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Abstract

We consider the compressible Navier-Stokes system on time-dependent domains with prescribed motion of the
boundary. For both the no-slip boundary conditions as well as slip boundary conditions we prove local-in-time
existence of strong solutions. These results are obtained using a transformation of the problem to a fixed domain
and an existence theorem for Navier-Stokes like systems with lower order terms and perturbed boundary conditions.
We also show the weak-strong uniqueness principle for slip boundary conditions which remained so far open question.
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1 Introduction

We consider a barotropic flow of a compressible viscous fluid in the absence of external forces. Such flow is described
by the isentropic compressible Navier-Stokes system

∂t% + divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (1.2)
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framework of RVO:67985840
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‡The work of T.P was partially supported by the Polish NCN Harmonia project UMO-2014/14/M/ST1/00108 and his stay in Institute
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where % is the density of the fluid and u denotes the velocity. We assume that the stress tensor S is determined by
the standard Newton rheological law

S(∇xu) = µ

(
∇xu +∇t

xu−
2
3
divxuI

)
+ ηdivxuI (1.3)

with µ > 0 and η ≥ 0 being constants. The pressure p(%) is a given sufficiently smooth function of the density and we
introduce the pressure potential as

H(%) = %

∫ %

1

p(z)
z2

dz. (1.4)

We are interested in proving local existence of strong solutions to the system of equations (1.1)-(1.2) on a moving
domain Ω = Ωt with prescribed movement of the boundary. More precisely, the boundary of the domain Ωt is assumed
to be described by means of a given velocity field V(t, x), where t ≥ 0 and x ∈ R3. Assuming V is regular and solving
the associated system of differential equations

d
dt

X(t, x) = V
(
t,X(t, x)

)
, t > 0, X(0, x) = x (1.5)

we set
Ωτ = X (τ,Ω0) ,

where Ω0 ⊂ R3 is a given domain. Moreover we denote Γτ = ∂Ωτ and

Qτ =
⋃

t∈(0,τ)

{t} × Ωt =: (0, τ)× Ωt.

System (1.1)-(1.2) is supplied with the Navier slip boundary condition stated as the combination of the imperme-
ability relation

(u−V) · n|Γτ
= 0 for any τ ≥ 0, (1.6)

where n(t, x) denotes the unit outer normal vector to the boundary Γt, and equation

([Sn]tan + κ [u−V]tan) |Γτ = 0, (1.7)

where κ ≥ 0 represents a friction coefficient. In particular the choice κ = 0 yields the complete slip boundary condition
and in the limit κ → +∞ we recover the no-slip boundary condition (7.1).

Finally, the system of equations (1.1)-(1.2) is supplemented by the initial conditions

%(0, ·) = %0, u(0, ·) = u0 in Ω0. (1.8)

Global weak solutions to the compressible barotropic Navier–Stokes system on a fixed domain were proved to exist
in a pioneering work by Lions [20]. This theory was later extended by Feireisl and collaborators ([12], [6], [7], [8])
to cover larger class of pressure laws. The existence theory in the case of moving domains was developed in [10]
for no-slip boundary conditions using the so-called Brinkman penalization and in [11] for slip boundary conditions.
Recently these results have been generalized to a complete system with thermal effects in [18] and [19].

There is also quite large amount of literature available concerning existence of strong solutions for the system
(1.1)–(1.2) (or even for more complex systems involving also heat conductivity of the fluid) on a fixed domain, such
solutions are proved to exist either locally in time or globally provided the initial data are sufficiently close to a rest
state, let us mention among others [22], [23], [31], [32] in the framework of Hilbert spaces and [24],[25],[26] in the Lp
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setting. All these results are proved under the no-slip boundary conditions. The case of slip boundary condition on
fixed domain was considered by Zaja̧czkowski [34] and Hoff [17]. Free boundary problems for the system (1.1)-(1.2)
has been investigated by Zaja̧czkowski et al. ([35],[36]) where global existence of strong solutions in L2 setting is
shown under assumption that the domain is close to a ball. Recently, Shibata and Murata [29] showed global well
posedness using entirely different approach in the Lp−Lq maximal regularity setting. For moving domains with given
motion of the boundary local-in-time existence results of strong solutions (incompressible case) can be found in the
Lp setting by Hieber and al. [3]. Moreover, in the case of fluid-structure interaction we can mention work of Hieber
for incompressible and also compressible case [15, 16].

The concept of relative entropies has been successfully used in the context of partial differential equations (see
among others Carillo et al. [1], Masmoudi [21], Saint-Raymond [28], Wang and Jiang [33]). Germain [14] introduced
a notion of solution to the system (1.1)–(1.2) based on a relative entropy inequality with respect to a hypothetical
strong solution. Similar idea was adapted by Feireisl et al. [13] who defined a suitable weak solution to the barotropic
Navier-Stokes system based on a general relative entropy inequality with respect to any sufficiently smooth pair of
functions. In [9] the authors used relative entropy inequality to prove the weak-strong uniqueness property. Doboszczak
[5] proved both the relative entropy inequality as well as the weak-strong uniqueness property in the case of moving
domain and no-slip boundary condition.

In this paper we first prove the local existence of strong solutions to the system (1.1)–(1.2). The general approach
consist in nowadays classical method of splitting the problem into continuity and momentum equations and investi-
gation of linearized problems. Here we adapt a mixed approach. The continuity exuation is solved directly on moving
domain. For this purpose we extend the known existence theory for the linear transport equation based on the method
of characteristics. Analogous result on a fixed domain has been applied for example in [34], however without proof
which turns out to be quite involved and here we present it for the sake of completeness. To treat the linear momentum
equation we apply the Lagrangian coordinates. The main difficulty in the resulting system on a fixed domain is in
nonhomogeneous boundary conditions which, in spite of smallness of time, require careful treatment with appropriate
extension of the boundary data. Having completed the proof of the local existence we show that weak solutions to the
system (1.1)–(1.2) on moving domains proved to exist in [11] possess also an energy inequality (Proposition 6.1). Using
this energy inequality we prove the relative entropy (energy) inequality (Proposition 6.2) and finally the weak-strong
uniqueness property (Theorem 1.2).

We are now in a position to formulate the main results of our paper. The first one gives the local existence of
strong solutions (a precise definition of function spaces defined on the moving domain is given in Section 2.1).

Theorem 1.1 Let Ω0 ⊂ R3 be a bounded domain of class C2. Assume that p(%) is a C2 function of the density
and V ∈ C3((0, T ) × R3). Assume further that u0 ∈ H3(Ω0), %0 ∈ H2(Ω0) and there exists positive constants c1, c2

such that 0 < c1 ≤ %0 ≤ c2. Then there exists (sufficiently small) T > 0 and a unique solution (u, %) to the system
(1.1)-(1.3) with boundary conditions (1.6)-(1.7) (or (7.1)) and initial condition (1.8) such that
u ∈ L∞(0, T, H2(Ωt)) ∩ L2(0, T, H3(Ωt)),ut ∈ L∞(0, T, H1(Ωt)) ∩ L2(0, T, H2(Ωt)), % ∈ L∞(0, T, H2(Ωt)), %t ∈
L2(0, T, H1(Ωt)).

The second main result concerns the weak-strong uniqueness principle.

Theorem 1.2 let V ∈ C1([0, T ];C3
c (R3)) be given. Assume that the pressure p ∈ C[0,∞) ∩ C1(0,∞) satisfies

p(0) = 0, p′(%) > 0 for any % > 0, lim
%→∞

p′(%)
%γ−1

= p∞ > 0 for a certain γ > 3/2.

Let (%,u) be a weak solution to the compressible Navier-Stokes system (1.1)-(1.8) constructed in Theorem 2.1. Let
(%̃, ũ) be a strong solution to the same problem satisfying

0 < inf
QT

%̃ ≤ sup
QT

%̃ < ∞ (1.9)
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∇x%̃ ∈ L2(0, T ;Lq(Ωt)), ∇2
xũ ∈ L2(0, T, Lq(Ωt)) (1.10)

with q > max{3; 6γ
5γ−6}, and emanating from the same initial data. Then

% = %̃, u = ũ in QT . (1.11)

Remark 1.1 Notice that the strong solution constructed in Theorem 1.1 satisfies the assumptions of Theorem 1.2
since by the imbedding theorem we have (1.10) for q ≤ 6 and 6γ

5γ−6 < 6 for γ > 3
2 .

The paper is organized as follows. In Section 2 we discuss the proper definition of function spaces on moving domains,
recall the existence theorem for weak solutions from [11] and introduce the iterative scheme used in the proof of
Theorem 1.1. In Sections 3 and 4 we present the existence theory for the linear continuity and momentum equations
respectively in appropriate function spaces. In Section 5 we show the convergence of the iterative scheme which
completes the proof of Theorem 1.1. Section 6 is dedicated to the proof of Theorem 1.2. Finally, in Section 7 we
present concluding remarks regarding different boundary conditions, regularity of V etc.

2 Preliminaries

2.1 Function spaces

To begin with we introduce the function spaces Lp(0, T, X(Ωt)). For fixed T > 0 we assume that there exists R > 0
such that for all t ∈ [0, T ] it holds Ωt ⊂ BR(0), where BR(0) denotes the ball in R3 of radius R centered at the origin.
Then we define

Lp(0, T, Lq(Ωt)) := {u ∈ Lp(0, T, Lq(BR(0))), u(t, ·) = 0 in BR(0) \ Ωt for a.e. t ∈ (0, T )} (2.1)

with the norm

‖u‖Lp(0,T,Lq(Ωt))
:=

(∫ T

0

‖u(t)‖p
Lq(Ωt)

dt

) 1
p

for p < ∞ and
‖u‖L∞(0,T,Lq(Ωt))

:= ess supt∈(0,T ) ‖u(t)‖Lq(Ωt)
.

Similarly we define spaces Lp(0, T, W l,q(Ωt)). Let l ∈ N and α be a multi-index. Then

Lp(0, T, W l,q(Ωt)) := {u ∈ Lp(0, T, Lq(Ωt)), ∂αu ∈ Lp(0, T, Lq(Ωt)) ∀ |α| ≤ l}

with the norm
‖u‖Lp(0,T,W l,q(Ωt))

:=
∑
|α≤l|

‖∂αu‖Lp(0,T,Lq(Ωt))
.

The spaces of continuous functions in time with values in Lebesgue or Sobolev spaces in space variable C([0, T ],W l,q(Ωt))
are defined similarly as in (2.1) using the large ball BR(0).

We also recall that we denote as usual Hk := W k,2. If no confusion may arise, we often drop the time interval and
also the spatial domain to denote Lp(W l,q) := Lp(0, T,W l,q(Ωt)).

Finally we introduce a compact notation for the regularity class of the velocity in Theorem 1.1. For a function f
defined on (0, T )× Ωt we define

‖f‖X (T ) = ‖f‖L∞(0,T,H2(Ωt))∩L2(0,T ;H3(Ωt)) + ‖ft‖L∞(0,T,H1(Ωt))∩L2(0,T,H2(Ωt)) (2.2)
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and for a function f̃ defined of (0, T )× Ω where Ω is a fixed domain

‖f̃‖Y(T ) = ‖f̃‖L∞(0,T,H2(Ω))∩L2(0,T ;H3(Ω)) + ‖f̃t‖L∞(0,T,H1(Ω))∩L2(0,T,H2(Ω)). (2.3)

and obviously we denote by X (T ) and Y(T ) spaces for which above norms are finite.

2.2 Weak solutions

For weak solutions it is enough to assume the initial condition in a more general form

%(0, ·) = %0, (%u)(0, ·) = (%u)0 in Ω0. (2.4)

We define weak solutions to the compressible Navier-Stokes system with slip boundary conditions on moving domains
as follows.

Definition 2.1 We say that the couple (%,u) is a weak solution of problem (1.1)-(1.2) with boundary conditions
(1.6)-(1.7) and initial conditions (2.4) if

• % ∈ L∞(0, T ;Lγ(R3)), % ≥ 0 a.e. in QT .

• u,∇xu ∈ L2(QT ), (u−V) · n(τ, ·)|Γτ = 0 for a.a. τ ∈ [0, T ].

• The continuity equation (1.1) is satisfied in the whole R3 provided the density is extended by zero outside Ωt,
i.e. ∫

Ωτ

%ϕ(τ, ·) dx−
∫

Ω0

%0ϕ(0, ·) dx =
∫ τ

0

∫
Ωt

(%∂tϕ + %u · ∇xϕ) dxdt (2.5)

for any τ ∈ [0, T ] and any test function ϕ ∈ C∞
c ([0, T ]× R3).

• Moreover, equation (1.1) is also satisfied in the sense of renormalized solutions introduced by DiPerna and Lions
[4]:∫

Ωτ

b(%)ϕ(τ, ·) dx−
∫

Ω0

b(%0)ϕ(0, ·) dx =
∫ τ

0

∫
Ωt

(b(%)∂tϕ + b(%)u · ∇xϕ + (b(%)− b′(%)%) divxuϕ) dxdt (2.6)

for any τ ∈ [0, T ], any ϕ ∈ C∞
c ([0, T ]× R3), and any b ∈ C1[0,∞), b(0) = 0, b′(r) = 0 for large r.

• The momentum equation (1.2) is replaced by the family of integral identities∫
Ωτ

%u ·ϕ(τ, ·) dx−
∫

Ω0

(%u)0 ·ϕ(0, ·) dx (2.7)

=
∫ τ

0

∫
Ωt

(%u · ∂tϕ + %[u⊗ u] : ∇xϕ + p(%)divxϕ− S(∇xu) : ∇xϕ) dxdt

for any τ ∈ [0, T ] and any test function ϕ ∈ C∞
c ([0, T ]× R3) satisfying

ϕ · n|Γτ = 0 for any τ ∈ [0, T ]. (2.8)

The existence of weak solutions to the problem (1.1)-(1.8) was proved in [11].
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Theorem 2.1 Let Ω0 ⊂ R3 be a bounded domain of class C2+ν . Assume V and p(%) satisfy the assumptions of
Theorem 1.2. Let the initial data (2.4) satisfy

%0 ∈ Lγ(R3), %0 ≥ 0, %0 6≡ 0, %0|R3\Ω0 = 0, (%u)0 = 0 a.a. on the set {%0 = 0},
∫

Ω0

1
%0
|(%u)0|2 dx < ∞.

Then the problem (1.1)-(1.7),(2.4) admits a weak solution on any time interval (0, T ) in the sense specified through
Definition 2.1.

We also notice that the existence theorem for the problem with no-slip boundary condition was proved in [10].

2.3 Iterative scheme

Theorem 1.1 will be proved with the method of successive approximations. At each step we will solve the linear system
solving coupled linear continuity and momentum equations. Here we adapt nowadays classical approach ([31], [34]).
The linear continuity equation is solved in a moving domain which is possible since the characteristics are well defined
due to boundary condition (1.6). Then in order to solve the momentum equation we use Lagrangian transformation
determined by the velocity field V. It should be noticed that such approach is admissible since the transformation
depends only on V and not on the solution, therefore is independent on the step of iteration. Then the crucial difficulty
is in showing appropriate estimates that will give convergence of the iterative scheme. We restrict our presentation
to the proof of the result for slip boundary condions. With our method this case is more complicated as it requires
treatment of boundary terms which otherwise vanish.

In view of the above considerations we define our iterative scheme as follows. We set ρ1(t,X(t, x)) := ρ0(x) and
u1(t,X(t, x)) := u0(x) for all t ∈ (0, T ).

Assume we already have (%n,un). We define the next step of approximation (%n+1,un+1) as follows.
1. We solve for %n+1 the linear continuity equation

∂t%n+1 + un · ∇x%n+1 + %n+1divxun = 0 in QT (2.9)

with the initial condition %n+1(0, x) = %0(x) in Ω0.
2. We solve for un+1 the linear momentum equation

%n+1∂tun+1 − µ∆xun+1 − (
µ

3
+ η)∇xdivxun+1 = (2.10)

−%n+1un · ∇xun −∇xp(%n+1) =: F(%n+1,un) in QT

with boundary conditions
(un+1 −V) · n|Γt

= 0 (2.11)

[S(∇xun+1)n]tan + κ[un+1 −V]tan|Γt = 0 (2.12)

for all t ∈ (0, T ) and initial condition un+1(0, x) = u0(x) in Ω0.

3 Linear continuity equation

In order to have the iterative scheme well defined we have to solve in particular the linear continuity equation

%t + v · ∇x% + %divxv = 0 in QT (3.1)

with (v −V) · n|Γt
= 0. As pointed out earlier, we treat the linear continuity equation (3.1) directly in the moving

domain and we do not use here any change of variables. The following result gives existence of solution to (3.1).
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Proposition 3.1 Assume %0 ∈ H2(Ω0), v ∈ L∞(0, T, H2(Ωt)) ∩ L2(0, T, H3(Ωt)). Then for T > 0 sufficiently small
there exists a unique solution % to the linear transport equation (3.1) such that

% ∈ C([0, T ],H2(Ωt)), ∂t% ∈ C([0, T ],H1(Ωt)). (3.2)

Moreover the following estimates hold

‖%‖L∞(H2) ≤ C‖%0‖H2φ(
√

T‖v‖L2(H3)) =: D0 (3.3)

and
‖∂t%‖L2(H1) ≤ C

√
T‖%0‖H2φ(

√
T‖v‖L2(H3))‖v‖L2(H3) (3.4)

where φ(·) is an increasing, positive Lipschitz function. Moreover, if %0 ≥ κ > 0 then % ≥ C(κ, T,v) > 0.

Remark. In what follows we will denote by φ(·) an increasing, positive, sufficiently smooth function which may vary
from line to line.

In order to obtain the desired form of estimates with the factor
√

T we use the solution formula provided by the
method of characteristics. We have

%(t, X(t, z)) = %0(z)exp
(
−
∫ t

0

divxv(s,X(s, z))ds
)
, (3.5)

where

X(t, z) = z +
∫ t

0

v(s,X(s, z))ds. (3.6)

Note that the mapping X(t, z) is different from the mapping X(t, z) introduced in (1.5), since one is related to the
velocity field v while the other to the velocity field V. Before we proceed with the proof of Proposition 3.1 we first
need some properties of the mapping X and its derivatives.

Lemma 3.1 Let v ∈ L2(0, T, H3(Ωt)). Let X(t, z) be defined by (3.6), i.e. for fixed t ∈ (0, T ) we have X(t, ·) :
Ω0 → Ωt. Then there exists sufficiently small T > 0 such that for all t ∈ (0, T ) there exists an inverse mapping
z(t, ·) : Ωt → Ω0, i.e. z(t, X(t, y)) = y for all y ∈ Ω0 and X(t, z(t, y)) = y for all y ∈ Ωt. Moreover it holds

‖∇xz(t, x)− I‖L∞(Qτ ) ≤ E(τ) (3.7)

and
‖∇2

zX(t, z)‖L∞(0,T,L4(Ω0)) ≤ φ(‖v‖L2(0,T,H3(Ωt))), (3.8)

where I denotes the identity matrix, E(t) is a nonnegative function such that E(t) → 0 as t → 0+ and φ is an
increasing positive function.

Proof: [Lemma 3.1] We have

∇zX(t, z) = I +
∫ t

0

∇xv(s,X(s, z))∇zX(s, z)ds, (3.9)

hence ∇zX satisfies a system of ODE
∂t∇zX = ∇xv(t, X(t, z))∇zX.
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Multiplying the component of the above equation corresponding to ∂zj Xi by |∂zj Xi|p−2∂zj Xi and integrating over Ω0

we obtain
d

dt
‖∇zX‖p

Lp(Ω0)
≤ C‖∇xv‖H2(Ωt)‖∇zX‖p

Lp(Ω0)
,

therefore by Gronwall inequality

‖∇zX‖L∞(0,T,Lp(Ω0)) ≤ Cexp

(∫ T

0

‖v‖H3(Ωt)ds

)
≤ φ(‖v‖L2(H3)) ≤ M. ∀ 1 ≤ p < ∞. (3.10)

Moreover, tracking the dependence of the above estimate on p we can justify the limit passage p → ∞ to conclude
that (3.10) holds also for p = ∞.

In order to show the bound for the second gradient we differentiate (3.9) w.r.t. z and t obtaining

∂

∂t
∇2

zX(t, z) ∼ ∇2
xv(t, X(t, z))(∇zX(t, z))2 +∇xv(t, X(t, z))∇2

zX(t, z).

Note that we don’t really care about the precise structure of the right hand side, in order to obtain estimates, it is
enough for us to know that we have term involving second gradient of v multiplied twice by first gradient of X and
second gradient of X multiplied by first gradient of v.

We proceed similarly as before. Multiplying the component corresponding to ∇2
zizj

Xk by |∇2
zizj

Xk|2∇2
zizj

Xk and
integrating over Ω0 we obtain

d

dt
‖∇2

zX(t, ·)‖4L4 ≤ C

∫
Ω0

|∇2
xv(t,X(t, ·))||∇zX(t, ·)|2|∇2

zX(t, ·)|3dx + C

∫
Ω0

|∇xv(t, X(t, ·))||∇2
zX(t, ·)|4dx ≤

≤ C‖∇2
xv(t)‖L6(Ωt)‖∇zX(t)‖2L24(Ω0)

‖∇2
zX(t)‖3L4(Ω0)

+ ‖∇xv(t)‖H2(Ωt)‖∇
2
zX(t)‖4L4(Ω0)

,

which by Sobolev embedding and Gronwall inequality implies (3.8).
Now we are ready to finish the proof of (3.7). Recall that from (3.10) we have

‖∇zX(t, z)‖L∞((0,T )×Ω0) ≤ M (3.11)

for some M > 0 which depends on the L2(H3) norm of v. Therefore from (3.9) we have

|∇zX(t, z)− I| =
∣∣∣∣∫ t

0

∇xv(s,X(s, z))∇zX(s, z)ds

∣∣∣∣ ≤ M ‖∇xv‖L1(0,τ,L∞(Ωt))
≤ CM

√
τ ‖v‖L2(0,τ,H3(Ωt))

(3.12)

The expression on the right hand side of (3.12) will be small for small times, which yields the invertibility of ∇zX
and also the bound (3.7).

�
Now we proceed with the proof of Proposition 3.1.
Proof: [Proposition 3.1] The solution formula (3.5) immediately gives the last statement of the lemma. Moreover,

denoting %̄(t, z) = %(t,X(t, z)) we obtain from (3.5)

‖%(t, ·)‖L2(Ωt) ≤ C‖%̄(t, ·)‖L2(Ω0) ≤ C‖%0‖L2‖exp
(
−
∫ t

0

div xvds
)
‖L∞ ≤ C‖%0‖L2exp

( ∫ t

0

‖div xv‖L∞ds
)

(3.13)

and consequently

‖%‖L∞(0,T,L2(Ωt)) ≤ C‖%̄‖L∞(0,T,L2(Ω0)) ≤ C‖%0‖L2exp
(
‖div xv‖L1(0,T,L∞)

)
≤ ‖%0‖L2φ(

√
T‖v‖L2(0,T,H3)). (3.14)
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Differentiating (3.5) w.r.t z we obtain

∇x%(t, X(t, z))∇zX(t, z) (3.15)

= exp(−
∫ t

0

divxv(s,X(s, z)) ds)
(
∇z%0(z)− %0(z)

∫ t

0

∇xdivxv(s,X(s, z))∇zX(s, z) ds

)
and thus at least for small times

|∇x%| ≤ |(∇zX)−1|
(∣∣∇z%0 exp(−

∫ t

0

div xv)
∣∣+ ∣∣%0 exp(−

∫ t

0

div xv)
∫ t

0

∇xdiv xv∇zX ds
∣∣) . (3.16)

Now, the first term in (3.16) can be estimated as before (see (3.13) and (3.14)) and with the second term we proceed
as follows

‖(∇zX)−1 %0 exp(−
∫ t

0

div xv)
∫ t

0

∇xdiv xv∇zX ds
∥∥

L2(Ω0)
≤ (3.17)

‖(∇zX)−1‖L∞(Ω0)‖%0‖L∞(Ω0)‖exp(−
∫ t

0

div xv)‖L∞(Ω0)

∫ t

0

(‖∇xdiv xv‖L2(Ωt)‖∇zX‖L∞(Ω0)) ds ≤

‖(∇zX)−1‖L∞(Ω0)‖%0‖H2(Ω0)exp(
∫ t

0

‖div xv‖L∞(Ωt))
∫ t

0

(‖∇xdiv xv‖L2(Ωt)‖∇zX‖L∞(Ω0)) ds

Taking supremum over t ∈ (0, T ), using the fact that both ‖(∇zX)−1‖L∞(Ω0) and ‖∇zX‖L∞(Ω0) are bounded in time
for sufficiently small T and using Hölder inequality similarly as in (3.14) to obtain the factor

√
T we arrive at

‖∇x%‖L∞(0,T,L2(Ωt)) ≤ C‖%0‖H2(Ω0)φ(
√

T‖v‖L2(0,T,H3(Ωt))). (3.18)

In order to estimate the second derivatives of % we differentiate (3.15) one more time with respect to z. Again we
are not particularly interested in the precise structure of the resulting equation, for the purpose of the estimate it is
enough to recognize all kinds of terms appearing on both sides of the resulting equation. We have

∇2
x%(∇zX)2 +∇x%∇2

zX ∼ (3.19)

∼ ∇2
z%0 exp(−

∫ t

0

div xv)− 2∇z%0 exp(−
∫ t

0

div xv)
∫ t

0

(∇xdivxv∇zX) ds

+ %0 exp(−
∫ t

0

div xv)
(∫ t

0

(∇xdivxv∇zX) ds

)2

− %0 exp(−
∫ t

0

div xv)
∫ t

0

(∇xdivxv∇2
zX) ds

− %0 exp(−
∫ t

0

div xv)
∫ t

0

(∇2
xdivxv(∇zX)2) ds.

Since (∇zX)−2 is bounded for small times, our goal is to estimate the L∞(L2) norm of the right hand side of (3.19)
and also of ∇x%∇2

zX. Let us start with the latter. Due to Lemma 3.1 we have the L∞(L4) bound for ∇2
zX and for

∇x% we use the formula (3.16). We show only the estimates in the space variable, the time variable is handled always
the same way as in (3.14) or (3.18). We have∥∥∥∥∇2

zX(∇zX)−1exp(−
∫ t

0

div xv)∇z%0

∥∥∥∥
L2

≤
∥∥∇2

zX
∥∥

L4

∥∥(∇zX)−1
∥∥

L∞

∥∥∥∥exp(−
∫ t

0

div xv)
∥∥∥∥

L∞
‖∇z%0‖L4 (3.20)

≤ C
∥∥∇2

zX
∥∥

L4

∥∥(∇zX)−1
∥∥

L∞
exp(

∫ t

0

‖div xv‖L∞) ‖%0‖H2
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and ∥∥∥∥∇2
zX(∇zX)−1exp(−

∫ t

0

div xv)%0

∫ t

0

(∇xdiv xv∇zX)
∥∥∥∥

L2

(3.21)

≤
∥∥∇2

zX
∥∥

L4

∥∥(∇zX)−1
∥∥

L∞

∥∥∥∥exp(−
∫ t

0

div xv)
∥∥∥∥

L∞
‖%0‖L∞

∫ t

0

(
∥∥∇2

xv
∥∥

L4 ‖∇zX‖L∞)

≤ C
∥∥∇2

zX
∥∥

L4

∥∥(∇zX)−1
∥∥

L∞
exp(

∫ t

0

‖div xv‖L∞) ‖%0‖H2

∫ t

0

(‖v‖H3 ‖∇zX‖L∞).

Now let us treat the right hand side of (3.19). The first term can be handled similarly as above in (3.14). For the
second term we have∥∥∥∥∇z%0exp(−

∫ t

0

div xv)
∫ t

0

(∇xdiv xv∇zX)
∥∥∥∥

L2

≤ ‖∇z%0‖L4

∥∥∥∥exp(−
∫ t

0

div xv)
∥∥∥∥

L∞

∫ t

0

(
∥∥∇2

xv
∥∥

L4 ‖∇zX‖L∞) (3.22)

≤ C ‖%0‖H2 exp(
∫ t

0

‖div xv‖L∞)
∫ t

0

(‖v‖H3 ‖∇zX‖L∞)

The third term on the right hand side of (3.19) is estimated as∥∥∥∥∥%0 exp(−
∫ t

0

div xv)
(∫ t

0

(∇xdivxv∇zX) ds

)2
∥∥∥∥∥

L2

(3.23)

≤ ‖%0‖L∞

∥∥∥∥exp(−
∫ t

0

div xv)
∥∥∥∥

L∞

(∫ t

0

(
∥∥∇2

xv
∥∥

L4 ‖∇zX‖L∞)
)2

≤ C ‖%0‖H2 exp(
∫ t

0

‖div xv‖L∞)
(∫ t

0

(‖v‖H3 ‖∇zX‖L∞)
)2

The fourth term is estimated similarly as in (3.21). We have∥∥∥∥%0 exp(−
∫ t

0

div xv)
∫ t

0

(∇xdivxv∇2
zX)

∥∥∥∥
L2

(3.24)

≤ ‖%0‖L∞

∥∥∥∥exp(−
∫ t

0

div xv)
∥∥∥∥

L∞

∫ t

0

(
∥∥∇2

xv
∥∥

L4

∥∥∇2
zX
∥∥

L4)

≤ C ‖%0‖H2 exp(
∫ t

0

‖div xv‖L∞)
∫ t

0

(‖v‖H3

∥∥∇2
zX
∥∥

L4)

The last term on the right hand side of (3.19) is the only one involving third derivatives of the velocity field v. We
proceed as follows ∥∥∥∥%0 exp(−

∫ t

0

div xv)
∫ t

0

(∇2
xdivxv(∇zX)2)

∥∥∥∥
L2

(3.25)

≤ ‖%0‖L∞

∥∥∥∥exp(−
∫ t

0

div xv)
∥∥∥∥

L∞

∫ t

0

(
∥∥∇3

xv
∥∥

L2 ‖∇zX‖2L∞)

≤ C ‖%0‖H2 exp(
∫ t

0

‖div xv‖L∞)
∫ t

0

(‖v‖H3 ‖∇zX‖2L∞)
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As we mentioned above, handling the time variable is the same as in the estimates for % and ∇x%. Since we have the
L2(H3) bound for v and under the time integrals there is always only first power of the H3 norm of v we always gain
the factor

√
T and finally end up with

‖∇2
x%‖L∞(0,T,L2(Ωt)) ≤ C‖%0‖H2(Ω0)φ(

√
T‖v‖L2(0,T,H3(Ωt))). (3.26)

Combining (3.13), (3.18) and (3.26) we obtain (3.3).
With the estimates of % in L∞(H2) at hand we can use the equation (3.1) to obtain estimates for the time derivative

of ρ. We have
∂t% = −v · ∇x%− %div xv. (3.27)

Estimating the right hand side as

‖∂t%‖L2(0,T,L2(Ωt))
≤ ‖v · ∇x%‖L2(0,T,L2(Ωt))

+ ‖%divxv‖L2(0,T,L2(Ωt))
(3.28)

≤ C
√

T
(
‖v‖L∞(0,T,H2(Ωt))

‖∇x%‖L∞(0,T,L2(Ωt))
+ ‖%‖L∞(0,T,H2(Ωt))

‖divxv‖L∞(0,T,L2(Ωt))

)
≤ C

√
T‖%0‖H2(Ω0)φ(

√
T‖v‖L2(0,T,H3(Ωt))) ‖v‖L∞(0,T,H2(Ωt))

.

Next we apply the spatial gradient to (3.27) to obtain

∂t∇x% = −v · ∇x∇x%−∇x%∇xv −∇x%div xv − %∇xdiv xv (3.29)

and we estimate the L2(L2) norm of the right hand side. Starting first with the norms in the x variable we have∥∥v∇2
x%
∥∥

L2(Ωt)
≤ ‖v‖L∞

∥∥∇2
x%
∥∥

L2 ≤ C ‖v‖H2 ‖%‖H2 (3.30)

‖∇x%∇xv‖L2(Ωt)
≤ ‖∇x%‖L4 ‖∇xv‖L4 ≤ C ‖v‖H2 ‖%‖H2 (3.31)∥∥%∇2

xv
∥∥

L2(Ωt)
≤ ‖%‖L∞

∥∥∇2
xv
∥∥

L2 ≤ C ‖v‖H2 ‖%‖H2 , (3.32)

so altogether we conclude

‖∂t∇x%‖L2(0,T,L2(Ωt))
≤ C

√
T ‖v‖L∞(H2) ‖%‖L∞(H2) (3.33)

≤ C
√

T‖%0‖H2(Ω0)φ(
√

T‖v‖L2(0,T,H3(Ωt))) ‖v‖L∞(0,T,H2(Ωt))
.

�

4 Linear momentum equation

In this section we treat the linear momentum equation

%∂tu− µ∆xu− (
µ

3
+ η)∇xdivxu = F in QT , (4.1)

(u−V) · n|Γτ = 0,

([Sn]tan + κ [u−V]tan) |Γτ = 0.

The next proposition gives existence of solutions to the linear momentum equation on moving domain and we
deliberately skip emphasizing the domains of all function spaces in this proposition in order to shorten the notation.
However we recall here that by Lp(B) we mean in this lemma the function space Lp(0, T, B(Ωt)). We recall that the
space X (T ) was defined in (2.2).
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Proposition 4.1 Let T > 0 be sufficiently small. Let V, p(%) satisfy the assuptions of Theorem 1.1. Assume % ∈
L∞(H2), %t ∈ L2(H1), F ∈ L2(H1), Ft ∈ L2(L2), F(0) ∈ H1(Ω0), u0 ∈ H3(Ω0) and let V ∈ C2((0, T )× R3). Then
there exist a unique solution u to the system (4.1) such that u ∈ X (T ) and the following estimate holds

‖u‖X (T ) ≤ φ(‖%‖L∞(H2), ‖%t‖L2(H1)) (4.2)

×
(
‖F‖L2(H1) + ‖Ft‖L2(L2) + ‖F(0)‖H1 + ‖u0‖H3 + ‖V‖L∞(W 1,∞) + ‖Vt‖L2(H1) + ‖Vtt‖L2(L2))

)
,

where φ is a positive increasing function of its arguments.

This time it is more convenient to convert the problem to fixed spatial domain. For this purpose we introduce the
Lagrangian coordinates determined by V. As this is an important and independent step we present it in a separate
subsection.

4.1 Lagrangian coordinates and linearization

We start with rewriting the problem (4.1) defined on QT to a problem defined on a fixed spatial domain (0, T )× Ω0

using time dependent change of coordinates. To this end we use the formula (1.5). We set

%̃(t, y) := %(t,X(t, y)), ũ(t, y) := u(t,X(t, y)) (4.3)

and we denote the components of the vector X as X = (X1, X2, X3). To proceed we also need the inverse mapping to
X(t, y) which we denote by Y(t, x), thus it holds for all t ≥ 0 and all x ∈ Ωt

X(t,Y(t, x)) = x (4.4)

and again we denote the components of Y as Y = (Y1, Y2, Y3).
Differentiating (4.4) with respect to time we obtain

∂X
∂t

+
∂X
∂y

∂Y
∂t

= 0 (4.5)

and thus
∂Y
∂t

= −V · ∇xY. (4.6)

Using (4.6) we thus transform the time derivative of ui as follows

∂ui

∂t
=

∂ũi

∂t
+∇yũi ·

∂Y
∂t

=
∂ũi

∂t
−∇yũi · (V · ∇xY) . (4.7)

The spatial derivatives transform just by multiplying by the Jacobian of the change of coordinates. Therefore the i-th
component of the equation (4.1)1 rewritten in terms of %̃, ũ defined on fixed domain Ω0 reads

%̃
[∂ũi

∂t
− ∂ũi

∂yj
Vk

∂Yj

∂xk

]
− µ

∂2ũi

∂yk∂yl

∂Yl

∂xp

∂Yk

∂xp
(4.8)

−µ
∂ũi

∂yk
∆xYk − (

µ

3
+ η)

∂2ũp

∂yk∂yl

∂Yl

∂xp

∂Yk

∂xi
− (

µ

3
+ η)

∂ũp

∂yk

∂2Yk

∂xi∂xp
= F̃i,
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where we have used Einstein summation convention. This can be rewritten as a usual linearized momentum equation
with a transport term on the left hand side and a right hand side containing terms which are either small for small
times or of lower order:

%̃
∂ũ
∂t

− µ∆y(ũ)− (
µ

3
+ η)∇ydivyũ = F + %̃V · ∇yũ + R(%̃, ũ) =: F̃(%̃, ũ). (4.9)

where

R(%̃, ũ) =%̃
∂ũ
∂yj

Vk

(
∂Yj

∂xk
− δjk

)
+ µ

∂2ũ
∂yk∂yl

(
∂Yl

∂xp

∂Yk

∂xp
− δlpδkp

)
(4.10)

+ (
µ

3
+ η)

∂2ũp

∂yk∂yl

(
∂Yl

∂xp
∇xYk − δlpek

)
+ µ

∂ũ
∂yk

∆xYk + (
µ

3
+ η)

∂ũp

∂yk
∇x

∂Yk

∂xp
,

where ej is the j-th unit vector.
The boundary conditions are transformed in a nontrivial way as well. In particular, the condition (4.1)2 transforms

as

(ũ−V)(t, y) ·n(y) = (ũ−V)(t, y) · (n(y)− n(X(t, y))) + (V(t,X(t, y))−V(t, y)) ·n(X(t, y)) =: d(ũ,V)(t, y) (4.11)

for y ∈ ∂Ω0. Note however, that for small times, the expression d(ũ,V) will be small due to the fact that the mapping
X is close to identity and its regularity is given by the regularity of V.

Similarly the boundary condition (4.1)3 will also be transformed, however since it contains differentiation, the
resulting expression is more complicated. We denote by τ1, τ2 tangent vectors to ∂Ω0. A lengthy yet straightforward
computation yields for y ∈ ∂Ω0 the following:

µ(∇yũ +∇T
y ũ)(t, y)n(y) · τk(y) + κ(ũ−V)(t, y) · τk(y) = (4.12)

= µ
(
∇yũ(t, y)(I−∇xY) + ((I−∇T

x Y)∇T
y ũ(t, y))T

)
n(X(t, y)) · τk(X(t, y))

+ µ(∇yũ +∇T
y ũ)(t, y)[(n(y)− n(X(t, y))) · τk(X(t, y)) + n(t, y) · (τk(y)− τk(X(t, y)))]

+ κ(ũ−V)(t, y) · (τk(y)− τk(X(t, y))) + κ(V(t,X(t, y))−V(t, y)) · τk(X(t, y)) =: B(ũ,V)(t, y).

Again we emphasize that despite the rather complicated structure of B(ũ,V) it is easy to observe, that this expression
will be small for small times as a consequence of a fact that X is close to identity for small times.

The right hand side of (4.9) and boundary conditions (4.11), (4.12) contains the solution and variable coefficients
dependent of the change of variables. However, all these quantities will remain small for small times in appropriate
norms. Therefore what is important is the structure of the left hand side and in particular we will be able to solve
the system (4.9), (4.11), (4.12) once we have solved the following linear problem on a fixed domain (0, T )× Ω0.

%
∂u
∂t

− µ∆y(u)− (
µ

3
+ η)∇ydivyu = F, (4.13)

(u−V) · n|Γ0 = d,(
[S(∇yu)n]tan + κ [u−V]tan

)
|Γ0 = B.

For simplicity we denote the unknown of this system as u instead of ũ. This system is solved in the next subsection.
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4.2 Solution of the linear momentum equation on a fixed domain

In this subsection we work with a system of differential equations stated on a domain (0, T ) × Ω0. We again skip
emphasizing the domains of all function spaces in this subsection in order to shorten the notation and we note here
that by Lp(B) we mean here the function space Lp(0, T,B(Ω0)). We also skip the index y in differential operators.

Lemma 4.1 Assume that B and d admits an extension to Ω0 given by

ub · n|Γ0 = d,([
S(∇ub)n

]
tan

+ κ
[
ub
]
tan

)
|Γ0 = B (4.14)

such that ub ∈ Y(t). Let p,V satisfy the assumptions of Theorem 1.1. Assume further that % ∈ L∞(H2), %t ∈ L2(H1),
F ∈ L2(H1), Ft ∈ L2(L2), u0 ∈ H3(Ω0) and V ∈ C2((0, T ) × R3). Then there exists a unique solution u to the
problem (4.13) such that

‖u‖Y(T ) ≤ φ(‖%‖L∞(H2), ‖%t‖L2(H1))
(
‖F‖L2(H1)∩L∞(L2) + ‖Ft‖L2(L2) + ‖ub‖Y(T ) (4.15)

+ ‖u0‖H3 + ‖V‖L∞(W 1,∞) + ‖Vt‖L2(H1) + ‖Vtt‖L2(L2))
)
,

where φ denotes a positive increasing function of its arguments.

The result is based on Lemmas 2.2-2.4 from [34] where the same linear system is considered, however with d = B =
V = 0. Therefore we present here some details to show how we treat the inhomogeneous boundary data. For simplicity
of notation we set for the rest of this subsection Ω := Ω0.

We start with removing the inhomogeneity from the boundary data. For this purpose we take the extension ub

defined by (4.14). Taking ũ = u− ub we obtain

%∂tũ− µ∆(ũ)− (
µ

3
+ η)∇divũ = F̄− %∂tub, (4.16)

(ũ−V) · n|Γ = 0,

([S(∇ũ)n]tan + κ [ũ−V]tan) |Γ = 0,

where
F̄ = F + µ∆(ub) + (

µ

3
+ η)∇divub. (4.17)

We have to solve the above system, for simplicity we denote ũ again by u. We can also assume the friction coefficient
κ = 0, positive friction yields only additional lower order terms which are easy to treat.

First we can write the weak formulation of (4.16) and using u−V as a test function (we have to test by a function
with vanishing normal component at the boundary) we obtain the energy estimate

‖u‖L∞(L2) + ‖∇u‖L2(L2) ≤ C[‖F̄,V,ub
t‖L2(L2)]. (4.18)

Next we multiply (4.16) by ∂t(u−V)+εAu, where ε is sufficiently small and Au = −µ∆u−(µ
3 +η)∇div u. Integrating

over Ω we get∫
Ω

%|ut|2dx+
∫

Ω

(u−V)t ·Audx+ε

∫
Ω

|Au|2dx = −ε

∫
Ω

%ut ·Audx+
∫

Ω

%ut ·Vtdx+
∫

Ω

(F̄−%∂tub)·(ut+εAu)dx (4.19)
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Integrating by parts the second term on the left hand side we obtain∫
Ω

(u−V)t ·Audx = −
∫

Ω

(u−V)t · div S(∇u)dx =
∫

Ω

S(∇u) : ∇(ut −Vt)dx−
∫

∂Ω

(u−V)t · S(∇u)ndS =

=
∫

Ω

S(∇u) : ∇utdx−
∫

Ω

S(∇u) : ∇Vtdx,

where in the last step we decomposed S into tangential and normal part and used the boundary conditions. Notice
that we have ∫

Ω

S(∇u) : ∇utdx ≥ C(µ, η)
d

dt
‖∇u‖2L2 .

Moreover, the elliptic theory yields ‖∇2u‖L2 ≤ C‖Au‖L2 . Now we apply the Hölder and Young inequalities to most
of the terms on the right hand side of (4.19) and use the fact that % is bounded from below by a positive constant.
The first term on the right hand side can be absorbed by the left hand side for sufficiently small ε and so we get

‖ut‖2L2 +
d

dt
‖∇u‖2L2 + ε‖∇2u‖2L2 ≤ C(‖Vt‖2H1 + ‖F̄‖2L2 + ‖%ub

t‖2L2) + C‖∇u‖2L2 ,

The energy estimate (4.18) gives a bound on the last term of the right hand side. Therefore applying the Gronwall
inequality we obtain

‖ut‖L2(L2) + ‖∇u‖L∞(L2) + ‖∇2u‖L2(L2) ≤ φ(‖%‖L∞(Ω×(0,T )))[‖Vt‖L2(H1) + ‖F‖L2(L2) + ‖ub‖Y(T )]. (4.20)

Next we take the time derivative of (4.16), multiply by (u−V)t and integrate. We get

1
2

d

dt

∫
Ω

%|ut|2dx +
∫

Ω

Aut · (u−V)tdx =− 1
2

∫
Ω

%t|ut|2dx +
∫

Ω

%utt ·Vtdx +
∫

Ω

%tut ·Vtdx

+
∫

Ω

(Ft − %tub
t) · (u−V)tdx−

∫
Ω

%ub
tt · (u−V)tdx. (4.21)

As before we integrate by parts the second term on the left hand side. Using the fact that (u −V)t · n = 0 and the
identity [S(∇ut)n]tan = ∂t[S(∇u)n]tan = 0 we obtain∫

Ω

Aut · (u−V)tdx =
∫

Ω

S(∇ut) : ∇utdx−
∫

Ω

S(∇ut) : ∇Vtdx.

The condition (u−V)t · n = 0 implies the Poincaré inequality for (u−V)t which yields

‖ut‖L2 ≤ C(‖∇ut‖L2 + ‖Vt‖H1).

Now we examine the right hand side of (4.21). For the first term we have by Poincaré inequality∣∣∣∣∫
Ω

%t|ut|2dx

∣∣∣∣ ≤ ‖%t‖L3‖ut‖L2(‖∇ut‖L2 + ‖Vt‖H1) ≤ δ(‖∇ut‖2L2 + ‖Vt‖2H1) + C(δ)‖%t‖2L3

∫
Ω

%|ut|2dx,

where δ is a sufficiently small number coming from application of Young inequality (we keep this notation in what
follows). The remaining terms are estimated directly and we get from (4.21)

d

dt

∫
Ω

%|ut|2dx + ‖∇ut‖2L2 ≤ C
{

δ1‖∇ut‖2L2 + C(δ1)
∫

Ω

%|ut|2dx + ‖Vt‖L6(‖%t‖2L3 + ‖ut‖2L2)

+ C(δ2)φ(‖%‖L∞)(‖F̄t‖2L2 + ‖%tub
t‖2L2 + ‖Vt‖2H1) + δ2‖utt‖2L2

}
−
∫

Ω

%ub
tt · (u−V)tdx. (4.22)
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The first term on the right hand side can be absorbed by the left hand side and the second term will be treated with
the Gronwall inequality. For the L2 norm of ut we use (4.20). Integrating by parts the last term we get

−
∫ T

0

∫
Ω

%ub
tt · (u−V)tdxdt =

∫ T

0

∫
Ω

%ub
t · (u−V)ttdxdt.

Therefore integrating (4.22) in time we obtain

‖ut‖L∞(0,T ;L2) + ‖∇ut‖L2(0,T ;L2) ≤φ(‖%‖L∞(H2), ‖%t‖L2(H1))[‖Vt‖L2(H1) + φ1(‖Vt‖)L4(L2)‖Ft‖L2(L2)]

+ ε(‖utt‖L2(L2) + ‖Vtt‖L2(L2)) + C(ε)‖ub
t%‖L2(L2) =: Φ. (4.23)

Next, computing Au from (4.16) we get a bound on ‖Au‖L∞(0,T ;L2) which due to (4.23) and ellipticity of A yields

‖∇2u‖L∞(L2) ≤ ‖F̄‖L∞(L2) + ‖%ub
t‖L∞(L2) + ‖%‖L∞((0,T )×Ω)Φ. (4.24)

In order to show the bound on ‖u‖L2(H3) we take the spatial gradient of (4.16) which yields

∇Au = ∇F̄− %∇(ut + ub
t)− (ut + ub

t)∇%. (4.25)

We compute the L2(0, T ;L2) norm of the right hand side. From the Hölder inequality we get

‖(ut + ub
t)∇%‖L2(L2) + ‖%∇(ut + ub

t)‖L2(L2) ≤ φ(‖%‖L∞(H2))‖ut + ub
t‖L2(H1).

Therefore we obtain a bound on ‖∇3u‖L2(L2) which, together with previously obtained estimates on lower derivatives
gives a bound on ‖u‖L2(H3) assuming we can estimate ‖utt‖L2(L2).

Hence, in order to close the estimates we need to show a bound for ‖utt‖L2(L2) which appears in the term Φ in
(4.23). Taking the time derivative of (4.16) we obtain the elliptic problem for ut:

− divS(∇ut) = F̄t − %tut − %utt − %tub
t − %ub

tt,

[S(∇ut)n]tan |∂Ω = 0,

(u−V)t · n|∂Ω = 0, (4.26)

recall that we have set κ = 0. For this problem the classical elliptic theory yields

‖ut‖H2 ≤ C
(
‖F̄t‖L2 + ‖%t(ut + ub

t)‖L2 + ‖%utt‖L2 + ‖%ub
tt‖L2

)
. (4.27)

Integrating (4.27) with respect to time we get

‖ut‖L2(H2) ≤ C
(
‖F̄t‖L2(L2) + ‖ub

tt‖L2(L2) + ‖utt‖L2(L2) + ‖%t‖L2(H1)(‖ut‖L∞(H1) + ‖ub
t‖L∞(H1))

)
. (4.28)

Now we multiply (4.26) by (u−V)tt and integrate over Ω:∫
Ω

%|utt|2dx−
∫

Ω

divS(∇ut) ·(u−V)ttdx =
∫

Ω

(F̄t−%ub
tt) ·(u−V)ttdx+

∫
Ω

%t(ut +ub
t) ·(V−u)tt +%utt ·Vttdx (4.29)

Again, from the boundary condition (4.26)2 we have

−
∫

Ω

divS(∇ut) · (u−V)ttdx =
∫

Ω

S(∇ut) : ∇(u−V)ttdx (4.30)
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and for the second term on the right hand side of (4.29) we have∫
Ω

%t(u + ub)t · (V − u)ttdx ≤ δ(‖utt‖2L2 + ‖Vtt‖2L2) + C(δ)(‖%t‖2L4‖ut‖2L4).

Treating similarly the other terms on the right hand side of (4.29) we obtain

%‖utt‖2L2 +
d

dt
‖∇ut‖2L2 ≤ δ‖utt‖2L2 + C(δ)

(
‖Ft‖2L2 + ‖ub

tt‖2L2 + ‖Vtt‖2L2 + ‖%t‖2H1(‖ut‖2H1 + ‖ub
t‖2H1)

)
. (4.31)

Integrating this inequality in time we get

‖utt‖L2(L2) + ‖ut‖L∞(H1) ≤ φ(‖%t‖2L2(H1))
(
‖Ft‖L2(L2) + ‖ub

tt‖L2(L2) + ‖Vtt‖L2(L2) + ‖ut(0)‖H1

)
. (4.32)

Remark 4.1 For κ > 0 we obtain in (4.30) additional boundary term∫
∂Ω

(u−V)tt · κ[(u−V)t]tandS

which contains utt. However we can integrate this term in time∫ T

0

∫
∂Ω

d

dt
κ|u−V|2t dSdt =

∫
∂Ω

κ|(u−V)t(T )|2dS −
∫

∂Ω

κ|(u−V)t(0)|2dS

and the first term has good sign and second is given.

Finally we comment the term ut(0) appearing on the right hand side of (4.32). To this end we differentiate (4.16)
with respect to space and multiply by ∂xi

vt and formally take the resulting equation in t = 0 (rigorously we show it
for a smooth approximation and pass to the limit with the estimate) obtaining

‖ut(0)‖H1 ≤ C
(
‖F̄(0)‖H1 + ‖u(0)‖H3

)
. (4.33)

Combining (4.28),(4.32) and (4.33) we get

‖utt‖L2(L2)+‖ut‖L∞(H1)+‖ut‖L2(H2) ≤ φ(‖%t‖2L2(H1))
(
‖F̄t‖L2(L2) + ‖F̄(0)‖H1 + ‖ub

tt‖L2(L2) + ‖Vtt‖L2(L2) + ‖ut(0)‖H1

)
,

which together with previous estimates and definition of F̄ gives (4.15). Now, since (4.16) is a linear parabolic problem,
the existence of solution follow from the estimates we have shown and classical theory of parabolic equations, see for
example [31].

�

4.3 Proof of Proposition 4.1

Let us denote
A(t) = ‖u‖Y(t) (4.34)

We start with the estimate for the extension of the boundary data.
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Lemma 4.2 Let V satisfy the assumptions of Theorem 1.1. Then there exists an extension ub(u,V) defined by (4.14)
of the boundary data d(u,V), B(u,V) given by (4.11) and (4.12) satisfying the estimate

‖ub‖Y(T ) ≤ E(T )[1 + ‖(u−V)‖Y(T )], (4.35)

where E(t) is continuous and E(0) = 0.

The proof consist in defining the extension in a special way to ensure that, roughly speaking, the regularity of ub is
the same as the regularity of u. We derive an explicit formula for ub and using the assumed regularity of V and u
together with smallness of time we show the estimate (4.35). As the proof it is quite technical, we show it in the
Appendix.

Next, we need the following estimate for the right hand side of the momentum equation in Lagrangian coordinates:

Lemma 4.3 For R(%,u) defined by (4.10) we have for any ε > 0

‖%V · ∇xu + R(%,u)‖L2(H1) + ‖∂t[%V · ∇xu + R(%,u)]‖L2(L2) ≤ C[(ε +
√

tC(ε) + E(t))A(t)], (4.36)

where E(t) is small for small times.

Proof: The first two terms on the RHS of (4.36) contain derivatives w.r.t. x and now we need estimates in Lagrangian
coordinates y. However we can easily observe that

%V · ∇xu = %V · ∇yu + R1(%,u)

where
‖R1(%,u)‖L2(H1) + ‖∂tR1(%,u)‖L2(L2) ≤ E(t)A(t)

with E(t) small for small times, therefore we can work with these terms directly. Let us treat the term %V ·∇u. From
the interpolation inequality we have for any ε > 0

‖∇2u‖L2(L4) ≤ ε‖u‖L2(H3) + C(ε)t‖u‖2L∞(H2).

Therefore using again (3.3) we get∫ t

0

∫
Ω

|%|2|V|2|∇2u|2 ≤
∫ t

0

‖%‖2L8‖V‖2L8‖∇2u‖2L4 ≤

C[ε‖u‖2L2(H3) + tC(ε)‖u‖2L∞(L2)].

Next, recalling the definition (4.10) of R(·, ·) we see that it contains terms with derivatives of u of order up to 2
multiplied by quantities which are small for small times, therefore

‖R(%,u)‖L2(H1) ≤ E(t)‖u‖L2(H3),

where E(t) is small for small times. Let us estimate the time derivative. We have∫ t

0

%2|V|2|∇ut|2 ≤ ‖%‖L∞(L2)‖V‖2L∞(L2)t‖ut‖2L∞(H1) ≤ Ct[A(t)]2

and treating similarly the other terms coming from the chain rule we obtain

‖∂t[%V · ∇u]‖L2(L2) ≤ C[εA(t) + C(ε)tA(t)].
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Finally, the structure of R implies

‖∂tR(%,u)‖L2(L2) ≤ E(t)[‖u‖L2(H3) + ‖ut‖L2(H2)] ≤ E(t)A(t)

with E(t) as above. This estimate completes the proof of (4.36).
�

Now for clarity let us denote again functions defined in Lagrangian coordinates by ũ, %̃. Combining (4.35) and
(4.36) we see that the right hand side of the system (4.9),(4.11),(4.12) satisfies

‖F̃(%̃, ũ)‖L2(H1) + ‖F̃t(%̃, ũ)‖L2(L2) + ‖ub(ũ,V)‖Y(T ) ≤ ‖F‖L2(H1) + ‖Ft‖L2(L2)

+ E(T )
(
A(t) + ‖V‖L2(H3) + ‖Vt‖L∞(H1) + ‖Vtt‖L2(L2)

)
(4.37)

where ub(ũ,V) is the extension of the boundary data d(ũ,V),B(ũ,V) given by Lemma 4.2 and E(t) is small for
small times. Therefore from (4.15) we obtain the estimate (4.2). Moreover, the right hand side of (4.9), (4.11), (4.12)
is linear w.r.t. ũ, therefore the existence of a unique solution follows from the Banach fixed point theorem. Therefore,
as Lagrangian transformation is a diffeomorphism for small times, u(t, x) = ũ(t, Y (y, x)) is a solution of (4.1).

5 Proof of Theorem 1.1

5.1 Boundedness of the sequence of approximations

In this section we use the estimates for the linear problems to show that the sequence (%n,un) defined by the iterative
scheme described in Section 2.3 is bounded in the space where we are looking for the solution. Let us denote

An(t) = ‖un‖X (T ). (5.1)

Since our estimate for the linear momentum equation holds on fixed domain, we rewrite (2.10) in Lagrangian coordi-
nates

%n+1∂tun+1 − µ∆yun+1 − (
µ

3
+ η)∇ydivyun+1 = Rn,

(un+1 −V) · n|Γ = d(un,V),(
[S(∇xun+1)n] · τk + κ[un+1 −V] · τk

)
|Γ = B(un,V), (5.2)

where
Rn = %n+1(V · ∇yun+1 − un · ∇xun)−∇xp(%n+1) + R(%n+1,un+1) (5.3)

and R(·, ·) is defined in (4.10). The following lemma gives the estimate L2(H1) norm of the right hand side of (5.2)1
and L2(L2) norm of its time derivative.

Lemma 5.1 For R(%n+1,un+1) and Rn defined by (4.9) and (5.3) respectively we have for any ε > 0

‖Rn‖L2(H1) + ‖∂tRn‖L2(L2) ≤ φ(
√

tAn(t))[(ε +
√

tC(ε) + E(t))An(t) + E(t)An+1(t)], (5.4)

where E(t) is small for small times.
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Proof: Arguing as in the proof of (4.36) we can replace the derivatives w.r.t. x in the definition of Rn with derivatives
w.r.t. y. Since the pressure p is a C2 function of the density we have

∇2p(%) = p′′(%)|∇%|2 + p′(%)∇2% ∼ %(|∇%|2 +∇2%),

and therefore

‖∇p(%)‖2L2(H1) ≤ ‖%‖2L∞(L2)t‖%‖
2
L∞(H2)(1 + ‖%‖2L∞(H2)) ≤ φ(

√
t‖u‖L2(H3))t‖%‖2L∞(L2), (5.5)

where in the last passage we applied (3.3). Next, similarly to the proof of (4.36) we get

‖%n+1(un · ∇un −V · ∇un+1)‖L2(H1) ≤ φ(
√

t‖u‖L2(H3))[ε‖u‖L2(H3) + tC(ε)‖u‖L∞(L2)]. (5.6)

and
‖R(%n+1,un+1)‖L2(H1) ≤ E(t)‖un+1‖L2(H3),

where E(t) is small for small times. Let us estimate the time derivative. For the pressure we have

∂t∇p(%) ∼ %(∇%t + %t∇%),

therefore from (3.3) and (3.4) we obtain

‖∂t∇p(%)‖L2(L2) ≤ φ(
√

tAn(t))[εAn(t) + C(ε)tAn(t)]. (5.7)

The remaining terms are again estimated like in the proof of (4.36) which leads to

‖∂t[%n(un · ∇un −V · ∇un+1)]‖L2(L2) ≤ φ(
√

tAn(t))[εAn(t) + C(ε)tAn(t)]. (5.8)

and
‖∂tR(%n+1,un+1)‖L2(H1) ≤ E(t)[‖un+1‖L2(H3) + ‖un+1,t‖L2(H2)] ≤ E(t)An+1(t) (5.9)

with E(t) as above. This estimate completes the proof of (5.4).
�

With above lemmas we are ready to show the key estimate for the sequence of approximations

Proposition 5.1 Let An(t) be defined in (5.1). Then there exists M > 0 sufficiently large and T ∗ > 0 such that

An(t) ≤ M for t ≤ T ∗. (5.10)

Proof: The appropriate choice of the extension of the boundary data given by Lemma 4.2 ensures

‖ub
tt(un,V)‖Y(T ) ≤ E(T )An(t).

Therefore the estimate (4.2) applied to (5.2) yields

An+1(t) ≤ φ(
√

tAn(t))
[
(ε + tC(ε) + E(t))An(t) + ‖u0‖H3 + ‖%0‖H2 + ‖V‖Y(T )

for some increasing positive function φ(·). We conclude that there exists M = M(u0,V) and T ∗ > 0 such that (5.10)
holds. �
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5.2 Convergence of the sequence of approximations.

Let us denote
wn+1 = un+1 − un, σn+1 = %n+1 − %n.

Subtracting (2.10) for n + 1 and n we get

%n∂twn+1 − µ∆wn+1 − (
µ

3
+ η)∇div wn+1 =

= σn+1∂tun+1 + σn+1(un−1 · ∇un−1) + %n+1(un · ∇wn + wn · ∇un−1) (5.11)

+ p′(%n)∇σn +∇%n−1σn

∫ 1

0

p′′(%n)(s%n + (1− s)%n−1)ds

supplied with boundary conditions

wn+1 · n|Γt
= 0, [S(∇wn+1)n]tan + κ[wn+1]tan|Γt

= 0. (5.12)

Subtracting (2.9) we obtain

∂tσn+1 + un · ∇σn+1 + σn+1div un = −%ndiv σn − σn · ∇%n, σn+1(0, ·) = 0. (5.13)

In order to apply our estimates for the linear momentum equation we rewrite (5.11) on a fixed domain using the
transformation (1.5). We obtain

%n∂twn+1 − µ∆ywn+1 − (
µ

3
+ η)∇div ywn+1 = %nV · ∇ywn+1 + R(%n,wn+1)

+ σn+1∂tun+1 + σn+1(un−1 · ∇xun−1) + %n+1(un · ∇xwn + wn · ∇xun−1) (5.14)

+ p′(%n)∇xσn +∇%n−1σn

∫ 1

0

p′′(%n)(s%n + (1− s)%n−1)ds =: R̃n

with boundary conditions

(wn+1 · n)(y)|Γ = wn+1 · (n(y)− n(X(t, y))) =: d0(wn+1), (5.15)

= µ
(
∇ywn+1(t, y)(I−∇xY) + ((I−∇T

x Y)∇T
y wn+1(t, y))T

)
n(X(t, y)) · τk(X(t, y))

+ µ(∇ywn+1 +∇T
y wn+1)(t, y)[(n(y)− n(X(t, y))) · τk(X(t, y)) + n(t, y) · (τk(y)− τk(X(t, y)))]

+ κwn+1(t, y) · (τk(y)− τk(X(t, y)))+ =: B0(wn+1)(t, y).

The left hand side of the system (5.14) has exactly the structure of (4.13). As we will not be able to close the estimate
for wn in the regularity we have for the sequence un (see Remark 5.1 below) we show the convergence in a weaker
space. Let us denote

Bn(t) = ‖wn‖L∞(H1) + ‖wn‖L2(H2) + ‖wnt‖L2(L2). (5.16)

Repeating the proof of (4.2) we obtain in particular the following (in fact classical) parabolic estimate

Bn(t) ≤ C[‖R̃n‖L2(L2) + ‖B0(wn+1)‖L2(H1/2(∂Ω)) + ‖d0(wn+1)‖L2(H3/2(∂Ω))]. (5.17)

The structure of the boundary data clearly implies

‖b(wn+1)‖L2(H1/2(∂Ω)) + ‖d(wn+1)‖L2(H3/2(∂Ω)) ≤ E(t)‖wn+1‖L2(H2). (5.18)

The following lemma gives the estimate of the right hand side of (5.14).
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Lemma 5.2 Let R̃n be defined in (5.14). Then

‖R̃n‖L2(L2) ≤ C[‖σn+1‖L∞(L2) + ‖σn‖L∞(L2) + (ε + tC(ε) + E(t))(‖∇σn‖L∞(L2) + Bn(t))], (5.19)

where E(t) is small for small times.

Proof: Arguing as in the proofs of Lemma 5.1 and Proposition 5.1 we get

‖R(%n,wn+1)‖L2(H1) ≤ E(t)‖wn+1‖L2(H3). (5.20)

For the remaining terms, we can follow the proof of Lemma 5.1. As we have explained there, we can replace the
derivatives w.r.t x with derivatives w.r.t y. We have∫ t

0

∫
Ω

|σn+1|2|un−1|2|∇un−1|2 ≤ ‖σn+1‖2L∞(L2)‖un−1‖2L∞(H2)

∫ t

0

‖∇un−1‖2L∞ ≤ (5.21)

C‖σn+1‖2L∞(L2)[ε‖un−1‖2L2(H3) + tC(ε)‖un−1‖2L∞(L2)].

Next, consider the term

‖%nV · ∇ywn+1‖2L2(L2) ≤ ‖%n‖2L∞(H2)‖V‖
2
L∞(H2)

∫ t

0

‖∇wn+1‖2L2 ≤ C[ε‖wn+1‖L2(H2) + tC(ε)‖wn+1‖L∞(L2)]. (5.22)

Similarly
‖%n+1(un · ∇wn + wn · ∇un−1)‖L2(L2) ≤ C[ε‖w‖L2(H2) + tC(ε)‖wn+1‖L∞(L2)] (5.23)

and
‖σn+1∂tun+1‖L2(L2) ≤ ‖σn+1‖L∞(L2)‖∂tun+1‖L2(H2), (5.24)

Finally, under our regularity assumptions on the pressure we have

‖p′(%n)∇σn‖2L2(L2) ≤ C‖∇σn‖2L∞(L2)

∫ t

0

‖p′(%n)‖2L2 ≤ C‖σn‖2L∞(H1)[ε‖%n‖2L2(H2) + tC(ε)‖%‖2L∞(L2)] (5.25)

and

‖∇%n−1σn

∫ 1

0

p
′′
(%n)(s%n + (1− s)%n−1)ds‖L2(L2) ≤ C‖σn‖L∞(L2)‖∇%n−1‖L2 . (5.26)

Combining all above estimates and Proposition 5.1 we get (5.19).
�

In order to show the convergence we need to estimate the norms of σn on the right hand side of (5.19). For this
purpose we investigate the equation (5.13). Again, as in the proof of Proposition 3.1, we stay in a moving domain and
use the transformation

X(t, z) = z +
∫ t

0

un(X(s, z))ds. (5.27)

Denoting
σ̄n+1(t, z) = σn+1(t,X(t, z)),

equation (5.13) rewrites as a nonhomogeneous ODE

∂tσ̄n+1 + σ̄n+1div xun = −(%ndiv wn + wn · ∇%n), σ̄n+1(0, ·) = 0. (5.28)
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The solution for this equation is given by the following explicit formula

σ̄n+1(t, z) = exp[−
∫ t

0

div xun(s,X(x, z))ds]· (5.29)∫ t

0

{
−
(
%ndiv xwn + wn · ∇x%n)(r, X(r, z)

)
exp[−

∫ r

0

div xun(τ,X(τ, z))dτ ]
}

dr.

Remark 5.1 Notice that the above formula contains ∇x%n and this is the reason why we have to work with lower
regularity. Namely, if we would like to have the regularity X (T ) then we would have to estimate L2(L2) of the derivatives
of the right hand side of (5.14), therefore ∇xσn which would require information about ∇3

x%n. Such situation when lack
of sufficient information on the denstity requires to work in lower regularity is typical for the compressible Navier-Stokes
system, see for example [34],[27].

The required estimate is provided in the following

Lemma 5.3 Let σn+1 solve (5.13). Then

‖σn+1‖L∞(L2) ≤ (ε + tC(ε))Bn(t), ‖∇σn+1‖L∞(L2) ≤ CBn(t). (5.30)

Proof: The proof relies on the formula (5.29) and follows the proof of Proposition 3.1, therefore here we show only
the main ideas. The solution formula (5.29) clearly implies

‖σ̄n(t, z)‖L2 ≤ C

∫ t

0

‖(%ndiv wn)(s, ·)‖L2 + ‖(wn · ∇%n)(s, ·)‖L2ds ≤ (5.31)

C‖%n‖L∞(H1)

∫ t

0

‖wn‖H1ds ≤ C

∫ t

0

ε‖∇2wn‖L2 + C(ε)‖wn‖L2 ≤ C[εBn(t) + tC(ε)Bn(t)],

and the regularity of the change of coordinates together with smallness of time yields the same estimate for σn(t, x)
which gives the first statement of (5.30). Let us denote

e(t, z) = exp[−
∫ t

0

div xun(s,X(s, z))ds]. (5.32)

Differentiating (5.29) w.r.t z we get

∇xσn+1 = ∇xz

∇z [e(t, z)]
∫ t

0

{
−
(
%ndiv xwn + wn · ∇x%n)(r, X(r, z)

)
e(r, z)

}
dr︸ ︷︷ ︸

I1

+ e(t, z) · ∇
[∫ t

0

{
−
(
%ndiv xwn + wn · ∇x%n)(r, X(r, z)

)
e(r, z)

}
dr

]
︸ ︷︷ ︸

I2

 .

Applying the estimate (3.7) to the change of coordinates (5.27) we obtain

‖∇xz I1‖L2 ≤ C‖[−
∫ t

0

div xun(s,X(s, z))ds]‖2L∞‖
∫ t

0

∇div un‖L4‖
∫ t

0

{−%ndiv wn + wn · ∇%n}ds‖L4 ,
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where all the derivatives are already w.r.t. x. Therefore

‖∇xz I1‖L2 ≤ C

(∫ t

0

‖∇div un‖L4ds

)∫ t

0

{‖%ndiv wn‖L4 + ‖wn · ∇%n‖L4}ds ≤

C[ε‖un‖L2(H3) + C(ε)‖un+1‖L∞(L2)]‖%n‖L∞(Ω×(0,T ))‖wn‖L2(H2) ≤ C[ε + tC(ε)]Bn(t). (5.33)

With I2 we have

I2 = e(t, z)
∫ t

0

{
(−
∫ r

0

∇zdiv xun)e(r, z)(−%ndiv wn + wn · ∇%n)
}

dr︸ ︷︷ ︸
I21

+ e(t, z)
∫ t

0

{
e(r, z)(−∇%ndiv wn − %n∇div wn +∇wn · ∇%n + wn · ∇2%n)

}
dr︸ ︷︷ ︸

I22

.

The first part can be estimated exactly as I1:

‖∇xz I21‖L2 ≤ C[ε + tC(ε)]Bn(t). (5.34)

However, in I22 we cannot get smallness in time because of the presence of second derivatives of wn, namely∫ t

0

‖%n∇div wn‖L2 ≤ ‖%n‖L∞(Ω×(0,T ))‖∇2wn‖L1(L2) ≤ CBn(t),

and therefore
‖∇xz I22‖L2 ≤ CBn(t). (5.35)

Combining (5.33), (5.34) and (5.35) we obtain the second statement of (5.30).
�

We are now in a position to prove the following Lemma which gives the Cauchy condition for the sequence Bn(t),
and therefore completes the proof of convergence of the sequence of approximations.

Lemma 5.4 There exists T > 0 and 0 < K < 1 such that

Bn(t) ≤ KBn−1(t) for t ≤ T ∗. (5.36)

Proof: Combinining (5.17), (5.19) and (5.30) we obtain

Bn(t) ≤ (ε + t(ε) + E(t))(Bn(t) + Bn−1(t))

which implies (5.36).
�

Now we conclude the proof of Theorem 1.1 in a standard way. The sequence un converges strongly in the space
with topology given by the norm (5.16). On the other hand, the bound (5.10) implies weak convergence up to a
subsequence in X (T ). The estimates for the linear transport equations imply analogous convergences for the sequence
of densities in appropriate spaces. Therefore the limit (u, %) satisfies the regularity given in Theorem 1.1.
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6 Weak-strong uniqueness

6.1 Energy inequality

In the remainder of the paper we assume that κ, η = 0, however all the results hold (with appropriate modifications
of formulae) also with κ, η > 0. Our first result is a crucial observation allowing for proving the main theorem about
weak-strong uniqueness.

Proposition 6.1 Let the assumptions of Theorem 2.1 be satisfied. Then the problem (1.1)-(1.7), (2.4) admits a
weak solution on any time interval (0, T ) in the sense specified through Definition 2.1, satisfying moreover the energy
inequality in the following form∫

Ωτ

(
1
2
%|u|2 + H(%)

)
(τ, ·) dx +

1
2

∫ τ

0

∫
Ωt

µ

∣∣∣∣∇xu +∇t
xu−

2
3
divxuI

∣∣∣∣2 dxdt (6.1)

≤
∫

Ω0

(
1

2%0
|(%u)0|2 + H(%0)

)
dx +

∫
Ωτ

(%u ·V)(τ, ·) dx−
∫

Ω0

(%u)0 ·V(0, ·) dx

+
∫ τ

0

∫
Ωt

(
µ

(
∇xu +∇t

xu−
2
3
divxuI

)
: ∇xV − %u · ∂tV − %u⊗ u : ∇xV − p(%)divxV

)
dxdt.

Proof: We follow the same series of approximations and penalizations as it is introduced in [11, Section 3] in the
proof of Theorem 2.1. The starting point is thus the modified energy inequality written on the fixed domain B which
is a ball large enough such that Ωt ⊂ B for all t ∈ [0, T ] and V = 0 on ∂B, see formula (3.10) in [11]∫

B

(
1
2
%|u|2 + H(%) +

δ

β − 1
%β

)
(τ, ·) dx +

1
2

∫ τ

0

∫
B

µω

∣∣∣∣∇xu +∇t
xu−

2
3
divxuI

∣∣∣∣2 dxdt (6.2)

+
1
ε

∫ τ

0

∫
Γt

|(u−V) · n|2 dSx dt ≤
∫

B

(
1

2%0,δ
|(%u)0,δ|2 + H(%0,δ) +

δ

β − 1
%β
0,δ

)
dx

+
∫

B

(
(%u ·V)(τ, ·)− (%u)0,δ ·V(0, ·)

)
dx

+
∫ τ

0

∫
B

(
µω

(
∇xu +∇t

xu−
2
3
divxuI

)
: ∇xV − %u · ∂tV − %u⊗ u : ∇xV − p(%)divxV − δ

β − 1
%βdivxV

)
dxdt.

Passing first with ε to zero, it is not difficult to observe that using the a priori estimates available, all the terms
on the right hand side of (6.2) converge to their counterparts. On the left hand side the last term is positive and thus
can be omitted. Finally, using the convexity of S(∇xu) : ∇xu we have∫ T

0

∫
B

Sω(∇xu) : ∇xudxdt ≤ lim inf
ε→0

∫ T

0

∫
B

Sω(∇xuε) : ∇xuε dxdt. (6.3)

Next, passing with ω to zero, we first observe that all the terms which include the density can be rewritten as the
integrals over Ωt instead of integrals over B using the fundamental Lemma 4.1 in [11]. The viscosity term on the right
hand side can be treated easily, in particular the integral over B \ Ωt vanish due to the fact that µω → 0 on this set.
On the left hand side we split the integral of the term with stress tensor into two parts, the integral over B \Ωt can be
omitted since it is positive and on Ωt we use the fact that µω = µ is constant and thus we can use again the convexity
of S(∇xu) : ∇xu to obtain similar inequality as (6.3).
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Finally, we pass with δ to zero. Here we use the - nowadays already standard - results of [7] to pass to the limit on
the right hand side and to adjust the initial conditions, while on the left hand side we use the weak lower semicontinuity
of the energy at time τ .

�

6.2 Relative energy inequality

Having now already the energy inequality, we can deduce the relative energy inequality in the spirit of [9]. Before
stating the theorem, we introduce some notation. For a weak solution (%,u) and a pair of test functions (r,U) defined
on QT we define the relative energy E

(
[%,u]|[r,U]

)
as

E
(
[%,u]|[r,U]

)
(τ) =

∫
Ωτ

(
1
2
% |u−U|2 + H(%)−H ′(r)(%− r)−H(r)

)
(τ, ·) dx. (6.4)

We prove the following

Proposition 6.2 Let (%,u) be a weak solution to the compressible Navier-Stokes system (1.1)-(1.7), (2.4) constructed
in Proposition 6.1. Then (%,u) satisfies the following relative energy inequality

E
(
[%,u]|[r,U]

)
(τ) +

∫ τ

0

∫
Ωt

(S(∇xu)− S(∇xU)) : (∇xu−∇xU) dxdt (6.5)

≤E
(
[%0,u0]|[r(0, ·),U(0, ·)]

)
+
∫ τ

0

R(%,u, r,U)(t)dt

for a.a. τ ∈ (0, T ) and any pair of test functions (r,U) such that U ∈ C∞
c (QT ), U · n = V · n on Γt for t ∈ [0, T ],

r ∈ C∞
c (QT ), r > 0. The remainder term R is given by

R(%,u, r,U)(t) =
∫

Ωt

%(∂tU + u · ∇xU) · (U− u) + S(∇xU) : (∇xU−∇xu) dx (6.6)

+
∫

Ωt

divxU(p(r)− p(%)) + (r − %)∂tH
′(r) + (rU− %u) · ∇xH ′(r) dx

Proof: The idea of the proof is the same as in the original paper [9]. We will combine the energy inequality (6.1)
provided by Proposition 6.1 together with weak formulations of the continuity and momentum equations with suitable
test functions. Since U is not a proper test function in the momentum equation due to its boundary condition, we
test the momentum equation with ϕ = U−V to obtain∫

Ωτ

%u · (U−V)(τ, ·) dx−
∫

Ω0

(%u)0 · (U−V)(0, ·) dx (6.7)

=
∫ τ

0

∫
Ωt

(%u · ∂t(U−V) + %[u⊗ u] : ∇x(U−V) + p(%)divx(U−V)− S(∇xu) : ∇x(U−V)) dxdt.

Subtracting (6.7) from the energy inequality (6.1) we obtain∫
Ωτ

(
1
2
% |u|2 + H(%)− %u ·U

)
(τ, ·) dx−

∫
Ω0

1
2%0

|(%u)0|2 + H(%0)− (%u)0 ·U(0, ·) dx (6.8)

+
∫ τ

0

∫
Ωt

S(∇xu) : (∇xu−∇xU) dxdt ≤
∫ τ

0

∫
Ωt

(−%u · ∂tU− %[u⊗ u] : ∇xU− p(%)divxU) dxdt.
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Next, we use in the continuity equation as a test function the quantities 1
2 |U|

2 and H ′(r) respectively to obtain∫
Ωτ

1
2
% |U|2 (τ, ·) dx−

∫
Ω0

1
2
%0 |U|2 (0, ·) dx =

∫ τ

0

∫
Ωt

(%U · ∂tU + %u · ∇xU ·U) dxdt (6.9)

and ∫
Ωτ

%H ′(r)(τ, ·) dx−
∫

Ω0

%0H
′(r)(0, ·) dx =

∫ τ

0

∫
Ωt

(%∂tH
′(r) + %u · ∇xH ′(r)) dxdt. (6.10)

Adding (6.9) and subtracting (6.10) from (6.8) we obtain∫
Ωτ

(
1
2
% |u−U|2 + H(%)−H ′(r)%

)
(τ, ·) dx−

∫
Ω0

1
2%0

|(%u)0 − %0U(0, ·)|2 + H(%0)−H ′(r(0, ·))%0 dx (6.11)

+
∫ τ

0

∫
Ωt

S(∇xu) : (∇xu−∇xU) dxdt ≤
∫ τ

0

∫
Ωt

((%∂tU + %u · ∇xU) · (U− u)− p(%)divxU) dxdt

−
∫ τ

0

∫
Ωt

(%∂tH
′(r) + %u · ∇xH ′(r)) dxdt.

Observing that the definition (1.4) implies
p(r) = rH ′(r)−H(r), (6.12)

we immediately achieve
∂tp(r) = r∂tH

′(r). (6.13)

Hence, the inequality (6.11) can be further rewritten as∫
Ωτ

(
1
2
% |u−U|2 + H(%)−H ′(r)%

)
(τ, ·) dx−

∫
Ω0

1
2%0

|(%u)0 − %0U(0, ·)|2 + H(%0)−H ′(r(0, ·))%0 dx (6.14)

+
∫ τ

0

∫
Ωt

(S(∇xu)− S(∇xU)) : (∇xu−∇xU) dxdt +
∫ τ

0

∫
Ωt

∂tp(r) dxdt

≤
∫ τ

0

∫
Ωt

((%∂tU + %u · ∇xU) · (U− u) + S(∇xU) : (∇xu−∇xU)) dxdt

+
∫ τ

0

∫
Ωt

((r − %)∂tH
′(r)− p(%)divxU− %u · ∇xH ′(r)) dxdt.

Now we claim that the following identity holds∫
Ωt

p(r)divxU + rU · ∇xH ′(r) dx =
∫

Ωt

divx(Vp(r)) dx. (6.15)

Indeed, using the boundary condition U · n = V · n we write∫
Ωt

p(r)divxU dx =
∫

Ωt

p(r)divx(U−V) dx +
∫

Ωt

p(r)divxV dx (6.16)

= −
∫

Ωt

U · ∇xp(r) dx +
∫

Ωt

divx(Vp(r)) dx = −
∫

Ωt

rU · ∇xH ′(r) dx +
∫

Ωt

divx(Vp(r)) dx,
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where we used (6.12) as well. Adding (6.15) to (6.14) we obtain∫
Ωτ

(
1
2
% |u−U|2 + H(%)−H ′(r)%

)
(τ, ·) dx−

∫
Ω0

1
2%0

|(%u)0 − %0U(0, ·)|2 + H(%0)−H ′(r(0, ·))%0 dx (6.17)

+
∫ τ

0

∫
Ωt

(S(∇xu)− S(∇xU)) : (∇xu−∇xU) dxdt +
∫ τ

0

∫
Ωt

(∂tp(r) + divx(Vp(r))) dxdt

≤
∫ τ

0

∫
Ωt

((%∂tU + %u · ∇xU) · (U− u) + S(∇xU) : (∇xu−∇xU)) dxdt

+
∫ τ

0

∫
Ωt

((r − %)∂tH
′(r) + (p(r)− p(%))divxU + (rU− %u) · ∇xH ′(r)) dxdt.

The proof of Proposition 6.2 is finished observing that standard transport theorem yields the identity∫ τ

0

∫
Ωt

(∂tp(r) + divx(Vp(r))) dxdt =
∫ τ

0

d
dt

∫
Ωt

p(r) dxdt (6.18)

=
∫

Ωτ

p(r)(τ, ·) dx−
∫

Ω0

p(r)(0, ·) dx =
∫

Ωτ

(rH ′(r)−H(r))(τ, ·) dx−
∫

Ω0

(rH ′(r)−H(r))(0, ·) dx.

�
Note that the class of admissible test functions (r,U) can be extended by density arguments in a similar manner

as in [9, Section 3.2.2].

6.3 Proof of Theorem 1.2

The proof follows the same ideas as in [9], however we present it here for completeness of presentation. Plugging in
(r,U) = (%̃, ũ) in the relative energy inequality (6.5) we obtain

E
(
[%,u]|[%̃, ũ]

)
(τ) +

∫ τ

0

∫
Ωt

(S(∇xu)− S(∇xũ)) : (∇xu−∇xũ) dxdt (6.19)

≤
∫ τ

0

∫
Ωt

%(∂tũ + u · ∇xũ) · (ũ− u) + S(∇xũ) : (∇xũ−∇xu) dxdt

+
∫ τ

0

∫
Ωt

divxũ(p(%̃)− p(%)) + (%̃− %)∂tH
′(%̃) + (%̃ũ− %u) · ∇xH ′(%̃) dxdt.

Using the strong formulation of the momentum and continuity equations we find out that

∂tũ + ũ · ∇xũ =
1
%̃

S(∇xũ)−∇xH ′(%̃) (6.20)

in QT . Moreover, multiplying the strong formulation of the continuity equation by H ′′(%̃) we obtain

∂tH
′(%̃) + ũ · ∇xH ′(%̃) = −divxũ%̃H ′′(%̃) = −divxũp′(%̃). (6.21)

Finally, integrating by parts we have for a.a. t ∈ (0, τ)∫
Ωt

S(∇xũ) : (∇xũ−∇xu) dx = −
∫

Ωt

divxS(∇xũ) · (ũ− u) dx, (6.22)

28



where the boundary integral vanishes due to boundary condition (1.7) (recall we set κ = 0) and the fact, that
(ũ − u) · n = 0 on Γt. Combining (6.19), (6.20), (6.21) and (6.22) we arrive to the following version of the relative
energy inequality

E
(
[%,u]|[%̃, ũ]

)
(τ) +

∫ τ

0

∫
Ωt

(S(∇xu)− S(∇xũ)) : (∇xu−∇xũ) dxdt (6.23)

≤
∫ τ

0

∫
Ωt

%(u− ũ) · ∇xũ · (ũ− u)− divxũ(p(%)− p′(%̃)(%− %̃)− p(%̃)) dxdt

+
∫ τ

0

∫
Ωt

1
%̃
(%− %̃)divxS(∇xũ) · (ũ− u) dxdt.

Now we would like to show that all the terms on the right-hand side of (6.23) can be absorbed by the left hand side
and then use the Gronwall lemma. To do that we need the following estimate which can be easily checked

H(%)−H ′(r)(%− r)−H(r) ≥ c(r)(%− r)2 for
r

2
< % < 2r (6.24)

≥ c(r)(1 + %γ) otherwise

and also the following Korn-type inequality

‖z‖W 1,2(Ωt)
≤ C ‖S(∇xz)‖L2(Ωt)

(6.25)

for all z ∈ W 1,2(Ωt).
Thus, it is not difficult to observe that∣∣∣∣∫

Ωt

%(u− ũ) · ∇xũ · (ũ− u)− divxũ(p(%)− p′(%̃)(%− %̃)− p(%̃)) dx

∣∣∣∣ ≤ C ‖∇xũ‖L∞(Ωt)
E
(
[%,u]|[%̃, ũ]

)
(t). (6.26)

It remains to handle the last term on the right hand side of (6.23). We split the integral into three parts, considering
first % close to %̃, then % small and finally % large. We have using the Hölder inequality, the Young inequality and
(6.25) ∣∣∣∣∣

∫
{%̃/2≤%≤2%̃}

1
%̃
(%− %̃)divxS(∇xũ) · (ũ− u) dx

∣∣∣∣∣ (6.27)

≤C(δ)
∥∥∥∥1

%̃
divxS(∇xũ)

∥∥∥∥2

L3(Ωt)

∫
{%̃/2≤%≤2%̃}

(%− %̃)2 dx + δ ‖ũ− u‖2L6(Ωt)

≤C(δ)
∥∥∥∥1

%̃
divxS(∇xũ)

∥∥∥∥2

L3(Ωt)

E
(
[%,u]|[%̃, ũ]

)
(t) + δC ‖S(∇x(ũ)−∇x(u))‖2L2(Ωt)

.

The last term can be absorbed into the left hand side for δ small enough, whereas the first term can be treated using
the Gronwall lemma.

On the set where % is small we can proceed in the following way∣∣∣∣∣
∫
{0≤%<%̃/2}

1
%̃
(%− %̃)divxS(∇xũ) · (ũ− u) dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
{0≤%<%̃/2}

divxS(∇xũ) · (ũ− u) dx

∣∣∣∣∣ (6.28)

≤ C(δ) ‖divxS(∇xũ)‖2L3(Ωt)

∫
{0≤%<%̃/2}

1 dx + δ ‖ũ− u‖2L6(Ωt)

≤ C(δ) ‖divxS(∇xũ)‖2L3(Ωt)
E
(
[%,u]|[%̃, ũ]

)
(t) + δC ‖S(∇x(ũ)−∇x(u))‖2L2(Ωt)

.
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Again, the last term is absorbed into the left hand side for δ small enough and the first term is treated using the
Gronwall lemma.

Finally, consider the integral over the set where % is large. Here we distinguish two cases. First for γ ≤ 2 we have∣∣∣∣∣
∫
{%>2%̃}

1
%̃
(%− %̃)divxS(∇xũ) · (ũ− u) dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
{%>2%̃}

%
%− %̃

%%̃
divxS(∇xũ) · (ũ− u) dx

∣∣∣∣∣ (6.29)

≤

∣∣∣∣∣
∫
{%>2%̃}

%
1
%̃
divxS(∇xũ) · (ũ− u) dx

∣∣∣∣∣
≤ C(δ)

∥∥∥∥1
%̃
divxS(∇xũ)

∥∥∥∥2

L
6γ

5γ−6 (Ωt)

(∫
{%>%̃/2}

%γ dx

)2/γ

+ δ ‖ũ− u‖2L6(Ωt)

≤ C(δ)
∥∥∥∥1

%̃
divxS(∇xũ)

∥∥∥∥2

L
6γ

5γ−6 (Ωt)

E
(
[%,u]|[%̃, ũ]

) 2
γ−1

(t)E
(
[%,u]|[%̃, ũ]

)
(t) + δC ‖S(∇x(ũ)−∇x(u))‖2L2(Ωt)

.

In this case the power 2
γ −1 is nonnegative and we use also the property E

(
[%,u]|[%̃, ũ]

)
∈ L∞(0, T ) to proceed further.

For γ > 2 we have∣∣∣∣∣
∫
{%>2%̃}

1
%̃
(%− %̃)divxS(∇xũ) · (ũ− u) dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
{%>2%̃}

%
%− %̃

%%̃
divxS(∇xũ) · (ũ− u) dx

∣∣∣∣∣ (6.30)

≤

∣∣∣∣∣
∫
{%>2%̃}

%
γ
2

1
%̃
divxS(∇xũ) · (ũ− u) dx

∣∣∣∣∣
≤ C(δ)

∥∥∥∥1
%̃
divxS(∇xũ)

∥∥∥∥2

L3(Ωt)

(∫
{%>%̃/2}

%γ dx

)
+ δ ‖ũ− u‖2L6(Ωt)

≤ C(δ)
∥∥∥∥1

%̃
divxS(∇xũ)

∥∥∥∥2

L3(Ωt)

E
(
[%,u]|[%̃, ũ]

)
(t) + δC ‖S(∇x(ũ)−∇x(u))‖2L2(Ωt)

.

Altogether we end up with the inequality

E
(
[%,u]|[%̃, ũ]

)
(τ) ≤

∫ τ

0

h(t)E
(
[%,u]|[%̃, ũ]

)
(t) dt (6.31)

for some h(t) ∈ L1(0, T ) and the Gronwall lemma finishes the proof.
�

Remark 6.1 The case of nonzero bulk viscosity coefficient η > 0 in (1.3) as well as the case of nonzero boundary
friction coefficient κ > 0 in (1.7) can be treated by obvious modifications just adding proper integrals to appropriate
formulas.

7 Concluding remarks

For clarity of the proof we have so far restricted our presentation to the case of slip boundary conditions. In case of
homogeneous Dirichlet boundary condition

(u−V)|Γτ
= 0 for any τ ≥ 0 (7.1)
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the weak-strong uniqueness principle has been shown recently in [5]. However, the existence of regular solutions
has remained so far open question. Theorem 1.1 easily extends to this case as well, in fact the proof can be not
only repeated but considerably simplified since the boundary condition (7.1) remains homogeneous under Lagrangian
transformation and therefore we do not need the extension operator defined in Lemma 4.2.

It is also clear from our proof that it remains valid if we assume the right hand side in the momentum equation
on the form %f with

f ∈ L2(H1(0, T,Ωt)), ft ∈ L2(L2(0, T,Ωt)), f |t=0 ∈ H1(Ω).

We also notice that the regularity assumptions on V in Theorem 1.1 are not optimal. However, we need some
integrability of the third order derivatives of V and therefore it is not enough to assume the regularity from Theorem
1.2 which is sufficient for the existence of weak solutions and for the weak-strong uniqueness.

Taking into account known existence results for weak solutions [10], [11] and the weak-strong uniqueness result
[5], our paper completes a part of the local existence theory for the compressible barotropic Navier-Stokes system on
moving domains at least in the framework of Hilbert spaces. A natural generalization now could be existence result
for regular solutions in Lp setting. A more involved interesting issue is the global well-posedness of strong solutions
for small data. In case of the complete system with thermal effects, for which existence of weak solutions on moving
domains has been shown recently in [18] and [19], both the existence of strong solutions ad weak-strong uniqueness
remain open problems.

Appendix

Proof of Lemma 4.2. For the purpose of our construction it is convenient to define the whole velocity at the
boundary. Therefore we look for the extension of the boundary data satisfying conditions

ub(t, y) · n(y) = (u−V)(t, y) · (n(y)− n(X(t, y))) + (V(t,X(t, y))−V(t, y)) · n(X(t, y)), (A.1)

ub(t, y) · τk(y) = (u−V)(t, y) ·
(
τk(y)− τk(X(t, y))

)
+ (V(t,X(t, y))−V(t, y)) · τk(X(t, y))

and

µ(∇yub +∇T
y ub)(t, y)n(y) · τk(y) = µ

(
∇yu(t, y)(I−∇xY) + ((I−∇T

x Y)∇T
y u(t, y))T

)
n(X(t, y)) · τk(X(t, y))

(A.2)

+ µ(∇yu +∇T
y u)(t, y)[(n(y)− n(X(t, y))) · τk(X(t, y)) + n(t, y) · (τk(y)− τk(X(t, y)))].

First of all, notice that it is enough to define appropriate extension only in a neighbourhood of the boundary

Ωε = {x ∈ Ω : dist(x, ∂Ω) < ε}.

Then multiplying it by a smooth function φ such that

φ(x) ∈ [0, 1], φ|Ωε
≡ 1, φΩ\Ω2ε

≡ 0

we obtain a function defined on the whole Ω which also satisfies the estimate (4.35). Next important observation is
that it is enough to consider the case of flat boundary which is obtained by nowadays classical technique of partition
of unity. The cutoff functions involved in this procedure enjoys the regularity of the boundary of Ω and therefore all
their contribution to our estimates can be put in the constant in (4.35). Therefore we assume

n(x1, x2, 0) = (0, 0, 1), τ1(x1, x2, 0) = (1, 0, 0), τ2(x1, x2, 0) = (0, 1, 0). (A.3)
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Our construction will be carried out in two steps. First we find ũb satisfying only relations (A.1). In the second step
we will use it to define an extension satisfying also the relation for the derivatives. Let us focus on the extension of
the normal component of ũb. For y = (y1, y2, y3) ∈ Ω we define

δn(t, y) = n(t, (y1, y2, 0))− n(X(t, (y1, y2, 0)))

and
δV(t, y) = V(t,X(t, (y1, y2, 0)))−V(t, (y1, y2, 0)).

Then it natural do define the extension of the normal component of ub as

ub
1(t, y) = (u−V)(t, y) · δn(t, y) + δV(t, y) · n(X(t, (y1, y2, 0))). (A.4)

Let us start with the first compontent. We have

[(u−V) · δn]tt = (u−V)ttδn + 2(u−V)t(δn)t + (u−V)(δn)tt. (A.5)

By (1.5) we have

δn(t, y) ∼
∫ t

0

V, (δn(t, y))t ∼ V, (δn(t, y))tt ∼ Vt.

We use these relations to estimate the L2(L2) norm of the right hand side of (A.5). The idea is that when we have
(u − V)tt we can get the smallness in time from

∫ t

0
V and in the remaining terms we get smallness in time using

boundedness in time of appropriate norms of u−V. Precisely, for the first term we have∫ T

0

‖(u−V)ttδn‖2L2(L2) ≤
∫ T

0

‖δn‖2L∞‖(u−V)tt‖2L2 ≤ T 2‖V‖2L∞(Ω×(0,T ))

∫ T

0

‖(u−V)tt‖2L2 ,

for the second∫ T

0

‖(u−V)t(δn)t‖2L2 ≤ ‖(δn)t‖2L∞(Ω×(0,T ))

∫ T

0

‖(u−V)t‖2L2 ≤ T‖V‖L∞(L∞)‖(u−V)t‖2L∞(L2)

and similarly for the third with ‖Vt‖L∞ . We conclude

‖[(u−V)δn]tt‖L2(L2) ≤ C(T +
√

T )‖V‖W 1
∞(L∞)[‖(u−V)tt‖L2(L2) + ‖(u−V)‖W 1

∞(L2)]. (A.6)

Now we write the second time derivative of the second term in (A.4) (we denote En := n(X(t, (y1, y2, 0)):

(δV · En)tt = (δV)tt · En + 2(δV)t(En)t + (En)tt. (A.7)

Notice that we have

δV ∼ ∇V(X(t, (y1, y2, 0))− (y1, y2, 0)) ∼ ∇V
∫ t

0

V.

Therefore

(δV)t ∼ ∇Vt

∫ t

0

V + V∇V

and

(δV)tt ∼ ∇Vtt

∫ t

0

V + V∇Vt + Vt∇V.

32



Like previously, in the first term of the RHS of the latter formula we get the smallness in time from
∫ t

0
V:∫ T

0

‖∇Vtt

∫ t

0

VEn‖2L2dt ≤ CT‖V‖L∞‖∇Vtt‖L2(L2).

In the terms where we does not have this factor we still get smallness in time using boundedness in time of appropriate
norms of V, for example ∫ t

0

‖V · ∇V(En)t‖2L2 ≤ Ct‖V‖4L∞(W 1
∞).

Treating similarly the other terms in (A.7) we obtain

‖ũb
1,tt‖L2(L2) ≤ C

√
T (1 +

√
T )φ(‖V‖L∞(W 1

∞), ‖V‖W 1
∞(L∞), ‖∇Vtt‖L2(L2)). (A.8)

Combining this estimate with (A.6) we conclude

‖E(ub · n)tt‖L2(L2) ≤ E(t)[1 + ‖(u−V)tt‖L2(L2) + ‖u−V‖W 1
∞(L2)]. (A.9)

The extension of tangential components is done exactly in the same way and so the estimate (A.9) holds for the whole
ũb. Now we will use ũb to construct a function with the same values on the boundary satisfying also the relations
(A.14) for tangential stress. Conditions (A.1) can be written in a compact form

ub = E1u + E2 (A.10)

where E1 and E2 are small and sufficiently regular matrix and vector functions respectively. Furthermore, conditions
(A.2) rewrite as (we denote fyi

by f,i):

ub
1,3 + ub

3,1 =
3∑

i,j=1

Aij(t, x)ui,j (A.11)

ub
2,3 + ub

3,2 =
3∑

i,j=1

Bij(t, x)ui,j . (A.12)

First of all it is natural to take ub
3 = ũb

3. Next we can construct ub
1 and ub

2 separately. As both will be defined
analogously, we focus on ub

1. As ub is determined on the boundary, so are its tangential derivatives, hence ∂x1 and ∂x2

due to (A.3). In particular,

ub
3,1 = ũb

3,1 =
3∑

i=1

E1
3,iui,1 +

3∑
i=1

E1
3i,1ui + E2

3,1.

Substituting this relation to (A.11) we get

ub
1,3 =

3∑
i,j=1

Āijui,j −
∑

i

E1
3i,1ui − E2

3,1. (A.13)

Now we can define ub
1 = ub1

1 + ub2
1 where

ub1
1 (y) = (

3∑
i=1

E1
1iui + E2

1)(y) + 2
∑
i,j

Ãijui((y1, y2, 0) + y3ej)− 2
∑
i,j

Ãijui((y1, y2, 0) +
y3

2
ej), (A.14)
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where

Ãij = Āij , j 6= 3,

Ãi3 = Āi3 − E1
1,i, i = 1, 2, 3. (A.15)

Differentiating (A.14) wrt x3 we obtain

ub1
1,3 =

∑
i

E1
1iui,3 +

∑
i

E1
1i,3ui + E2

1,3 +
∑
i,j

Ãijui,j ,

which by the definition of Ãij reduces to

ub1
1,3 =

∑
i,j

Āijui,j +
∑

i

E1
1i,3ui + E2

1,3. (A.16)

We see that ub1 = ũb1 on the boundary and (A.16) differs from (A.13) only up to lower order terms (without derivatives
of u). Therefore we need ub2

1 = 0 on the boundary which will compensate these lower order terms, hence it must
satisfy

ub2
1,3 = −

∑
i

E1
1i,3ui − E2

1,3 −
∑

i

E1
3i,1ui − E2

3,1 =: Pu(x).

We can define ub2
1 simply as

ub2
1,3 =

∫ x3

0

Pu(x1, x2, s)ds. (A.17)

We see that ub1 = ub1
1 + ub1

2 satisfies all required relations. The estimate (A.9) for ub1
1 can be shown similarly to the

estimate for ũb. Namely, the structure of the terms Ãij is either of a form τ(y)− τ(X(y)) which has been treated in
the estimate for ũb or of a form I−∇xY which can be treated in the same may. Indeed, we observe easily that

‖I−∇xY‖L∞(Ω×(0,T )) ≤ E(T )

where E is continuous, E(0) = 0 and

‖(I−∇xY)t, (I−∇xY)tt‖L∞(Ω×(0,T )) ≤ C.

Therefore, we obtain the estimate for ub1
1 . In order to show the estimate for ub2

1 it is enough to show it for the integrand
Pu due to boundedness of Ω. Again, Pu contains the terms of structure which we already investigated except for space
derivatives of E1. However, we have

∇E1,∇E2 ∼
∫ t

0

∇V,

therefore we can repeat the estimates having the assumed regularity of V. Finally, the second component of ub is
constructed in the same way. Therefore all the arguments can be repeated and we obtain the estimate for ‖ub

tt‖L2(L2).
As now we have the explicit formula for ub, the other norms entering ‖ub

tt‖Y(T ) are obtained using similar arguments,
therefore we skip the details.

�
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[13] E. Feireisl, A. Novotný and Y. Sun. Suitable weak solutions to the Navier-Stokes equations of compressible viscous
fluids. Indiana Univ. Math. J., 60(2):611–631, 2011.

[14] P. Germain. Weak-strong uniqueness for the isentropic compressible Navier-Stokes system. J. Math. Fluid Mech.,
13(1):137–146, 2010.

[15] M. Geissert, K. Götze, M. Hieber. Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian
and generalized Newtonian fluids. Trans. Amer. Math. Soc., 365 (3), 1393–1439, 2013.

[16] M. Hieber, M. Murata. The Lp-approach to the fluid-rigid body interaction problem for compressible fluids. Evol.
Equ. Control Theory, 4(1): 69-87, 2015.

[17] D. Hoff. Local solutions of a compressible flow problem with Navier boundary conditions in general three-
dimensional domains. SIAM J. Math. Anal., 44(2):633–650, 2012.

35
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