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Abstract

We prove the global in time existence of a weak solution to the variational inequality of the Navier–
Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so called “do
nothing” boundary condition on the outflow. The condition that the solution lies in a certain given, however
arbitrarily large, convex set and the use of the variational inequality enables us to derive an energy–type
estimate of the solution. We also discuss the use of a series of other possible outflow “do nothing” boundary
conditions.
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1 Introduction and notation

1.1. The Navier–Stokes initial–boundary value problem. Let T > 0 andΩ be a bounded Lipschitzian
domain inR3. The flow of an incompressible Newtonian fluid inΩ in the time interval(0, T ) is described by
the system of equations

∂tu+ u · ∇u− div S = f , (1.1)

divu = 0, (1.2)

whereu is the velocity,S is the stress tensor andf is the acting volume force. The density of the fluid is
assumed to be equal to one. TensorS, in the Newtonian fluid, has the formS = −pI+ν [∇u+ (∇u)T ], where
p is the pressure andν is the coefficient of viscosity. We assume that domainΩ represents a channel, where the
fluid inflows through the partΓ1 of the boundary∂Ω and outflows through the partΓ2 of ∂Ω. (See Fig. 1.) It is
logical to assume that the flow onΓ1 is known, which leads to the Dirichlet boundary condition

u = u∗ onΓ1 × (0, T ), (1.3)
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Fig. 1: the channel

whereu∗ is a given function. (The part ofΓ1 may coincide
with a fixed wall, whereu∗ equals zero.) On the other hand,
since the velocity profile onΓ2 is not known in advance, the
authors here usually use some “artificial” boundary condition
of non–Dirichlet type. One can find artificial boundary condi-
tions of various forms in literature, see e.g. [1], [2], [4], [6], [7],
[8], [11], [22]. Boundary conditions that naturally follow from
an appropriate weak formulation of the considered boundary
value or initial–boundary value problem are often called the
“do nothing” boundary conditions. (See e.g. [1], [11], [14] for
more details.) In this paper, we use the inhomogeneous “do
nothing” boundary condition

−pn+ ν∇u · n = g onΓ2 × (0, T ), (1.4)
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wheren denotes the outer normal vector field andg is a given function. (We explain later, in subsection 1.5,
how condition (1.4) follows from the weak formulation. We also present some other “do nothing” boundary
conditions and compare them with (1.4) in subsection 1.5.) The problem is completed by the initial condition

u = u0 in Ω× {0}. (1.5)

1.2. The question of solvability of the problem (1.1)–(1.5) and related results.If one wants to prove the ex-
istence of a solution of the problem (1.1)–(1.4) then the first logical step is the derivation of an a priori estimate.
However, since the boundary condition (1.4) does not exclude backward flows onΓ2 that might possibly bring
back toΩ an uncontrollable amount of kinetic energy, the derivation of the usual energy inequality fails. This
is the reason why the known existential results for the problem (1.1)–(1.5) assume that the given data of the
problem are in some sense “small”, or the time interval(0, T ) is “sufficiently short”. (See [1], [14], [15].) The
global in time existence of a weak solution of the problem (1.1)–(1.5) for “large” data, which is well known
for the Navier–Stokes equations with other boundary conditions than (1.4), is an open problem. The situation
is similar if one studies a flow through a 2D profile cascade, see [6], [7]. Some authors consider boundary
conditions onΓ2, modified by artificial terms that enable one to control the kinetic energy of the fluid entering
Ω throughΓ2. (Such a modification was proposed e.g. in [4]. The same and other modifications have also been
used in papers [8], [22] which deal with profile cascades. A modification of condition (1.4) by certain nonlinear
terms, elaborated into a numerical algorithm, can also be found in paper [5]. In paper [16], the authors use the
modified “do nothing” boundary condition in connection with the flow of a shear–thinning fluid. A nonlinearly
modified condition (1.4) also plays an important role in [17], where the authors prove the solvability of the
steady Navier–Stokes variational inequality.) Another approach has been used in papers [12], [13], where the
authors consider the steady problems and impose an additional condition onΓ2, that enables them to derive
an a priori energy estimate. However, the additional condition means that the solution is from the beginning
sought for in a certain closed convex subset of the Sobolev spaceW 1,2(Ω), and the momentum equation (1.1)
(or more precisely, its weak form) must be replaced by a variational inequality. A modification of the boundary
condition (1.4) is also used in paper [2], where the authors study the flow of an incompressible viscous mixture
with non–constant density.

1.3. Aims of this paper. We present several types of “do nothing” boundary conditions in subsection 1.4,
and discuss them from the point of view of energy estimates and comparison with the steady state Poiseuille
flow through a pipe. Then we apply a similar approach as in [12] and [13], however to the non–stationary
flow. In Section 2, we formally derive the variational inequality and formulate the main result on the global
in time existence of its weak solution. (See Theorem 1.) We also show that if the weak solution and an
associated pressure are “smooth” then they satisfy the Navier–Stokes system (1.1), (1.2) inΩ× (0, T ) and the
variational inequality is reduced only to setΓ2 × (0, T ). Moreover, if the solution finds itself in the interior of
the aforementioned convex set then the boundary condition (1.4) is satisfied point-wise inΓ2 × (0, T ). (See
Theorem 2.) The proof of Theorem 1 is given in Section 3.

Everywhere in the paper, we focus especially on points where the use of the variational inequality brings
something new or requires a different approach or technique and we do not repeat the parts (estimates, proce-
dures, arguments) that are well known from the theory of weak solutions to the Navier–Stokes equations.

1.4. A discussion on boundary conditions of the “do nothing” type. We consider, for simplicity, only the
steady–state problem in this subsection. The termdiv S in equation (1.1) can be written in any of these forms:

1a) div S = −div (pI) + ν div
(
∇u+ (∇u)T

)
= −∇p+ ν div [∇u+ (∇u)T ],

1b) div S = −div (pI) + ν∆u = −∇p+ ν∆u (using the identitydiv (∇u)T = 0),

1c) div S = −div (pI)− ν curl2u = −∇p− ν curl2u (using the formula∆u = −curl2u).

If we want to derive formally a weak form of the system (1.1), (1.2) with the boundary condition (1.3), we
multiply equation (1.1) by a “smooth” divergence–free test functionφ and integrate inΩ. It is reasonable to
assume thatφ = 0 on Γ1 due to the Dirichlet boundary condition (1.3), but we impose no condition onφ on
Γ2. Then the cases 1a) – 1c) successively yield
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2a)
∫

Ω
div S · φ dx =

∫
Γ2

[
−pn+ ν

(
∇u+ (∇u)T

)
· n
]
· φ dS − ν

∫
Ω

(∇u+ (∇u)T ) : ∇φ dx,

2b)
∫

Ω
div S · φ dx =

∫
Γ2

[−pn+ ν∇u · n] · φ dS − ν
∫

Ω
∇u : ∇φ dx,

2c)
∫

Ω
div S · φ dx =

∫
Γ2

[−pn− ν curlu× n] · φ dS − ν
∫

Ω
curlu · curlφ dx.

The integrals onΓ2 cannot be involved into the weak formulation, because the integrands cannot be reasonably
interpreted on the level of weak solutions. Thus, they are usually neglected or replaced by

∫
Γ2
g · φ dS, where

functiong can be appropriately chosen. Then the weak variants of the system (1.1), (1.2) take the forms

3a)
∫

Ω

[
u · ∇u · φ− ν

(
∇u+ (∇u)T

)
: ∇φ

]
dx+

∫
Γ2

g · φ dS =
∫

Ω
f · φ dx,

3b)
∫

Ω

[
u · ∇u · φ− ν∇u : ∇φ

]
dx+

∫
Γ2

g · φ dS =
∫

Ω
f · φ dx,

3c)
∫

Ω

[
u · ∇u · φ− ν curlu · curlφ

]
dx+

∫
Γ2

g · φ dS =
∫

Ω
f · φ dx.

(The equations are required to be satisfied for all test functionsφ with the mentioned properties andu is also
required to satisfy the conditionu = u∗ onΓ1.) If a weak solutionu exists and is sufficiently smooth then one,
applying the backward integration by parts, can reconstruct an associated pressurep and successively show that
u andp satisfy the boundary conditions

4a) −pn+ ν [∇u+ (∇u)T ] · n = g,

4b) −pn+ ν∇u · n = g,

4c) −pn− ν curlu× n = g,

respectively, onΓ2. (These conditions retroactively certify that it was correct to neglect the integrals onΓ2

in 1a) – 1c).) However, although the pressure involved in tensorS in equation (1.1) can be modified by an
arbitrary additional constant, with no effect on the validity of the equation, the same assertion does not hold for
p in the boundary conditions 4a) – 4c). Here, one can deduce from the weak formulation that there exists just
one pressurep (in the class of pressures that differ by additive constants) that satisfies the boundary condition.
(The reasons are the same as the reasons for the presence of functionϑ in formula (2.6) in Theorem 2.)

None of the conditions 4a) – 4c) prevents the existence of a backward flow onΓ2, that could theoretically
bring an uncontrollable amount of the kinetic energy from the outside toΩ. The flow of the kinetic energy
throughΓ2 comes from the nonlinear termu · ∇u in equation (1.1), if it is formally multiplied byu and
integrated overΩ. It yields:∫

Ω
u · ∇u · u dx =

∫
∂Ω

(u · n) 1
2 |u|

2 dS =
∫

Γ1

(u∗ · n) 1
2 |u
∗|2 dS +

∫
Γ2

(u · n) 1
2 |u|

2 dS. (1.6)

The last integral on the right hand side cannot be dominated by other terms in the energy estimates. It may have
a “wrong sign” and act against the other terms ifu ·n < 0 on the part ofΓ2, i.e. in the case of a backward flow.
(See e.g. [3] for a more detailed explanation.) The situation changes if one writes the nonlinear term in equation
(1.1) in the formcurlu×u+∇1

2 |u|
2 and considers∇1

2 |u|
2 together withp as the so called Bernoulli pressure

q ≡ p+ 1
2 |u|

2. Then the aforementioned boundary conditions 4a) – 4c) take successively the modified forms

4d) −qn+ ν [∇u+ (∇u)T ] · n = g,

4e) −qn+ ν∇u · n = g,

4f) −qn− ν curlu× n = g.

It is, however, important that the remaining nonlinear term in equation (1.1) iscurlu × u. (It leads to
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∫
Ω curlu × u · φ dx in the weak formulation.) If one formally multiplies equation (1.1) byu (which means

that one usesφ = u in the weak formulation) then the nonlinear term disappears, because(curlu ×u) ·u = 0.
The consequences are: 1) the nonlinear termcurlu × u does not generate a flow of kinetic energy through
Γ2, 2) one can derive an anergy inequality, 3) one can prove the existence of a global in time weak solution
similarly, as in the case of the Dirichlet boundary condition (1.3) on the whole boundary ofΩ (see e.g. [9]).

Thus, there is a natural question which of the boundary conditions 4a) – 4f) onΓ2 is the most appropriate
one, and why the conditions 4a) – 4c) are considered at all, when, in contrast to 4d) – 4f), they do not enable
one to prove the existence of a weak solution. The answer is not quite clear. Many authors prefer condition
4b) because it is satisfied (withg = 0) by the Poiseuille flow in a circular pipe. For this reason, condition 4b)
is being considered to be the most physical one of all the conditions 4a) – 4f). On the other hand, to any of
the conditions 4a) – 4f), one can always calculate a non–zero functiong so that the Poiseuille flow (or, more
generally, any other flow expected onΓ2) satisfies the considered condition with this concreteg on the right
hand side. So, in our opinion, the choice of the boundary condition depends on a concrete situation. It would be
highly interesting to compare numerical results, obtained with various boundary conditions, among themselves
and also with results of experiments.

1.5. Assumptions and notation. Vector-functions and spaces of vector-functions are denoted by boldface
letters.

(i) Let 1 < r < ∞ andk ∈ {0} ∪ N. The norm of a scalar– or vector– or tensor–valued function, with
components inLr(Ω) (respectivelyW k,r(Ω)) is denoted by‖ . ‖r (respectively‖ . ‖k,r). The norm in
Lr(Γ2) is denoted by‖ . ‖r; Γ2 .

(ii) We assume that∂Ω = Γ1 ∪ Γ2, whereΓ1 andΓ2 are disjoint nonempty subsets of∂Ω, open in the 2D
topology of∂Ω. Since the 2D measure ofΓ1 is positive, there existsc1 > 0 such that the Friedrichs
inequality

‖ . ‖2 ≤ c1 ‖∇. ‖2 (1.7)

holds for all functions fromW 1,2(Ω), whose trace onΓ1 is equal to zero. (See [21, Theorem 1.1.9].)

(iii) We assume thatu∗ is a given function onΓ1 × (0, T ) that can be extended toΩ × (0, T ) so that the
extended function, which is for simplicity also denoted byu∗, has these properties: a)u∗ ∈ L∞

(
0, T ;

W 1,2(Ω)
)

and∂tu∗ ∈ L2
(
0, T ; W−1,2(Ω)

)
, b) divu∗(t) = 0 in Ω for a.a.t ∈ (0, T ). (We denote by

W−1,2(Ω) is the dual toW 1,2(Ω).) It follows from [19, Theorem I.3.1] thatu∗ ∈ C0
(
[0, T ]; L2(Ω)

)
anddivu∗(t) = 0 in Ω for all t ∈ [0, T ].

(iv) We denote byV 1 the linear space of all divergence–free functions fromW 1,2(Ω), such thatφ = 0 on
Γ1. Thenu∗(t) +V 1 (for a.a.t ∈ (0, T )) is a linear set of all divergence–free functions fromW 1,2(Ω),
such thatφ = u∗(t) onΓ1.

(v) Let ε1 > 0, a ∈ (2, 4), respectivelyγ ∈ Ll(a)(0, T ) (wherel(a) := max{4a/(a− 2), 4a/(4− a)}), be
such numbers, respectively function, that∥∥(u∗(t) · n)−∥∥a; Γ2

+ ε1 < γ(t) (1.8)

for a.a.t ∈ (0, T ). (The form ofl(a) is used in subsection 3.3. The subscript “−” denotes the negative
part. The negative part is taken “positively”, i.e. ifc < 0 thenc− = −c.) We defineK1

t to be the set of
all functionsφ ∈ u∗(t) + V 1 such that∥∥(φ · n)−‖a; Γ2 ≤ γ(t) for a.a.t ∈ (0, T ). (1.9)

The numbersε1, a and the functionsγ andu∗ are fixed throughout the paper. Since the inequality in
(1.9) is not strong,K1

t is a closed subset ofu∗(t) + V 1. Applying Minkowski’s inequality, it can be
verified that setK1

t is convex. Due to the presence of positiveε1 in inequality (1.8), one can also show
that there existsε2 > 0 (independent oft) such thatK1

t contains theε2–neighborhood ofu∗(t).

4



(vi) We denote byW (0, T ) the Banach space of functionsw ∈ L2(0, T ; W 1,2(Ω)) such that∂tw ∈
L2(0, T ;W−1,2(Ω)), equipped by the norm

|||w||| :=
(∫ T

0
‖w‖21,2 dt+

∫ T

0
‖∂tw‖2−1,2 dt

)1/2

.

Applying [19, Theorem I.3.1], one can deduce that each functionw from W (0, T ) is in C0
(
[0, T ];

L2(Ω)
)
, too.

(vii) We denote byK (0, T ) the set of functionsw ∈ W (0, T ) such thatw(t) ∈K1
t for a.a.t ∈ (0, T ).

2 The Navier–Stokes variational inequality and its global in time solution

2.1. A formal derivation of the variational inequality. Suppose thatu, p is a “smooth” solution of the
problem (1.1)–(1.5). Letw be a “smooth” function from[0, T ] such thatw(t) ∈K1

t for a.a.t ∈ [0, T ]. Using
the formuladiv S = −∇p+ ν∆u, multiplying equation (1.1) byw−u, integrating overΩ× (0, T ), using the
identityw − u = 0 onΓ1 × (0, T ) and applying the boundary condition (1.4), we obtain∫ T

0

∫
Ω

[∂tu+ u · ∇u] · (w − u) dxdt+
∫ T

0

∫
Ω
ν∇u · ∇(w − u) dxdt

=
∫ T

0

∫
Ω
f · (w − u) dxdt+

∫ T

0

∫
Γ2

g · (w − u) dS dt. (2.1)

The term with the time derivative satisfies∫ T

0

∫
Ω
∂tu · (w − u) dxdt =

∫ T

0

∫
Ω
∂t(u−w) · (w − u) dxdt+

∫ T

0

∫
Ω
∂tw · (w − u) dxdt

=
1
2
‖w(0)− u(0)‖22 −

1
2
‖w(T )− u(T )‖22 +

∫ T

0

∫
Ω
∂tw · (w − u) dxdt

≤ 1
2
‖w(0)− u0‖22 +

∫ T

0

∫
Ω
∂tw · (w − u) dxdt. (2.2)

From now on, we considerw ∈ K (0, T ). Thus, the integral of∂tw · (w−u) in Ω can be written as the duality
〈∂tw,w − u〉. The integral off · (w − u) in Ω can be written as the duality〈f ,w − u〉, too. Substituting
from (2.2) to (2.1), we obtain∫ T

0

〈
∂tw,w − u

〉
dxdt+

∫ T

0

∫
Ω
u · ∇u · (w − u) dxdt+

∫ T

0

∫
Ω
ν∇u · ∇(w − u) dxdt

≥
∫ T

0

∫
Ω
〈f ,w − u〉 dt+

∫ T

0

∫
Γ2

g · (w − u) dS dt− 1
2
‖w(0)− u0‖22. (2.3)

The fact that (2.3) is an inequality, and not an equation, gives us the freedom to impose an additional condition
on the solutionu: we requireu(t) ∈K1

t for a.a.t ∈ (0, T ).

2.2. The initial–boundary value problem (P). Givenu∗ as in subsection 1.5,u0 ∈ L2(Ω) satisfying
divu0 = 0 in Ω (in the sense of distributions) andu0 · n = u∗(0) · n on Γ1 (in the sense of traces),f ∈
L2(0, T ; W−1,2(Ω)) andg ∈ L2(0, T ; L4/3(Γ2)). We look foru ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; W 1,2(Ω))
such thatu(t) ∈K1

t for a.a.t ∈ (0, T ) andu satisfies the inequality (2.3) for all test functionsw ∈ K (0, T ).

Recall that normal components of divergence–free (in the sense of distributions) functions fromL2(Ω) belong
to W−1/2,2(∂Ω), see [10, Theorem III.2.2]. This gives a sense to the condition of compatibilityu0 · n =
u∗(0) · n on Γ1. Moreover, since the traces ofw(t) andu(t) are inL4(∂Ω) at a.a.t ∈ (0, T ), the assumption
on functiong guarantees the convergence of the second integral on the right hand side of (2.3).

The main result of this paper is formulated in the next theorem:
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Theorem 1. A solution of problem (P) exists. Moreover, the solution can be constructed in the formu =
u∗ + v, wherev ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; V 1) andv satisfies the energy–type inequality

1
2
‖v(t)‖22 + ν

∫ t

0
‖∇v(s)‖22 ds ≤ 1

2
‖v(0)‖22 + c2

∫ t

0

[
γ

1
1−κ (s) + 1

]
‖v(s)‖22 ds

+
∫ t

0

[
c3 ‖f(s)‖2−1,2 + c4 ‖u∗(s)‖21,2 + c5 ‖∂tu∗(s)‖2−1,2 + c6 ‖g(s)‖24/3; Γ2

]
ds (2.4)

for all t ∈ (0, T ). (The constantsc2–c6 depend only onΩ, Γ2 and numbera.)

The proof is briefly described (with stress on parts where the variational inequality requires a new technique)
in Section 3.

2.3. Some a posteriori properties of a solution to problem(P). If u is a solution of problem(P) then,
considering the test functionsw of the formw = u∗ ± v, wherev is infinitely differentiable, divergence–
free and with a compact support inΩ × (0, T ), one can show (by analogy with the Navier–Stokes equations)
that there exists a distributionp in Ω × (0, T ) (the so calledassociated pressure) such thatu andp satisfy
equation (1.1) in the sense of distributions inΩ × (0, T ). It follows from the definition on problem(P) that
∆u ∈ L2(0, T ; W−1,2(Ω)) andu · ∇u ∈ L4/3(0, T ; W−1,2(Ω)). If, moreover,∂tu ∈ L1(0, T ; W−1,2(Ω))
then∇p (the distributional gradient ofp) belongs toL1(0, T ; W−1,2(Ω)), too. Consequently,p can be chosen
so that it belongs toL1(0, T ; L2(Ω)). Sincep is unique up to an additive function oft, this function can be
chosen so thatp satisfies the condition

∫
Ω p(t) dx = p(t) a.e. in(0, T ), wherep is any given function in

L1(0, T ).
In the theory of partial differential equations, one can usually show that if a weak solution is “sufficiently

smooth” then it coincides with a strong (or classical) solution. It is, however, not clear at the first sight whether
some analogue of this also holds for the variational inequality (2.3), and in which sense problem(P) involves
the boundary condition (1.4). Thus, assume thatf ∈ L2(0, T L2(Ω)) andu is such a solution of problem(P)
thatu ∈ L2(0, T ; W 2,2(Ω)) and the terms∂tu, u · ∇u also belong toL2(0, T ; L2(Ω)). Then the associated
pressurep exists as a function fromL2(0, T ; W 1,2(Ω)). Applying the integration by parts with respect tot to
the integral of〈∂w,w − u〉 (i.e. applying the procedure, reverse to the first two lines of (2.2)), we obtain∫ T

0
〈∂tw,w − u〉 dt =

∫ T

0
〈∂tu,w − u〉 dt+

1
2
‖w(T )− u(T )‖22 −

1
2
‖w(0)− u0‖22.

Substituting this to (2.3), using the inclusions∂tu, ∆u ∈ L2(0, T ; L2(Ω)) and applying the integration by
parts to the third integral on the left hand side of (2.3), we get∫ T

0

∫
Ω

[
∂tu+ u · ∇u− ν∆u− f

]
· (w − u) dxdt

≥
∫ T

0

∫
Γ2

(
g − ν∇u · n) · (w − u) dS dt− 1

2
‖w(T )− u(T )‖22.

Let q be a function from the same class asw, i.e. q ∈ K (0, T ). Let ξ ∈ (0, 1). We usew in in the form
w = ξq + (1 − ξ)u, divide the inequality byξ and considerξ → 0+. In this way, we get rid of the term
1
2 ‖w(T )−u(T )‖22 on the right hand side. Furthermore, we use the equation∂tu+u ·∇u−ν∆u−f = −∇p
and apply the integration by parts to the integral with∇p. Thus, we obtain∫ T

0

∫
Γ2

(
ν∇u · n− pn− g) · (q − u) dS dt ≥ 0. (2.5)

The next theorem summarizes these findings (in items a) and b)) and adds a new item c):

Theorem 2. Letu be a solution of problem(P). Then
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a) there exists a distributionp in Ω × (0, T ) (the so called associated pressure) such thatu, p satisfy the
Navier–Stokes system (1.1), (1.2 in the sense of distributions inΩ× (0, T ). If ∂tu ∈ L1(0, T ; W−1,2(Ω))
andp ∈ L1(0, T ) is a given function thenp can be chosen so that

∫
Ω p(t) dx = p(t) for a.a.t ∈ (0, T ).

b) If u ∈ L2(0, T ; W 2,2(Ω)) and∂tu, u · ∇u, f ∈ L2(0, T ; L2(Ω)) then the associated pressurep exists
as a function fromL2(0, T ; W 1,2(Ω)) and satisfies the inequality (2.5) for allq ∈ K (0, T ).

c) If, in addition to the assumptions of item b),u(t) lies uniformly in the interior ofK1
t in the sense that

there existsε3 > 0 such that allφ ∈ u∗(t) + V 1 such that‖φ − u∗(t)‖1,2 < ε3 belong toK1
t (for

a.a.t ∈ (0, T )) then there exists a functionϑ ∈ L2(0, T ) such that

ν∇u · n− (p+ ϑ)n = g (2.6)

holds true point-wise a.e. inΓ2 × (0, T ).

Proof. We only need to prove the statement in item c). Leth ∈ W (0, T ) such thatdivh = 0 a.e. inΩ×(0, T ),
h = 0 on Γ1 × (0, T ) and‖h(t)‖1,2 < ε3 for a.a.t ∈ (0, T ). Thenq = u± h are admissible test functions in
(2.5). Using theseq in (2.5), we obtain∫ T

0

∫
Γ2

(
ν∇u · n− pn− g) · h dS dt = 0. (2.7)

Since the left hand side depends linearly onh, (2.7) holds for allh with the aforementioned properties, and not
only for thoseh that differ from0 by less thatε3. As the flux ofh throughΓ2 equals zero at a.a. time instants
t ∈ (0, T ), the space of traces ofh on Γ2 × (0, T ) annihilates the space of functions of the typeϑn, where
ϑ ∈ L2(0, T ). Henceν∇u · n− pn− g = ϑn for someϑ ∈ L2(0, T ). The proof is completed. �

The statement in item c) is in a coincidence with what has been said about the pressure in subsection 1.4: the
concrete pressure that can be reconstructed from the variational formulation (of an equation or an inequality)
and that satisfies the outflow boundary condition onΓ2 × (0, T ), cannot be arbitrarily modified by an additive
constant (or more generally, by an additive function oft). On the other hand, just one representant from the
class of all pressures, associated with a concrete weak solutionu, satisfies the outflow boundary condition.

3 Proof of Theorem 1

3.1. The operator Ψt. The approximations of a solutionu of problem (P) are constructed in the next
subsections by means of a penalization, where the main role plays an operatorΨt. This operator is defined by
the equationΨt(φ) := φ − P 1

t (φ) (for φ ∈ u∗(t) + V 1), whereP 1
t is the projector inu∗(t) + V 1, which

assigns to each element ofu∗(t)+V 1 the nearest element inK1
t . Due to the convexity ofK1

t , P
1
t is a bounded

and continuous mapping ofu∗(t) + V 1 into itself.

Lemma 1. OperatorΨt is monotone and satisfies the inequalities(
Ψt(φ),φ− u∗(t)

)
1,2
≥ ‖Ψt(φ)‖21,2 ,

(
Ψt(φ),φ− u∗(t)

)
1,2
≥ ε2 ‖Ψt(φ)‖1,2 (3.1)

for a.a.t ∈ (0, T ) and for allφ ∈ u∗(t) + V 1, where( . , . )1,2 is the scalar product inW 1,2(Ω) andε2 is the
number from paragraph 1.5 (v).

Proof. If φ1, φ2 ∈ u∗(t) + V 1 then, due to the convexity ofK1
t , ‖P 1

t (φ1) − P 1
t (φ2)‖1,2 ≤ ‖φ1 − φ2‖1,2.

Hence (
Ψt(φ1)−Ψt(φ2),φ1 − φ2

)
1,2

= ‖φ1 − φ2‖21,2 −
(
P 1
t (φ1)− P 1

t (φ2),φ1 − φ2

)
1,2

≥ ‖φ1 − φ2‖21,2 − ‖P 1
t (φ1)− P 1

t (φ2)‖1,2 ‖φ1 − φ2‖1,2 ≥ 0.
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This proves the monotonicity ofΨt. Furthermore, using the inequality
(
φ − P 1

t (φ), P 1
t (φ) − u∗(t)

)
1,2
≥ 0,

we get (
Ψt(φ),φ− u∗(t)

)
1,2

=
(
φ− P 1

t (φ),φ− P 1
t (φ)

)
1,2

+
(
φ− P 1

t (φ), P 1
t (φ)− u∗(t)

)
1,2

≥
(
φ− P 1

t (φ),φ− P 1
t (φ)

)
1,2

= ‖Ψt(φ)‖21,2.

This proves the first inequality in (3.1). The second inequality obviously holds ifΨt(φ) = 0. Thus, assume
thatΨt(φ) 6= 0 and puth := u∗(t) + ε2 Ψt(φ)/‖Ψt(φ)‖1,2. Then(

Ψt(φ),φ− u∗(t)
)

1,2

=
(
φ− P 1

t (φ),φ− P 1
t (φ)

)
1,2

+
(
φ− P 1

t (φ), P 1
t (φ)− h

)
1,2

+
(
φ− P 1

t (φ),h− u∗(t)
)

1,2
.

The first term on the right hand side is nonnegative. The second term is also nonnegative, becauseh ∈K1
t and

K1
t is convex. Thus, substituting forh, we obtain

(
Ψt(φ),φ− u∗(t)

)
1,2
≥ ε2

(
Ψt(φ),

Ψt(φ)
‖Ψt(φ)‖1,2

)
1,2

= ε2 ‖Ψt(φ)‖1,2. �

3.2. Construction of approximations. PutV 2 := V 1 ∩W 2,2(Ω). V 2 is a Hilbert space with the scalar
product( . , . )2,2, identical with the scalar product inW 2,2(Ω). Let e1, e2 . . . be a basis inV 2, orthonormal
in L2(Ω).

Put

κ :=

{
3
4 + 1

2a if 2 < a ≤ 3,
5
4 −

1
a if 3 ≤ a < 4.

(3.2)

Then max{1
2 + 1

a ,
3
2 −

2
a} ≤ κ < 1 and there exists a continuous operator of traces from the Sobolev–

Slobodeckij spaceW κ,2(Ω) to the Besov spaceBκ−1/2
2,2 (∂Ω), see [20]. Applying the partition of unity on∂Ω,

a local representation of∂Ω by graphs of Lipschitz functions and the continuous imbeddingB
κ−1/2
2,2 (R2) ↪→

L4/(3−2κ)(R2) (see [23, p. 36]), we deduce thatBκ−1/2
2,2 (∂Ω) ↪→ L4/(3−2κ)(∂Ω). Hence there exists a con-

tinuous operator of traces fromW κ,2(Ω) to L4/(3−2κ)(∂Ω). By analogy withV 1, we denote byV κ be the
space of all divergence–free (in the sense of distributions) functionsφ fromW κ,2(Ω), such thatφ = 0 on Γ1.
Furthermore, we defineKκ

t to be the set of all functionsφ ∈ u∗(t) + V κ that satisfy inequality (1.9). (The
norm in (1.9) has a sense becausea ≤ 4/(3 − 2κ).) By analogy withK1

t , setKκ
t is convex and closed in

V κ. Denote byP κt the projector inu∗(t) + V κ, which assigns to each element ofu∗(t) + V κ the nearest
element inKκ

t . ProjectorP κt is a continuous mapping ofu∗(t) + V κ into itself. Moreover, sinceKκ
t is con-

vex,P κt satisfies‖P κt (φ) − u∗(t)‖κ,2 ≤ ‖φ − u∗(t)‖κ,2 for eachφ ∈ V κ and a.at ∈ (0, T ). Consequently,
‖P κt (φ)‖κ,2 ≤ ‖φ− u∗(t)‖κ,2 + ‖u∗(t)‖κ,2.

Let n ∈ N. We look for the coefficientsa(n)
k ∈ C1([0, T ]), (k = 1, 2, . . . , n) such that the functions

u(n) := u∗ + v(n), where

v(n) :=
n∑
k=1

a
(n)
k ek, (3.3)

satisfy the initial conditionsu(n)(0) ≡ u∗(0)+v(n)(0) =
∑n

k=1

(
u0−u∗(0), ek

)
2
ek, (where( . , . )2 denotes

the scalar product inL2(Ω)), and the integral equations

〈
∂tu

(n), ek
〉

+
∫

Ω

[
P κt (u(n)) · ∇u(n) · ek + ν∇u(n) : ∇ek

]
dx+ n

(
Ψt(u(n)), ek

)
1,2

= 〈f , ek〉+
∫

Γ2

g · ek dS, (3.4)
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hold for allk = 1, . . . , n. The last term in the integral on the left hand side plays the role of a penalization. Sub-
stituting here from (3.3), we obtain a system ofn ordinary differential equations for the unknown coefficients
a

(n)
k (k = 1, . . . , n). The system is completed by the initial condition

a
(n)
k (0) =

(
u0 − u∗(0), ek

)
2
. (3.5)

The local solvability of the system follows from Caratheodory’s theorem. In order to prove the global solvability
on the time interval(0, T ), one needs estimates ofa(n)

k (k = 1, . . . , n), valid on the whole interval(0, T ).

3.3. A priori estimates and existence of the approximations.Multiplying thek–th equation in (2.5) bya(n)
k ,

writing u(n) in the formu∗ + v(n) and summing overk from 1 to n, we obtain

1
2

d
dt
‖v(n)‖22 + ν ‖∇v(n)‖22 + n

(
Ψt(u∗ + v(n)), v(n)

)
1,2

= −
〈
∂tu
∗,v(n)

〉
− ν

∫
Ω
∇u∗ : ∇v(n) dx

−
∫

Ω
P κt (u∗ + v(n)) · ∇(u∗ + v(n)) · v(n) dx+

〈
f ,v(n)

〉
+
∫

Γ2

g · v(n) dS. (3.6)

The third term on the right hand side equals

−
∫

Ω
P κt (u∗ + v(n)) · ∇v(n) · v(n) dx−

∫
Ω
P κt (u∗ + v(n)) · ∇u∗ · v(n) dx

= −1
2

∫
Γ2

P κt (u∗ + v(n)) · n |v(n)|2 dS −
∫

Ω
P κt (u∗ + v(n)) · ∇u∗ · v(n) dx

≤ 1
2

(∫
Γ2

[
P κt (u∗ + v(n)) · n

]a
− dS

)1
a
(∫

Γ2

|v(n)|
2a
a−1 dS

)a−1
a

−
∫

Ω
P κt (u∗ + v(n)) · ∇u∗ · v(n) dx

≤ C γ(t) ‖v(n)‖24/(3−2κ); Γ2
+
∥∥P κt (u∗ + v(n))

∥∥
r2
‖∇u∗‖2 ‖v(n)‖s2 ,

≤ C γ(t) ‖v(n)‖2κ,2 +
∥∥P κt (u∗ + v(n))

∥∥
r2
‖∇u∗‖2 ‖v(n)‖s2 ,

wherer−1
2 + s−1

2 = 1
2 . If r2 is chosen so that3 < r2 < 6/(3 − 2κ) (which is< 6) thenV κ ↪→↪→ Lr2(Ω)

andV 1 ↪→↪→ Ls2(Ω) (becauses2 < 6). (Here and further on,C denotes a generic constant.) Moreover,
interpolating the norm‖v(n)‖κ,2 between‖v(n)‖2 and‖v(n)‖1,2 and using Friedrichs’ inequality (1.7), the
continuous imbeddingW 1,2(Ω) ↪→ L6(Ω), Young’s inequality and the inequalities‖P κt (u∗ + v(n))‖r2 ≤
C ‖P κt (u∗+v(n))‖κ,2 ≤ C

(
‖u∗‖κ,2 +‖v(n)‖κ,2

)
≤ C

(
‖u∗‖1,2 +‖∇v(n)‖2

)
, we observe that the right hand

side of the last inequality is

≤ C γ(t) ‖v(n)‖2(1−κ)
2 ‖v(n)‖2κ1,2 + C

(
‖u∗‖1,2 + ‖∇v(n)‖2

)
‖v(n)‖s2

≤ C γ(t) ‖v(n)‖2(1−κ)
2 ‖∇v(n)‖2κ2 + C

(
‖u∗‖1,2 + ‖∇v(n)‖2

)
‖v(n)‖

6−s2
2s2

2 ‖v(n)‖
3(s2−2)

2s2
6

≤ δ ‖∇v(n)‖22 + C δ−
κ

1−κ γ
1

1−κ (t) ‖v(n)‖22 + C ‖u∗‖1,2 ‖v(n)‖
6−s2
2s2

2 ‖∇v(n)‖
3(s2−2)

2s2
2

+ C ‖v‖
6−s2
2s2

2 ‖∇v(n)‖
5s2−6

2s2
2

≤ 3δ ‖∇v(n)‖22 + C(δ) γ
1

1−κ (t) ‖v(n)‖22 + C(δ) ‖u∗‖21,2 + C(δ) ‖v(n)‖22, (3.7)

whereδ > 0 can be chosen arbitrarily small. The exponent1/(1 − κ) equals4a/(a − 2) for 2 < a ≤ 3
and 4a/(4 − a) for 3 ≤ a < 4. Hence it is less than or equal tol(a) (the number defined in subsection
1.5). Consequently,γ1/(1−κ) ∈ L1(0, T ). The estimates of the other terms on the right hand side of (3.6) are
standard: ∣∣∣∣ν ∫

Ω
∇u∗ : ∇v(n) dx

∣∣∣∣ ≤ δ ‖∇v(n)‖22 +
ν2

4δ
‖∇u∗‖22, (3.8)
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∣∣〈∂tu∗,v(n)
〉∣∣ ≤ ‖∂tu∗‖−1,2 c1 ‖∇v(n)‖2 ≤ δ ‖∇v(n)‖22 +

c2
1

4δ
‖∂tu∗‖2−1,2, (3.9)∣∣〈f ,v(n)

〉∣∣ ≤ ‖f‖−1,2 c1 ‖∇v(n)‖2 ≤ δ ‖∇v(n)‖22 +
c2

1

4δ
‖f‖2−1,2, (3.10)∣∣∣∣∫

Γ2

g · v(n) dS
∣∣∣∣ ≤ ‖g‖4/3; Γ2

‖v(n)‖4; Γ2 ≤ ‖g‖4/3; Γ2
c7 c1 ‖∇v(n)‖2

≤ δ ‖∇v(n)‖22 +
c2

7c
2
1

4δ
‖g‖24/3; Γ2

. (3.11)

(We have again used inequality (1.7), Young’s inequality and the continuity of the operator of traces from
W 1,2(Ω) toL4(∂Ω). The norm of this operator is denoted byc7.) Substituting now from (3.7)–(3.11) to (3.6)
and choosingδ sufficiently small, we calculate that there exist positive constantsc2, c3, c4, c5, c6, independent
of n, such that

1
2

d
dt
‖v(n)‖22 + ν ‖∇v(n)‖22 + n

(
Ψt(u∗ + v(n)), v(n)

)
1,2
≤ c2

[
γ

1
1−κ (t) + 1

]
‖v(n)‖22 + c3 ‖f‖2−1,2

+ c4 ‖u∗‖21,2 + c5 ‖∂tu∗‖2−1,2 + c6 ‖g‖24/3; Γ2
. (3.12)

Integrating this inequality on the time interval(0, T ), we derive the estimates

‖v(n)(t)‖2 ≤ c8 for all t ∈ (0, T ) andn ∈ N, (3.13)∫ T

0
‖∇v(n)‖22 dt ≤ c9 for all n ∈ N, (3.14)∫ T

0
n
(
Ψt(u∗ + v(n)), v(n)

)
1,2

dt ≤ c10 for all n ∈ N. (3.15)

The upper boundsc8, c9 andc10 are independent ofn. Note that the inequalities (3.1) and (3.15) yield∫ T

0
n ‖Ψt(u∗ + v(n))‖21,2 dt ≤ c10,

∫ T

0
n ‖Ψt(u∗ + v(n))‖1,2 dt ≤ c10

ε1
. (3.16)

Estimates (3.13) imply that
∑n

k=1 a
(n)
k (t)2 ≤ c2

8 for all t ∈ (0, T ) andn ∈ N. From this, one can deduce

that the system of ordinary differential equations for the unknownsa
(n)
k (k = 1, . . . , n), which we obtain if

we use (3.3) and substituteu(n) = u∗ + v(n) to (3.4), is uniquely solvable on the whole time interval(0, T ).
Consequently, the approximationsu(n) ≡ u∗+v(n) also exist on the whole interval(0, T ) and satisfy estimates
(3.13)–(3.16).

3.4. An estimate of a fractional derivative ofv(n). In order to obtain later a strong convergence of a
subsequence of{v(n)}, we also need an estimate of at least a fractional derivative ofv(n) with respect tot.
Chooser ∈ (0, 1

2) and put

Hr :=
{
v ∈ L2(0, T ; V 1); |τ |r v̂(τ) ∈ L2

(
−∞,∞; V −2(Ω)

)}
,

‖v‖2Hr :=
∫ T

0
‖v(t)‖21,2 dt+

∫ ∞
−∞
|τ |2r ‖v̂(τ)‖2−2,2 dτ,

whereV −2 denotes the dual space toV 2, ‖ . ‖−2,2 is the norm inV −2 andv̂ is the Fourier transform ofv in
variablet. (In order to calculate the Fourier transform, we extendv(t) by zero fort ∈ (−∞, 0) ∪ (T,∞).)
Recall thatV 2 := V 1 ∩W 2,2(Ω). By analogy with the proof of the existence of a weak solution to the
Navier–Stokes equations, one can derive the estimate

‖v(n)‖2Hr ≤ C +
∫ ∞
−∞
‖v̂(n)(τ)‖22 dτ ≤ C +

∫ T

0
‖v(n)(t)‖22 dt ≤ c11. (3.17)
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(See e.g. [18, Sec. 1.6.5] for more details.) It should be only mentioned that one needs to apply (3.15) in order
to control the terms that contain the penalizationΨt in equation (3.4).

3.5. Convergence of the approximations. It follows from (3.13), (3.14), (3.17), the compact imbedding
Hr ↪→↪→ L2(0, T ; V κ) (see e.g. [18, Chap. I.5.2]) and the continuity of the operator of traces fromV κ to
L4/(3−2κ)(∂Ω) that there existv ∈ L∞(0, T ; L2(Ω)) ∩Hr and a subsequence of{v(n)} (which we again
denote by{v(n)}) such that

v(n) −→ v weakly inHr and weakly–∗ in L∞(0, T ; L2(Ω)), (3.18)

v(n) −→ v strongly inL2(0, T ; V κ), (3.19)

v(n) −→ v strongly inL2(0, T ; L4/(3−2κ)(Γ2)). (3.20)

3.6. The inclusionu∗(t) + v(t) ∈K1
t . Due to the monotonicity of operatorΨ inW 1,2, we have∫ T

0

(
Ψt(u∗ + v(n))−Ψt(u∗ + z), v(n) − z

)
1,2

dt ≥ 0 (3.21)

for all n ∈ N andz ∈ L2(0, T ; V 1). Using (3.1), (3.16) and (3.18), we obtain

lim
n→∞

∫ T

0

(
Ψt(u∗(t) + v(n)), v(n) − z

)
1,2

dt = 0,

lim
n→∞

∫ T

0

(
Ψt(u∗ + z), v(n)

)
1,2

dt =
∫ T

0

(
Ψt(u∗ + z), v

)
1,2

dt.

Thus, passing to the limit forn→∞ in (3.21), we obtain
∫ T

0

(
Ψ(u∗+z), v−z

)
1,2

dt ≤ 0. Considerz in the
form z := v − ξΨt(u∗ + v) whereξ > 0. Dividing the inequality byξ and passing to the limit forξ → 0+,
we get

∫ T
0

(
Ψ(u∗ + v),Ψt(u∗ + v)

)
1,2

dt ≤ 0, which means thatΨt(u∗(t) + v(t)) = 0 for a.a.t ∈ (0, T ).
This implies thatu∗(t) + v(t) ∈K1

t for a.a.t ∈ (0, T ).

3.7. The limit transition in equation (2.5) for w ∈ K m(0, T ). Form ∈ N, we denote byW m(0, T ) the set
of functionsw ∈ W (0, T ) that have a finite expansionw(t) = u∗(t) +

∑m
k=1 µk(t)ek, and byK m(0, T ) the

set of functionsw ∈ W m(0, T ) such thatw(t) ∈K1
t for a.a.t ∈ (0, T ).

We claim that the functionu ≡ u∗+v satisfies the inequality (2.3). Assume at first that the test functionw in
(2.3) is chosen from setK m(0, T ) andn > m. Recall thatv(n) has the expansion (3.3) andu(n) = u∗+v(n).

Let us multiply equation (3.4) byµk − a
(n)
k if k ≤ m and by−a(n)

k if m < k ≤ n and sum the equations for
k = 1, . . . , n. Then we integrate the resulting equation with respect to time on(0, T ). We obtain∫ T

0

〈
∂tu

(n),w − u(n)
〉

dt+
∫ T

0

∫
Ω

[
P κt (u(n)) · ∇u(n) · (w − u(n)) + ν∇u(n) : ∇(w − u(n))

]
dxdt

+
∫ T

0
n
(
Ψt(u(n)),w − u(n)

)
1,2

dt =
∫ T

0
〈f ,w − u(n)〉 dt+

∫ T

0

∫
Γ2

g · (w − u(n)) dS dt. (3.22)

The first integral on the left hand side satisfies:∫ T

0

〈
∂tu

(n),w − u(n)
〉

dt =
∫ T

0

〈
∂tu

(n) −w,w − u(n)
〉

dt+
∫ T

0

〈
∂tw,w − u(n)

〉
dt

= −1
2
‖un(T )−w(T )‖22 +

1
2
‖un(0)−w(0)‖22 +

∫ T

0

〈
∂tw,w − u(n)

〉
dt

≤ 1
2
‖un(0)−w(0)‖22 +

∫ T

0

〈
∂tw,w − u(n)

〉
dt. (3.23)
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The integral ofn
(
Ψt(u(n)),w − u(n)

)
1,2

can be estimated by means of the monotonicity of operatorΨt and

the identityΨt(w)(t)) = 0 (which holds becausew(t) ∈K1
t ) as follows:∫ T

0
n
(
Ψ(u(n)),w − u(n)

)
1,2

dt = −n
∫ T

0

(
Ψ(w)−Ψ(u(n)),w − u(n)

)
1,2

dt ≤ 0. (3.24)

Thus, (3.22)–(3.24) yield∫ T

0

〈
∂tw,w − u(n)

〉
dt+

∫ T

0

∫
Ω

[
P κt (u(n)) · ∇u(n) · (w − u(n)) + ν∇u(n) : ∇(w − u(n))

]
dxdt

≥
∫ T

0
〈f ,w − u(n)〉 dt+

∫ T

0

∫
Γ2

g · (w − u(n)) dS dt− 1
2

∥∥w(0)− u(n)(0)
∥∥2

2
. (3.25)

The next step is the passage to the limit forn → ∞ in (3.25). Here, we apply all types of convergence
(3.18)–(3.20). We explain the limit transition only in the two terms in (3.25), because the transition in the
other terms is analogous or the same as in the proof of the existence of weak solutions of the Navier–Stokes
equations, see e.g. [9]) or [18]. a) The inequality

lim inf
n→∞

(
−ν
∫ T

0

∫
Ω
∇u(n) : ∇u(n) dxdt

)
≤ −ν

∫ T

0

∫
Ω
∇u : ∇u dxdt (3.26)

follows from (3.18) and the identityu(n) = u∗+v(n). b) The integral ofP κt (u(n)) ·∇u(n) · (w−u(n)) equals∫ T

0

∫
Ω
P κt (u(n)) · ∇u(n) ·w dxdt− 1

2

∫ T

0

(∫
Γ1

(u∗ · n) |u∗|2 dS +
∫

Γ2

(
P κt (u(n)) · n

)
|u(n)|2 dS

)
dt

The integral
∫

Γ2

(
P κt (u(n)) ·n

)
|u(n)|2 dS converges to

∫
Γ2

(
P κt (u) ·n

)
|u|2 dS point-wise for a.a.t ∈ (0, T )

due to (3.20). Thus, applying Fatou’s lemma on the interval(0, T ), we get

lim inf
n→∞

(
−1

2

∫ T

0

∫
Γ2

(
P κt (u(n)) · n

)
|u(n)|2 dS dt

)
≤ −1

2

∫ T

0

∫
Γ2

(u · n) |u|2 dS dt.

SinceKκ
t is convex,u(t) ∈Kκ

t and‖P κt u(n)(t)− u(t)‖κ,2 ≤ ‖u(n)(t)− u(t)‖κ,2 for a.a.t ∈ (0, T ), (3.19)
implies thatP κt u

(n) → u strongly inL2(0, T ; V κ). Hence∫ T

0

∫
Ω
P κt (u(n)) · ∇u(n) ·w dxdt −→

∫ T

0

∫
Ω
u · ∇u ·w dxdt (for n→∞).

Consequently,

lim inf
n→∞

∫ T

0

∫
Ω
P κt (u(n)) · ∇u(n) · (w − u(n)) dxdt

≤ −1
2

∫ T

0

∫
Γ1

(u∗ · n) |u∗|2 dS dt− 1
2

∫ T

0

∫
Γ2

(u · n) |u|2 dS dt+
∫ T

0

∫
Ω
u · ∇u ·w dxdt

=
∫ T

0

∫
Ω
u · ∇u · (w − u) dxdt. (3.27)

Thus, we observe thatu satisfies inequality (2.3) for all test functionsw ∈ K m(0, T ). Sincem was an
arbitrary number fromN, (2.3) holds for allw ∈

⋃∞
m=1 K m(0, T ).

3.8. Completion of the proof. We still need to show that (2.3) is satisfied for allw ∈ K (0, T ). For
this purpose, it is sufficient to show that

⋃∞
m=1 K m(0, T ) is dense inK (0, T ) in the norm ||| . |||. Ob-

viously,
⋃∞
m=1 W m(0, T ) is dense inW (0, T ). SetK (0, T ) is closed inW (0, T ), with the property that
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K (0, T ) is equal to the closure of its interior. Hence
(⋃∞

m=1 W m(0, T )
)
∩K (0, T ) (which coincides with⋃∞

m=1 K m(0, T )) is dense inW (0, T ) ∩K (0, T ) (which coincides withK (0, T )).
The validity of the energy inequality (2.4) can be deduced from inequality (3.12) by means of the same

arguments as in the case of the Leray–Hopf weak solution to the Navier–Stokes equations, see e.g. [9].
The proof of Theorem 1 is completed.
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