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Abstract

The paper shows that regularity up to the boundary of a weak solutmfithe Navier—
Stokes equation with generalized Navier’s slip boundary conditions follows from certain rate
of integrability of at least one of the functioqs, ({2)+ (the positive part of5), (5, where
(1 < (o < (5 are the eigenvalues of the rate of deformation tefiger). A regularity criterion
in terms of the principal invariants of tendbfv) is also formulated.
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1 Introduction

1.1. Navier—Stokes’ initial-boundary value problem. We assume th&® is a bounded domain

in R? with a smooth boundary arfl is a given positive number. The motion of a viscous in-
compressible fluid with constant density (which is for simplicity assumed to be equal to one) in
domain2 in the time interval0, T') is described by the Navier—Stokes equations

Ov+v-Vv = —Vp+div[2vD(v)] +f, (1.2)
divv =0 (1.2)
(in Q x (0,7)) for the unknownss = (v, v2, v3) andp (the velocity and the pressure). Symbol
v denotes the kinematic coefficient of viscosity (it is supposed to be a positive constant) and

D(v) := (VV)sym = 1 [Vv+(Vv)T]is the so called “rate of deformation tensor”. In this paper,
we consider equations (1.1) and (1.2) with generalized Navier’s slip boundary conditions

v-n = 0, (1.3)
[2vD(v) -n] +K-v =0 (1.4)
(on 992 x (0,7)). Here,n is the outer normal vector o2, subscriptr denotes the tangential

component and is a non—negative 2nd—order tensor defined a.e©rsuch thatk(x) - a is
tangential todf2 at pointx € 9N if vector a is tangential ta0(2 at pointx. Condition (1.4)



generalizes the “classical” Navier boundary conditinD(v) - n|- + kv = 0, wherex > 0 is

the coefficient of friction between the fluid and the boundary. The replacement bfy K - v
reflects the fact that the microscopic structured6f can vary from point to point, it need not
produce the same resistance in all tangential directions, and it may therefore divert the flow to the
side. In this paper, we assume tfiatn (1.4) is a trace (0{?) of a tensor—valued function from
WhH2(Q)3*3, which is also denoted bi{. The problem (1.1)—(1.4) is completed by the initial
condition

V‘tzo = Vo in Q. (1.5)

1, 2. Shortly on regularity criteria for weak solutions to the system (1.1), (1.2) Existence of a
global regular solution and uniqueness of a weak solution are still the fundamental open questions
in the theory of the Navier—Stokes equation in 3D. There exist a series of a posteriori assumptions
on weak solutions that exclude the development of possible singularities. (They are usually called
the “criteria of regularity”.) The assumptions concern various quantities, like e.g. the velocity or
some of its components (see e.qg. [6], [14], [18], [22], etc.), the gradient of velocity or some of its
components (see e.g. [18], [17], etc.), the vorticity or only two of its components (see e.g. [1], [6]),
the direction of vorticity (see [2], [3]) and the pressure (see e.g. [4], [13], [20], etc.). The absence
of a blow up (i.e. the non—existence of singularities) in a weak solution has also been proven under
certain assumptions on the integrability of the positive part of the middle eigenvalue of the rate of
deformation tensdb(v) in [15].

Most of the known regularity criteria can be applied either in the case WherR? (like those
from [6], [18], [17]) or they exclude singularities in the interior @f but not the singularities on
the boundary. (This concerns e.g. the criteria from [14] and [15]). As to criteria, valid up to the
boundary, we can cite e.g. the papers [8] (where the so called suitable weak solution is shown
to be bounded locally near the boundary if it satisfies Serrin’s conditions near the boundary and
the trace of the pressure is bounded on the boundary), [19] (where an analogy of the well known
Caffarelli-Kohn—Nirenberg criterion for the regularity of a suitable weak solution at the point
(x0,t0) € Q2 x (0,T), see [5], is also proven for points on a flat part of the boundary) and [11],
[24] (for some generalizations of the criterion from [19], however also valid only on a flat part
of the boundary). A generalization of the criterion from [19] for poifits, to) on a “smooth”
curved part of the boundary can be found in paper [21]. In paper [23], the author shows that if a
weak solution satisfies Serrin’s integrability conditions in a neighbourhood of a “smooth” part of
the boundary then the solution is regular up to this part of the boundary. In all these papers, the
authors used the no—slip boundary conditioa 0 on 92 x (0,7") (or on the relevant part of this
set).

1.3. On the results of this paper. In Section 2 of this paper, we consider equations (1.1), (1.2)
with generalized Navier's boundary conditions (1.3), (1.4) and we prove results analogous to those
from [15], however extended so that they hold up to the boundafy. ¢6ee Theorem 1.)

Note that while the regularity criteria, that consider some components of the velocity or the
velocity gradient, depend on the observer’s frame, the criterion that uses the eigenvalues of tensor
D(v) is frame indifferent. Also note that the study of regularity of a weak solution in the neigh-
borhood of the boundary requires a special technique, which is subtler than the one applied in the
interior and closely connected with the used boundary conditions. This can be e.g. documented
by the fact that the same result as the one obtained in Section 2 and stated in Theorem 1, for the
system (1.1), (1.2) with the no—slip boundary condition, is not known.



1.4. Notation. Vector functions and spaces of vector functions are denoted by boldface letters.

o The norms of scalar— or vector— or tensor—valued functions with componebit&i) (respec-
tively W*{(Q)) are denoted by . ||, (respectively| . ||x.;). The norm inL?(9%2) is denoted by
|| . ll2: 0. Norms in other spaces @if2 are denoted by analogy.

o L2(Q)is the closure i.?(2) of the linear space of all infinitely differentiable divergence—free
vector functions with a compact support The orthogonal projection df?(£2) ontoL2(Q2)
is denoted by, .

o WH2(Q) := W12(Q) N L2(Q). We denote by, *(12) the dual space t85?*(Q) and by
(., .)q the duality between elements W, ?(Q2) andW4?(Q).

o || Ills; &,y denotes the norm of a vector-valued or a tensor-valued function with the com-
ponents ininL" (¢, t"; L*(2)).
1.5. A weak solution of the problem (1.1)—(1.5), Theorem on structureFor v, € L2(Q) and
f e L2(0,T; W, %(Q)), afunctionv € L2(0,T; W&*(2))NL>®(0, T; L2(Q)) is called aveak
solutionof the problem (1.1)—(1.5) if it satisfies

/ /{ O¢p-v+v-Vv-op+2vD(v V¢}dxdt+/ (K-v)-¢dSdt

89

T
— [t dadis [ v ol,0)dx (L6)
0 Q

for all infinitely differentiable divergence—free vector—functiapm Q x [0, T, such thatp-n = 0
ondNx[0,T]ande(.,T) = 0. The existence of a weak solution of the problem (1.1)—(1.3), (1.5)
with “classical” Navier's boundary conditiol2vD(v) - n|, + kv = 0 follows e.g. from papers

[7] and [16]. (Note that the more general case of a time—varying dofa@rconsidered in [16].)
Applying the same methods, one can also extend the existential results from [7] and [16] to the
problem (1.1)—(1.5), which includes the generalized Navier boundary condition (1.4). Moreover,
by analogy with the Navier—Stokes equations with the no—slip boundary conditien0 on

00 x (0,T), the weak solution can be constructed so that it satisfies the so sathed) energy
inequality

v (¢ H2+4V/ /]]D) |2dxd19+2// (09) d.S dv
onN

< V()3 + / (£(9), v(9))q dD (1.7)

fora.as € (0,7) and allt € (s,T).

In contrast to the Navier—Stokes equations (1.1), (1.2) with the no—slip boundary condition,
whose theory is relatively well elaborated, the equations with generalized Navier's boundary con-
ditions (1.3), (1.4) have not yet been given so much attention. This is why a series of important
results, well known from the theory of equations (1.1), (1.2) with the no—slip boundary condition,
have not been explicitly proven in literature for equations with boundary conditions (1.3), (1.4),
although many of them can be obtained in a similar or almost the same way. This concerns except
others the local in time existence of a strong solution (here, however, one can cite the papers [7]
and [12], where the local in time existence of a strong solution is proven in the casékivhetl,

k > 0), the uniqueness of the weak solution and the so called “Theorem on structure”. This
theorem states that if the specific volume fofcs at least inL?(0, 7; L%(Q2)) andv is a weak



solution of the Navier—Stokes problem problem with the no—slip boundary condition, satisfying
the strong energy inequality, the0, T') = (U, < (ay, by) U G, where sef is at most countable,

the intervals(a., b,) are pair-wise disjoint, the 1D Lebesgue measure o&sistzero and solu-

tion v is coincides with a strong solution in the interior of each of the time inteifvalsh, ). (See

e.g. [10] for more details.) In this paper, we also use the Theorem on structure, but we apply it
to the Navier—Stokes problem with boundary conditions (1.3), (1.4). (As is mentioned above, the
validity of the theorem for the problem with boundary conditions (1.3), (1.4) can be proven by
means of similar arguments as in the case of the no—slip boundary condition.)

2 Regularity up to the boundary in dependence on eigenvalues of
tensorD(v)

The main theorem of this section says:

Theorem 1. Letf € L?(0,T; L%(Q)), K € W12(Q)3*3 andv be a weak solution of the problem
(1.1)—(1.5), satisfying the strong energy inequality. Suppose&that(, < (3 are the eigenvalues
of tensorD(v) and

(i) one of the functiong, (¢2)+, (3 belongs taL"(0,7; L*($2)) for somer € [1, o],
s € (2, 00], satisfying2/r + 3/s = 2.

Then the norn|Vv(¢)||, is bounded fort € (¢, T) for anye > 0. Moreover, ifvy € Wa2(Q)
then||Vv(.,t)|2 is bounded on the whole intervel, T').

2.1. Remark. The eigenvalues;, (2, (3 are all real, because tendd(v) is symmetric. Since

the dynamic stress tensty (v) equals2vD(v) in the Newtonian fluid, the eigenvaluesbfv)
coincide, up to the fact@wv, with the principal dynamic stresses. The eigenvalues are the roots of
the characteristic equation of tenddfv), i.e. the equatio(¢) := (3 — E1 (% + Eo( — E3 = 0,
whereFE;, Es, E3 are the principal invariants @(v). The invariantF; is equal to zero, because
TrD(v) = 0. Furthermore,

Ey = Q@+ 0E+3E0 = —%(C%+C22+C32)

= —é (G -G+ (L—-G)P+(G-0)?% <0

andF3 = (1 (3. Put(y := \/—éEQ. Number(, is chosen so thak”(+(;) = 0 Obviously,
Ey; = 0implies¢; = (2 = (3 = 0. Thus, assume thaly; < 0. Thensgn(a = sgn (—FE3).

The rough estimate af, says that-(y < (3 < (o. A more accurate estimate yields between
(* = E3/E5 (the point where the tangent line to the graphfoat the point¢ = 0 intersects
the (—axis) and¢** := %Eg/EQ (the point where the line connecting the poifitis—F3) and
((o, F'(p)) (if E3 < 0)or (—Co, F(—¢o)) (if E5 > 0) intersects theé—axis). Thus, we have

Fj 3F3 1 _
- = < ,/-1iF f F and F
a) O<E2<C2<2E2< ) if £5<0 3 < 0,
3Es Es .
b) —/—L1Fy < —2 =<0 if F3 <0 and E3; >0
) \/—3 2<2E2<C2<E2< y < 3> 0,
¢) (=0 if Fo=0 or [Ey <0andE; =0].



Since only the positive part @b plays the role in Theorem 1, we observe that the statement of the
theorem is also valid if condition (i) is replaced by the condition

(i) the functionf(Es, E3) := 0 (for E2 = 0), f(Es, E3) := (E3/E2)+ (for E5 < 0) belongs to
L7(0,T; L*(€2)) for somer € [1,00], s € (2, 00], satisfying2/r + 3/s = 2.

Proof of Theorem 1. We assume tha, is in one of the interval$a., b,) (see subsection 1.5)
andty < t < b,. We may assume without the loss of generality thas the largest numbet T
such thatv is “smooth” on the time intervalty, b,). Then there are two possibilities: a) the first
singularity of solutionv (after the time instanty) develops at the timé,, or b) no singularity
of v develops at any time € (¢g, 7]. Assume, by contradiction, that the the possibility a) takes
place. In this casé, is called the epoch of irregularity.

There exists an associated pressus® thatv andp satisfy equations (1.1), (1.2) a.e.fihx
(ay, by). Multiplying equation (1.1) byP,; Av and integrating irf2, we obtain

/ OV - P, Av dx+/ v-Vv-P,Avdx = v||P,Av|3. (2.1)
Q Q
The first integral on the left hand side can be treated as follows:
/ ov - P,Avdx = / Ov-Avdx = 2/ Ov - divD(v) dx
Q Q Q

=2 v - [D(v)-n] dS — 2/ O Vv : D(v) dx
oN Q

1 d

= = (K-v)dS—— [ D(v)[*d
> av-mevas— 3 [ PP ax
1 d d )

Before we estimate the second integral on the left hand side of (2.1), we recall some inequalities:

() the Friedrichs—type inequalitju||2 < ¢1 ||Vul|2 (see e.g. [9, Exercise 11.5.15]), satisfied for
all functionsu € W12(Q) such thata - n = 0 on 99,

(8) the inequality||VZul|s < ¢ (||Aull2 + |lull2), which holds foru € W*2(Q) that satisfy
Navier’s boundary conditions (1.3), (1.4) (follows from [7, Theorem 3.1]).

The Helmholtz decomposition &u is Au = P,Au + Vi, where

a) Ap=0 in, b) g—(p =Au-n onof. (2.3)
n

The next lemma brings the crucial estimated Oty ||> and||v||22.

Lemma 1. There exists, c4, c5 cg > 0 such that ifu is a divergence—free function frow22(Q)
that satisfies boundary conditions (1.3), (1.4) ands a solution of the Neumann problem (2.3)
then

[Vela < c3[|[V(K-u)l2+ ca[lull12, (2.4)
[ullz2 < 5 [|PrAull2 + cg [[ufl2. (2.5)



Proof. The right hand sidé\u - n in the boundary condition (2.3b) equals
—curl’u-n = —curl[(curlu),]-n — curl[(curlu),] -n = —curl[(curlu),] - n.

(The vector fieldcurl [(curlu),] is tangential becausgurlu), is normal. Hence the term
curl [(curlu),] - n equals zero o®f2.) The tangential component efurlu, i.e. (curlu)-,
equalsn x curlu x n. In order to expressurlu x n, we apply the formuld2D(u) - n], =
curlu x n — 2u - Vn (see e.g. [7]). Hence, using also the boundary condition (1.4), we obtain:

(curlu); = n x (curluxn) = n x ([2D(u) - nj; + 2u- Vn)

= nx (—EK-u+2u-Vn>.
14
Thus, the boundary condition (2.3b) takes the form

Oy 1
I —curl [nx (—;K‘u+2u-Vn>} - n. (2.6)
In comparison to (2.3b), the right hand side of (2.6) contains only the first order derivatiues of
The classical theory of solution of the Neumann problem now implies that

IVella < C chrl [n X (—% K-u+2u- Vn)} : nH—1/2,2;aQ‘
(We useC as a generic constant.) The right hand side can be estimated by means of continuity
of the linear operator, acting from the spdcg_(©2) (which is the space functions € L?(Q),

whose divergence in the sense of distributions i), with the norm||w||> + ||divw]|2) to
W—1/22(90Q), that assigns to “smooth” functions € L2, (Q) the normal componeny - n.

Thus, we obtain the estimate

[Vell2 < Cchrl [n X (—%K-u+2u~vn)} 'HH27

(whereC = C(9,v)), which yields (2.4). FurthermorgAul|2 < ||P,Aul|2 + ||V¢||2. Estimat-
ing the norm||V¢||2 by means of (2.4), we get

[ullz2 < CllAufy < C(IPAullz + V(K- w)ll2 + [[ul2).

The norm ofV (K - v) satisfies

VK- v)l2 < [VK][2 [luflec + [[K[ls [Vulls < Cllufli, < €flu

|22+ C(e) [[ull2 (2.7)
for anyq € (3,6) ande > 0 due to the imbeddindv?2(Q) —— W14(Q) — L*(£). Hence
Jull22 < C|[F-Aullz + Cellull22 + C(e) [[u]2.

Choosinge sufficiently small, we obtain (2.5). O

The second integral in (2.1) satisfies

/V'VV-PUAVdX:/V'VV'AVdX—/V'VV'V(PdX. (2.8)
Q Q Q



The second term on the right hand side can be estimated by means of Lemma 1, (2.7) and (2.5):

/QV'VV'VsD dx| < [Vl [VV]2 [[Vell2 < C Vs IVV]2 (IV(K-v)ll2 + [[V]12)
< Clvl22IVVl2 (ellvli22 + Cle) [[v12)
< 8 | PoAV]5 + C(0) [V v3, (2.9)

whered > 0 can be chosen arbitrarily small. The first term on the right hand side of (2.8) equals
/tgg(v‘VV)-(n-Vv) dS—/QV(V-Vv):VvdS = I + I — I3,
wherels denotes the last integral on the left hand side and
I = / [v-Vv], (n-Vv)dS, I = / [v-Vv];-(n-Vv)dS.
o9 o9

(Subscriptsn and  denote the normal and tangential components, respectively.) Applying the
inequalities in &) and (3), Lemma 1 and the boundary conditions (1.3), (1.4), the intedials
andIs; can be treated as follows:

L = /(m[v -Vv], - (n-Vv), dx = /ag[vj (O5ur) vy [k (Okvm) ] AS
_ / v 0, (00 m0) — 5 00 (D5m0)] [ (O 7] A
15)9)

= _/BQ[Uj v (05m)] [k (Okvm) N S = —/Qam{[vj v (O5my)] [ (Okvm)}} dx
< Cviss [VV]5 < Clivila2 VY] < C(IP-AV]2 + [IvI2) VVf3
< O ||P,AV|3+C6) | Vvi+C, (2.10)

I, = /8Q(V-VV)T ‘(n-Vv)dS

= / (v-Vv)r (0 [Vv+(Vv)T]) dS — / (v-Vv),-[n-(Vv)T]dS
o0 o0

= / (v-Vv); - [2D(v)-n]_dS —/ (v-Vv), [V(n:v)—Vn-v]dS.
o0 a0
Since(v - Vv); is tangential anch - v = 0 on 012, the scalar produdtv - Vv), - V(n - v) is
equal to zero. Thus, if we also use the boundary condition (1.4), the inequalitie} amq (3)
and Lemma 1, we get

L] = ’—%/BQ(V.VV)T-(K-V) dS+/aQ(V-VV)T(Vn-v) ds

VAN

< c/mv\z\w (K[ +1) dS < C[v|2.00 VV]400 (IK|so0 +1)

IN

C vz lvlizz (IKlhe +1) < CIVV]3 ([|P-AV][2 + [[v]2)
S|P, A3+ C(0) [|Vv[3 + C, (2.11)

A



Iy = /[(3kvj)(ajvi)3kv¢)+vj (07,vi) (Opvi)] dx = /(8kUj)(ajUi)8k’Ui) dx.
Q Q

If we denote (fori,j = 1,2,3) d;; := £[(Div;) + (8;v;)] (the entries of tensdP) ands;; :=
% [0;v;) — (0;v;)] (the entries of the skew—symmetric part\of), we obtain

I3 = /Q(dk] + Skj)(dji + 5ji> (dkz + Ski) ds
As sji = —sij, We havedy; sjiski + diiSk;$ji = dijSjiski + dijskisi; = 0. Hence
1
I3 = /Q[dkj djidiy + dij Sgisk;] dx = /Qdk:j djidi, dx — 1 /Q dijwiw; dx, (2.12)

wherew; andw; are the components af := curl v. The estimates (2.10), (2.11) and the identity
(2.12) yield

/ v-Vv-.Avdx
Q
1
< 20 HPUAV‘@ + C((S) ”VVH;1 +C — / dkjdjidik dx + Z/ dijwiwj dx. (213)
Q Q
The integral on the left hand side of (2.13) can also be treated in another way:

/v-Vv-Ade = —/V-Vv~cur12vdx
Q Q

= —/ v-Vv:(nxcurlv)dS — / curl (v-Vv) - curlv dx. (2.14)
o0 Q

The integrals on the right hand side can be estimated or modified as follows:

/ v-Vv:(n x curlv) dS‘ =
o0

%/BQ(V-VV)~(—K-V+2V~VD) dS'

/ (v-Vv)- (2D n]; +2v-Vn) dS
o0

< C [ WP IvVI(K|+1) a5 < Cv]
o0

%00 1VV200 (K400 + 1)

IN

5| P AV|2 4+ C(6) ||Vv]s+C (2.15)

(by analogy with (2.11),

/curl(v-Vv)'curlvdx = /[v-Vw—w-Vv]-wdx = —/w-VV-wdx
Q Q Q

= —/ w-D(v) wdx = —/ dijwiwj dx. (2.16)
Q Q

Multiplying (2.14)—(2.16) by%, we get

1 1) 1
Z/v-vv-Av ax < 9 |P, A3+ C0) ||vV||§+0—Z/dijwwj dx.  (2.17)
Q Q

8



Summing (2.13) and (2.17), we obtain
5 96 9 4
1 v-Vv:-Avdx < ZHPUAV”2+C(5) |Vv]3+ C — [ dijdjidi dx.
Q Q

Dividing this inequality by%, choosingd = 1—581/, substituting to (2.1) and expressing the first
integral in (2.1) by means of (2.2), we obtain

d 1 d y
— || D 2 —_— K-vd _ PG-A 2
at 1P+ 50 5 oo Y S+ 5 1P-Al;
4
= _S/Qd’fjdﬂdik dx + 7 [[VV3 [D(v)]13 + cs. (2.18)

The productlj;, dy; d;; equals the trace of the tendb(v)3. Itis invariant with respect to rotation
of the coordinate system. Hence it can be represented in the system inliykichas the diagonal
representatioi® = (d;;) with d;; = 0fori # j anddiy = (i, da2 = (2, d33 = (3, where(y, (3 (3
are the eigenvalues of tensbB(v). The eigenvalues are real becaly@/) is symmetric and
their sum is zero because the tracéifv) is equal to zero. TheArD(v)? = djdp;idij =
G+ G+ ¢ = 3¢i1¢2(3. We may assume that the eigenvalues are ordered sdjthat(aCs,
which implies that; < 0 and({s > 0. Then inequality (2.18) takes the form
GIPOIE+ 55 [ v K-vas+ EIRAl
12

< =% | G0 @+ Gdxter[WE D) +es. (219)

Integrating this inequality on the time intervi, ¢, ), wheret, < t; < b,, we deduce that
v
HUD(V)H‘goQ, (to.t1) T 5 ‘”PUAV”@Q;(tO,tl)

t1
< ¢ [D(v(t0)) 3 + c1o / /Q (=1) (Ca)4 G dxdd + ey, (2.20)

where constantsy, cio, c11 depend onv, §, c7, cs and also on the norfV v/l 2. (o, 7)- Let us
further estimate the integral 0f-(1) (¢2)+ (3 on the right hand side of (2.18). Assume e.g. that
(C2)+ € L™(0,T; L*(R2)), where2/r +3/s < 1. Since|(;| < C'|Vv]| (¢ = 1,2, 3), we have

7,8; (to,t1) ‘”C1<3‘” L ﬁ;(to,h)

r—17

/t 1 /Q (=) (Ca)s G dxdt < [|(Co)s

2
< e @l o) VP2 2 -

Estimating the norm o¥/v by means of the inequality

Qv

s 2+
oo oty < Nll5a oy (Malloor o) + Mollzgs o)) ,

@lw

which can be proven by means oblder’s inequality and which is valid f@ < a < oo, 2 <

B<6and3 <2/a+3/3< 35 witha =2r/(r—1)ands = 2s/(s — 1), we obtain:

2,3

tl 7"+S
| [ @t axdt < 1@ o (1990 + 19 o)
0

9



174
< M@+l o) (PO 2ty + 5 WP AVIB 3 1) + 10).

(The norm||Vv||z inside|| V|| 2. 1,t;) has been estimated by Korn’s inequality and the norm
Vv|e inside [[VV][ae; z,+) is estimated by the norrvl|2 2, which is less than or equal to
s ||P»Av||2 + ¢ || v]|2 due to Lemma 1.) Using this inequality in (2.20), we get

DO 2 (1) + 5 1P AVIIB 5ty < €0 DIV t0))]13
+ 10013 1G2)+ s o) (VY12 50000y + 5 1P AVIB 3, 100) + €10

Assume that; = b, andt; — to < &, where¢ is so small thatg ci3 ||| ({2)+
anyt’,t" € (0,T)suchthat <t <" <T,t" —t <& Then

T,8; (tl,t”) < % fOf

DI 5 10,6, by < 269 [D(V(.,t0))[3 + crocrzeua.
From this, we observe thai; cannot be an epoch of irregularity of the weak solutoihe proof
of Theorem 1 is completed. O
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