (4.2)

r1,K =

{
‖c−1/2

K r‖K if cK > 0,
∞ if cK = 0,

(4.3)

r2,K =

{
hKπ

−1(λmin
AK

)−1/2‖r‖K if
∫
K
r dx = 0,

∞ otherwise,
(4.4)

r3,K =

{
‖β−1/2

1,K r‖K if β1,K > 0,
∞ if β1,K = 0.

(4.5)

Here, quantities AK , cK , and β1,K are constant values of coefficients A, c, and
β1 restricted to the element K, respectively. Symbol ‖ · ‖K stands for the usual
norm in L2(K). In general, we adopt the notation ‖ · ‖Q and (·, ·)Q for the
norm and the inner product in L2(Q), where Q is a domain. We also denote by
‖ · ‖a,K and | · |b,K the local energy norm and the local b-seminorm, i.e. ‖v‖2a,K =

(AK∇v,∇v)K+(cKv, v)K+(αv, v)∂K∩ΓN
and |v|2b,K = (β1,Kv, v)K+(β2v, v)∂K∩ΓN

,

cf. (3.4) and (3.5). We recall that λmin
AK

stands for the smallest eigenvalue of the
local coefficient matrix AK and hK for the diameter of the element K.
Further, we define similar quantities on those edges of the element K ∈ Th that

lie on ΓN. We put EN
K = {γ : γ is an edge of K and γ ⊂ ∂K ∩ ΓN} and for all

elements K ∈ TK and all edges γ ∈ EN
K we define

g1,γ =

{
‖α−1/2

γ g‖γ if αγ > 0,
∞ if αγ = 0,

(4.6)

g2,γ =

{
min

{
CAK

K , C
AK

K

}
‖g‖γ, if cK > 0 or

∫
γ
g dx = 0,

∞ otherwise,
(4.7)

g3,γ =

{
‖β−1/2

2,γ g‖γ if β2,γ > 0,
∞ if β2,γ = 0.

(4.8)

Similarly as above, αγ and β2,γ are the constant values of α and β2 on edges

γ ∈ EN
K . Constants CAK

K and C
AK

K are given by simple modifications of [4, 3,
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Lemma 1] as

(
CAK

K

)2
=

|γ|

d|K|c1/2K

(
4h2K
λmin
AK

+
d2

cK

)1/2

,

(
C

AK

K

)2
=

|γ|

d|K|
M

AK

K

(
2hK(
λmin
AK

)1/2 + dM
AK

K

)
,

where M
AK

K = min
{
hKπ

−1
(
λmin
AK

)−1/2
, c

−1/2
K

}
and d = 2 stands for the dimen-

sion. Note that we formally consider the possibility CAK

K = ∞ in the case of

cK = 0 and C
AK

K = ∞ if
∫
γ
g dx 6= 0.

To proceed, we introduce sets EN0
K = {γ ∈ EN

K : β2,γ = 0} and EN+
K = {γ ∈ EN

K :
β2,γ > 0}. For all elements K ∈ Th we define

MK = min






F 2

K + r21,K +
∑

γ∈EN
K

g21,γ




1/2

,
(
F 2
K + r21,K

)1/2
+
∑

γ∈EN
K

g2,γ ,


F 2

K +
∑

γ∈EN
K

g21,γ




1/2

+ r2,K , FK + r2,K +
∑

γ∈EN
K

g2,γ





(4.9)

and also quantityM0
K , which is given by (4.9) with EN

K replaced by EN0
K . It is also

useful to put

YK = min






F 2

K +
∑

γ∈EN0
K

g21,γ




1/2

, FK +
∑

γ∈EN0
K

g2,γ




, (4.10)

RK =


r23,K +

∑

γ∈EN+

K

g23,γ




1/2

, (4.11)

GK =



∑

γ∈EN+

K

g23,γ




1/2

. (4.12)

Finally, if a quantity λ1 such that 0 < λ1 ≤ λ1 is available, we put

T ++
h = {K ∈ Th : β1,K > 0 and YK + λ

−1/2
1 RK ≤MK},

T +0
h = {K ∈ Th : β1,K = 0, EN+

K 6= ∅, and λ−1/2
1 GK +M0

K ≤MK},
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T +
h = T ++

h ∪T +0
h and T 0

h = Th \T
+
h . Note that if lower bound λ1 is not available,

we formally set T ++
h = T +0

h = ∅. Using this notation, we formulate the following
theorem.

Theorem 4.1. Let λ∗,n ∈ R and u∗,n ∈ V \ {0} be arbitrary and let wn ∈ V be
given by (1.2). Using the above notation, we have

‖wn‖a ≤ ηn = min{η(a)n , η(b)n } (4.13)

where

η(a)n =

(
∑

K∈Th

M2
K

)1/2

, η(b)n =



∑

K∈T
++

h

Y 2
K +

∑

K∈T
+0

h

(M0
K)

2 +
∑

K∈T 0
h

M2
K




1/2

+ λ
−1/2
1



∑

K∈T
++

h

R2
K +

∑

K∈T
+0

h

G2
K




1/2

.

Proof. For brevity, we will write w = wn within this proof. First, we prove the

estimate ‖w‖a ≤ η
(a)
n . Using (2.14) and the divergence theorem, we easily obtain

identity

‖w‖2a = (F,∇w) + (r, w) + (g, w)ΓN
=
∑

K∈Th

LK , (4.14)

where LK = (F,∇w)K + (r, w)K +
∑

γ∈EN
K
(g, w)γ. The terms in LK can be

estimated by the Cauchy–Schwarz inequality. We bound the first one as

(F,∇w)K = (A−1/2F,A1/2∇w) ≤ ‖A−1/2F‖K‖A
1/2∇w‖K = FK‖∇w‖A,K ,

(4.15)
where we use the notation ‖∇w‖2A,K = (A∇w,∇w)K . The second term can be
bounded in three ways. First, in those elements K ∈ Th where cK > 0, we have

(r, w)K ≤ c
−1/2
K ‖r‖K‖c

1/2
K w‖K . Second, in elements K ∈ Th where

∫
K
r dx =

0, we can consider w̄K = |K|−1
∫
K
w dx, Poincaré inequality ‖w − w̄K‖K ≤

hKπ
−1‖∇w‖K [33], the smallest eigenvalue λmin

AK
of AK , and derive estimate

(r, w)K = (r, w − w̄K)K ≤ ‖r‖K‖w − w̄K‖K ≤ hKπ
−1(λmin

AK
)−1/2‖r‖K‖∇w‖A,K .

Third, in elementsK ∈ Th, where β1,K > 0, we have (r, w)K ≤ β
−1/2
1,K ‖r‖K‖β

1/2
1,Kw‖K .

Thus, using definitions (4.3)–(4.5), we obtain estimates

(r, w)K ≤ r1,K‖c
1/2
K w‖K , (4.16)

(r, w)K ≤ r2,K‖∇w‖A,K , (4.17)

(r, w)K ≤ r3,K‖β
1/2
1,Kw‖K (4.18)

for all elements K ∈ Th.
In a similar way, we estimate the third term. First, on edges γ ∈ EN

K where αγ >

0, we have (g, w)γ ≤ α
−1/2
γ ‖g‖γ‖α

1/2
γ w‖γ. Second, on those edges γ ∈ EN

K where
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∫
γ
g dx = 0, we can use the trace inequality [4, Lemma 1] and obtain (g, w)γ =

(g, w − w̄γ)γ ≤ ‖g‖γ‖w − w̄γ‖γ ≤ C
AK

K ‖g‖γ‖w‖a,K , where w̄γ = |γ|−1
∫
γ
w dx.

Third, if cK > 0 and γ ∈ EN
K then the trace inequality [4, Lemma 1] yields

(g, w)γ = ‖g‖γ‖w‖γ ≤ CAK

K ‖g‖γ‖w‖a,K . Fourth, on edges γ ∈ EN
K where β2,γ > 0,

we have (g, w)γ ≤ β
−1/2
2,γ ‖g‖γ‖β

1/2
2,γ w‖γ. Thus, using definitions (4.6)–(4.8) we

obtain the following bounds

(g, w)γ ≤ g1,γ‖α
1/2
γ w‖γ, (4.19)

(g, w)γ ≤ g2,γ‖w‖a,K , (4.20)

(g, w)γ ≤ g3,γ‖β
1/2
2,γ w‖γ. (4.21)

Now, we bound LK in four ways using various combinations of bounds (4.15),
(4.16)–(4.17), and (4.19)–(4.20):

LK ≤ FK‖∇w‖A,K + r1,K‖c
1/2
K w‖K +

∑

γ∈EN
K

g1,γ‖α
1/2
γ w‖γ,

LK ≤ FK‖∇w‖A,K + r1,K‖c
1/2
K w‖K +

∑

γ∈EN
K

g2,γ‖w‖a,K ,

LK ≤ FK‖∇w‖A,K + r2,K‖∇w‖A,K +
∑

γ∈EN
K

g1,γ‖α
1/2
γ w‖γ,

LK ≤ FK‖∇w‖A,K + r2,K‖∇w‖A,K +
∑

γ∈EN
K

g2,γ‖w‖a,K .

Using the Cauchy-Schwarz inequality in these estimates, we conclude that

LK ≤MK‖w‖a,K (4.22)

and consequently equality (4.14) yields

‖w‖2a ≤
∑

K∈Th

MK‖w‖a,K ≤

(
∑

K∈Th

M2
K

)1/2

‖w‖a,

which readily provides the desired bound ‖w‖a ≤ η
(a)
n .

To prove ‖w‖a ≤ η
(b)
n , we first derive several auxiliary estimates using the same

technique as above. First, using (4.2), (4.6), and (4.7), we obtain

(F,∇w)K +
∑

γ∈EN0
K

(g, w)γ ≤ YK‖w‖a,K , (4.23)

where YK is given by (4.10). Similarly, by (4.5) and (4.8), we have

(r, w)K +
∑

γ∈EN+

K

(g, w)γ ≤ RK |w|b,K , (4.24)
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where RK is provided in (4.11). Next, using the same approach as for (4.22), we
derive the bound

(F,∇w)K + (r, w)K +
∑

γ∈EN0
K

(g, w)γ ≤M0
K‖w‖a,K , (4.25)

where M0
K was introduced below (4.9). Finally, we use (4.8) and estimate

∑

γ∈EN+

K

(g, w)γ ≤ GK |w|b,K , (4.26)

where GK is defined in (4.12).
Thus, using estimates (4.23), (4.24), (4.25), and (4.26) in (4.14), we obtain

‖w‖2a =
∑

K∈T
++

h

LK +
∑

K∈T
+0

h

LK +
∑

K∈T 0
h

LK ≤
∑

K∈T
++

h

[YK‖w‖a,K

+RK |w|b,K ] +
∑

K∈T
+0

h

[
M0

K‖w‖a,K +GK |w|b,K
]
+
∑

K∈T 0
h

MK‖w‖a,K .

This can be further estimated using the Cauchy–Schwarz inequality as

‖w‖2a ≤



∑

K∈T
++

h

Y 2
K +

∑

K∈T
+0

h

(M0
K)

2 +
∑

K∈T 0
h

M2
K




1/2

‖w‖a

+



∑

K∈T
++

h

R2
K +

∑

K∈T
+0

h

G2
K




1/2

|w|b

Since |w|b ≤ λ
−1/2
1 ‖w‖a ≤ λ

−1/2
1 ‖w‖a, the proof is finished. �

5. Local flux reconstruction

In this section, we describe a local procedure how to construct a suitable flux
reconstruction q ∈ H(div,Ω) needed to evaluate ηn in Theorem 4.1. Specifically,
we use the flux reconstruction proposed in [11] and generalize it to the eigenvalue
problem (3.3). The description of the local flux reconstruction is technical and
it is inspired mainly by works [18] and [16]. We will denote the computable
flux reconstruction by qh in order to distinguish it from an arbitrary element
q ∈ H(div,Ω). The flux reconstruction qh is computed as a reconstruction of
the already computed approximate gradient ∇uh,n, where uh,n ∈ V \ {0} is given
by (3.7).
The flux reconstruction qh is naturally defined in the Raviart–Thomas finite

element spaces, see e.g. [12] and [37]. The Raviart–Thomas space of order p is
defined on the mesh Th as

W h = {wh ∈ H(div,Ω) : wh|K ∈ RTp(K) ∀K ∈ Th} , (5.1)
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whereRTp(K) = [Pp(K)]2⊕xPp(K) and x = (x1, x2) is the vector of coordinates.
We introduce the notation for vertices (nodes) of the mesh Th. Let Nh denote

the set of all vertices in Th. The subsets of those lying on ΓD, on ΓN, and in
the interior of Ω are denoted by ND

h , NN
h , and N I

h, respectively. Notice that if a
vertex is located at the interface between the Dirichlet and Neumann boundary,
it is not in NN

h , but only in ND
h . We also denote by NK

h and EK
h the sets of three

vertices and three edges of the element K, respectively.
We construct the flux reconstruction qh ∈ W h by solving local Neumann and

Neumann/Dirichlet mixed finite element problems defined on patches of elements
sharing a given vertex. Let a ∈ Nh be an arbitrary vertex, we denote by ψa the
standard piecewise linear and continuous hat function associated with a. This
function vanishes at all vertices of Th except of a, where it has value 1. Note
that ψa ∈ Vh for vertices a ∈ N I

h ∪ NN
h , but ψa 6∈ Vh for a ∈ ND

h . Further,
let Ta = {K ∈ Th : a ∈ K} be the set of elements sharing the vertex a and
ωa = int

⋃
{K : K ∈ Ta} the patch of elements sharing the vertex a. We denote

by E I
a
the set of interior edges in the patch ωa, by EB,E

a
the set of those edges

on the boundary ∂ωa that do not contain a, and by EB,D
a

and EB,N
a

the sets of
edges on the boundary ∂ωa with an end point at a lying either on ΓD or on ΓN,
respectively. Note that sets EB,D

a
and EB,N

a
can be nonempty only if a ∈ ND

h ∪NN
h ,

i.e. for boundary patches.
We introduce auxiliary quantities

r̃ah = cψauh,n − λh,nβ1ψauh,n + (A∇ψa) · ∇uh,n, (5.2)

g̃ah = αψauh,n − λh,nβ2ψauh,n. (5.3)

Note that these quantities are defined in such a way that

a(uh,n, ψa)− λh,nb(uh,n, ψa) =

∫

ωa

r̃ah dx+
∑

γ∈EB,N
a

∫

γ

g̃ah ds ∀a ∈ Nh. (5.4)

The local flux reconstruction is defined in the Raviart–Thomas spaces on
patches ωa with suitable boundary conditions. We introduce the space

W 0
a
= {wh ∈ H(div, ωa) : wh|K ∈ RTp(K) ∀K ∈ Ta

and wh · nγ = 0 on edges γ ∈ EB,E
a

∪ EB,N
a

}
(5.5)

and the affine set

W a = {wh ∈ H(div, ωa) : wh|K ∈ RTp(K) ∀K ∈ Ta, wh · nγ = 0

on edges γ ∈ EB,E
a

and wh · nγ = −Πγ(g̃
a

h ) on edges γ ∈ EB,N
a

}
. (5.6)

The symbol Πγ stands for the L2(γ)-orthogonal projection onto the space Pp(γ)
of polynomials of degree at most p on the edge γ. We also define the space
Pp(Ta) = {vh ∈ L2(ωa) : vh|K ∈ Pp(K) ∀K ∈ Ta} of piecewise polynomial and in
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general discontinuous functions. Further, we introduce the space

P ∗
p (Ta) =

{
{vh ∈ Pp(Ta) :

∫
ωa

vh dx = 0}, for a ∈ N I
h ∪NN

h ,
Pp(Ta), for a ∈ ND

h .
(5.7)

Using these spaces, we define the flux reconstruction qh ∈ W h as the sum

qh =
∑

a∈Nh

qa

h , (5.8)

where qa

h ∈ W a together with dah ∈ P ∗
p (Ta) solves the mixed finite element

problem

(A−1qa

h ,wh)ωa
− (dah , divwh)ωa

= (ψa∇uh,n,wh)ωa
∀wh ∈ W 0

a
, (5.9)

(div qa

h , vh)ωa
= (r̃ah , vh)ωa

∀vh ∈ P ∗
p (Ta). (5.10)

Let us note that this mixed finite element problem is equivalent to the mini-

mization of
∥∥∥ψaA

1

2∇uh,n −A− 1

2sah

∥∥∥
ωa

over all sah ∈ W a satisfying the constraint

div sah = Πp(r̃
a

h) in ωa, where Πp denotes the L2(ωa)-orthogonal projection onto
Pp(Ta).
The flux reconstruction (5.8) is defined in such a way that quantities r and g

vanish. We prove this fact below in Lemma 5.2. However, first, we need to prove
that identity (5.10) can be actually tested by any polynomial.

Lemma 5.1. Let qa

h ∈ W a and dah ∈ P ∗
p (Ta) be a solution of problem (5.9)–

(5.10). Then

(div qa

h , vh)ωa
= (r̃ah , vh)ωa

∀vh ∈ Pp(Ta). (5.11)

Proof. Notice that if a ∈ ND
h then there is nothing to prove due to definition (5.7).

If a ∈ N I
h ∪ NN

h then we can use ψa as a test function in (3.7). Consequently,
identity (5.4) and definition (5.6) imply

(r̃ah , 1)ωa
= −

∑

γ∈EB,N
a

(g̃ah , 1)γ = (qa

h · n∂ωa
, 1)∂ωa

= (div qa

h , 1)ωa
. (5.12)

�

Let us note that for vertices a ∈ N I
h ∪ NN

h the problem (5.9)–(5.10) corre-
sponds to a pure Neumann problem for dah . This problem is solvable, because the
corresponding equilibrium condition is exactly (5.12). In addition, its solution
is unique thanks to the fact that the space P ∗

p (Ta) does not contain constant

functions. For a ∈ ND
h , the problem (5.9)–(5.10) corresponds to a well posed

Dirichlet–Neumann problem and the space P ∗
p (Ta) contains constant functions.

The existence and uniqueness of problem (5.9)–(5.10) can be rigorously proved
in the same way as in [48].
Finally, we present the result that quantities r and g, see (4.1), vanish for the

described flux reconstruction qh.
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Lemma 5.2. Let qh ∈ W h be given by (5.8) and the problem (5.9)–(5.10). Then

cuh,n − λh,nβ1uh,n − div qh = 0 a.e. in Ω, (5.13)

αuh,n − λh,nβ2uh,n + qh · nΩ = 0 a.e. on ΓN. (5.14)

Proof. Let us set rh = cuh,n − λh,nβ1uh,n − div qh. Clearly, rh|K ∈ Pp(K) for all
K ∈ Th. Using the decomposition of unity

∑
a∈NK

h
ψa = 1, notation (5.2), and

equality (5.11), we obtain

‖rh‖
2 =

∑

a∈NK
h

(cψauh,n − λh,nβ1ψauh,n − div qa

h , rh)ωa

=
∑

a∈NK
h

(r̃ah − (A∇ψa) · ∇uh,n − div qa

h , rh)ωa

= −
∑

a∈NK
h

((A∇ψa) · ∇uh,n, rh)ωa

= 0.

Thus, rh vanishes almost everywhere in Ω.
To prove the second statement, we set gh = αuh,n − λh,nβ2uh,n + qh · nΩ.

Let γ be an arbitrary edge on the Neumann boundary. Clearly, gh|γ ∈ Pp(γ).
The decomposition of unity

∑
a∈NT

γ
ψa = 1 with N T

γ being the set of the two

end-points of the edge γ and definitions (5.6) and (5.3) then give

‖gh‖
2
γ =

∑

a∈NT
γ

(αψauh,n − λh,nβ2ψauh,n + qa

h ·nγ , gh)γ

=
∑

a∈NT
γ

(αψauh,n − λh,nβ2ψauh,n − Πγ(g̃
a

h ), gh)γ = 0. (5.15)

Thus, gh vanishes almost everywhere on γ and, hence, on ΓN. �

The following corollary summarizes the fact that properties (5.13) and (5.14) of
the flux reconstruction qh simplify the error estimator presented in Theorem 4.1
considerably.

Corollary 5.3. Let the flux reconstruction qh ∈ W h be given by (5.8) and prob-
lem (5.9)–(5.10). Let λh,n ∈ R and uh,n ∈ Vh \ {0} satisfy (3.7). Further, let
wn ∈ V be given by (1.2) with bilinear forms defined in (3.4)–(3.5) and with
λ∗,n = λh,n and u∗,n = uh,n. Then

‖wn‖a ≤ ηn, where η2n =
∑

K∈Th

F 2
K = ‖A1/2

(
∇uh,n −A−1qh

)
‖2L2(Ω). (5.16)

Proof. The statement follows immediately from Theorem 4.1 and properties (5.13)
and (5.14). �

Remark 5.4. In floating-point arithmetics, we cannot solve problem (5.9)–(5.10)
exactly due to round-off errors. Consequently, hypotheses of Corollary 5.3 are
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not satisfied, and the bound (5.16) is not guaranteed. The point is that quantities
r and g do not vanish exactly in this case. In order to overcome this issue, we
recommend to use Theorem 4.1 with q = qh. For example, if r 6= 0, c = 0,
and β1 > 0 in Ω then r1,K = ∞, r2,K = ∞, and r3,K < ∞ for all K ∈ Th.
Consequently, MK = ∞, T ++

h = Th, and T +0
h = T 0

h = ∅. If we consider for
simplicity ΓN = ∅ then YK = FK , RK = r3,K , and estimator (4.13) reduces to

η2n =
∑

K∈Th

F 2
K + λ

−1/2
1

∑

K∈Th

r23,K . (5.17)

This estimator provides a guaranteed upper bound on ‖wn‖a even if r does not
equal to zero exactly. However, it has to be said that in practical computations
the quantity r and, thus, all quantities r3,K are typically on the level of machine
precision. Therefore, the difference of estimators given by (5.16) and (5.17) is
often negligible.

6. Numerical example in dumbbell shape domain

This section illustrates the numerical performance of lower bounds ℓn and Ln

given by (1.4) and (1.5), respectively. These bounds depend on quantities ηi,
which are guaranteed bounds on representatives of residuals, see (1.3). We com-
pute these quantities by the local flux reconstruction procedure described in Sec-
tion 5.
We will compute two-sided bounds on the first ten eigenvalues of the Lapla-

cian in a dumbbell shaped domain [45] with homogeneous Dirichlet boundary
conditions. Thus, we consider problem (3.1) in the domain Ω showed in Figure 1
(left) with ΓN = ∅, A being the identity matrix, and with constant coefficients
c = 0, α = 0, β1 = 1, β2 = 0. We solve this problem by the standard conforming
finite element method with piecewise linear and continuous trial and test func-
tions, i.e., we consider the finite element space (3.6) with p = 1 and the finite
element approximation given by (3.7). The computed eigenvalues λh,n are upper
bounds on the corresponding exact eigenvalues. Lower bounds are computed in
two ways. First, we use lower bound Ln only and the quantity ν satisfying (2.18)
is obtained by the homotopy method. Second, we combine both lower bounds ℓn
and Ln.
Due to singularities of eigenfunctions in reentrant corners, we utilize a mesh

adaptive algorithm. This algorithm follows the standard loop:

• SOLVE. Given a mesh Th, we compute finite element approximate eigen-
pairs λh,n, uh,n, for n = r, . . . , s, see (3.7).

• ESTIMATE. We solve local problems (5.9)–(5.10), reconstruct the flux (5.8),
and compute error estimator (4.13) for n = r, . . . , s. We check if the left-
hand side inequality of condition (2.18) is satisfied. If so, we compute the
lower bound (1.5) for n = r, . . . , s. In order to obtain as accurate estimates
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π

π

4
π

π
π

4

Figure 1. The left panel shows the dimensions of the dumbbell
shaped domain Ω = Ω(4). The right panel presents the adaptively
refined mesh after 20 adaptive steps.

Ω(0) 13π
16Ω(1) 5π

8Ω(2) 7π
16Ω(3) π

4Ω(4)

Figure 2. The five domains we use for the homotopy transition
between the rectangle Ω(0) and the dumbbell shaped domain Ω(4).

as possible, we evaluate these lower bounds recursively, as described at
the end of Section 2.

• MARK. We use quantities FK , see (4.2) and (5.16), to mark elements for
refinement. For each element we have s−r+1 quantities FK corresponding
to eigenvalues λn, n = r, . . . , s. We use their maximum as the error
indicator for the mesh refinement. We mark elements by the bulk criterion
[17].

• REFINE. We refine the marked elements by the newest vertex bisection
algorithm, see e.g. [41].

In order to compare the accuracy of computed eigenvalue bounds, we stop this
adaptive algorithm as soon as the number of degrees of freedom exceeds 750 000.

Bound Ln with the homotopy method. The quantity ν satisfying (2.18) is
computed by the homotopy method described in detail in [34]. In particular, we
use the specific procedure from [35, Sec. 6.1, par. b)]. We consider a sequence of
five domains Ω(m), m = 0, 1, . . . , 4. These domains are interiors of the union of
squares (0, π)2, (5π/4, 9π/4) × (0, π), and the rectangle [π, 5π/4] × (y1, π − y1),
where y1 = 3mπ/32 and m = 0, 1, . . . , 4, see Figure 2. Notice that Ω(0) =
(0, 9π/4) × (0, π) is a rectangle and Ω(4) = Ω is the targeted dumbbell shaped
domain. Moreover, these domains are nested Ω(4) ⊂ Ω(3) ⊂ · · · ⊂ Ω(0) and thus
the eigenvalues on the larger domain are below the corresponding eigenvalues

on the smaller domain. More accurately, if λ
(m)
n denotes the n-th eigenvalue of

the Laplace eigenvalue problem in the domain Ω(m) then the Courant minimax
principle [6] implies that

λ(m−1)
n ≤ λ(m)

n , for m = 1, 2, 3, 4 and n = 1, 2, . . . . (6.1)
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Figure 3. Initial meshes on domains Ω(1), . . . , Ω(4), respectively.

Eigenvalues on the rectangle Ω(0) are known analytically:

λ
(0)
i,j = 16i2/81 + j2, i, j = 1, 2, . . . .

One of these values can be chosen for ν to compute lower bounds on the domain

Ω(1). Due to the large spectral gap λ
(0)
21 − λ

(0)
20 , see Table 1, we choose ν =

16.1111 < 145/9 = λ
(0)
6,3 = λ

(0)
21 . By (6.1) we have ν < λ

(1)
21 . Hence, the right-hand

side inequality of condition (2.18) is satisfied for s = 20 and we can use (1.5), see

Theorem 2.5, to compute lower bounds on λ
(1)
1 , . . . , λ

(1)
20 .

We compute these lower bounds by the adaptive algorithm described above

using initial meshes depicted in Figure 3. Note that in order to evaluate η
(b)
n in

(4.13) we use λ1 = λ
(0)
1 = 97/81 computed analytically for the rectangle Ω(0).

This value is guaranteed to be below λ
(m)
1 for all m = 1, 2, 3, 4, see (6.1).

To continue the homotopy method, we set ν = L
(1)
20 , where L

(1)
20 is the lower

bound on λ
(1)
20 for the domain Ω(1). Using this value, we repeat the adaptive

process for Ω(2) and compute lower bounds L
(2)
1 , . . . , L

(2)
19 on the first nineteen

eigenvalues for the domain Ω(2). Then we choose ν = L
(2)
18 and compute by the

same procedure lower bounds L
(3)
1 , . . . , L

(3)
17 for the domain Ω(3). Note that we

did not choose L
(2)
19 for ν, because the spectral gap λ

(2)
19 − λ

(2)
18 is too small, see

Table 1. Finally, we take ν = L
(3)
17 and compute lower bounds on the first sixteen

eigenvalues for the targeted domain Ω(4) = Ω.
Table 1 presents the analytically computed eigenvalues for Ω(0) and two-sided

bounds on eigenvalues obtained in the last adaptive step for domains Ω(1), . . . ,
Ω(4). We observe that the smaller eigenvalues are approximated with higher
accuracy than the larger eigenvalues. This is caused by the recursive evaluation
of the lower bound (1.5), see the description at the end of Section 2, and also
by the fact that the higher eigenfunctions are more oscillatory and hence more
difficult to approximate.
We note that the original goal was to compute two-sided bounds of the first

ten eigenvalues, but it is advantageous to compute slightly more of them, because
the performance of the lower bound Ln depends on the size of the corresponding
spectral gaps. For example in the case of Ω(4), we obtain ν in the reasonable large
spectral gap between λ16 and λ17, which enables to find accurate lower bounds
for the first ten eigenvalues.
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Bound Ln with the homotopy method Combination
Ω(0) Ω(1) Ω(2) Ω(3) Ω(4) of ℓn and Ln

λ1 1.19753 1.3513548 1.597409 1.830139 1.9557681 1.9557681
λ2 1.79012 1.8041827 1.841438 1.898803 1.9606770 1.9606770
λ3 2.77778 2.9260228 3.30181211 4.11058130 4.7999880085 4.7999880085

λ4 4.16049 4.20787916 4.33671743 4.5582286 4.8293699 4.8293699
λ5 4.19753 4.62030323 4.878828018 4.9712777 4.9965091 4.9965091
λ6 4.79012 4.83558720 4.91473548 4.97384409 4.9967292 4.9967292
λ7 5.77778 6.02490814 6.2341484 7.08243406 7.98460714 7.98460714

λ8 5.93827 6.408751330 7.40406784 7.87152502 7.98594721 7.98594721

λ9 7.16049 7.32420919 7.63297553 7.88669865 9.35272752 9.35275752

λ10 8.11111 8.187239010 8.37605743 8.78241440 9.507531108 9.507561108

λ11 8.93827 9.3893941074 9.938085045 9.988599296 9.99755993 9.99757993

λ12 9.19753 9.763758678 9.95150772 9.99083329 9.99874993 9.99875993

λ13 9.79012 9.858547295 10.7717814 11.124165 12.62717319 12.65407319

λ14 10.6790 10.69407023 10.9252322 12.6194408 12.74028306 12.75318306

λ15 10.7778 11.39614158 12.0308459 12.6669832 12.89749693 12.89349693

λ16 11.1111 12.0538855 12.6336505 12.69537073 12.9335695 12.89379695

λ17 12.1605 12.4238417 12.8735834 13.131686
λ18 13.6420 13.7351576 14.0437570

λ19 13.6790 13.89159068 14.6443675

λ20 13.9383 15.19892422

λ21 16.1111
Table 1. Two-sided bounds computed in the last adaptive step.
Digits in the upper/lower index indicate the lower/upper bound,
respectively. Eigenvalues on the rectangle Ω(0) are known analyt-
ically. Columns Ω(1), . . . , Ω(4) correspond to homotopy steps for
lower bound Ln. The last column presents the combination of lower
bounds ℓn and Ln for the dumbbell shaped domain Ω(4) = Ω.

Combination of ℓn and Ln. The rough idea is to compute the lower bound
on λn as max{ℓn, Ln} and to use ν = ℓn+1 to evaluate Ln. Quantities ℓn and
Ln are given by (1.4) and (1.5), respectively. This approach is computationally
less demanding, because the expensive homotopy is not performed. On the other
hand, this approach does not provide guaranteed lower bounds on eigenvalues due
to the closeness condition (2.12), which cannot be verified in practice. However,
numerical experiments we performed indicate that the computed bounds are very
reliable. In our numerical tests, we never found the computed lower bound to
be above the best available upper bound. This applies not only to the situation
when the problem is well resolved and the closeness condition (2.12) and the lower
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Figure 4. Convergence curves for relative enclosure sizes (λh,n−
Ln)/Ln (homotopy) and (λh,n−λh,n)/λh,n (combination) for n = 1
(left) and n = 10 (right) with respect to the number of degrees of
freedom. Crosses correspond to the last homotopy step, circles to
the combination of ℓn and Ln, see (1.4) and (1.5). Data points,
where the best bounds indicate invalidity of closeness condition
(2.12) are coloured in grey.

bound condition (2.18) are likely to hold, but even to cases when the accuracy
is low and these conditions are probably not satisfied. The reason is that these
conditions are sufficient and if they are not satisfied then the computed lower
bounds can still be below the true eigenvalues. Numerical results show that this
is a very common situation.
Let us describe the algorithm in more details. It is based on the above specified

adaptive algorithm with two changes. First, step SOLVE computes eigenpairs for
n = r, . . . , s+ 1. Second, step ESTIMATE is changed as follows:

• Solve local problems (5.9)–(5.10), reconstruct the flux (5.8), and compute
error estimator ηn by (4.13) for all eigenpairs λh,n, uh,n, n = r, . . . , s+ 1.

• Compute lower bounds ℓr, . . . , ℓs+1 by (1.4).
• Set ν = ℓs+1, check the left-hand side inequality of condition (2.18), and
compute lower bounds Lr, . . . , Ls by the recursive application of (1.5).

• The final lower bound is given by λh,n = max{ℓn, Ln} for all n = r, . . . , s.

The results of this procedure for the Laplace eigenvalue problem in the dumb-
bell shaped domain with r = 1 and s = 15 are provided in the last column of
Table 1. For illustration, Figure 1 (right) shows the adaptively refined mesh after
20 adaptive steps. In Figure 4, we also present convergence curves for relative en-
closure sizes Eest

rel,n = (λh,n − λh,n)/λh,n. Note that Eest
rel,n bounds the true relative

error: (λh,n − λn)/λn ≤ Eest
rel,n and, thus, provides a reliable information about

the true error. Figure 4 shows Eest
rel,n for the first (left) and the tenth (right)

eigenvalue. We observe that the combination of the adaptive algorithm and the
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quadratically convergent bound Ln yields the expected order of convergence on
sufficiently fine meshes. We point out that suboptimal lower bound ℓn is useful
on relatively coarse meshes, where it provides more accurate results than Ln. In-
deed, convergence curves provided in Figure 4 typically start with a suboptimal
slope corresponding to ℓn and as soon as the mesh is sufficiently fine, the opti-
mal bound Ln overcomes. We also note that Ln is not evaluated on those rough
meshes where the left-hand side inequality in (2.18) is not satisfied, see for exam-
ple the curves for the homotopy method, where data points for small numbers of
degrees of freedom are missing. Finally, we used the best available lower bounds

λbesth,n in the last adaptive step and tested if λh,n ≤
√
λbesth,n λ

best
h,n+1. Those points,

where this test passed and closeness condition (2.12) is satisfied, are indicated as
black circles in Figure 4. Notice that even in grey data points, where closeness
condition (2.12) is probably not valid, lower bound ℓn always produced a value
below the best available lower bound and hence below the true eigenvalue.
Comparing results in Table 1, we observe that values in the last column are

almost the same as values in the previous column. Thus, the combination of
bounds ℓn and Ln yielded almost the same lower bounds on eigenvalues although
they are not guaranteed by the theory. Thus, if the bounds are not required to
be guaranteed, we recommend to use the simple combination of bounds ℓn and
Ln rather than the homotopy method.

7. Conclusions

In this paper we generalized classical Weinstein’s and Kato’s bounds to the
weak setting suitable for direct application of the finite element method. Needed
guaranteed bounds on the representative of the residual are computed by the
complementarity technique using the local flux reconstruction. Formulas (1.4)
and (1.5) for lower bounds ℓn and Ln are simple and explicit. The bound Ln is
quadratically convergent and provides guaranteed lower bounds on all eigenvalues
λ1, λ2, . . . , λs, provided a guaranteed lower bound ν on λs+1 is available. The
computational efficiency of the bound Ln depends on the size of the spectral gap
λs+1 − λs. Therefore, we recommend to first identify the index s such that the
spectral gap λs+1 − λs is relatively large and then use a guaranteed lower bound
ν on λs+1 to estimate the smaller eigenvalues from below. For the optimal usage
of this bound, we recommend the recursive algorithm described at the end of
Section 2.
The guaranteed lower bound on λs+1 can be computed, for example, by the

homotopy method as we illustrated in Section 6. Numerical experiments, how-
ever, show that Ln need not be sufficiently accurate on rough meshes. Therefore,
we recommend to compute both ℓn and Ln and use the larger of them. We note
that ℓn can be evaluated very cheaply as soon as ηn is available. The bound ℓn
is guaranteed to be below the corresponding exact eigenvalue λn if the (upper)
finite element approximation λh,n is in a sense closer to λn then to λn+1, see
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(2.12). This condition can be verified if guaranteed lower bounds on λn and λn+1

are available, for example using Ln and Ln+1.
If the particular application does not require the computed lower bounds to

be guaranteed then the homotopy method is not necessary. We can use ℓn as
the first lower bounds and then employ them to compute more accurate bounds
Ln. We would like to emphasize that the conditions guaranteeing that ℓn and
Ln are below the corresponding exact eigenvalues are sufficient conditions only.
Thus, if they are not satisfied then the computed bounds can still be below the
exact values. Performed numerical experiments confirm that this is actually a
very common case in practice.
In our future research we will focus on the proof of the local efficiency of the

estimator given by Corollary 5.3 with the local flux reconstruction satisfying
(5.8) and (5.9)–(5.10). We then plan to use this local efficiency result to prove
the convergence of the corresponding adaptive algorithm.
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Tomáš Vejchodský, Institute of Mathematics, Czech Academy of Sciences,
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