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Abstract

We prove the global in time existence of a weak solution to the variational inequality of the Navier—
Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so called “do
nothing” boundary condition on the outflow. The condition that the solution lies in a certain given, however
arbitrarily large, convex set and the use of the variational inequality enables us to derive an energy—type
estimate of the solution. We also discuss the use of a series of other possible outflow “do nothing” boundary
conditions.

AMS 2010 Subiject ClassificatioB5Q30, 65N30, 76D05.
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1 Introduction and notation

1.1. The Navier—Stokes initial-boundary value problem. Let T > 0 and{2 be a bounded Lipschitzian
domain inR3. The flow of an incompressible Newtonian fluid(nin the time interval0, T') is described by
the system of equations

du+u-Vu—divS = f, (1.1

divu = 0, (1.2)

wherew is the velocity,S is the stress tensor anflis the acting volume force. The density of the fluid is
assumed to be equal to one. TenSain the Newtonian fluid, has the forfh= —pl+ v [Vu + (Vu)T], where

p is the pressure andis the coefficient of viscosity. We assume that donfairepresents a channel, where the
fluid inflows through the paif; of the boundary(? and outflows through the part, of 9X2. (See Fig. 1.) Itis
logical to assume that the flow @R is known, which leads to the Dirichlet boundary condition

u = u" onT'; x (0,7), (1.3)

whereu* is a given function. (The part dfy may coincide
T3 with a fixed wall, whereu* equals zero.) On the other hand,
2 since the velocity profile o'y is not known in advance, the
authors here usually use some “artificial” boundary condition
I of non-Dirichlet type. One can find artificial boundary condi-
‘ tions of various forms in literature, see e.qg. [1], [2], [4], [6], [7],
Iy [8], [11], [22]. Boundary conditions that naturally follow from
an appropriate weak formulation of the considered boundary
x1 value or initial-boundary value problem are often called the
“do nothing” boundary conditions. (See e.qg. [1], [11], [14] for

Fig. 1: the channel more details.) In this paper, we use the inhomogeneous “do
nothing” boundary condition

—-pn+vVu-n = g onT'y x (0,7), 1.4)



wheren denotes the outer normal vector field apib a given function. (We explain later, in subsection 1.5,
how condition (1.4) follows from the weak formulation. We also present some other “do nothing” boundary
conditions and compare them with (1.4) in subsection 1.5.) The problem is completed by the initial condition

u = up inQ x {0}. (1.5)

1.2. The question of solvability of the problem (1.1)—(1.5) and related resultdf one wants to prove the ex-
istence of a solution of the problem (1.1)—(1.4) then the first logical step is the derivation of an a priori estimate.
However, since the boundary condition (1.4) does not exclude backward flolstbat might possibly bring

back tof2 an uncontrollable amount of kinetic energy, the derivation of the usual energy inequality fails. This
is the reason why the known existential results for the problem (1.1)—(1.5) assume that the given data of the
problem are in some sense “small”, or the time intef@all’) is “sufficiently short”. (See [1], [14], [15].) The

global in time existence of a weak solution of the problem (1.1)-(1.5) for “large” data, which is well known
for the Navier—Stokes equations with other boundary conditions than (1.4), is an open problem. The situation
is similar if one studies a flow through a 2D profile cascade, see [6], [7]. Some authors consider boundary
conditions orl's, modified by artificial terms that enable one to control the kinetic energy of the fluid entering

Q throughl's. (Such a modification was proposed e.qg. in [4]. The same and other modifications have also been
used in papers [8], [22] which deal with profile cascades. A modification of condition (1.4) by certain nonlinear
terms, elaborated into a numerical algorithm, can also be found in paper [5]. In paper [16], the authors use the
modified “do nothing” boundary condition in connection with the flow of a shear—thinning fluid. A nonlinearly
modified condition (1.4) also plays an important role in [17], where the authors prove the solvability of the
steady Navier—Stokes variational inequality.) Another approach has been used in papers [12], [13], where the
authors consider the steady problems and impose an additional condition drat enables them to derive

an a priori energy estimate. However, the additional condition means that the solution is from the beginning
sought for in a certain closed convex subset of the Sobolev $3&c& ), and the momentum equation (1.1)

(or more precisely, its weak form) must be replaced by a variational inequality. A modification of the boundary
condition (1.4) is also used in paper [2], where the authors study the flow of an incompressible viscous mixture
with non—constant density.

1.3. Aims of this paper. We present several types of “do nothing” boundary conditions in subsection 1.4,
and discuss them from the point of view of energy estimates and comparison with the steady state Poiseuille
flow through a pipe. Then we apply a similar approach as in [12] and [13], however to the non—stationary
flow. In Section 2, we formally derive the variational inequality and formulate the main result on the global
in time existence of its weak solution. (See Theorem 1.) We also show that if the weak solution and an
associated pressure are “smooth” then they satisfy the Navier—Stokes system (1.1),12)(n7") and the
variational inequality is reduced only to 98t x (0, 7). Moreover, if the solution finds itself in the interior of
the aforementioned convex set then the boundary condition (1.4) is satisfied point-Wiseif0, 7). (See
Theorem 2.) The proof of Theorem 1 is given in Section 3.

Everywhere in the paper, we focus especially on points where the use of the variational inequality brings
something new or requires a different approach or technique and we do not repeat the parts (estimates, proce-
dures, arguments) that are well known from the theory of weak solutions to the Navier—Stokes equations.

1.4. A discussion on boundary conditions of the “do nothing” type. We consider, for simplicity, only the
steady—state problem in this subsection. The t&im® in equation (1.1) can be written in any of these forms:

la) divS = —div (pl) + vdiv (Vu + (Vu)?) = =Vp + vdiv [Vu + (Vu)7],
1b) divS = —div(pl) + v Au = —Vp+ v Au (using the identityliv (Vu)” = 0),
1c) divS = —div (pl) — vcurl®>u = —Vp — vcurl?u  (using the formulaAu = —curl?uw).

If we want to derive formally a weak form of the system (1.1), (1.2) with the boundary condition (1.3), we
multiply equation (1.1) by a “smooth” divergence—free test functioand integrate iff2. It is reasonable to
assume thap = 0 onT'; due to the Dirichlet boundary condition (1.3), but we impose no conditiog on

I's. Then the cases 1a) — 1c) successively yield



2a) /QdivS-gbdzz::/F [-pn+v (Vu+ (Vu)')  n] -qde—z//Q(Vu—F(Vu)T):Vcﬁda:,

2b) /divS'd)dw:/ [—pn—i-VVu‘n]-(ﬁdS—y/Vu:V¢da:,
Q Iy Q

2c) /divS-¢dw:/ [—pn—ucurluxn}-¢dS—y/curlu~curl¢daz.
Q Iy Q

The integrals o’y cannot be involved into the weak formulation, because the integrands cannot be reasonably
interpreted on the level of weak solutions. Thus, they are usually neglected or replaﬁ%cyby;b dsS, where
functiong can be appropriately chosen. Then the weak variants of the system (1.1), (1.2) take the forms

3a) /[u-Vu-qS—u(Vu%—(Vu)T):qu} dm+/ g-¢d5’:/f-¢d:n,
Q Ty Q
3b) /Q[U-Vu~¢—1/Vu:V¢]dm+/rgg~¢dS:/Qf-¢d:c,

3c) /Q[u-Vu~¢—ycurlu-curlq’)] dsc—i—/FQg-qde:/Qf‘(ﬁda:.

(The equations are required to be satisfied for all test funcifongéth the mentioned properties andis also
required to satisfy the conditiolm = »* onT';.) If a weak solutionu exists and is sufficiently smooth then one,
applying the backward integration by parts, can reconstruct an associated ppemsdiiccessively show that
u andp satisfy the boundary conditions

4a) —pn+v[Vu+ (Vu)l] - n=g,
4b) —pn+vVu-n =g,
4c) —pn—vcurlu xn =g,

respectively, ol's. (These conditions retroactively certify that it was correct to neglect the integrdls on
in 1a) — 1c).) However, although the pressure involved in teBsorequation (1.1) can be modified by an
arbitrary additional constant, with no effect on the validity of the equation, the same assertion does not hold for
p in the boundary conditions 4a) — 4c). Here, one can deduce from the weak formulation that there exists just
one pressurg (in the class of pressures that differ by additive constants) that satisfies the boundary condition.
(The reasons are the same as the reasons for the presence of furiotionmula (2.6) in Theorem 2.)

None of the conditions 4a) — 4c) prevents the existence of a backward fl@w, @dhat could theoretically
bring an uncontrollable amount of the kinetic energy from the outside. t@he flow of the kinetic energy
throughT, comes from the nonlinear terma - Vu in equation (1.1), if it is formally multiplied by. and
integrated ovef. It yields:

/u-Vu-udw = / (un)%|u!2 ds = / (u*n)%|u*|2 d5'+/ (un)%\u|2 ds. (1.6)
Q o0 I Iy
The last integral on the right hand side cannot be dominated by other terms in the energy estimates. It may have
a “wrong sign” and act against the other terma ifn < 0 on the part of's, i.e. in the case of a backward flow.
(See e.qg. [3] for a more detailed explanation.) The situation changes if one writes the nonlinear term in equation
(1.1) in the formeurl u x u+ V3 |u|? and consider¥ 3 |u|? together withp as the so called Bernoulli pressure
qg=p-+ % lu|?. Then the aforementioned boundary conditions 4a) — 4c) take successively the modified forms
4d) —gqn+v[Vu+ (Vu)'] - n=g,
4e) —gqn+vVu-n =g,
4) —gn —vcurlu xn =g.

It is, however, important that the remaining nonlinear term in equation (1.éni$u x u. (It leads to
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Jocurlu x u - ¢ dz in the weak formulation.) If one formally multiplies equation (1.1)dywhich means
that one use& = wu in the weak formulation) then the nonlinear term disappears, be¢ausbs x u)-u = 0.
The consequences are: 1) the nonlinear tearl v x w does not generate a flow of kinetic energy through

I'5, 2) one can derive an anergy inequality, 3) one can prove the existence of a global in time weak solution

similarly, as in the case of the Dirichlet boundary condition (1.3) on the whole bound&ysafe e.g. [9]).
Thus, there is a natural question which of the boundary conditions 4a) — 4f) enthe most appropriate

one, and why the conditions 4a) — 4c) are considered at all, when, in contrast to 4d) — 4f), they do not enable
one to prove the existence of a weak solution. The answer is not quite clear. Many authors prefer condition

4b) because it is satisfied (wigh= 0) by the Poiseuille flow in a circular pipe. For this reason, condition 4b)

is being considered to be the most physical one of all the conditions 4a) — 4f). On the other hand, to any of

the conditions 4a) — 4f), one can always calculate a non—zero fungtimnthat the Poiseuille flow (or, more
generally, any other flow expected dn) satisfies the considered condition with this concgetan the right

hand side. So, in our opinion, the choice of the boundary condition depends on a concrete situation. It would be
highly interesting to compare numerical results, obtained with various boundary conditions, among themselves

and also with results of experiments.

1.5. Assumptions and notation. Vector-functions and spaces of vector-functions are denoted by boldface
letters.

(i)

(ii)

(iif)

(iv)

v)

Letl < r < oo andk € {0} UN. The norm of a scalar— or vector— or tensor—valued function, with
components in."(£2) (respectivelyiW®7(2)) is denoted by . || (respectivelyj| . ||x,). The norm in
L"(T'9) is denoted by . ||. 1,
We assume thal) = T'; U T'5, wherel'; andI'; are disjoint nonempty subsets @f2, open in the 2D
topology of9f2. Since the 2D measure 0f is positive, there exists; > 0 such that the Friedrichs
inequality

[-fl2 < e[Vl (1.7)

holds for all functions froni¥’1:2(2), whose trace o' is equal to zero. (See [21, Theorem 1.1.9].)

We assume that* is a given function o’y x (0,7") that can be extended 0 x (0,7") so that the
extended function, which is for simplicity also denoteddsy has these properties: af € L™ (0, T,
W2(Q)) anddyu* € L?(0,T; W—12(Q)), b)divu*(t) = 0in Q fora.at € (0,T). (We denote by
W12(Q) is the dual toWw2(12).) It follows from [19, Theorem 1.3.1] that* € C°([0,77]; L*(<2))
anddivu*(t) = 0in Qforall ¢t € [0,T].

We denote byW! the linear space of all divergence—free functions frit-2(2), such thaip = 0 on
I'y. Thenu*(t) + V! (for a.a.t € (0,7)) is a linear set of all divergence—free functions fr&¥2 (1),
such thaip = u*(t) onT';.

Lete; > 0,a € (2,4), respectivelyy € L{) (0, T) (wherel(a) := max{4a/(a — 2), 4a/(4 — a)}), be
such numbers, respectively function, that

H (u*(t) -n)fHa;F2 +e < (t) (1.8)

fora.a.t € (0,7). (The form ofi(a) is used in subsection 3.3. The subscript ‘denotes the negative
part. The negative part is taken “positively”, i.ecik 0 thenc_ = —c.) We defineK | to be the set of
all functionse € w*(t) + V! such that

(@ n)_|lar, < ()  foraate (0,7). (1.9

The numbers;, a and the functionsy andu* are fixed throughout the paper. Since the inequality in
(1.9) is not strong K} is a closed subset ai*(t) + V1. Applying Minkowski’s inequality, it can be
verified that sefk’} is convex. Due to the presence of positiyein inequality (1.8), one can also show
that there exists, > 0 (independent of) such thatk(} contains the,—neighborhood ofi*(t).



(vi) We denote by# (0,T) the Banach space of functions € L2(0,T; W'%(Q)) such thatd,w <
L%(0,T; W~12(Q)), equipped by the norm

T ) T ) 1/2
Mwu::<4\mmmdv+4\mmmlgw) .

Applying [19, Theorem 1.3.1], one can deduce that each functiofrom /(0,7 is in C°([0, T7;
L*(2)), too.
(vii) We denote by# (0, T) the set of functionsv € # (0, T) such thatw(t) € K} for a.a.t € (0,T).
2 The Navier—Stokes variational inequality and its global in time solution

2.1. A formal derivation of the variational inequality. Suppose that:, p is a “smooth” solution of the
problem (1.1)—(1.5). Letw be a “smooth” function fronf0, T'] such thatw(t) € K} for a.a.t € [0,7)]. Using

the formuladivS = —Vp + vAw, multiplying equation (1.1) byw — wu, integrating ovef2 x (0,7"), using the
identityw —u = 0onT'; x (0,7) and applying the boundary condition (1.4), we obtain

T T
/ /[8tu+u~Vu]-(w—u) dmdt+/ /VVU-V(w—u)d:cdt
0 Ja 0 Jo

:/OT/Qf.(w_u)dmdt+/0T/F2g.(w—u)det. (2.1)

The term with the time derivative satisfies

/OT/Qatu.(w—u)dmdt:/ /8tu, w) - (w— u)d:ndt+/ /@w w — ) da dt

1 1
= 100~ w3~ § o)~ w4 [ [ o - w dza

IN

T
% |lw(0) — wupl|3 + /0 /Qf)t'w (w —u) de dt. (2.2)

From now on, we considev € .# (0, 7). Thus, the integral of,w - (w — ) in Q2 can be written as the duality
(Oyw,w — u). The integral off - (w — w) in © can be written as the dualityf, w — u), too. Substituting
from (2.2) to (2.1), we obtain

T T .
/0 <8tw,w—u>da:dt+/0 /Qu.Vu-(w—u)da:dtJr/O /QVVU-V(w—u)d:cdt
T T ) ;
2/0 /Q<f,'w—u>dt+/0 /Fgg.(fw—u)det—E|w(0)_u0H2_ (2.3)

The fact that (2.3) is an inequality, and not an equation, gives us the freedom to impose an additional condition
on the solutionu: we requireu(t) € K| fora.a.t € (0,7T).

2.2. The initial-boundary value problem (P). Givenu* as in subsection 1.549 € L?() satisfying
divug = 01in € (in the sense of distributions) ane - n = »*(0) - n onI'; (in the sense of traces),
L2(0,T; W~12(Q)) andg € L2(0,T; L*3(T'y)). We look foru € L>°(0,T; L*(Q2)) N L0, T; W12(Q))
such thatu(t) € K fora.a.t € (0,7T) andu satisfies the inequality (2.3) for all test functiowsc .7 (0, T).

Recall that normal components of divergence—free (in the sense of distributions) functions%f@inbelong
to W—1/22(99Q), see [10, Theorem 111.2.2]. This gives a sense to the condition of compatibilityn =
u*(0) - n onT. Moreover, since the traces af(t) andu(t) are inL*(9Q) at a.at € (0,7T), the assumption
on functiong guarantees the convergence of the second integral on the right hand side of (2.3).

The main result of this paper is formulated in the next theorem:

5



Theorem 1. A solution of problem7) exists. Moreover, the solution can be constructed in the farm
u* + v, wherev € L>=(0,T; L*(Q)) N L?(0,T; V') andw satisfies the energy—type inequality

1 t 1 b1
3 lo(t)]15 + V/O [Vo(s)|3 ds < 3 v (0)[|5 + 02/0 (Y= (s) + 1] [lv(s)[|5 ds
t
+ /o [es [ £()12 1+ callu(s)1T + 5 10w (s)]12 10 + 6 ||9(5)||i/3;r2} ds (2.4)

forall ¢t € (0,7"). (The constantsy—cs depend only ofi2, I'; and numbew.)

The proof is briefly described (with stress on parts where the variational inequality requires a new technique)
in Section 3.

2.3. Some a posteriori properties of a solution to problem{P). If w is a solution of problen{P) then,
considering the test functions of the formw = u* + v, wherew is infinitely differentiable, divergence—
free and with a compact supportiéhx (0,7"), one can show (by analogy with the Navier—Stokes equations)
that there exists a distributiomin Q2 x (0,7) (the so calledassociated pressuyesuch thatu andp satisfy
equation (1.1) in the sense of distributions(inx (0,7"). It follows from the definition on probleniP) that

Au € L2(0,T; W~12(Q)) andu - Vu € L¥3(0,T; W~12(Q)). If, moreoverdyu € L' (0, T; W~12(Q))
thenVp (the distributional gradient gf) belongs taL' (0, 7; W ~12(Q)), too. Consequently; can be chosen

so that it belongs td.! (0, T; L*(Q)). Sincep is unique up to an additive function ¢f this function can be
chosen so thap satisfies the conditiorf, p(t) dz = p(t) a.e. in(0,T), wherep is any given function in
LY0,T).

In the theory of partial differential equations, one can usually show that if a weak solution is “sufficiently
smooth” then it coincides with a strong (or classical) solution. It is, however, not clear at the first sight whether
some analogue of this also holds for the variational inequality (2.3), and in which sense p(@blémolves
the boundary condition (1.4). Thus, assume that L?(0, 7 L*(2)) andw is such a solution of probleifP)
thatu € L2(0,7; W22(Q)) and the term@®;u, u - Vu also belong td.?(0, T'; L?(2)). Then the associated
pressure exists as a function fronk?(0, 7; W2(Q)). Applying the integration by parts with respectttto
the integral ofl0w, w — w) (i.e. applying the procedure, reverse to the first two lines of (2.2)), we obtain

T T 1 1
/ (Ow,w —u) dt = / (Opu, w — u) dt+§\|w(T)—u(T)||%— §Hw(0)—u0\|§.
0 0

Substituting this to (2.3), using the inclusiofige, Au € L?(0,T; L*(Q)) and applying the integration by
parts to the third integral on the left hand side of (2.3), we get

T
/ /[atu+u~Vu—VAu—f] (w—u) dedt
0 Ja
r 1
> / / (g—vVu-n) (w—u) det—gH'w(T)—u(T)H%.

0 Jrs
Let ¢ be a function from the same classwasi.e. ¢ € .2 (0,T). Let{ € (0,1). We usew in in the form
w = £q + (1 — &)u, divide the inequality by, and considef — 0+. In this way, we get rid of the term

+ |lw(T) —u(T)||3 on the right hand side. Furthermore, we use the equatior - Vu—vAu— f = —Vp
and apply the integration by parts to the integral vwth. Thus, we obtain

/T/ (Wu-n—pn-—g) (g—u)dSdt > 0. (2.5)
0 JTa

The next theorem summarizes these findings (in items a) and b)) and adds a new item c):

Theorem 2. Letw be a solution of probler(iP). Then
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a) there exists a distributiop in 2 x (0,7) (the so called associated pressure) such thap satisfy the
Navier—Stokes system (1.1), (1.2 in the sense of distributidds<n0, 7). If d;u € L' (0,T; W~12(Q))
andp € L'(0,T) is a given function thep can be chosen so thd, p(t) dz = p(t) for a.a.t € (0, 7).

b) If w € L?(0,T; W22(Q)) anddsu, u - Vu, f € L?(0,T; L?(Q2)) then the associated pressyrexists
as a function from2(0, 7; W12(Q)) and satisfies the inequality (2.5) for ajle ¢ (0,T).

c) If, in addition to the assumptions of item hj(t) lies uniformly in the interior ofK’} in the sense that
there existss > 0 such that allp € w*(t) + V! such that||¢ — u*(¢)|12 < €3 belong toK; (for
a.a.t € (0,7)) then there exists a functiohe L?(0, T") such that

wWu-n—(p+9)n =g (2.6)
holds true point-wise a.e. ify x (0, 7).

Proof. We only need to prove the statement in item c). ket (0, T) such thatlivh = 0 a.e. inQ2x (0,T),
h =0o0nT; x (0,7) and||h(t)||12 < e3 for a.a.t € (0,7). Theng = u + h are admissible test functions in
(2.5). Using thesg in (2.5), we obtain

T
/0 /F(VVu-n—pn—g)-hdet:O. (2.7)
2

Since the left hand side depends linearlylqr{2.7) holds for allh with the aforementioned properties, and not
only for thoseh that differ fromo0 by less thats. As the flux ofh throughI's equals zero at a.a. time instants
t € (0,7), the space of traces & onI'y x (0,7") annihilates the space of functions of the type, where
¥ € L?(0,T). HencevVu - n — pn — g = 9Jn for somed € L?(0,T). The proof is completed. O

The statement in item c) is in a coincidence with what has been said about the pressure in subsection 1.4: the
concrete pressure that can be reconstructed from the variational formulation (of an equation or an inequality)
and that satisfies the outflow boundary conditiongnx (0,7"), cannot be arbitrarily modified by an additive
constant (or more generally, by an additive functiort)ofOn the other hand, just one representant from the
class of all pressures, associated with a concrete weak sotutigatisfies the outflow boundary condition.

3 Proof of Theorem 1

3.1. The operator ¥;. The approximations of a solution of problem (P) are constructed in the next
subsections by means of a penalization, where the main role plays an oprafdris operator is defined by
the equation®,(¢) := ¢ — P}(¢) (for ¢ € u*(t) + V'), whereP} is the projector inu*(¢) + V', which
assigns to each elementwf(t) + V! the nearest element ;. Due to the convexity oK}, P} is a bounded
and continuous mapping ef* (t) + V! into itself.

Lemma 1. Operator®¥, is monotone and satisfies the inequalities
(Te(9). ¢ —u (1)), 2 WD) T2, (Leld).d—u'(t)), 5 = 2| Pe(d)]12 3.1)

fora.a.t € (0,7) and for allg € u*(t) + V!, where( ., .)1 2 is the scalar product it 1%(Q2) ande; is the
number from paragraph 1.5 (v).

Proof. If ¢, ¢, € u*(t) + V! then, due to the convexity d&;,
Hence

|PH(@1) — PlHo)ll12 < [y — ol 2.

(qlt(¢l) - lIlt(¢2)7 ¢1 - ¢2)172 = H¢1 - ¢2||%,2 - (Pt1(¢1) - Pt1(¢2)7 ¢1 - ¢2)172
>[Iy — @2llT2 — 1P (p1) — P (a)lh2 |91 — dalli2 = 0.



This proves the monotonicity ob;. Furthermore, using the inequalifp — P! (¢), P/ (¢) — u*(t)),, > 0,
we get

(‘I’t((b)a ¢ - u*(t))LQ = (¢ - Pt1(¢)v ¢ - Pt1(¢))1’2 + ((:b - Pt1(¢)’ f)tl((:b) - u*(t))LQ
(¢ =P (¢), 0~ Pl (D), = [T:(a)I

Y

This proves the first inequality in (3.1). The second inequality obviously holds (i) = 0. Thus, assume
thatW,(¢) # 0 and puth := u*(t) + e2 ¥ () /|| ¥:()]]1,2. Then

(lpt(¢)7¢ - 'u'*(t))LQ
= (¢~ P(9), 0~ F(#),,+ (¢~ P ($). P (D) —h), , + (¢~ P(¢),h —u'(D)), ,.

The first term on the right hand side is nonnegative. The second term is also nonnegative, becdiseand
K is convex. Thus, substituting fdér, we obtain

V()

(21(8), 6 ~w' (1), = e (@), i

), = @lT@l -

3.2. Construction of approximations. PutV? := V! n W?2(Q). V2 is a Hilbert space with the scalar
product( ., . )29, identical with the scalar product W?2(Q). Letey, e ... be a basis iV/2, orthonormal
in L*(Q).

Put

3 1
3.1 if2<a<3,
1

-1 if3<a<4

Then max{3 + 1,3 — 2} < x < 1 and there exists a continuous operator of traces from the Sobolev—
Slobodeckij spac® ~2(1) to the Besov spacB’;;l/Q(@Q), see [20]. Applying the partition of unity i,
a local representation @) by graphs of Lipschitz functions and the continuous imbedtﬂ’j@l/z(W) —
LY/(=2%)(R2) (see [23, p. 36]), we deduce thBS;l/z(aﬂ) — L*3=2%)(50). Hence there exists a con-
tinuous operator of traces frof*2(Q2) to L*/(3=2%)(5Q). By analogy withV'!, we denote byV* be the
space of all divergence—free (in the sense of distributions) funcihadinsm W*2(Q), such thaip = 0 onT';.
Furthermore, we defin&’}' to be the set of all functiong® € w*(t) + V" that satisfy inequality (1.9). (The
norm in (1.9) has a sense because& 4/(3 — 2x).) By analogy withK}, set K¢ is convex and closed in
V*. Denote byP/ the projector inu*(t) + V", which assigns to each elementwf(¢) + V" the nearest
element inK'y. ProjectorP;* is a continuous mapping af*(¢) + V" into itself. Moreover, sincdS} is con-
vex, Pr satisfies| PF(¢) — u*(t)||x2 < ||¢ — u*(t)]|.2 for each¢ € V" and a.a € (0,7). Consequently,
1PF(@)lk2 < [ —w(t)|x2 + [[w* (#)]]x,2-

Letn € N. We look for the coefﬁcient&,ﬁ”) € CY([0,T]), (¢ = 1,2,...,n) such that the functions
u™ = u* + v where

n

’U(n) = Zal(cn) €L, (33)
k=1

satisfy the initial conditions:(™) (0) = uw*(0) + v (0) = 3>}, (uo —u*(0), e, ey, (Where( ., . ), denotes
the scalar product if?(12)), and the integral equations
<8tu(”), ek> + / [Pf(u(”)) vu™ e, + vvu™ Vek] de +n (\Ilt(u(”)), ek)1 )
Q b

==<f7ew-+]£ g-e;dsS, (3.4)



hold forallk = 1,...,n. The lastterm in the integral on the left hand side plays the role of a penalization. Sub-
stituting here from (3.3), we obtain a systemnobrdinary differential equations for the unknown coefficients

a,&") (k=1,...,n). The system is completed by the initial condition
™ (0) = (ug —u*(0), e),. (3.5)

The local solvability of the system follows from Caratheodory’s theorem. In order to prove the global solvability
on the time interval0, 7"), one needs estimatesm}f) (k=1,...,n), valid on the whole interval0, T").

3.3. A priori estimates and existence of the approximationsMultiplying the k—th equation in (2.5) bylg”),
writing «(™ in the formu* + v(™ and summing ovek from 1 to n, we obtain

% % [0™2 + v [ Vo™ |3 +n (T (u* + ™), v("))l , = — (0", o™ — 1// Vu* : Vol dz
’ Q
—/ Pi(u* +v™) . V(u* +0™) o™ dx + <f,v(")> + / g-v™ds. (3.6)
Q Iy

The third term on the right hand side equals
—/ P u* +0™) . Vo™ . v de — / Pr(u* +v™) . vu* o™ de
Q Q
1

= —= | Pfu+ov™) njo™2ds - / Pf(u* +v™) . va* - o™ de
2 Jr, 0

1 a—1
1 a E _2a T
< - </ [Ptfi(u*Jrv(n)).n}_dS) ( |v(n)|f,1 dS) _/ Ptl‘i(u*_i_v(n)).vu*'v(n) da
2 Ia 1) Q
< CA) 0™ gy, + | BF + 0™ (V|2 0™
> Uy 4/(3—2k): Ty t o 2 s
<

< OO o™ 25+ [|BF @ + o)), Ve o 0™,

wherery ' + 551 = $. If 7o is chosen so that < ry < 6/(3 — 2x) (Which is< 6) thenV" —<— L™(Q)
andV! —<— L*2(Q) (becauses, < 6). (Here and further on(’ denotes a generic constant.) Moreover,
interpolating the norm|v™||,..» between||v(™ ||y and||v(™||; » and using Friedrichs’ inequality (1.7), the
continuous imbeddingV 12(Q) — L%(Q), Young’s inequality and the inequalitiesP(u* + v(™)|,, <
C|PF(u* +v™)|e2 < C (|u*|lx2+ [v™]k2) < C (|u*]l12+ ||[Vo™]2), we observe that the right hand
side of the last inequality is

< CH(t) o™ o™

15+ C (lu'llz + Vo™ |2) [[o™ s,

6—s9 3(s9—2)

n)2(1—k n) |12k * n n s n s
< CA) o™ 31 V@35 4 C (Jut[liz + Vo™ o) [[o™],72 o™ >
k1 67% 3<52572)
< §IVoM |3+ C 6 TR 4T (1) [0 |3+ C a1 o ™],72 Vo™, *2
6—82 582—6
+ C o7 Vo™,
< 35 IVo ™2 + C(8) vTo= (1) o™ 12 + C(8) |w*||2 ., + C(8) [|v™|2 3.7
< 38 |[Vo ™3+ C(8) v T (2) 0™ + C(6) [u*[[3 5 + C(8) ™13, (3.7)

whered > 0 can be chosen arbitrarily small. The expongntl — «) equalsda/(a — 2) for2 < a < 3
and4a/(4 — a) for 3 < a < 4. Hence it is less than or equal t(z) (the number defined in subsection

1.5). Consequentlyy!/(1=%) ¢ L1(0,T). The estimates of the other terms on the right hand side of (3.6) are
standard:

12

,,/ Vu* : Vo dz| < 5||w<”>||%+4—5|yw*||§, (3.8)
Q
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2
[(Oru”, o) < (|0t 12 e [Vo™ 2 < 5”vv(n)”%+c_1‘|8tU*“%1,27 3.9
(£, )]

/F g-o" dS‘ < lgllass;r, 10" vy < llgllassr, erer HW Iz
2

IN

1Fll-12 1 Vo2 < 5[ Vo™ + ||f||212, (3.10)

c%c1
< §|[Vo™s + L HQH4/3 ry (3.11)

(We have again used inequality (1.7), Young’s inequality and the continuity of the operator of traces from
wWh2(Q) to L*(9Q). The norm of this operator is denoted dy) Substituting now from (3.7)—(3.11) to (3.6)

and choosing sufficiently small, we calculate that there exist positive consiantss, c4, cs, cg, independent

of n, such that

1d

£ n
5 3 1P B+ v Vo5 +n (Re(w + ), 00) ) < e [y () + 1] [0 + e 1 £I12

T ¢y ||U*||%2 +cs5 Hat'“*”z—m + ce ||g||i/3;rz- (3.12)

Integrating this inequality on the time interv@, 7°), we derive the estimates

o™ @®)]2 < es forallt € (0,7) andn € N, (3.13)
T
/0 IVo™|2 dt < o foralln € N, (3.14)
T
/ n (y(u +0™), v™),, dt < e foralln € N. (3.15)
0 b

The upper boundss, cg andcg are independent of. Note that the inequalities (3.1) and (3.15) yield
r * (n)y(12 r * 610
/ n (| (u” + v o dt < cro, / n|| ¥ (u* + )\|12dt< - (3.16)
0 0

Estimates (3.13) imply thaf";_, a,(i") ()2 < ¢ forallt € (0,T) andn € N. From this, one can deduce
that the system of ordinary differential equations for the unknomiﬁ% (k = 1,...,n), which we obtain if
we use (3.3) and substituté™ = u* + v to (3.4), is uniquely solvable on the whole time intery@| 7).
Consequently, the approximations” = u*+v(" also exist on the whole intervéd, T') and satisfy estimates
(3.13)—(3.16).

3.4. An estimate of a fractional derivative ofv(™. In order to obtain later a strong convergence of a

subsequence o[fv (")}, we also need an estimate of at least a fractional derivative’Bfwith respect tot.
Chooser € (0, 3) and put

M= {ve L20.T; V') |r"8(r) € L* (00,00 V2(Q)) )

T 00
ol = [ To@Rade+ [ P 8P,
0 —00
whereV ~2 denotes the dual space W, || . | 2.2 is the norm inV —2 and® is the Fourier transform of in
variablet. (In order to calculate the Fourier transform, we extetit) by zero fort € (—o0,0) U (T, 00).)
Recall thatV? := V! n W?22%(Q). By analogy with the proof of the existence of a weak solution to the
Navier—Stokes equations, one can derive the estimate

00 T
|wmmrgo+/ mmwwdrsc+/rMWw@wsCu (3.17)
0

—00
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(See e.g. [18, Sec. 1.6.5] for more details.) It should be only mentioned that one needs to apply (3.15) in order
to control the terms that contain the penalizatibnin equation (3.4).

3.5. Convergence of the approximations. It follows from (3.13), (3.14), (3.17), the compact imbedding
H" —— L?(0,T; V*) (see e.g. [18, Chap. 1.5.2]) and the continuity of the operator of traces ¥6rto
LY/B=2%)(9Q) that there exisb € L>(0,T; L*(Q2)) N H" and a subsequence ¢6(} (which we again
denote by{v(™}) such that

v™ — v weakly inH" and weakly= in L>(0,T; L*()), (3.18)
o™ — v strongly inL?(0,T; V*), (3.19)
v — v strongly inL?(0, T; L* 325 (Iy)). (3.20)

3.6. The inclusionu*(t) +v(t) € K. Due to the monotonicity of operatdr in W12, we have
T
/ (Ty(u* + ™) — W, (u* + 2), 0" — z),,dt >0 (3.21)
O b

foralln € Nandz € L*(0,T; V!). Using (3.1), (3.16) and (3.18), we obtain

T
lim (T (u*(t) + ™), v — z)

n—oo [q 1,2
T T
lim (Ty(u* +2), ™), dt = / (Ty(u* + 2),v), , dt.
K 0 b

n—oo 0

dt = 0,

Thus, passing to the limit fa — oo in (3.21), we obtair][OT(\Il(u* +z),v— z)LQ dt < 0. Considerz in the
form z := v — (¥ (u* + v) where€ > 0. Dividing the inequality byt and passing to the limit fof — 0+,

we gethT(\Il(u* +v), Ty(u* + v))1,2 dt < 0, which means tha®,(u*(t) + v(t)) = 0 for a.a.t € (0,7).

This implies thaw*(t) + v(t) € K| fora.a.t € (0,7).

3.7. The limit transition in equation (2.5) for w € ¢ ,,,(0,T). Form € N, we denote by#,,,(0,T) the set
of functionsw € #/(0,T) that have a finite expansian(t) = w*(t) + >~ pu(t) ek, and by, (0, T') the
set of functionaw € #/,,(0,T) such thatw(t) € K| fora.a.t € (0,T).

We claim that the functiom = w* v satisfies the inequality (2.3). Assume at first that the test funation
(2.3) is chosen from se¥’,,,(0, T') andn > m. Recall thaw(™) has the expansion (3.3) and®) = u* +v(™.

Let us multiply equation (3.4) by, — a,g") if & <m and by—a,i”) if m < k < n and sum the equations for
k =1,...,n. Then we integrate the resulting equation with respect to tim@gdh). We obtain

T T
/ <8tu(”), w — u(”)> dt + / / [P[”(u(”)) Vu™ - (w —u™) +vVu™ : V(w — u("))] da dt
0 0 Jo
T

T T
+/ n (T(u™), w—u™), , dt :/ <f,w—u(”)>dt+/ /g-('w—u(”))det. (3.22)
0 ’ 0 0 1)

The first integral on the left hand side satisfies:

T T T
/ <8tu(”), w — u(”)> dt = / <8tu(") —w,w — u(")> dt + / <8t'w, w — u(”)> dt
0 0 0

1 1 T
= —5 ") = w(D)3 + 5 [u"(0) = w(0)3 + /O (O, w —u™) dt

1 T
< 2 u(0) ~ w(O)3 +/ (8w, w — u™) dt. (3.23)
0
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The integral ofn (¥, (u(™),w — u() , can be estimated by means of the monotonicity of openiaand
the identity®,(w)(t)) = 0 (which holds because(t) ¢ K}) as follows:

T T
/ n (‘I’(u(")),w - u("))l , dt = —n/ (¥ (w) — U(u™), w— u("))1 ,dt < 0. (3.24)
0 ’ 0 ’
Thus, (3.22)—(3.24) yield

T T
/ (Orw, w — U(n)> dt + / / [Pf(u(")) Vul™ - (w—u™) + vvVu™  V(w - u("))] de dt
0 0o Jo

T T 1
> /0 (f,w—u(”)>dt+/0 /FQg.(w—uW)det—5\\w(0)—u<n>(0)u§. (3.25)

The next step is the passage to the limit for— oo in (3.25). Here, we apply all types of convergence
(3.18)—(3.20). We explain the limit transition only in the two terms in (3.25), because the transition in the
other terms is analogous or the same as in the proof of the existence of weak solutions of the Navier—Stokes
equations, see e.g. [9]) or [18]. a) The inequality

T T
lim inf (—y / / vu™ : va dwdt) < —v / / Vu : Vu de dt (3.26)
n—oo 0o JQ 0o JO

follows from (3.18) and the identite (™) = w* +v(™. b) The integral of?/* (u(™) - Vu™ - (w — u(™) equals

T T
/ / Pf(u(")) Vo™ . wdedt — 1/ </ (u* - n) ]u*|2 dS+/ (Pt“(u(”)) . n) ’u(n)‘z dS) dt
0 Q 2 0 Iy )

The integralf;,, (PF(u(™) - n) [u([* dS converges tqy. (P (w) - n) [ul? dS point-wise for a.at € (0,T)
due to (3.20). Thus, applying Fatou’s lemma on the intef@al"), we get

lim inf (——/ / (Pf(u () |u”)] det> < ——/ / w-n) |ul? dSdt.
n—o0 Iy Iy

Since Kf is convexu(t) € K¢ and| Pful™ (t) — u(t)||xo < [|ul™(t) — u(t)||.2 for a.a.t € (0,7), (3.19)
implies thatPfu(™ — u strongly inL2(0,T; V*). Hence

T T
/ / Ptﬁ(u(n)) Vo™ wdrdt — / / u-Vu-wdxdt (for n — o0).
0 JQ 0o JQ

Consequently,

T
lim inf / / Pru™) . Vu™ . (w — u™) de dt
0o Jo

1 T * *|2 1 T 2 4
< —= (u* - m)u*|*dSdt — = (u-n) |u|*dSdt+ u-Vu-wdxdt
2Jo Jr, 2Jo Jr, 0o Jo
T
:/ /u-Vu-(w—u) dx dt. (3.27)
0o Jo

Thus, we observe that satisfies inequality (2.3) for all test functions € .%#,,,(0, 7). Sincem was an
arbitrary number fronN, (2.3) holds for alw € (J,._; £ (0,T).

3.8. Completion of the proof. We still need to show that (2.3) is satisfied for all € J#(0,7"). For
this purpose, it is sufficient to show thef>_, .%#,,(0,T) is dense in# (0,T) in the norm||.||. Ob-
viously, [Jr>_; # 1 (0,T) is dense in# (0,T). Set.z (0,T) is closed in# (0,T), with the property that

12



2(0,T) is equal to the closure of its interior. Hen¢g)S>_;, #,,(0,T)) N (0, T) (which coincides with
Upo_1 # m(0,T)) is dense in# (0,7) N ¢ (0,T) (which coincides with’# (0, T')).

The validity of the energy inequality (2.4) can be deduced from inequality (3.12) by means of the same
arguments as in the case of the Leray—Hopf weak solution to the Navier—Stokes equations, see e.g. [9].

The proof of Theorem 1 is completed.
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