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1Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
2Institute of Mathematics of the Czech Academy of Sciences,
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Abstract

We study universal electromagnetic (test) fields, i.e., p-forms fields F that solve simultaneously
(virtually) any generalized electrodynamics (containing arbitrary powers and derivatives of F in the
field equations) in n spacetime dimensions. One of the main results is a sufficient condition: any
null F that solves Maxwell’s equations in a Kundt spacetime of aligned Weyl and traceless-Ricci
type III is universal (in particular thus providing examples of p-form Galileons on curved Kundt
backgrounds). In addition, a few examples in Kundt spacetimes of Weyl type II are presented.
Some necessary conditions are also obtained, which are particularly strong in the case n = 4 = 2p:
all the scalar invariants of a universal 2-form in four dimensions must be constant, and vanish in the
special case of a null F .
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1 Introduction

1.1 Background

Modifications of Maxwell’s equations have been proposed in the context of classical theories in order
to cure the divergent electron’s self-energy [1–5]. They have also appeared in effective theories
derived from quantum electrodynamics (QED) [6–9]) or from string theory (cf., e.g., the review [10]
and references therein). A particularly well-known example of a generalized theory is given by non-
linear electrodynamics (NLE), which is defined by a Lagrangian depending (in principle arbitrarily)
on the two algebraic invariants FabF

ab and Fab ∗ F ab [11, 12].
In early works by Schrödinger [13, 14] it was observed that all null fields (defined by FabF

ab =
0 = Fab ∗ F ab) which solve Maxwell’s equations also automatically solve the field equations of any
NLE (in vacuum). In this sense, null fields display theory-independent properties. Subsequently,
it was noticed that plane waves (a special case of null fields) solve not only NLE but also higher-
derivative theories in a flat spacetime [15]. It is clearly desirable to understand to what extent
these results can be generalized, e.g., to field configurations other than plane-waves, as well as to
curved backgrounds. Recently, a larger class of universal solutions has been constructed [16] – it
consists of null electromagnetic fields in four-dimensional Kundt spacetimes of (aligned) Petrov and
traceless-Ricci type III. In the present paper we will further extend the results [16], particularly in
two directions. First, we shall consider p-form fields in arbitrary dimensions n, which are of more
direct interest for supergravity and string theory applications (recovering the sufficient conditions
for universality of [16] in the special case n = 4 = 2p). Additionally, we will also discuss the non-null
case and also obtain certain necessary conditions for a p-form to be universal. In this case, more
progress will be possible when n = 4 = 2p.

In the rest of this section we provide some preliminary definitions. Section 2 presents a few
sufficient conditions for a p-form field to be universal (or 0-universal, as defined below) – along with
other results, it contains Theorem 2.5, one of the main conclusions of this paper. In section 3 we focus
instead on necessary conditions. In particular, more progress is possible in the case of 2-forms in
four dimensions, for which we obtain Theorem 3.2 and Proposition 3.3. Appendix A summarizes the
notation used throughout the paper and contains some auxiliary technical results (some of which
already known, cf. the references given there), needed in the proofs of the main theorems and
propositions. Appendix A.3 also contains some additional related results (Lemmas A.6 and A.7) of
some interest for future studies.
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1.2 Preliminaries and definitions

Throughout the paper we will restrict ourselves to the case in which there are no charges and currents,
therefore we will omit the word “sourcefree” when referring to the (generalized) Maxwell equations.
We will consider only Maxwell test p-form fields in an n-dimensional spacetime (i.e., we will not
consider the back-reaction). We will denote by d, δ and ∗, respectively, the exterior derivative, the
codifferential and the Hodge dual of differential forms.

Let us start with a definition which will be used throughout this work.

Definition 1.1 (Universal electromagnetic field). A p-form F is called universal if it satisfies the
pair of generalized Maxwell’s equations

dF = 0, ∗d∗F̃ = 0, (1)

where the second equation holds simultaneously for all p-forms F̃ constructed polynomially from F
and its covariant derivatives (hereafter, it is understood that the dual (n − p)-form ∗F b1...bn−p

≡
1
p!ε

a1...ap
b1...bn−p

Fa1...ap and its derivatives can also be used in the construction).

In Definition 1.1, F̃ may thus include terms with arbitrary higher-order derivative “corrections”.
Furthermore, the scalar coefficients appearing in such a polynomial need not be polynomials of the
scalar invariants of F (and their covariant derivatives). Of course, a universal F in particular satisfies
the standard Maxwell equations (for the special choice F̃ = F ).1 Definition 1.1 extends to arbitrary
n and p a definition proposed in [16] for n = 4 = 2p.

Remark 1.2 (Non-linear electrodynamics (NLE)). NLE is usually defined in the case n = 2p = 4
(cf., e.g., [12]) by a Lagrangian which depends only on the two 0-order (i.e., algebraic) invariants
FabF

ab and Fab
∗F ab. Hence, in NLE the 2-form F̃ is a linear combination F̃ = αF +β∗F , where α

and β are (virtually arbitrary) functions of FabF
ab and Fab

∗F ab. It follows that a universal F also
obeys, in particular, the field equations of any NLE (e.g., Born-Infeld’s theory).

One could also define extensions of NLE to arbitrary n and p by considering theories where F̃ is
constructed algebraically from F (i.e., without taking covariant derivatives).2 Since these represent
a very special subclass of theories of electrodynamics, it appears useful to define also the following
more restricted notion of universality.

Definition 1.3 (0-universal electromagnetic field). A p-form F is called 0-universal if it satisfies
the pair of generalized Maxwell’s equations (1), where F̃ can be any p-form constructed algebraically
and polynomially from F .

In particular, 0-universal p-forms solve theories for which F̃ is of the form “F+higher powers of
F ”.

Similarly, it is also useful to define

Definition 1.4 (K-universal electromagnetic field). A p-form F is called K-universal if it satisfies
the pair of generalized Maxwell’s equations (1), where F̃ can be any p-form constructed polynomially
from F and its first K covariant derivatives.

In particular, 1-universal p-forms in flat space provide examples of p-form Galileons [17].
The notion of null fields is well known for 2-forms in four dimensions (cf., e.g., [18]); this has

been extended to arbitrary dimension n [19] and rank p [20]. Let us thus recall

1Note that there is an “asymmetry” in the above definition in the sense that F must be closed and co-closed, whereas
all the F̃ one can construct are only required to be co-closed. In the special case n = 2p, however, any possible F̃ must
also be closed (since one can replace F̃ by F̂ ≡ ∗F in Definition 1.1 and use the fact that F̂ must be co-closed).

2In general, there can be more than two independent 0-order invariants that can be used to construct a Lagrangian.
For example, a 2-form in n dimensions possesses [n/2] algebraic invariants (cf. section 4 of [11]).
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Definition 1.5 (Type N (or null) p-forms [20]). At a spacetime point, a p-form F is of type N if it
satisfies

`aFab1...bp−1
= 0, `[aFb1...bp] = 0, (2)

where ( (2) implies that) ` is a null vector. Equivalently, the second condition can be replaced by
`a ∗Fab1...bn−p−1

= 0.

A further useful definition is the following.

Definition 1.6 (CSI and VSI electromagnetic field). A p-form F in a spacetime with metric gab
is called CSI (“constant scalar invariants”) if the scalar polynomial invariants constructed from F
and its covariant derivatives of arbitrary order are constant. If all such invariant vanish, F is VSI
(“vanishing scalar invariants”) [20]. If only derivatives up to order K are considered, we will use
the notation CSIK and VSIK .

Notation Throughout the paper we will employ a null frame in an n-dimensional spacetime and
the corresponding Ricci rotation coefficients and directional derivatives, as defined in Appendix A.1.
We will use the abstract tensor notation “Riem” to denote the Riemann tensor. A tensor defined
by the part of boost weight (b.w.) b of the Riemann tensor or of its covariant derivative will be
denoted, respectively, as Riemb or [∇(Riem)]b; by contrast, a frame component of b.w. b of the
Riemann tensor will be denoted as Rb. For general information about the b.w. classification of
tensors we refer to [21] and, e.g., to the review [22].

2 Sufficient conditions

2.1 Covariantly constant p-forms

An observation made in [16] in the case n = 4 = 2p can be extended to arbitrary n and p as follows:

Proposition 2.1. A covariantly constant p-form F is universal and CSI.

Proof. Since any covariant derivative of F is zero, it is obvious that also dF = 0 = δF . Similarly,
any scalar invariant constructed from F must be constant (in particular, those constructed from
the derivatives of F are zero). Any F̃ is clearly also covariantly constant and thus has the same
properties.

For example, in a flat spacetime in Cartesian coordinates any wedge-product of the coordinate
differentials gives a covariantly constant form. More generally, it is well-known that in direct product
spacetimes, the volume form of each of the factor spaces is covariantly constant (as follows easily
from the results of [23]).

Remark 2.2 (Covariantly constant 2-forms in four dimensions). A four-dimensional spacetime
admitting a covariantly constant 2-form F is either (cf. section 35.1.2 of [18] and references therein):
(i) a direct product of two two-dimensional spacetimes, if F is non-null; (ii) an aligned pp -wave of
Riemann type N, if F is null. In both cases the spacetime is Kundt and null-recurrent.

Remark 2.3 (Covariantly constant null p-forms). A covariantly constant null F is obviously VSI
(cf. also [20]). Moreover, the background spacetime must be an aligned pp -wave (which follows from
Fac1...cp−1

Fb
c1...cp−1 ∝ `a`b being covariantly constant, similarly as in [18]). This partly extends

Remark 2.2 to arbitrary n and p.

4



2.2 Null p-forms

As mentioned in section 1, it was already known to Schrödinger [13, 14] that all null Maxwell fields
solve the equations for the electromagnetic field in any NLE. Generalizing [16], this observation can
be straightforwardly extended to all null (i.e., VSI0 [20]) p-forms, so that (recalling Definition 1.3)

Proposition 2.4 (Sufficient conditions for a 0-universal F ). A null p-form F that solves Maxwell’s
equations is 0-universal.

Proof. Since F is null, any p-form F̃ constructed algebraically and polynomially out of F can only
be linear in F (by boost-weight counting), and therefore obeys Maxwell’s equations if F does.

We observe that no direct restrictions on the background spacetimes are placed by Proposition 2.4,
as opposed to Proposition 2.5 given below in the case of certain fully universal solutions.

Recall that, in four dimensions, null 2-forms solutions to the Maxwell equations can be associated
with shearfree cogruences of null geodesics via the Mariot-Robinson theorem (cf., e.g., [18]). A partial
extension to p-forms in arbitrary dimensions has been discussed in [24] (see also [19, 25] for related
earlier results). It is worth mentioning that, from a physical viewpoint, null fields are interesting
since they characterize electromagnetic plane waves [9, 26], the asymptotic behaviour of radiative
systems [27], and the field produced by high-energy sources [26, 28, 29]. They are also relevant to
Penrose’s limits in supergravity [30].

2.3 VSI p-forms

2.3.1 Sufficient condition

The result of Proposition 2.4 for null forms can be considerably strengthened (i.e., to full universality)
if one restricts oneself to null forms in suitable background spacetimes, namely

Theorem 2.5 (Sufficient conditions for a universal F ). In a Kundt spacetime of aligned Weyl and
traceless-Ricci type III, any aligned null p-form F that solves Maxwell’s equations is universal (and
VSI).

Proof. Before starting, let us note that the considered background spacetime is necessarily degenerate
Kundt and DR = 0 = δiR (cf. Propositions A.2 and A.8). This implies that F is VSI (Theorem 1.5
of [20]).

By Proposition A.8, ∇(I)(Riem) is balanced (and thus of type III or more special) for any I ≥ 1.
This will be useful in the following. By the assumptions, the Riemann tensor can instead possess
also b.w. 0 components, but is restricted to the special form

Rabcd =
2R

n(n− 1)
ga[cgd]b + (b.w. < 0) , (3)

where we have indicated the arbitrary components of negative b.w. implicitly in brackets, since their
explicit form is not needed here.

Bearing in mind the above observations and under the assumed conditions, the strategy is thus
to prove that any possible F̃ is divergencefree.3

Now, since F is VSI, any tensor constructed out of it and its covariant derivatives is also VSI and
aligned (cf. Lemma B.4 of [20]) and thus contains only components of negative b.w. – for totally
antisymmetric tensors, such as F̃ , the only possible b.w. is −1. It is thus clear that F̃ can only be

3Recall that for a p-form ω the identity divωa1...ap−1 ≡ ωb
a1...ap−1;b

= sign(g)(−1)n(p+1) ∗ d ∗ωa1...ap−1 ≡ −δωa1...ap−1

holds (sign(g) = −1 in this paper; our conventions for the dual of a p-form are given in Definition 1.1)
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linear in F and its derivatives (higher order terms would have b.w. −2 or less). In general F̃ will
thus be of the form

F̃ = c0F + cI
[
∇IF

]
p

+ dJ
[
∇J∗F

]
p
, (4)

where there is summation over the positive integers I and J , the coefficients c0, cI and dJ are
constants (recall that F does not possess any non-zero invariant), and the notation [. . .]p means that
the quantity within square brackets needs to be contracted and/or antisymmetrized in such a way
as to produce a p-form (the particular way how this is done is not important for our discussion).
Let us now discuss separately the three possible types of terms in (4) and show that they are all
necessarily divergencefree.

The first term in (4) is harmless since F is itself divergencefree (and similarly for a term d0
∗F

that should be added to (4) in the special case n = 2p).
The terms

[
∇IF

]
p

in (4) need I/2 contractions with the metric tensor (so that I must in fact

be even) in order to produce an object of rank p, thus resulting in terms of one of the two forms

gab∇L···∇b∇I−L−1··· Fa..., gab∇L···∇b∇K···∇a∇I−L−K−2··· F..., (5)

where the ellipsis indicate implicitly all the remaining indices (contracted or not, and properly
antisymmetrized – this is not important four our analysis, as will be clear below). Now, if we
considered theories in flat space, the terms (5) could be rewritten as (note the respective indices
contracted with gab)

gab∇I−1··· ∇bFa..., gab∇I−2··· ∇b∇aF.... (6)

since covariant derivatives commute when the curvature is zero. (The advantage of the form (6)
is that it can be easily handled with, as we shall discuss below after (10) also in the presence of
curvature). However, this is generically not true in a curved spacetime, and if we want to shift
indices of covariant derivatives we need to consider the generalized Ricci identity. For any tensor T ,
this can be expressed schematically as

[∇,∇]T = T · Riem. (7)

The idea is now to use this in order to show how in a curved background one can still arrive at
terms of the form (6), plus some “corrections” that turn out not to be an obstacle for our purpose
(as we shall explain).

Recalling that F is VSI and all the covariant derivatives of the Riemann tensor are balanced,
from (7) we obtain

∇L[∇,∇]∇I−L−2F = ∇I−2F · Riem0 + (b.w. < −1) . (8)

However, using (3) and recalling that a p-form cannot have components of b.w. smaller than −1, it
is not difficult to see that (again schematically)[

∇I−2F · Riem0 + (b.w. < −1)
]
p

= R
[
∇I−2F

]
p
. (9)

From δiR = 0 and DR = 0 it follows that R;a ∝ `a. Since all terms in (4) are of b.w. −1,

terms containing R;a do not contribute to the divergence of F̃ and will be omitted from the next
discussions.

Equation (9) means that by repeated use of (8), in terms
[
∇IF

]
p

we can shift a covariant

derivative to any desired position, up to producing “correction terms” of the type
[
∇I−2F

]
p
, i.e., of

the form of the original terms but with order of differentiation reduced by 2. In turn, these can be
reduced to the form (6) (with I replaced by I − 2), plus “corrections” of the type

[
∇I−4F

]
p
, and so

6



on. Eventually, the terms
[
∇IF

]
p

in (4) are reduced to a sum of various terms of the form (recall

that I is even and therefore in the last step we obtain terms proportional to F )

F , gab∇M···∇bFa..., gab∇M−1··· ∇b∇aF... (M = I − 1, I − 3, . . . , 1). (10)

We already observed that the first of these is divergencefree. The second one is (a derivative
of) the divergence of F and therefore vanishes. To study the third term it is useful to recall the
Weitzenböck identity for a p-form ω [31]

gab∇b∇aωc1...cp = −∆ωc1...cp + pRa[c1ω
a
c2...cp]

− p(p− 1)

2
Rab[c1c2ω

ab
c3...cp]

, (11)

where ∆ = dδ + δd is the Laplace-de Rham operator acting on forms (not to be confused with the
symbol 4 defined in (A3)). Thanks to the fact that F has only components of b.w. −1 and ∆F = 0
(since F is harmonic), using (3) from (11) we obtain

gab∇b∇aFc1...cp =
p(n− p)
n(n− 1)

RFc1...cp . (12)

Thus the third term in (10) is proportional to ∇M−1··· F (and thus of the form (5), with I re-
placed by M − 1 ≤ I − 2) and again can be manipulated iteratively until one obtains either F
or gab∇M ′··· ∇bFa... = 0 (for some M ′). Therefore, also this term can produce only divergencefree
quantities, as we wanted to prove.

Finally, let us discuss the terms
[
∇J∗F

]
p

in (4). There one needs (n − 2p + J)/2 contractions

in order to produce an object of rank p, with J having the same parity of n (and with the further
condition J > 2p − n in the case 2p > n; note that the case J = 2p − n requires no contractions,
however it leads just to vanishing terms due to the total antisymmetrization and d∗F = 0, and
therefore needs no discussion). Similarly as above, we conclude that these will result in quantities
of the form

gab∇L···∇b∇J−L−1···
∗Fa..., gab∇L···∇b∇K···∇a∇J−L−K−2···

∗F..., (13)

which can be treated as done for (5) (∗F is also divergencefree), thus completing the proof.

Remark 2.6. We observe that the above proof would be greatly simplified if we required R = 0
as an additional assumption. Indeed, (8) would become simply ∇L[∇,∇]∇I−L−2F = (b.w. < −1).
Therefore covariant derivatives of F would essentially commute (i.e., the commutators would only
produce terms of b.w. less than −1, which are set to zero by the “operation” [. . .]p) and the proof
would thus be complete after (5) (apart from taking into account the terms with ∗F ).

Remark 2.7 (Examples). Note that, in particular, Ricci flat and Einstein Kundt spacetimes of Weyl
typee III/N/O are permitted backgrounds for a universal VSI F .4 The result of Proposition 2.5 was
announced (without a proof) in section 2.4 of [20] and generalizes results obtained in [16] in the
special case n = 4 = 2p (the above proof is also considerably more detailed than the one briefly

4Such spacetimes belong to the class of VSI/CSI metrics [32, 33], respectively (and include Minkowski and (A)dS).
These have found various applications beyond general relativity. For example, in the context of type IIB supergravity,
some VSI spacetimes coupled to null p-forms have been discussed in [34]. In particular, the role of VSI pp -waves in the
context of supergravity and string theory has been known for some time, see, e.g., [30, 35–40], also in the presence of
supersymmetry, c.f. [30, 35,36,40–42] and references therein.
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sketched in [16]). An example in a Petrov type III spacetime in four dimensions (cf. eq. (31.40)
in [18]) is given by [20]

ds2 = 2du

[
dr +

1

2
(xr − xex) du

]
+ ex(dx2 + e2udy2),

F = ex/2c(u)du ∧
(
− cos

yeu

2
dx+ eu sin

yeu

2
dy

)
.

Remark 2.8 (Chern-Simons term). One can also consider generalized electrodynamics in the pres-
ence of a Chern-Simons term – i.e., when (the dual of) the second of (1) is replaced by d∗F̃ +
αF̃ ∧ . . . ∧ F̃ = 0, where α 6= 0 is an arbitrary constant, the second term of the equation contains k
factors F̃ , and the corresponding number of spacetime dimensions is given by n = p(k+ 1)− 1 (such
modifications of Maxwell’s equations take place, e.g, in the bosonic sector of minimal supergravity
in five and eleven dimensions – cf., e.g., [43] and references therein). The universal solutions of
Proposition 2.5 thus clearly also solve such theories provided k ≥ 2, since F̃ ∧ F̃ = 0 for a F̃ of
type N. On the contrary, the special case k = 1 results in a linear theory with d∗F̃ + αF̃ = 0, which
cannot be solved by a solution of (1). See also, e.g., [44] for related results in a special case.

2.3.2 Solutions in adapted coordinates

The result of Theorem 2.5 means that the spacetime metric can be written as

ds2 = 2du [dr +H(u, r, x)du+Wα(u, r, x)dxα] + gαβ(u, x)dxαdxβ , (14)

where ` = ∂r is the Kundt vector, α, β = 2 . . . n− 1, x denotes collectively the set of coordinates xα,
gαβ is an (n− 2)-dimensional Riemannian metric of constant curvature and

Wα(u, r, x) = rW (1)
α (u, x) +W (0)

α (u, x), (15)

H(u, r, x) = r2H(2)(u, x) + rH(1)(u, x) +H(0)(u, x). (16)

Further constraints following from the type III curvature conditions are (cf. the Riemann tensor
components given in section 4.1 of [33])

2H(2) =
1

2(n− 2)

(
W

(1)α
||α +

n− 3

2
W (1)αW (1)

α

)
, (17)

R =
n− 3

2

(
W

(1)α
||α −

1

2
W (1)αW (1)

α

)
, (18)

W
(1)
α||β −

1

2
W (1)
α W

(1)
β =

1

n− 2

(
W

(1)γ
||γ −

1

2
W (1)γW (1)

γ

)
gαβ , (19)

W (1)
α =W,α, (20)

where R = R(u) is the Ricci scalar of gαβ and W = W(u, x). Differentiating (18) w.r.t. xβ gives

W
(1)α
||αβ −W

(1)αW
(1)
α||β = 0. In the special case when ` is recurrent (i.e., W

(1)
α = 0), eqs. (17)–(20)

reduce to H(2) = 0 and gαβ must be flat.
Then any p-form of the form

F =
1

(p− 1)!
fα1...αp−1

(u, x)du ∧ dxα1 ∧ . . . ∧ dxαp−1 , (21)
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solves identically the equations (1) provided

f[α2...αp−1,α1] = 0, (
√
g̃ fβα1...αp−2),β = 0, (22)

where g̃ ≡ det gαβ = −det gab ≡ −g (effectively, eqs. (22) are the Maxwell equations for the (p− 1)-
form f in the (n− 2)-dimensional Riemannian geometry associated with gαβ).

2.4 Universal p-forms in direct product spacetimes

One can take direct products of a spacetime permitted by Theorem 2.5, say ds21, with any Riemannian
space ds22 and obtain universal p-forms in a more general background ds2 = ds21 + ds22, provided F
still lives in ds21 (explicitly, this means that ds21 is given by (14), while ds22 = hAB(y)dyAdyB , with
hAB(y) arbitrary, and the rest is unchanged). The spacetime ds2 is still degenerate Kundt but, in
this case, its Weyl and traceless-Ricci types can also be II. A simple example with p = 2 and n = 6
is given by

ds2 = 2du[dr +H(u, ζ, ζ̄)du] + 2dζdζ̄ + a2(dθ2 + sin2 θdφ2),

F = du ∧ [f(u, ζ)dζ + f̄(u, ζ̄)dζ̄],

where H and f are arbitrary functions of their arguments and a a constant.

2.5 Universal 2-forms in 4-dimensional Kundt type II spacetimes

Another class of examples can be found for four-dimensional Kundt spacetimes of Weyl/Ricci type II.
Consider the type II Kundt spacetime (gravitational wave in a type D electrovac background [45–48]):

ds2 = 2du
[
dr +

(
λr2 +H(u, x, y)

)
du
]

+ P−2(dx2 + dy2), P = 1− k(x2 + y2), (23)

with the 2-form field

F = adu ∧ dr + bV2 + du ∧ dφ, φ = φ(u, x, y), (24)

and V2 = P−2dx ∧ dy is the volume form on the transverse space. Furthermore, a, b, k and λ
are constants. Let us split the exterior derivative, d, into derivatives over the two parts so that
d = d1 + d2. Then we note du ∧ dφ = du ∧ d2φ. Clearly, dF = 0, and requiring d ∗ F = 0, implies
�2φ = 0, where �2 = − ∗2 d2 ∗2 d2 (∗2 is the Hodge dual on the transverse space) is the Laplacian
on the transverse space (cf. also [49,50]).

Proposition 2.9. The 2-form field F (24) in the Kundt metric (23), where �2φ = 0, is universal.

Proof. Let us start with some preliminary comments, to be used in the following. We introduce the

null Kundt co-frame `adxa = du, nadxa = (λr2 +H)du+ dr, m
(2)
a dxa = P−1dx, m

(3)
a dxa = P−1dy,

so that ds2 = 2`n + m(2)m(2) + m(3)m(3), and F = a` ∧ n + bm(2) ∧m(3) + ` ∧ dφ. We observe
that (23) is a degenerate Kundt spacetime and therefore the function H does not enter the b.w. 0
components of any curvature tensors [51], which thus coincide with those of the symmetric space
obtained by setting H = 0 in (23) (which are constant). Moreover, in the above frame, in addition

to (A4), one has L10 =
i

M j0 = Ni0 = L1i = L1i = Li1 =
i

M j1 = Nij = 0, R101i = R1ijk = 0,

D
i

M jk = DNi1 = D2L11 = 0 (cf. (A11) and (A15)), DR1i1j = 0 (cf. (A19)) and DF1i = 0 (and H
enters only the Ricci rotation coefficient Ni1). This implies that all the covariant derivatives of F are
balanced tensors (Definition A.3 and Lemma A.5) and all the covariant derivatives of the Riemann
tensor are 1-balanced tensors (Definition A.4 and Lemma A.7).
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Let us consider an arbitrary 2-form F̃ constructed from F . Then it can be expressed as:

F̃ = A` ∧ n +Bm(2) ∧m(3) + ` ∧ (Cd2φ+D ∗2 d2φ) ,

where A,B,C,D are constants. Recalling �2φ = 0, it is clear that F̃ obeys dF̃ = d ∗ F̃ = 0; hence,
F is 0-universal.

As for F̃ from derivatives, we note that the boost-weight zero components of F and of any
curvature tensor are O(1, 1) × O(2)-symmetric. Moreover, the b.w. 0 component of ∇IF vanish.
This implies that any tensor F̃ must have O(1, 1) × O(2)-symmetric b.w. 0 components as well.
Hence,

(F̃ )0 = Â` ∧ n + B̂m(2) ∧m(3),

where Â and B̂ are constants, and thus d(F̃ )0 = d ∗ (F̃ )0 = 0. Next, since curvature tensors
(including the derivatives) are of the form R = (R)0 + (R)−2 + ..., the b.w. −1 component of F̃
needs to be of the form (recall the notation of (4)):

(F̃ )−1 =
[
(R)0 ⊗ (F )0 ⊗ . . .⊗ (F )0 ⊗ (F +∇F + . . .+∇IF )−1

]
2
.

Now, as observed above, all the b.w. zero components need to be O(1, 1) × O(2)-symmetric, and
using the arguments in the proof of Theorem 2.5, after the contraction, (F̃ )−1 is of the form:

(F̃ )−1 =
∑
I

` ∧
(
Ĉd2(�2)Iφ+ D̂ ∗2 d2(�2)Iφ

)
,

where Ĉ and D̂ are constants, which is zero if I > 0, and if I = 0, then d(F̃ )−1 = d ∗ (F̃ )−1 = 0.
Hence, any F̃ constructed from F obeys the Maxwell equations dF̃ = d ∗ F̃ = 0

This shows that there are examples of universal Maxwell fields in four-dimensional type II Kundt
spacetimes and similar examples of universal p−forms are believed to exist in n = 2p dimensions (cf.
section 2.4 for slightly different type II examples in higher dimensions).

3 Necessary conditions

3.1 General dimension

Here we show that some necessary conditions can be obtained for a universal F which is not CSI.
Let us thus assume there exists a non-constant invariant I, i.e., I,a 6= 0. Since F is assumed to be

universal, any F̃ constructed according to Definition 1.1 must be divergenceless. Take, for instance,
F̃ = IF . Then one immediately obtains

I ;aFab1...bp−1
= 0. (25)

Since F is closed, this immediately implies that the Lie derivative of F w.r.t. the gradient of I is
zero, i.e., £∇IF = 0. This defines a symmetry of F .

In the special even dimensional case n = 2p, one can also take F̃ = I∗F , thus additionally
obtaining

I ;a∗Fab1...bp−1
= 0 (n = 2p). (26)

(And now also £∇I
∗F = 0.)

Eqs. (25) and (26) mean that, for n = 2p, a universal F which possesses a non-constant invariant
I must be null and aligned to the gradient of I, which in turn defines a null vector field (see
Definition 1.5)

`a ≡ I,a (n = 2p). (27)
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It is also clear that all non-constant invariants must define the same null direction (since a null p-
form admits a unique aligned null direction). Since all possible F̃ must be closed and co-closed when
n = 2p, one can similarly argue that they must also be null and aligned with ` – this observation will
be useful in the following. Note also that, since ` is null and a gradient, it is automatically geodesic
and twistfree. One also has DÎ = 0 for any invariant Î (and Î = Î(u) if coordinates are chosen such
that `adxa = du). We have thus arrived at

Proposition 3.1 (Necessary conditions for a universal F in the case n = 2p). In a spacetime of
dimension n = 2p, if a p-form F is universal, then either (i) F is CSI or (ii) F (as well as any
F̃ constructed according to Definition 1.1) is null and aligned with a geodesic and twistfree null
direction, along which all the invariants of F are constant.

From the above proof, it is clear that a similar statement holds replacing “universal” by “K-
universal” and “CSI” by “CSIK”.

3.2 Case n = 4 = 2p: a universal F must be CSI

In the physically most important case n = 4 = 2p, the non-CSI case cannot actually occurr, as
we now show. By reductio ad absurdum, let us assume that we have a non-CSI universal F . By
Proposition 3.1, F is null and satisfies the Maxwell equations, thanks to which the Mariot-Robinson
theorem [18] ensures that ` is also shearfree. This means that the permitted backgrounds can only
be the Robinson-Trautman (if ` is expanding) or the Kundt (if ` is non-expanding) spacetimes.

3.2.1 Robinson-Trautman

Let us first show that the Robinson-Trautman metrics are in fact forbidden if F is universal and non-
CSI. The idea is to construct from F a 2-form F̃ which cannot be null (which would be required by
universality) unless θ = 0, thus ending up in the Kundt family. Let us employ a frame (i, j, . . . = 2, 3)

parallelly transported along `. Let us denote fi ≡ F1i, so that Fab = 2(f2`[am
(2)
b] + f3`[am

(3)
b] ). In

the following, it will be understood that the following Maxwell equation (of b.w. 0)

Dfi = −θfi, (28)

is employed. Thanks to (28), without loss of generality one can use an r-independent spin to set

f3 = 0. (29)

Using this simplification, let us consider the 2-form

F̃ab ≡
(
F ;e
cd F cd;fFe[a|;f

) (
F ;p
gh F gh;q∗Fp|b];q

)
≈ 4(θf2)6m

(2)
[a m

(3)
b] , (30)

where (from now on) the symbol ≈ indicates equality “up to terms of lower b.w.”. As observed in
Proposition 3.1, F̃ab has to be null, so θ = 0, as we wanted to prove. Therefore, in four dimensions
there exist no universal non-CSI 2-forms with an aligned expanding null direction.

3.2.2 Kundt

Since F is null and £`F = 0 (as pointed out above), we conclude that F is VSI1 (Proposition C.1
of [20]), i.e., the only possible non-zero invariants must be constructed from second (or higher)
covariant derivatives of F .
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First, let us observe that in a Kundt spacetime one has (cf. (A6), (A7))

`a;bc ≈ (DL1i`am
(i)
b +DLi1m

(i)
a `b)nc. (31)

We can thus consider the 2-form

F̃ab ≡ `[a|;c|b]`d;cd ≈ (DL1iDL1i)`[anb], (32)

which must be null and aligned with `, from which we conclude DL1i = 0 (recall that `a = I,a and

thus F̃ab is indeed constructed from Fab). Similarly, taking instead F̃ab ≡ `c;[ab]`
c;d
d, we conclude

that also DLi1 = 0. Thanks to this, we have that `a;bc has components at most of b.w. −1, while

m
(i)
a;bc (thanks to (A11)) at most of b.w. 0, so that

`a;bcd ≈ D2L11`a`bncnd. (33)

It is now clear that by considering the 2-form

F̃ab ≡ ` c
[a|;c|b] ≈ D

2L11`[anb], (34)

one concludes that D2L11 = 0. With DLi1 = 0 = DL1i, this implies that the spacetime is degenerate
Kundt (see again appendix A of [20]) and therefore F is VSI (Theorem 1.3 of [20]), i.e., all its invariant
vanish and are thus constant, leading to a contradiction.

To summarize, we have shown that in four dimensions Proposition 3.1 takes the following stronger
form

Theorem 3.2 (Necessary conditions for a universal F in the case n = 4 = 2p). In a four-dimensional
spacetime, if a 2-form is universal, then it is CSI.

We will now use this result to further constraint universal Maxwell fields in four dimensions,
discussing separately the case of null and non-null fields. It will be convenient to employ the complex
Newman-Penrose formalism, with the convention of [18].5 In a complex frame (`,n,m, m̄), such
that gab = 2m(am̄b) − 2`(anb), the Maxwell equations read [18]

DΦ1 − δ̄Φ0 = (π − 2α)Φ0 + 2ρΦ1 − κΦ2, (35)

DΦ2 − δ̄Φ1 = −λΦ0 + 2πΦ1 + (ρ− 2ε)Φ2, (36)

δΦ1 −4Φ0 = (µ− 2γ)Φ0 + 2τΦ1 − σΦ2, (37)

δΦ2 −4Φ1 = −νΦ0 + 2µΦ1 + (τ − 2β)Φ2. (38)

3.3 Case n = 4 = 2p: null F

In an adapted frame, the self-dual 2-form Fab = Fab + i∗Fab takes the form [18]

Fab = 4Φ2`[amb], (39)

where ` is geodesic and shearfree by the Mariot-Robinson theorem, and Φ2 6= 0. With no loss of
generality we can choose an affine parametrization and a frame parallelly transported along `, so
that

κ = σ = ε = π = 0. (40)

5In the remaining part of this section, and only here, we will thus have `an
a = −1, instead of our usual convention

`an
a = +1.
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We can thus write the covariant derivatives of the frame vectors ` and m (up to terms of lower
b.w.) as

`a;b ≈ −ρm̄amb − ρ̄mam̄b, (41)

ma;b ≈ −ρnamb, (42)

while (36) gives
DΦ2 = ρΦ2. (43)

From these expressions and (39), it follows(
Fcd;eFcd[;a|

)(
F̄fg;|b]F̄fg;e

)
≈ 256|ρΦ2|4m[am̄b]. (44)

By adding to this 2-form its dual (times i), we end up with the following self-dual non-null 2-form

F̃ab ≈ 4Φ̃1(m[am̄b] − `[anb]), Φ̃1 = 64|ρΦ2|4, (45)

for which ` is a PND. By universality, F̃ab must also solve Maxwell’s equations, while Proposition 3.2
implies that Φ̃1 is a constant. Eq. (35) thus reduces to 0 = 2ρΦ̃1, which gives

ρ = 0. (46)

This means that ` is a Kundt vector field. The Ricci identities (cf. eqs. (7.21k), (7.21d), (7.21e)
of [18]) thus give

D(β − ᾱ) = 0. (47)

Using the above results, `a;b contains only terms of b.w. −1 (or less) and ma;b of b.w. 0 (or less),
while for the second covariant derivatives we get

`a;bc ≈ −D(β̄ + α)`ambnc −Dτ̄ma`bnc + c.c., (48)

ma;bc ≈ −Dτna`bnc. (49)

Eq. (36) now implies DΦ2 = 0, which with the commutator (7.6b, [18]) also gives DδΦ2 = 0. We
thus obtain

F c
ab;c ≈ −4Φ2Dτ(m[am̄b] − `[anb]). (50)

Similarly as for (45), this 2-form must obey Maxwell’s equation with Φ2Dτ being a constant, which
requires (cf. (37))

Dτ = 0. (51)

This implies that the spacetime is of aligned Riemann type II, while from the Bianchi and Ricci
identities it further follows6

D(β + ᾱ) = 0, D2µ = 0, D2λ = 0, D2(γ − γ̄) = 0. (52)

Therefore, we arrive at
`a;bcd ≈ −D2(γ + γ̄)`a`bncnd. (53)

For our purposes, it suffices to further observe that `a;b and `a;bc possess only terms of negative b.w.,
while ma;b, ma;bc, ma;bcd and (using (7.6a, [18])) Φ2;abc only terms of b.w. 0 (or less). It is then easy
to obtain

(F d
ab;d );c ≈ 4Φ2D

2(γ + γ̄)`[amb]nc. (54)

6For brevity, we refer to Appendix A of [20] for more details (using footnote 4 of [52] for a dictionary between the
complex and real Ricci rotation coefficients).
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By universality, the 2-form F d
ab;d must satisfy Maxwell’s equations, which implies

D2(γ + γ̄) = 0. (55)

This means that the spacetime is degenerate Kundt, aligned with `. Thanks to [20], we conclude
that

Proposition 3.3 (Necessary conditions for a universal null F in the case n = 4 = 2p). In a
four-dimensional spacetime, if a 2-form is null and universal, then it is VSI.

This is clearly a specialization of Theorem 3.2 to the case of null fields, also constraining the
background spacetime to be degenerate Kundt (aligned) [20].
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A Kundt spacetimes and balanced tensors

In this appendix we review certain known properties of Kundt spacetimes and of balanced tensors
useful in this paper. Some new facts are also proven (when a proposition is a summary of known
results, this is indicated by including the corresponding reference in the text of the proposition).

A.1 Notation

In an n-dimensional spacetime, we employ a frame which consists of two null vectors ` ≡ m(0),
n ≡m(1) and n− 2 orthonormal spacelike vectors m(i), with a, b . . . = 0, . . . , n− 1 while i, j . . . =
2, . . . , n−1. For indices i, j, . . ., it is not necessary to distinguish between subscripts and superscripts.
The Ricci rotation coefficients are defined by [53]

Lab = `a;b, Nab = na;b,
i

Mab = m
(i)
a;b, (A1)

and satisfy the identities

L0a = N1a = N0a + L1a =
i

M0a + Lia =
i

M1a +Nia =
i

M ja +
j

M ia = 0. (A2)

Covariant derivatives along the frame vectors are

D ≡ `a∇a, 4 ≡ na∇a, δi ≡ m(i)a∇a. (A3)

A.2 Kundt spacetimes

Here we summarize some properties of Kundt spacetimes (see, e.g., Appendix A of [20] for more
details and references).
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A.2.1 General Kundt spacetimes

Kundt spacetimes are defined by the existence of a null vector field ` such that

Li0 = 0, Lij = 0. (A4)

Without loss of generality, one can use an affine parametrization and a frame parallelly transported
along `, such that, additionally, [32, 52,53]

L10 = 0,
i

M j0 = 0, Ni0 = 0. (A5)

The covariant derivatives of the frame vectors then read

`a;b = L11`a`b + L1i`am
(i)
b + Li1m

(i)
a `b, (A6)

m
(i)
a;b = −Ni1`a`b − Li1na`b −Nij`am(j)

b +
i

M j1m
(j)
a `b +

i

Mklm
(k)
a m

(l)
b , (A7)

na;b = −L11na`b − L1inam
(i)
b +Ni1m

(i)
a `b +Nijm

(i)
a m

(j)
b . (A8)

From (A4), (A5), it follows
R0i0j = 0, R0ijk = 0. (A9)

The Ricci identities (11b), (11e), (11n), (11a), (11j), (11m) and (11f) of [52] reduce to

DL1i = −R010i, DLi1 = −R010i, (A10)

D
i

M jk = 0, (A11)

DL11 = −L1iLi1 −R0101, (A12)

DNij = −R0j1i, (A13)

D
i

M j1 = −
i

M jkLk1 −R01ij , (A14)

DNi1 = −NijLj1 +R101i. (A15)

A.2.2 Kundt spacetimes of aligned Riemann type II and degenerate Kundt
spacetimes

A generic Kundt spacetime is of Riemann type I (cf. (A9)). For the subclass of Riemann type II,
(i.e., assuming that R010i = 0), the Bianchi identities (B3), (B5), (B12), (B1), (B6) and (B4) of [53]
take the simpler form

DR01ij = 0, DR0i1j = 0, DRijkl = 0, (A16)

DR101i − δiR0101 = −R0101Li1 −R01isLs1 −R0i1sLs1, (A17)

DR1kij + δkR01ij = R01ijLk1 − 2R0k1[iLj]1 +RksijLs1 − 2R01[i|s
s

M |j]k, (A18)

DR1i1j −4R0j1i − δjR101i = R0101Nij −R01isNsj +R0s1iNsj +R0j1s

s

M i1 +R0s1i

s

M j1

+ 2R101iL[1j] +R1ijsLs1 +R101s

s

M ij . (A19)

The degenerate Kundt metrics [54,55], which are a subset of the Kundt metrics of Riemann type
II, are defined by

Definition A.1 (Degenerate Kundt metrics [54, 55]). A Kundt spacetime is “degenerate” if the
Kundt null direction ` is also a multiple null direction of the Riemann tensor and of its covariant
derivatives of arbitrary order (which are thus all of aligned type II, or more special).
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It is useful to recall the following

Proposition A.2 (Conditions for degenerate Kundt metrics [20]). A Kundt spacetime is degenerate
iff it is of aligned Riemann type II and `aR,a = 0. A Kundt spacetime for which the tracefree part
of the Ricci tensor is of aligned type III must be degenerate.

A.3 Balanced tensors in degenerate Kundt spacetimes

Let us start by recalling the following

Definition A.3 (Balanced scalars and tensors [32, 56]). In a frame parallely transported along an
affinely parameterized geodesic null vector field `, a scalar η of b.w. b under a constant boost is a
“balanced scalar” if D−bη = 0 for b < 0 and η = 0 for b ≥ 0. A “balanced tensor” is a tensor whose
components are all balanced scalars.

Definition A.4 (1-balanced scalars and tensors [57]). In a frame parallely transported along an
affinely parameterized geodesic null vector field `, a scalar η of b.w. b under a constant boost is a
“1-balanced scalar” if D−b−1η = 0 for b < −1 and η = 0 for b ≥ −1. A tensor whose components
are all 1-balanced scalars is a “1-balanced tensor”.

Clearly, a 1-balanced tensor is also balanced and possesses non-zero components only of b.w. −2
or lower.

Below we will need the following result of [20]

Lemma A.5 (Derivatives of balanced tensors in degenerate Kundt spacetimes [20]). In a degenerate
Kundt spacetime, the covariant derivative of a balanced tensor is again a balanced tensor.

In a degenerate Kundt spacetime, employing an affine parameter and a parallelly transported
frame, one has [20]

4D −D4 = L11D + Li1δi, (A20)

δiD −Dδi = L1iD, (A21)

DL1i = 0, DLi1 = 0, D
i

M jk = 0, (A22)

D2Nij = 0, D2
i

M j1 = 0, D2L11 = 0, D3Ni1 = 0. (A23)

The above equations suffice to readily extend Lemma 4.2 of [57] to the following

Lemma A.6 (1-balanced scalars in degenerate Kundt spacetimes). In a degenerate Kundt spacetime,
employing an affine parameter and a parallelly transported frame, if η is a 1-balanced scalar of b.w.

b, then all the following scalars (ordered by b.w.) are also 1-balanced: Dη; L1iη, Li1η,
i

M jkη, δiη;

L11η, Nijη,
i

M j1η, 4η; Ni1η.

When taking the covariant derivative of a 1-balanced tensor in a degenerate Kundt spacetime,
only the 1-balanced scalars encompassed by Lemma A.6 will appear (cf. (A6)–(A8)), which imme-
diately leads to an extension of Lemma 4.3 of [57]

Lemma A.7 (Derivatives of 1-balanced tensors in degenerate Kundt spacetimes). In a degenerate
Kundt spacetime, the covariant derivative of a 1-balanced tensor is again a balanced 1-tensor.

In a degenerate Kundt spacetime, the tensors∇(I)(Riem) are generically of aligned type II [54,55].
However, with a restriction on the Weyl and Ricci tensors one can prove the following stronger
condition (which extends Proposition 5.1 of [57]).
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Proposition A.8. In a Kundt spacetime in which the Weyl tensor and the tracefree part of the
Ricci tensor are both of aligned type III or more special (implying Kundt degenerate), the tensors
∇(I)(Riem) are balanced for any positive integer I, and therefore they are all of aligned type III (or
more special).

Proof. The assumptions mean that the Riemann tensor has the form (3) and that (A6)–(A8) hold
(which will be understood from now on). The Bianchi equations (B.5) and (B.7) of [53] (with
(A4), (A9)) thus give DR = 0 = δiR (i.e., DR0 = 0 = δiR0). By Proposition A.2 it trivially
follows that the considered spacetimes are degenerate, so that ∇(Riem) is of aligned type II or more
special. Moreover, the only possible non-zero b.w. 0 components of ∇(Riem) must be proportional
to DR−1. However, the Bianchi equations (A17) and (A18) with (A22) give DR101i = 0 = DR1kij

(i.e., DR−1 = 0), so that ∇(Riem) is necessarily of aligned type III (or more special).
Next, we want to show it is also balanced. First, a simple counting of the b.w.s of the available Rie-

mann components and Ricci rotation coefficients reveals that the frame components of [∇(Riem)]−1
must be linear combinations (with constant coefficients) of terms of the form 4R0, δiR−1, DR−2,

or R−1 multiplied by L1i (or by Li1 or
i

M jk).7 Using (A13), (A20)–(A23) and (A19) (which gives
D2R1i1j = 0), it is thus easy to show that the D-derivative of the frame components of b.w. −1 of
∇(Riem) vanish. Similarly, employing (A23), one can show that the D−b-derivative of the frame
components of b.w. b of ∇(Riem) vanish also for b = −2,−3,−4 (while [∇(Riem)]b = 0 identically
for b < −4), so that ∇(Riem) is a balanced tensor, as we wanted to prove. By Lemma A.5 the proof
is complete.

Remark A.9. From Proposition A.8, it follows that only the components R0 can enter the scalar
curvature invariants, and therefore such spacetimes are contained in the CSI class iff 4R = 0.
We also observe that R 6= 0 requires Li1 6= 0 (as follows immediately from the Ricci identity (11i)
of [52]), while for R = 0 the considered spacetimes coincide with the VSI class (in which case
Li1 6= 0 and Li1 = 0 are both possible [32, 58]). If one restricts the Ricci tensor to the type D, then
necessarily R =const (by the contracted Bianchi identities), so that the spacetimes become Einstein
and Proposition A.8 reduces to Proposition 5.1 of [57].
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[30] R. Güven, Plane waves in effective theories of superstrings, Phys. Lett. B 191 (1987) 275–281.
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