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Abstract

The paper shows that regularity up to the boundary of a weak solutionv of the Navier–
Stokes equation with generalized Navier’s slip boundary conditions follows from certain rate
of integrability of at least one of the functionsζ1, (ζ2)+ (the positive part ofζ2), ζ3, where
ζ1 ≤ ζ2 ≤ ζ3 are the eigenvalues of the rate of deformation tensorD(v). A regularity criterion
in terms of the principal invariants of tensorD(v) is also formulated.
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1 Introduction

1.1. Navier–Stokes’ initial–boundary value problem. We assume thatΩ is a bounded domain
in R3 with a smooth boundary andT is a given positive number. The motion of a viscous in-
compressible fluid with constant density (which is for simplicity assumed to be equal to one) in
domainΩ in the time interval(0, T ) is described by the Navier–Stokes equations

∂tv + v · ∇v = −∇p+ div [2νD(v)] + f , (1.1)

div v = 0 (1.2)

(in Ω × (0, T )) for the unknownsv ≡ (v1, v2, v3) andp (the velocity and the pressure). Symbol
ν denotes the kinematic coefficient of viscosity (it is supposed to be a positive constant) and
D(v) := (∇v)sym := 1

2 [∇v + (∇v)T ] is the so called “rate of deformation tensor”. In this paper,
we consider equations (1.1) and (1.2) with generalized Navier’s slip boundary conditions

v · n = 0, (1.3)[
2νD(v) · n

]
τ

+K · v = 0 (1.4)

(on ∂Ω × (0, T )). Here,n is the outer normal vector on∂Ω, subscriptτ denotes the tangential
component andK is a non–negative 2nd–order tensor defined a.e. on∂Ω such thatK(x) · a is
tangential to∂Ω at point x ∈ ∂Ω if vector a is tangential to∂Ω at point x. Condition (1.4)
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generalizes the “classical” Navier boundary condition[2νD(v) · n]τ + κv = 0, whereκ ≥ 0 is
the coefficient of friction between the fluid and the boundary. The replacement ofκv by K · v
reflects the fact that the microscopic structure of∂Ω can vary from point to point, it need not
produce the same resistance in all tangential directions, and it may therefore divert the flow to the
side. In this paper, we assume thatK in (1.4) is a trace (on∂Ω) of a tensor–valued function from
W 1,2(Ω)3×3, which is also denoted byK. The problem (1.1)–(1.4) is completed by the initial
condition

v
∣∣
t=0

= v0 in Ω. (1.5)

1, 2. Shortly on regularity criteria for weak solutions to the system (1.1), (1.2).Existence of a
global regular solution and uniqueness of a weak solution are still the fundamental open questions
in the theory of the Navier–Stokes equation in 3D. There exist a series of a posteriori assumptions
on weak solutions that exclude the development of possible singularities. (They are usually called
the “criteria of regularity”.) The assumptions concern various quantities, like e.g. the velocity or
some of its components (see e.g. [6], [14], [18], [22], etc.), the gradient of velocity or some of its
components (see e.g. [18], [17], etc.), the vorticity or only two of its components (see e.g. [1], [6]),
the direction of vorticity (see [2], [3]) and the pressure (see e.g. [4], [13], [20], etc.). The absence
of a blow up (i.e. the non–existence of singularities) in a weak solution has also been proven under
certain assumptions on the integrability of the positive part of the middle eigenvalue of the rate of
deformation tensorD(v) in [15].

Most of the known regularity criteria can be applied either in the case whenΩ = R
3 (like those

from [6], [18], [17]) or they exclude singularities in the interior ofΩ, but not the singularities on
the boundary. (This concerns e.g. the criteria from [14] and [15]). As to criteria, valid up to the
boundary, we can cite e.g. the papers [8] (where the so called suitable weak solution is shown
to be bounded locally near the boundary if it satisfies Serrin’s conditions near the boundary and
the trace of the pressure is bounded on the boundary), [19] (where an analogy of the well known
Caffarelli–Kohn–Nirenberg criterion for the regularity of a suitable weak solution at the point
(x0, t0) ∈ Ω × (0, T ), see [5], is also proven for points on a flat part of the boundary) and [11],
[24] (for some generalizations of the criterion from [19], however also valid only on a flat part
of the boundary). A generalization of the criterion from [19] for points(x0, t0) on a “smooth”
curved part of the boundary can be found in paper [21]. In paper [23], the author shows that if a
weak solution satisfies Serrin’s integrability conditions in a neighbourhood of a “smooth” part of
the boundary then the solution is regular up to this part of the boundary. In all these papers, the
authors used the no–slip boundary conditionv = 0 on∂Ω× (0, T ) (or on the relevant part of this
set).

1.3. On the results of this paper. In Section 2 of this paper, we consider equations (1.1), (1.2)
with generalized Navier’s boundary conditions (1.3), (1.4) and we prove results analogous to those
from [15], however extended so that they hold up to the boundary ofΩ. (See Theorem 1.)

Note that while the regularity criteria, that consider some components of the velocity or the
velocity gradient, depend on the observer’s frame, the criterion that uses the eigenvalues of tensor
D(v) is frame indifferent. Also note that the study of regularity of a weak solution in the neigh-
borhood of the boundary requires a special technique, which is subtler than the one applied in the
interior and closely connected with the used boundary conditions. This can be e.g. documented
by the fact that the same result as the one obtained in Section 2 and stated in Theorem 1, for the
system (1.1), (1.2) with the no–slip boundary condition, is not known.
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1.4. Notation. Vector functions and spaces of vector functions are denoted by boldface letters.

◦ The norms of scalar– or vector– or tensor–valued functions with components inLq(Ω) (respec-
tively W k,l(Ω)) are denoted by‖ . ‖q (respectively‖ . ‖k,l). The norm inL2(∂Ω) is denoted by
‖ . ‖2; ∂Ω. Norms in other spaces on∂Ω are denoted by analogy.

◦ L2
σ(Ω) is the closure inL2(Ω) of the linear space of all infinitely differentiable divergence–free

vector functions with a compact support inΩ. The orthogonal projection ofL2(Ω) ontoL2
σ(Ω)

is denoted byPσ.

◦ W1,2
σ (Ω) := W1,2(Ω) ∩ L2

σ(Ω). We denote byW−1,2
σ (Ω) the dual space toW1,2

σ (Ω) and by
〈 . , . 〉Ω the duality between elements ofW−1,2

σ (Ω) andW1,2
σ (Ω).

◦ ||| . |||r,s; (t′,t′′) denotes the norm of a vector–valued or a tensor–valued function with the com-
ponents in inLr(t′, t′′; Ls(Ω)).

1.5. A weak solution of the problem (1.1)–(1.5), Theorem on structure.For v0 ∈ L2
σ(Ω) and

f ∈ L2(0, T ; W−1,2
σ (Ω)), a functionv ∈ L2(0, T ; W1,2

σ (Ω))∩L∞(0, T ; L2
σ(Ω)) is called aweak

solutionof the problem (1.1)–(1.5) if it satisfies∫ T

0

∫
Ω

{
−∂tφ · v + v · ∇v · φ+ 2νD(v) : ∇φ

}
dx dt+

∫ T

0

∫
∂Ω

(K · v) · φ dS dt

=
∫ T

0
〈f ,φ〉Ω dt+

∫
Ω

v0 · φ(. , 0) dx (1.6)

for all infinitely differentiable divergence–free vector–functionsφ in Ω×[0, T ], such thatφ·n = 0
on∂Ω×[0, T ] andφ( . , T ) = 0. The existence of a weak solution of the problem (1.1)–(1.3), (1.5)
with “classical” Navier’s boundary condition[2νD(v) · n]τ + κv = 0 follows e.g. from papers
[7] and [16]. (Note that the more general case of a time–varying domainΩ is considered in [16].)
Applying the same methods, one can also extend the existential results from [7] and [16] to the
problem (1.1)–(1.5), which includes the generalized Navier boundary condition (1.4). Moreover,
by analogy with the Navier–Stokes equations with the no–slip boundary conditionv = 0 on
∂Ω × (0, T ), the weak solution can be constructed so that it satisfies the so calledstrong energy
inequality

‖v(t)‖22 + 4ν
∫ t

s

∫
Ω
|D(v(ϑ))|2 dx dϑ+ 2

∫ t

s

∫
∂Ω

v(ϑ) ·K · v(ϑ) dS dϑ

≤ ‖v(s)‖22 +
∫ t

s
〈f(ϑ),v(ϑ)〉Ω dϑ (1.7)

for a.as ∈ (0, T ) and allt ∈ (s, T ).
In contrast to the Navier–Stokes equations (1.1), (1.2) with the no–slip boundary condition,

whose theory is relatively well elaborated, the equations with generalized Navier’s boundary con-
ditions (1.3), (1.4) have not yet been given so much attention. This is why a series of important
results, well known from the theory of equations (1.1), (1.2) with the no–slip boundary condition,
have not been explicitly proven in literature for equations with boundary conditions (1.3), (1.4),
although many of them can be obtained in a similar or almost the same way. This concerns except
others the local in time existence of a strong solution (here, however, one can cite the papers [7]
and [12], where the local in time existence of a strong solution is proven in the case whenK = κI,
κ ≥ 0), the uniqueness of the weak solution and the so called “Theorem on structure”. This
theorem states that if the specific volume forcef is at least inL2(0, T ; L2(Ω)) andv is a weak
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solution of the Navier–Stokes problem problem with the no–slip boundary condition, satisfying
the strong energy inequality, then(0, T ) =

⋃
γ∈Γ(aγ , bγ) ∪ G, where setΓ is at most countable,

the intervals(aγ , bγ) are pair–wise disjoint, the 1D Lebesgue measure of setG is zero and solu-
tion v is coincides with a strong solution in the interior of each of the time intervals(aγ , bγ). (See
e.g. [10] for more details.) In this paper, we also use the Theorem on structure, but we apply it
to the Navier–Stokes problem with boundary conditions (1.3), (1.4). (As is mentioned above, the
validity of the theorem for the problem with boundary conditions (1.3), (1.4) can be proven by
means of similar arguments as in the case of the no–slip boundary condition.)

2 Regularity up to the boundary in dependence on eigenvalues of
tensorD(v)

The main theorem of this section says:

Theorem 1. Letf ∈ L2(0, T ; L2(Ω)),K ∈W 1,2(Ω)3×3 andv be a weak solution of the problem
(1.1)–(1.5), satisfying the strong energy inequality. Suppose thatζ1 ≤ ζ2 ≤ ζ3 are the eigenvalues
of tensorD(v) and

(i) one of the functionsζ1, (ζ2)+, ζ3 belongs toLr(0, T ; Ls(Ω)) for somer ∈ [1,∞],
s ∈ (3

2 ,∞], satisfying2/r + 3/s = 2.

Then the norm‖∇v(t)‖2 is bounded fort ∈ (ε, T ) for any ε > 0. Moreover, ifv0 ∈ W1,2
σ (Ω)

then‖∇v( . , t)‖2 is bounded on the whole interval(0, T ).

2.1. Remark. The eigenvaluesζ1, ζ2, ζ3 are all real, because tensorD(v) is symmetric. Since
the dynamic stress tensorTd(v) equals2νD(v) in the Newtonian fluid, the eigenvalues ofD(v)
coincide, up to the factor2ν, with the principal dynamic stresses. The eigenvalues are the roots of
the characteristic equation of tensorD(v), i.e. the equationF (ζ) := ζ3 −E1ζ

2 +E2ζ −E3 = 0,
whereE1, E2, E3 are the principal invariants ofD(v). The invariantE1 is equal to zero, because
TrD(v) = 0. Furthermore,

E2 = ζ1ζ2 + ζ2ζ3 + ζ3ζ1 = −1
2

(ζ2
1 + ζ2

2 + ζ2
3 )

= −1
6
[
(ζ1 − ζ2)2 + (ζ2 − ζ3)2 + (ζ3 − ζ1)2

]
≤ 0

andE3 = ζ1ζ2ζ3. Putζ0 :=
√
−1

3E2. Numberζ0 is chosen so thatF ′(±ζ0) = 0 Obviously,

E2 = 0 implies ζ1 = ζ2 = ζ3 = 0. Thus, assume thatE2 < 0. Thensgn ζ2 = sgn (−E3).
The rough estimate ofζ2 says that−ζ0 < ζ2 < ζ0. A more accurate estimate yieldsζ2 between
ζ∗ := E3/E2 (the point where the tangent line to the graph ofF at the pointζ = 0 intersects
the ζ–axis) andζ∗∗ := 3

2E3/E2 (the point where the line connecting the points(0,−E3) and
((ζ0, F (ζ0)) (if E3 < 0) or (−ζ0, F (−ζ0)) (if E3 > 0) intersects theζ–axis). Thus, we have

a) 0 <
E3

E2
< ζ2 <

3E3

2E2
<
√
−1

3E2 if E2 < 0 and E3 < 0,

b) −
√
−1

3E2 <
3E3

2E2
< ζ2 <

E3

E2
< 0 if E2 < 0 and E3 > 0,

c) ζ2 = 0 if E2 = 0 or
[
E2 < 0 andE3 = 0

]
.
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Since only the positive part ofζ2 plays the role in Theorem 1, we observe that the statement of the
theorem is also valid if condition (i) is replaced by the condition

(ii) the functionf(E2, E3) := 0 (for E2 = 0), f(E2, E3) := (E3/E2)+ (for E2 < 0) belongs to
Lr(0, T ; Ls(Ω)) for somer ∈ [1,∞], s ∈ (3

2 ,∞], satisfying2/r + 3/s = 2.

Proof of Theorem 1. We assume thatt0 is in one of the intervals(aγ , bγ) (see subsection 1.5)
andt0 < t < bγ . We may assume without the loss of generality thatbγ is the largest number≤ T
such thatv is “smooth” on the time interval(t0, bγ). Then there are two possibilities: a) the first
singularity of solutionv (after the time instantt0) develops at the timebγ , or b) no singularity
of v develops at any timet ∈ (t0, T ]. Assume, by contradiction, that the the possibility a) takes
place. In this case,bγ is called the epoch of irregularity.

There exists an associated pressurep so thatv andp satisfy equations (1.1), (1.2) a.e. inΩ ×
(aγ , bγ). Multiplying equation (1.1) byPσ∆v and integrating inΩ, we obtain∫

Ω
∂tv · Pσ∆v dx +

∫
Ω

v · ∇v · Pσ∆v dx = ν ‖Pσ∆v‖22 . (2.1)

The first integral on the left hand side can be treated as follows:∫
Ω
∂tv · Pσ∆v dx =

∫
Ω
∂tv ·∆v dx = 2

∫
Ω
∂tv · divD(v) dx

= 2
∫
∂Ω
∂tv ·

[
D(v) · n

]
dS − 2

∫
Ω
∂t∇v : D(v) dx

= −1
ν

∫
∂Ω
∂tv · (K · v) dS − d

dt

∫
Ω
|D(v)|2 dx

= − 1
2ν

d
dt

∫
∂Ω

v ·K · v dS − d
dt
‖D(v)‖22. (2.2)

Before we estimate the second integral on the left hand side of (2.1), we recall some inequalities:

(α) the Friedrichs–type inequality‖u‖2 ≤ c1 ‖∇u‖2 (see e.g. [9, Exercise II.5.15]), satisfied for
all functionsu ∈W1,2(Ω) such thatu · n = 0 on∂Ω,

(β) the inequality‖∇2u‖2 ≤ c2

(
‖∆u‖2 + ‖u‖2

)
, which holds foru ∈ W2,2(Ω) that satisfy

Navier’s boundary conditions (1.3), (1.4) (follows from [7, Theorem 3.1]).

The Helmholtz decomposition of∆u is ∆u = Pσ∆u +∇ϕ, where

a) ∆ϕ = 0 in Ω, b)
∂ϕ

∂n
= ∆u · n on∂Ω. (2.3)

The next lemma brings the crucial estimates of‖∇ϕ‖2 and‖v‖2,2.

Lemma 1. There existc3, c4, c5 c6 > 0 such that ifu is a divergence–free function fromW2,2(Ω)
that satisfies boundary conditions (1.3), (1.4) andϕ is a solution of the Neumann problem (2.3)
then

‖∇ϕ‖2 ≤ c3 ‖∇(K · u)‖2 + c4 ‖u‖1,2, (2.4)

‖u‖2,2 ≤ c5 ‖Pσ∆u‖2 + c6 ‖u‖2. (2.5)
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Proof. The right hand side∆u · n in the boundary condition (2.3b) equals

−curl2u · n = −curl [(curl u)τ ] · n− curl [(curl u)n] · n = −curl [(curl u)τ ] · n.

(The vector fieldcurl [(curl u)n] is tangential because(curl u)n is normal. Hence the term
curl [(curl u)n] · n equals zero on∂Ω.) The tangential component ofcurl u, i.e. (curl u)τ ,
equalsn × curl u × n. In order to expresscurl u × n, we apply the formula[2D(u) · n]τ =
curl u× n− 2u · ∇n (see e.g. [7]). Hence, using also the boundary condition (1.4), we obtain:

(curl u)τ = n× (curl u× n) = n×
(
[2D(u) · n]τ + 2u · ∇n

)
= n×

(
−1
ν
K · u + 2u · ∇n

)
.

Thus, the boundary condition (2.3b) takes the form

∂ϕ

∂n
= −curl

[
n×

(
−1
ν
K · u + 2u · ∇n

)]
· n. (2.6)

In comparison to (2.3b), the right hand side of (2.6) contains only the first order derivatives ofu.
The classical theory of solution of the Neumann problem now implies that

‖∇ϕ‖2 ≤ C
∥∥∥curl

[
n×

(
−1
ν
K · u + 2u · ∇n

)]
· n
∥∥∥
−1/2,2; ∂Ω

.

(We useC as a generic constant.) The right hand side can be estimated by means of continuity
of the linear operator, acting from the spaceL2

div(Ω) (which is the space functionsw ∈ L2(Ω),
whose divergence in the sense of distributions is inL2(Ω), with the norm‖w‖2 + ‖div w‖2) to
W−1/2,2(∂Ω), that assigns to “smooth” functionsw ∈ L2

div(Ω) the normal componentw · n.
Thus, we obtain the estimate

‖∇ϕ‖2 ≤ C
∥∥∥curl

[
n×

(
−1
ν
K · u + 2u · ∇n

)]
· n
∥∥∥

2
,

(whereC = C(Ω, ν)), which yields (2.4). Furthermore,‖∆u‖2 ≤ ‖Pσ∆u‖2 + ‖∇ϕ‖2. Estimat-
ing the norm‖∇ϕ‖2 by means of (2.4), we get

‖u‖2,2 ≤ C ‖∆u‖2 ≤ C
(
‖Pσ∆u‖2 + ‖∇(K · u)‖2 + ‖u‖2

)
.

The norm of∇(K · v) satisfies

‖∇(K · v)‖2 ≤ ‖∇K‖2 ‖u‖∞ + ‖K‖6 ‖∇u‖3 ≤ C ‖u‖1,q ≤ ε ‖u‖2,2 + C(ε) ‖u‖2 (2.7)

for anyq ∈ (3, 6) andε > 0 due to the imbeddingW2,2(Ω) ↪→↪→W1,q(Ω) ↪→ L∞(Ω). Hence

‖u‖2,2 ≤ C ‖Pσ∆u‖2 + Cε ‖u‖2,2 + C(ε) ‖u‖2.

Choosingε sufficiently small, we obtain (2.5). �

The second integral in (2.1) satisfies∫
Ω

v · ∇v · Pσ∆v dx =
∫

Ω
v · ∇v ·∆v dx−

∫
Ω

v · ∇v · ∇ϕ dx. (2.8)
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The second term on the right hand side can be estimated by means of Lemma 1, (2.7) and (2.5):∣∣∣∣∫
Ω

v · ∇v · ∇ϕ dx
∣∣∣∣ ≤ ‖v‖∞ ‖∇v‖2 ‖∇ϕ‖2 ≤ C ‖v‖∞ ‖∇v‖2

(
‖∇(K · v)‖2 + ‖v‖1,2

)
≤ C ‖v‖2,2 ‖∇v‖2

(
ε ‖v‖2,2 + C(ε) ‖v‖1,2

)
≤ δ ‖Pσ∆v‖22 + C(δ) ‖∇v‖42 , (2.9)

whereδ > 0 can be chosen arbitrarily small. The first term on the right hand side of (2.8) equals∫
∂Ω

(v · ∇v) · (n · ∇v) dS −
∫

Ω
∇(v · ∇v) : ∇v dS ≡ I1 + I2 − I3,

whereI3 denotes the last integral on the left hand side and

I1 :=
∫
∂Ω

[v · ∇v]n · (n · ∇v) dS, I2 :=
∫
∂Ω

[v · ∇v]τ · (n · ∇v) dS.

(Subscriptsn andτ denote the normal and tangential components, respectively.) Applying the
inequalities in (α) and (β), Lemma 1 and the boundary conditions (1.3), (1.4), the integralsI1, I2

andI3 can be treated as follows:

I1 =
∫
∂Ω

[v · ∇v]n · (n · ∇v)n dx =
∫
∂Ω

[vj (∂jvl)nl] [nk (∂kvm)nm] dS

=
∫
∂Ω

[vj ∂j(vl nl)− vj vl (∂jnl)] [nk (∂kvm)nm] dS

= −
∫
∂Ω

[vj vl (∂jnl)] [nk (∂kvm)nm] dS = −
∫

Ω
∂m
{

[vj vl (∂jnl)] [nk (∂kvm)]
}

dx

≤ C ‖v‖∞ ‖∇v‖22 ≤ C ‖v‖2,2 ‖∇v‖22 ≤ C
(
‖Pσ∆v‖2 + ‖v‖2

)
‖∇v‖22

≤ δ ‖Pσ∆v‖22 + C(δ) ‖∇v‖42 + C, (2.10)

I2 =
∫
∂Ω

(v · ∇v)τ · (n · ∇v) dS

=
∫
∂Ω

(v · ∇v)τ ·
(
n · [∇v + (∇v)T ]

)
dS −

∫
∂Ω

(v · ∇v)τ · [n · (∇v)T ] dS

=
∫
∂Ω

(v · ∇v)τ ·
[
2D(v) · n

]
τ

dS −
∫
∂Ω

(v · ∇v)τ ·
[
∇(n · v)−∇n · v

]
dS.

Since(v · ∇v)τ is tangential andn · v = 0 on ∂Ω, the scalar product(v · ∇v)τ · ∇(n · v) is
equal to zero. Thus, if we also use the boundary condition (1.4), the inequalities in (α) and (β)
and Lemma 1, we get

|I2| =
∣∣∣∣−1
ν

∫
∂Ω

(v · ∇v)τ · (K · v) dS +
∫
∂Ω

(v · ∇v)τ (∇n · v) dS
∣∣∣∣

≤ C

∫
∂Ω
|v|2 |∇v|

(
|K|+ 1

)
dS ≤ C ‖v‖24; ∂Ω ‖∇v‖4; ∂Ω

(
‖K‖4; ∂Ω + 1

)
≤ C ‖v‖21,2 ‖v‖2,2

(
‖K‖1,2 + 1

)
≤ C ‖∇v‖22

(
‖Pσ∆v‖2 + ‖v‖2

)
≤ δ ‖Pσ∆v‖22 + C(δ) ‖∇v‖42 + C, (2.11)
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I3 =
∫

Ω

[
(∂kvj) (∂jvi) ∂kvi) + vj (∂2

jkvi) (∂kvi)
]

dx =
∫

Ω
(∂kvj) (∂jvi) ∂kvi) dx.

If we denote (fori, j = 1, 2, 3) dij := 1
2 [(∂ivj) + (∂jvi)] (the entries of tensorD) andsij :=

1
2 [∂ivj)− (∂jvi)] (the entries of the skew–symmetric part of∇v), we obtain

I3 =
∫

Ω
(dkj + skj)(dji + sji)(dki + ski) dS

=
∫

Ω
[dkjdjidki + dkj sjiski + djiskj ski + dkiskj sji] dx.

As sji = −sij , we havedkj sjiski + dkiskj sji = dkj sjiski + dkj skisij = 0. Hence

I3 =
∫

Ω
[dkjdjidik + dij skiskj ] dx =

∫
Ω
dkjdjidik dx− 1

4

∫
Ω
dijωiωj dx, (2.12)

whereωi andωj are the components ofω := curl v. The estimates (2.10), (2.11) and the identity
(2.12) yield∫

Ω
v · ∇v ·∆v dx

≤ 2δ ‖Pσ∆v‖22 + C(δ) ‖∇v‖42 + C −
∫

Ω
dkjdjidik dx +

1
4

∫
Ω
dijωiωj dx. (2.13)

The integral on the left hand side of (2.13) can also be treated in another way:∫
Ω
v · ∇v ·∆v dx = −

∫
Ω

v · ∇v · curl2v dx

= −
∫
∂Ω

v · ∇v · (n× curl v) dS −
∫

Ω
curl (v · ∇v) · curl v dx. (2.14)

The integrals on the right hand side can be estimated or modified as follows:∣∣∣∣∫
∂Ω

v · ∇v · (n× curl v) dS
∣∣∣∣ =

∣∣∣∣∫
∂Ω

(v · ∇v) ·
(
[2D · n]τ + 2v · ∇n

)
dS
∣∣∣∣

=
∣∣∣∣1ν
∫
∂Ω

(v · ∇v) ·
(
−K · v + 2v · ∇n

)
dS
∣∣∣∣

≤ C

∫
∂Ω
|v|2 |∇v|

(
|K|+ 1

)
dS ≤ C ‖v‖24; ∂Ω ‖∇v‖2; ∂Ω

(
‖K‖4; ∂Ω + 1

)
≤ δ ‖Pσ∆v‖22 + C(δ) ‖∇v‖42 + C (2.15)

(by analogy with (2.11),∫
Ω
curl (v · ∇v) · curl v dx =

∫
Ω

[v · ∇ω − ω · ∇v] · ω dx = −
∫

Ω
ω · ∇v · ω dx

= −
∫

Ω
ω · D(v) · ω dx = −

∫
Ω
dijωiωj dx. (2.16)

Multiplying (2.14)–(2.16) by1
4 , we get

1
4

∫
Ω

v · ∇v ·∆v dx ≤ δ

4
‖Pσ∆v‖22 + C(δ) ‖∇v‖42 + C − 1

4

∫
Ω
dijωiωj dx. (2.17)
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Summing (2.13) and (2.17), we obtain

5
4

∫
Ω

v · ∇v ·∆v dx ≤ 9δ
4
‖Pσ∆v‖22 + C(δ) ‖∇v‖42 + C −

∫
Ω
dkjdjidik dx.

Dividing this inequality by5
4 , choosingδ = 5

18ν, substituting to (2.1) and expressing the first
integral in (2.1) by means of (2.2), we obtain

d
dt
‖D(v)‖22 +

1
2ν

d
dt

∫
∂Ω

v ·K · v dS +
ν

2
‖Pσ∆‖22

≤ −4
5

∫
Ω
dkjdjidik dx + c7 ‖∇v‖22 ‖D(v)‖22 + c8. (2.18)

The productdjk dki dij equals the trace of the tensorD(v)3. It is invariant with respect to rotation
of the coordinate system. Hence it can be represented in the system in whichD(v) has the diagonal
representationD = (dij) with dij = 0 for i 6= j andd11 = ζ1, d22 = ζ2, d33 = ζ3, whereζ1, ζ3 ζ3

are the eigenvalues of tensorD(v). The eigenvalues are real becauseD(v) is symmetric and
their sum is zero because the trace ifD(v) is equal to zero. ThenTrD(v)3 = djk dki dij =
ζ3

1 + ζ3
2 + ζ3

3 = 3ζ1ζ2ζ3. We may assume that the eigenvalues are ordered so thatζ1 ≤ ζ2ζ3,
which implies thatζ1 ≤ 0 andζ3 ≥ 0. Then inequality (2.18) takes the form

d
dt
‖D(v)‖22 +

1
2ν

d
dt

∫
∂Ω

v ·K · v dS +
ν

2
‖Pσ∆‖22

≤ −12
5

∫
Ω

(−ζ1) (ζ2)+ ζ3 dx + c7 ‖∇v‖22 ‖D(v)‖22 + c8. (2.19)

Integrating this inequality on the time interval(t0, t1), wheret0 < t1 ≤ bγ , we deduce that

|||D(v)|||2∞,2; (t0,t1) +
ν

2
|||Pσ∆v|||22,2; (t0,t1)

≤ c9 ‖D(v(t0))‖22 + c10

∫ t1

t0

∫
Ω

(−ζ1) (ζ2)+ ζ3 dx dϑ+ c11, (2.20)

where constantsc9, c10, c11 depend onν, Ω, c7, c8 and also on the norm|||∇v|||2,2; (0,T ). Let us
further estimate the integral of(−ζ1) (ζ2)+ ζ3 on the right hand side of (2.18). Assume e.g. that
(ζ2)+ ∈ Lr(0, T ; Ls(Ω)), where2/r + 3/s ≤ 1. Since|ζi| ≤ C |∇v| (i = 1, 2, 3), we have∫ t1

t0

∫
Ω

(−ζ1) (ζ2)+ ζ3 dx dt ≤ |||(ζ2)+|||r,s; (t0,t1) |||ζ1ζ3||| r
r−1

, s
s−1

; (t0,t1)

≤ c12 |||(ζ2)+|||r,s; (t0,t1) |||∇v|||22r
r−1

, 2s
s−1

; (t0,t1)
.

Estimating the norm of∇v by means of the inequality

|||g|||α,β; (t0,t1) ≤ |||g|||
2
α

+ 3
β
− 3

2

2,2; (t0,t1)

(
|||g|||∞,2; (t0,t1) + |||g|||2,6; (t0,t1)

) 5
2
−( 2

α
+ 3
β

)
,

which can be proven by means of Hölder’s inequality and which is valid for2 ≤ α ≤ ∞, 2 ≤
β ≤ 6 and 3

2 ≤ 2/α+ 3/β ≤ 5
2 , with α = 2r/(r − 1) andβ = 2s/(s− 1), we obtain:∫ t1

t0

∫
Ω

(−ζ1) (ζ2)+ ζ3 dx dt ≤ |||(ζ2)+|||r,s; (t0,t1)

(
|||∇v|||∞,2; (t0,t1) + |||∇v|||2,6; (t0,t1)

) 2
r

+ 3
s
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≤ c13 |||(ζ2)+|||r,s; (t0,t1)

(
|||D(v)|||2∞,2; (t0,t1) +

ν

2
|||Pσ∆v|||22,2; (t0,t1) + c14

)
.

(The norm‖∇v‖2 inside|||∇v|||∞,2; (t0,t1) has been estimated by Korn’s inequality and the norm
‖∇v‖6 inside |||∇v|||2,6; (t0,t1) is estimated by the norm‖v‖2,2, which is less than or equal to
c5 ‖Pσ∆v‖2 + c6 ‖v‖2 due to Lemma 1.) Using this inequality in (2.20), we get

|||D(v)|||2∞,2; (t0,t1) +
ν

2
|||Pσ∆v|||22,2; (t0,t1) ≤ c9 ‖D(v( . , t0))‖22

+ c10 c13 |||(ζ2)+|||r,s; (t0,t1)

(
|||∇v|||2∞,2; (t0,t1) +

ν

2
|||Pσ∆v|||22,2; (t0,t1) + c14

)
.

Assume thatt1 = bγ andt1 − t0 < ξ, whereξ is so small thatc10 c13 |||(ζ2)+|||r,s; (t′,t′′) <
1
2 for

anyt′, t′′ ∈ (0, T ) such that0 ≤ t′ < t′′ ≤ T , t′′ − t′ ≤ ξ. Then

|||D(v)|||2∞,2; (t0,bγ) +
ν

2
|||Pσ∆v|||22,2; (t0,bγ) ≤ 2c9 ‖D(v( . , t0))‖22 + c10c13c14.

From this, we observe thatbγ cannot be an epoch of irregularity of the weak solutionv. The proof
of Theorem 1 is completed. ut
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