

INSTITUTE OF MATHEMATICS

THE CZECH ACADEMY OF SCIENCES

The Robin problem for the Brinkman system and for the Darcy-Forchheimer-Brinkman system

Dagmar Medková

Preprint No. 36-2018 PRAHA 2018

THE ROBIN PROBLEM FOR THE BRINKMAN SYSTEM AND FOR THE DARCY-FORCHHEIMER-BRINKMAN SYSTEM

DAGMAR MEDKOVÁ[†]

ABSTRACT. In this paper we study the Neumann problem and the Robin problem for the Darcy-Forchheimer-Brinkman system in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ for a bounded domain $\Omega \subset \mathbb{R}^m$ with Lipschitz boundary. First we study the Neumann problem and the Robin problem for the Brinkman system by the integral equation method. If $\Omega \subset \mathbb{R}^m$ is a bounded domain with Lipschitz boundary and $2 \leq m \leq 3$, then we prove the unique solvability of the Neumann problem and the Robin problem for the Brinkman system in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$, where 3/2 < q < 3. Then we get results for the Darcy-Forchheimer-Brinkman system from the results for the Brinkman system using the fixed point theorem. If $\Omega \subset \mathbb{R}^m$ is a bounded domain with Lipschitz boundary, $2 \leq m \leq 3$, 3/2 < q < 3, then we prove the existence of a solution of the Neumann problem and the Robin problem for the Darcy-Forchheimer-Brinkman system in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ for small given data.

1. INTRODUCTION

Boundary value problems for the Darcy-Forchheimer-Brinkman system

(1.1) $\nabla p - \Delta \mathbf{u} + \lambda \mathbf{u} + \alpha |\mathbf{u}| \mathbf{u} + \beta (\mathbf{u} \cdot \nabla) \mathbf{u} = \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega$

have been extensively studied lately. This system describes flows through porous media saturated with viscous incompressible fluids, where the inertia of such fluid is not negligible. The constants $\lambda, \alpha, \beta > 0$ are determined by the physical properties of such a porous medium. (For further details we refer the reader to the book [21, p. 17] and the references therein.)

T. Grosan, M. Kohr and W. L. Wendland studied in [7] the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\mathbf{f} \equiv 0$ in $W^{1,2}(\Omega, \mathbb{R}^m) \times L^2(\Omega)$, where $\Omega \subset \mathbb{R}^m$ is a bounded domain with connected Lipschitz boundary and m = 2or m = 3. R. Gutt and T. Grosan studied in [8] the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\mathbf{f} \equiv 0$ in $W^{s,2}(\Omega, \mathbb{R}^m) \times W^{s-1,2}(\Omega)$, where $1 \leq s < 3/2, \ \Omega \subset \mathbb{R}^m$ is a bounded domain with connected Lipschitz boundary and m = 2 or m = 3. M. Kohr, M. Lanza de Cristoforis, W. L. Wendland studied in [13] the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\mathbf{f} \equiv 0, \ \beta = 0$ in $W^{s,2}(\Omega, \mathbb{R}^m) \times W^{s-1,2}(\Omega)$, where $1 \leq s < 3/2, \ \Omega \subset \mathbb{R}^m$ is a bounded domain with connected Lipschitz boundary and $2 \leq m \leq 4$. The author studied in [18] a bounded solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\beta = 0$ on a bounded domain $\Omega \subset \mathbb{R}^m$ with Ljapunov boundary. M. Kohr, M. Lanza de Cristoforis, W. L. Wendland studied in [12] the

²⁰⁰⁰ Mathematics Subject Classification. 35Q35.

Key words and phrases. Brinkman system; Neumann problem; Robin problem; Darcy-Forchheimer-Brinkman system; boundary layer potentials.

The work was supported by RVO: 67985840 and GAČR grant No. 17-01747S.

Robin problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\beta = 0$ in the space $H^s(\Omega, \mathbb{R}^m) \times H^{s-1}(\Omega)$, where 1 < s < 3/2, $\Omega \subset \mathbb{R}^m$ is a bounded domain with connected Lipschitz boundary and $m \in \{2,3\}$. M. Kohr, M. Lanza de Cristoforis, W. L. Wendland studied in [12] the mixed Dirichlet-Robin problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\beta = 0$ in $H^{3/2}(\Omega, \mathbb{R}^3) \times H^{1/2}(\Omega)$, where $\Omega \subset \mathbb{R}^3$ is a bounded creased domain with connected Lipschitz boundary. M. Kohr, M. Lanza de Cristoforis, W. L. Wendland studied in [12] the problem of Navier's type for the Darcy-Forchheimer-Brinkman system (1.1) with $\beta = 0$ in $H^1(\Omega, \mathbb{R}^3) \times L^2(\Omega)$, where $\Omega \subset \mathbb{R}^3$ is a bounded domain with connected Lipschitz boundary. M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov, W. L. Wendland studied in [10] the transmission problem, where the Darcy-Forchheimer-Brinkman system is given in a bounded domain $\Omega_+ \subset \mathbb{R}^3$ with connected Lipschitz boundary and the Stokes system is given on its complementary domain Ω_- . Solutions are from $\mathcal{H}^1(\Omega_{\pm}) \times L^2(\Omega_{\pm})$, where $\mathcal{H}^1(\Omega) = \{\mathbf{u} \in L^2_{loc}(\Omega, \mathbb{R}); \partial_j u_i \in L^2(\Omega), (1 + |\mathbf{x}|^2)^{-1/2} u_j(\mathbf{x}) \in L^2(\Omega)\}$.

In this paper we study the Neumann problem and the Robin problem for the Darcy-Forchheimer-Brinkman system in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ for a bounded domain $\Omega \subset \mathbb{R}^m$ with Lipschitz boundary. First we study the Neumann problem and the Robin problem for the Brinkman system by the integral equation method. If $\Omega \subset \mathbb{R}^m$ is a bounded domain with Lipschitz boundary and $2 \leq m \leq 3$, then we prove the unique solvability of the Neumann problem and the Robin problem for the Brinkman system in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$, where 3/2 < q < 3. Then we get results for the Darcy-Forchheimer-Brinkman system from the results for the Brinkman system using the fixed point theorem. If $\Omega \subset \mathbb{R}^m$ is a bounded domain with Lipschitz boundary, $2 \leq m \leq 3$, 3/2 < q < 3, then we prove the existence of a solution of the Neumann problem and the Robin problem for the Brinkman system in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ for small given data.

2. Function spaces

First we remember definitions of several function spaces.

Let $\Omega \subset \mathbb{R}^m$ be an open set. We denote by $\mathcal{C}^{\infty}_c(\Omega)$ the space of infinitely differentiable functions with compact support in Ω . If $k \in \mathbb{N}_0$, $1 < q < \infty$ we define the Sobolev space $W^{k,q}(\Omega) := \{f \in L^q(\Omega); \partial^{\alpha} f \in L^q(\Omega) \text{ for } |\alpha| \leq m\}$ endowed with the norm

$$||u||_{W^{k,q}(\Omega)} = \sum_{|\alpha| \le k} ||\partial^{\alpha} u||_{L^{q}(\Omega)}.$$

(Clearly $W^{0,q}(\Omega) = L^q(\Omega)$.) If $s = k + \lambda$, $0 < \lambda < 1$, denote $W^{s,q}(\Omega) = \{u \in W^{k,q}(\Omega); \|u\|_{W^{s,q}(\Omega)} < \infty\}$ where

$$\|u\|_{W^{s,q}(\Omega)} = \left[\|u\|_{W^{k,q}(\Omega)}^q + \sum_{|\alpha|=k_{\Omega\times\Omega}} \int_{\Omega\times\Omega} \frac{|\partial^{\alpha} u(\mathbf{x}) - \partial^{\alpha} u(\mathbf{y})|^q}{|\mathbf{x} - \mathbf{y}|^{m+q\lambda}} \, \mathrm{d}(\mathbf{x}, \mathbf{y}) \right]^{1/q}$$

Denote by $\mathring{W}^{k,p}(\Omega)$ the closure of $\mathcal{C}^{\infty}_{c}(\Omega)$ in $W^{k,p}(\Omega)$.

If X is a Banach space we denote by X' its dual space. If $0 < s < \infty$, denote $W^{-s,q}(\Omega) := [\mathring{W}^{s,q'}(\Omega)]'$, where q' = q/(q-1).

Denote by $D^{-1,q}(\Omega)$ the set of distributions u on Ω such that $\partial_j \in W^{-1,q}(\Omega)$ for $j = 1, \ldots, m$.

If $\Omega \subset V \subset \overline{\Omega}$ then we denote by $L^q_{\text{loc}}(V)$ the space of all measurable functions u on Ω such that $u \in L^q(\omega)$ for each bounded open set ω with $\overline{\omega} \subset V$.

If $\Omega \subset \mathbb{R}^m$ is an open set with compact Lipschitz boundary, 0 < s < 1, $1 < q < \infty$, denote $W^{s,q}(\partial \Omega) = \{u \in L^q(\partial \Omega); \|u\|_{W^{s,q}(\partial \Omega)} < \infty\}$ where

$$\|u\|_{W^{s,q}(\partial\Omega)} = \left[\|u\|_{L^q(\partial\Omega)}^q + \int_{\partial\Omega\times\partial\Omega} \frac{|u(\mathbf{x}) - u(\mathbf{y})|^q}{|\mathbf{x} - \mathbf{y}|^{m-1+qs}} \, \mathrm{d}(\mathbf{x},\mathbf{y}) \right]^{1/q}.$$

Further, $W^{-s,q}(\partial \Omega) := [W^{s,q'}(\partial \Omega)]'$, where q' = q/(q-1).

We denote $\mathcal{C}^{\infty}_{c}(\Omega; \mathbb{R}^{m}) := \{(v_{1}, \ldots, v_{m}); v_{j} \in \mathcal{C}^{\infty}_{c}(\Omega)\}$. Similarly for other spaces of functions.

Lemma 2.1. Let $\Omega \subset \mathbb{R}^m$ be a domain, i.e. an open connected set. If $1 < q < \infty$ then $D^{-1,q}(\Omega) \subset L^q_{\text{loc}}(\Omega)$. Choose a bounded non-empty domain ω such that $\overline{\omega} \subset \Omega$. Then $D^{-1,q}(\Omega)$ is a Banach space equipped with the norm

(2.1)
$$\|u\|_{D^{-1,q}(\Omega)} := \|u\|_{L^q(\omega)} + \|\nabla u\|_{W^{-1,q}(\Omega)}.$$

Different choices of ω give equivalent norms.

Proof. Let $u \in D^{-1,q}(\Omega)$. According to [24, Proposition I.1.1]

(2.2)
$$\langle \nabla u, \mathbf{\Phi} \rangle = 0 \quad \forall \mathbf{\Phi} \in \mathcal{C}^{\infty}_{c}(\Omega, \mathbb{R}^{m}), \nabla \cdot \mathbf{\Phi} = 0.$$

Let $\omega \subset \Omega$ be a bounded domain with Lipschitz boundary such that $\overline{\omega} \subset \Omega$. Since u satisfies (2.2), [22, Lemma 2.1.1] gives that there exists $p \in L^q(\omega)$ such that $\nabla p = \nabla u$ in ω . Since $\nabla(u-p) = 0$ in ω , u-p is constant in ω . Hence $u \in L^q_{loc}(\Omega)$.

Let ω be a bounded non-empty domain such that $\overline{\omega} \subset \Omega$. Let u_n be a Cauchy sequence with respect to the norm (2.1). Then $(u_n, \nabla u_n)$ is a Cauchy sequence in $L^q(\omega) \times W^{-1,q}(\Omega) \times \cdots \times W^{-1,q}(\Omega)$. So, $(u_n, \nabla u_n) \to (f_0, f_1, \ldots, f_m)$ in $L^q(\omega) \times W^{-1,q}(\Omega) \times \cdots \times W^{-1,q}(\Omega)$. Clearly, $\partial_j f_0 = f_j$ in ω in the sense of distributions for $j = 1, \ldots, m$. Define $\mathbf{f} = (f_1, \ldots, f_m)$. Since u_n satisfy (2.2), we get

(2.3)
$$\langle \mathbf{f}, \mathbf{\Phi} \rangle = 0 \quad \forall \mathbf{\Phi} \in \mathcal{C}^{\infty}_{c}(\Omega, \mathbb{R}^{m}), \nabla \cdot \mathbf{\Phi} = 0.$$

According to [24, Proposition I.1.1] there exists a distribution u in Ω such that $\nabla u = \mathbf{f}$. Since $\nabla(u - f_0) = 0$ in ω , $u - f_0$ is constant. We can suppose that $u = f_0$ in ω . Let G be a bounded domain with Lipschitz boundary such that $\omega \subset G \subset \overline{G} \subset \Omega$. Since \mathbf{f} satisfies (2.3), [22, Lemma 2.1.1] gives that there exists $p \in L^q(G)$ such that $\nabla p = \nabla u$ in G. Since $\nabla(u - p) = 0$ in G, u - p is constant in G. Thus $u \in D^{-1,q}(\Omega)$ and $u_n \to u$ in $D^{-1,q}(\Omega)$.

Let ω, G be bounded non-empty domains such that $G \subset \omega \subset \overline{\omega} \subset \Omega$. If $u \in D^{-1,q}(\Omega)$ then

$$\|u\|_{L^{q}(G)} + \|\nabla u\|_{W^{-1,q}(\Omega)} \le \|u\|_{L^{q}(\omega)} + \|\nabla u\|_{W^{-1,q}(\Omega)}.$$

[31, Chapter II, $\S5$, Corollary] gives that there exist a positive constant C such that

$$\|u\|_{L^{q}(\omega)} + \|\nabla u\|_{W^{-1,q}(\Omega)} \le C \left[\|u\|_{L^{q}(G)} + \|\nabla u\|_{W^{-1,q}(\Omega)} \right] \qquad \forall u \in D^{-1,q}(\Omega).$$

3. Formulation of the problem

Suppose first that $\Omega \subset \mathbb{R}^m$ is a bounded domain with Lipschitz boundary, and $(\mathbf{u}, p) \in \mathcal{C}^2(\overline{\Omega}; \mathbb{R}^m) \times \mathcal{C}^1(\overline{\Omega})$ is a classical solution of the Robin problem for the Brinkman system

(3.1a)
$$\nabla p - \Delta \mathbf{u} + \lambda \mathbf{u} = \mathbf{f} \text{ in } \Omega, \quad \nabla \cdot \mathbf{u} = 0 \text{ in } \Omega,$$

(3.1b)
$$T(\mathbf{u}, p)\mathbf{n} + h\mathbf{u} = \mathbf{g} \quad \text{on } \partial\Omega,$$

where

$$T(\mathbf{u}, p) = 2\hat{\nabla}\mathbf{u} - pI, \quad \hat{\nabla}\mathbf{u} = \frac{1}{2}[\nabla\mathbf{u} + (\nabla\mathbf{u})^T]$$

and I is the identity matrix. If $\Phi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{m},\mathbb{R}^{m})$, then the Green formula gives

$$\int_{\Omega} \mathbf{f} \cdot \mathbf{\Phi} \, \mathrm{d}\mathbf{x} + \int_{\partial\Omega} \mathbf{g} \cdot \mathbf{\Phi} \, \mathrm{d}\sigma = \int_{\Omega} [2\hat{\nabla}\mathbf{u} \cdot \hat{\nabla}\mathbf{\Phi} - p(\nabla \cdot \mathbf{\Phi}) + \lambda\mathbf{\Phi} \cdot \mathbf{u}] \, \mathrm{d}\mathbf{x} + \int_{\partial\Omega} h\mathbf{u} \cdot \mathbf{\Phi} \, \mathrm{d}\sigma$$

(Compare [29, p. 14].) This formula motivates definition of a weak solution of the Robin problem for the Brinkman system.

Let $\Omega \subset \mathbb{R}^m$ be an open set with compact Lipschitz boundary, $h \in L^{\infty}(\partial\Omega)$, $1 < q < \infty, q' = q/(q-1), \mathbf{F} \in [W^{1,q'}(\Omega, \mathbb{R}^m)]'$. We say that $(\mathbf{u}, p) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q_{\text{loc}}(\overline{\Omega})$ is a weak solution of the Robin problem for the Brinkman system

(3.2a)
$$\nabla p - \Delta \mathbf{u} + \lambda \mathbf{u} = \mathbf{F} \quad in \quad \Omega, \qquad \nabla \cdot \mathbf{u} = 0 \quad in \ \Omega,$$

(3.2b)
$$T(\mathbf{u}, p)\mathbf{n} + h\mathbf{u} = \mathbf{F} \qquad on \ \partial\Omega$$

if
$$\nabla \cdot \mathbf{u} = 0$$
 in Ω and

(3.3)
$$\langle \mathbf{F}, \mathbf{\Phi} \rangle = \int_{\Omega} [2\hat{\nabla}\mathbf{u} \cdot \hat{\nabla}\mathbf{\Phi} - p(\nabla \cdot \mathbf{\Phi}) + \lambda\mathbf{\Phi} \cdot \mathbf{u}] \, \mathrm{d}\mathbf{x} + \int_{\partial\Omega} h\mathbf{u} \cdot \mathbf{\Phi} \, \mathrm{d}\sigma$$

for all $\Phi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{m},\mathbb{R}^{m})$. If $h \equiv 0$ we say about the Neumann problem for the Brinkman system.

If Ω is bounded then $p \in L^q(\Omega)$ and the density of $\mathcal{C}^{\infty}_c(\mathbb{R}^m, \mathbb{R}^m)$ in $W^{1,q'}(\mathbb{R}^m, \mathbb{R}^m)$ gives that (3.3) holds for all $\mathbf{\Phi} \in W^{1,q'}(\mathbb{R}^m, \mathbb{R}^m)$.

If **F** is supported on the boundary then (\mathbf{u}, p) is a weak solution of the problem (3.1) with $\mathbf{f} \equiv 0$ and $\mathbf{g} = \mathbf{F}$.

If $(\mathbf{u}, p) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q_{\text{loc}}(\overline{\Omega})$ then (3.3) holds for all $\Phi \in \mathcal{C}^{\infty}_c(\Omega, \mathbb{R}^m)$ if and only if (\mathbf{u}, p) is a solution of (3.2a) in the sense of distributions.

Remark that if $\Omega \subset \mathbb{R}^m$ is a bounded domain with Lipschitz boundary and $(\mathbf{u}, p) \in \mathcal{C}^2(\overline{\Omega}; \mathbb{R}^m) \times \mathcal{C}^1(\overline{\Omega})$ is a classical solution of the problem (3.1), then (\mathbf{u}, p) is a weak solution of the problem (3.2) with

$$\langle \mathbf{F}, \mathbf{\Phi} \rangle := \int_{\Omega} \mathbf{f} \cdot \mathbf{\Phi} \, \mathrm{d}\mathbf{x} + \int_{\partial \Omega} \mathbf{g} \cdot \mathbf{\Phi} \, \mathrm{d}\sigma.$$

4. Brinkman system in \mathbb{R}^m

Lemma 4.1. For $t \in (0,\infty)$ define $L_t\varphi(\mathbf{x}) := \varphi(t\mathbf{x})$ for $\varphi \in \mathcal{C}^{\infty}_c(\mathbb{R}^m)$. More generally, for a distribution f we define

$$\langle L_t f, \varphi \rangle := \langle f, t^m L_{1/t} \varphi \rangle.$$

Suppose that

(4.1)
$$\nabla p - \Delta \mathbf{u} + \lambda \mathbf{u} = \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0 \qquad in \ \mathbb{R}^m$$

in the sense of distributions. Define $\tilde{p} := t^{-1}L_t p$, $\tilde{\mathbf{u}} := t^{-2}L_t \mathbf{u}$, $\tilde{\mathbf{f}} := L_t \mathbf{f}$. Then

(4.2)
$$\nabla \tilde{p} - \Delta \tilde{\mathbf{u}} + t^2 \lambda \tilde{\mathbf{u}} = \tilde{\mathbf{f}}, \quad \nabla \cdot \tilde{\mathbf{u}} = 0.$$

Proof. If $p \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{m})$, $\mathbf{u} \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{m}, \mathbb{R}^{m})$ then easy calculation yields (4.2). If \mathbf{u}, p are distributions we can choose $p_{k} \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{m})$, $\mathbf{u}_{k} \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{m}, \mathbb{R}^{m})$ such that $p_{k} \to p$, $\mathbf{u}_{k} \to \mathbf{u}$ in the sense of distributions. Now we get (4.2) by the limit process. \Box

Proposition 4.2. Let $\lambda \in (0, \infty)$, $1 < q < \infty$, $\mathbf{f} \in W^{-1,q}(\mathbb{R}^m, \mathbb{R}^m)$. Then there exists a solution $(\mathbf{u}, p) \in W^{1,q}(\mathbb{R}^m, \mathbb{R}^m) \times L^q_{\text{loc}}(\mathbb{R}^m)$ of (4.1). A velocity \mathbf{u} is unique, a pressure p is unique up to an additive constant. Moreover, $p \in D^{-1,q}(\mathbb{R}^m)$ and

(4.3)
$$\|\mathbf{u}\|_{W^{1,q}(\mathbb{R}^m)} + \inf_{c \in \mathbb{R}^1} \|p + c\|_{D^{-1,q}(\mathbb{R}^m)} \le C \|\mathbf{f}\|_{W^{-1,q}(\mathbb{R}^m)}$$

where C depends only on m, λ , q and a choice of ω in (2.1).

Proof. If $\lambda = 1$ then there exists a solution $(\mathbf{u}, p) \in W^{1,q}(\mathbb{R}^m, \mathbb{R}^m) \times L^q_{\text{loc}}(\mathbb{R}^m)$ of (4.1) by [30, Theorem 5.5] and [5, Lemma IV.1.1]. Lemma 4.1 gives that there exists a solution $(\mathbf{u}, p) \in W^{1,q}(\mathbb{R}^m, \mathbb{R}^m) \times L^q_{\text{loc}}(\mathbb{R}^m)$ of (4.1) for arbitrary $\lambda \in (0, \infty)$. Let $(\tilde{\mathbf{u}}, \tilde{p}) \in W^{1,q}(\mathbb{R}^m, \mathbb{R}^m) \times L^q_{\text{loc}}(\mathbb{R}^m)$ be another solution of (4.1). Then $u_j - \tilde{u}_j, p - \tilde{p}_j$ are polynomials by [18, Proposition 5.1]. Since $u_j - \tilde{u}_j \in W^{1,q}(\mathbb{R}^m)$, we infer that $u_j - \tilde{u}_j \equiv 0$. Thus $\nabla(p - \tilde{p}) \equiv 0$ by (4.1). This forces that $p - \tilde{p}$ is constant. Since $\partial_j p = \Delta u_j - \lambda u_j + f_j \in W^{-1,q}(\mathbb{R}^m)$, we infer $p \in D^{-1,q}(\mathbb{R}^m)$.

Define

$$Q(\mathbf{u}, p) := \int_{\Omega} p \, \mathrm{d}\mathbf{x}.$$

Then $(\mathbf{u}, p) \mapsto (\nabla p - \Delta \mathbf{u} + \lambda \mathbf{u}, Qp)$ is a bounded linear operator from the Banach space $W^{1,q}_{\sigma}(\mathbb{R}^m, \mathbb{R}^m) \times D^{-1,q}(\mathbb{R}^m)$ to $W^{-1,q}(\mathbb{R}^m, \mathbb{R}^m)$, where $W^{1,q}_{\sigma}(\mathbb{R}^m, \mathbb{R}^m) :=$ $\{\mathbf{u} \in W^{1,q}(\mathbb{R}^m, \mathbb{R}^m); \nabla \cdot \mathbf{u} \equiv 0\}$. Since it is one-to-one and onto, it is an isomorphism. This gives the estimate (4.3).

5. Fundamental solution of the Brinkman system

Let $\lambda \geq 0$. Then there exists a unique fundamental solution $E^{\lambda} = (E_{ij}^{\lambda}), Q^{\lambda} = (Q_i^{\lambda})$ of the Brinkman system

(5.1)
$$-\Delta \mathbf{u} + \lambda \mathbf{u} + \nabla p = 0, \quad \nabla \mathbf{u} = 0$$

in \mathbb{R}^m such that $E^{\lambda}(x) = o(|x|), Q^{\lambda}(x) = o(|x|)$ as $|x| \to \infty$. Remember that for $i, j \in \{1, \ldots, m\}$ we have

(5.2)
$$-\Delta E_{ij}^{\lambda} + \lambda E_{ij}^{\lambda} + \partial_i Q_j^{\lambda} = \delta_{ij} \delta_0, \quad \partial_1 E_{1j}^{\lambda} + \dots \partial_m E_{mj}^{\lambda} = 0$$

(5.3)
$$-\Delta E_{i,m+1}^{\lambda} + \lambda E_{i,m+1}^{\lambda} + \partial_i Q_{m+1}^{\lambda} = 0, \quad \partial_1 E_{1,m+1}^{\lambda} + \dots \partial_m E_{m,m+1}^{\lambda} = \delta_0.$$
Clearly

Clearly,

(5.4)
$$E^{\lambda}(-\mathbf{x}) = E^{\lambda}(\mathbf{x}), \quad Q^{\lambda}(-\mathbf{x}) = -Q^{\lambda}(\mathbf{x}).$$

If $j \in \{1, \ldots, m\}$ then

$$Q_{j}^{\lambda}(x) = E_{j,m+1}^{\lambda}(x) = \frac{1}{\omega_{n}} \frac{x_{j}}{|x|^{m}},$$
$$Q_{m+1}^{\lambda} = \begin{cases} \delta_{0}(x) + (\lambda/\omega_{m}) \ln |x|^{-1}, & m = 2, \\ \delta_{0}(x) + (\lambda/\omega_{m})(m-2)^{-1} |x|^{2-m}, & m > 2, \end{cases}$$

where ω_m is the area of the unit sphere in \mathbb{R}^m . (See [29, p. 60].) The expressions of E^{λ} can be found in the book [29, Chapter 2]. We omit them for the sake of brevity.

For $\lambda = 0$ we obtain the fundamental solution of the Stokes system. If $i, j \in \{1, ..., m\}$, the components of E^0 are given by

(5.5)
$$E_{ij}^{0}(x) = \frac{1}{2\omega_m} \left\{ \frac{\delta_{ij}}{(m-2)|x|^{m-2}} + \frac{x_i x_j}{|x|^m} \right\}, \quad m \ge 3$$

(5.6)
$$E_{ij}^{0}(x) = \frac{1}{4\pi} \left\{ \delta_{ij} \ln \frac{1}{|x|} + \frac{x_j x_k}{|x|^2} \right\}, \quad m = 2,$$

(see, e.g., [29, p. 16]).

If $i, j \leq m$ then

(5.7)
$$E_{ij}^{\lambda} = E_{ji}^{\lambda}$$

(5.8)
$$|E_{ij}^{\lambda}(x) - E_{ij}^{0}(x)| = O(1) \text{ as } |x| \to 0$$

by [29, p. 66] and

(5.9)
$$|\nabla E_{ij}^{\lambda}(x) - \nabla E_{ij}^{0}(x)| = O(|x|^{2-m}) \text{ as } |x| \to 0$$

by [18, Lemma 4.1].

If $i, j \leq m$ and $\lambda > 0$, then

(5.10)
$$\partial^{\alpha} E_{ij}(x) = O(|x|^{-m-|\alpha|}), \quad |x| \to \infty$$

for each multiindex α . (See [14, Lemma 3.1].)

6. VOLUME POTENTIAL

We denote $Q(x) = (Q_1^0(x), \ldots, Q_m^0(x)) = (Q_1^{\lambda}(x), \ldots, Q_m^{\lambda}(x))$. By \tilde{E}^{λ} we denote the matrix of the type $m \times m$, where $\tilde{E}_{ij}^{\lambda}(x) = E_{ij}^{\lambda}(x)$ for $i, j \leq m$.

Proposition 6.1. Let $0 < \lambda < \infty$, $1 < q < \infty$, $s \in \mathbb{R}^1$. Then $\mathbf{f} \mapsto \tilde{E}^{\lambda} * \mathbf{f}$, $\mathbf{f} \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^m, \mathbb{R}^m)$, can be extended by a unique way as a bounded linear operator from $W^{s,q}(\mathbb{R}^m, \mathbb{R}^m)$ to $W^{s+2,q}(\mathbb{R}^m, \mathbb{R}^m)$.

Proof. $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{m},\mathbb{R}^{m})$ is a dense subset of $W^{s,q}(\mathbb{R}^{m},\mathbb{R}^{m})$ by [25, §2.3.3], [26, §2.12, Theorem] and [1, Theorem 4.2.2]. This gives a uniqueness.

Suppose first that s = -1. If $\mathbf{f} \in \mathcal{C}_c^{\infty}(\mathbb{R}^m, \mathbb{R}^m)$, then $\mathbf{u} := \tilde{E}^{\lambda} * \mathbf{f}$, $p := Q * \mathbf{f}$ is a solution of (4.1). According to Proposition 4.2 there exists a solution $(\tilde{\mathbf{u}}, \tilde{p}) \in W^{1,q}(\mathbb{R}^m, \mathbb{R}^m) \times L^q_{\text{loc}}(\mathbb{R}^m)$ of (4.1) such that

$$\|\tilde{\mathbf{u}}\|_{W^{1,q}(\mathbb{R}^m)} \le C_1 \|\mathbf{f}\|_{W^{-1,q}(\mathbb{R}^m)}$$

with C_1 independent of **f**. [18, Proposition 5.1] gives that $u_j - \tilde{u}_j$ are polynomials. Since $\mathbf{u} \in L^q(\{|\mathbf{x}| > r\})$ for sufficiently large r by (5.10), we infer that $\mathbf{u} \equiv \tilde{\mathbf{u}}$. Therefore $B : \mathbf{f} \mapsto \tilde{E}^{\lambda} * \mathbf{f}, \mathbf{f} \in \mathcal{C}^{\infty}_c(\mathbb{R}^m, \mathbb{R}^m)$, can be extended as a bounded linear operator $B : W^{-1,q}(\mathbb{R}^m, \mathbb{R}^m) \to W^{1,q}(\mathbb{R}^m, \mathbb{R}^m)$.

Let now $k \in \mathbb{N}_0$. Then $W^{k,q}(\mathbb{R}^m) \hookrightarrow W^{-1,q}(\mathbb{R}^m)$ by [26, §2.3.3, Remark 4]. In particular, there exists a constant C_2 such that

(6.1)
$$\|\mathbf{f}\|_{W^{-1,q}(\mathbb{R}^m)} \le C_2 \|\mathbf{f}\|_{L^q(\mathbb{R}^m)}.$$

If $\mathbf{f} \in W^{k,q}(\mathbb{R}^m, \mathbb{R}^m)$ and α is a multi-index with $|\alpha| \leq k+1$, then $\partial^{\alpha} \tilde{E}^{\lambda} * \mathbf{f} = \tilde{E}^{\lambda} * \partial^{\alpha} \mathbf{f}$ and therefore

$$\|\partial^{\alpha}\tilde{E}^{\lambda} * \mathbf{f}\|_{W^{1,q}(\mathbb{R}^m)} \le C_1 \|\partial^{\alpha}\mathbf{f}\|_{W^{-1,q}(\mathbb{R}^m)}.$$

This, (6.1) and $\partial_j : L^q(\mathbb{R}^m) \to W^{-1,q}(\mathbb{R}^m)$ bounded yield that

 $B: W^{k,q}(\mathbb{R}^m, \mathbb{R}^m) \to W^{k+2,q}(\mathbb{R}^m, \mathbb{R}^m)$

is bounded.

Let now $k \in \mathbb{N}_0$, $0 < \theta < 1$, $s = k - 1 + \theta$. Then

$$(W^{k-1,q}(\mathbb{R}^m), W^{k,q}(\mathbb{R}^m))_{\theta,q} = W^{s,q}(\mathbb{R}^m),$$
$$(W^{k+1,q}(\mathbb{R}^m), W^{k+2,q}(\mathbb{R}^m))_{\theta,q} = W^{s+2,q}(\mathbb{R}^m)$$

where $(,)_{\theta,q}$ denotes the real interpolation. (See [3, Theorem 6.4.5].) Thus $B : W^{s,q}(\mathbb{R}^m, \mathbb{R}^m) \to W^{s+2,q}(\mathbb{R}^m, \mathbb{R}^m)$ is bounded by [23, Lemma 22.3].

Let now s < -1. Denote q' = q/(q-1). Since $B: W^{-s-2,q'}(\mathbb{R}^m) \to W^{-s,q'}(\mathbb{R}^m)$ is bounded, we infer that $B': W^{s,q}(\mathbb{R}^m, \mathbb{R}^m) \to W^{s+2,q}(\mathbb{R}^m, \mathbb{R}^m)$ is bounded. Since $\tilde{E}^{\lambda}(-\mathbf{x}) = \tilde{E}^{\lambda}(\mathbf{x})$ by (5.4) and $\tilde{E}_{ij} = \tilde{E}_{ji}$ by (5.7), Fubini's theorem yields that B' = B.

7. BRINKMAN BOUNDARY LAYER POTENTIALS

Let now $\Omega \subset \mathbb{R}^m$ be an open set with compact Lipschitz boundary. If $1 < q < \infty$ and $\mathbf{g} \in L^q(\partial\Omega, \mathbb{R}^m)$ then the single-layer potential for the Brinkman system $E_{\Omega}^{\lambda}\mathbf{g}$ and its associated pressure potential $Q_{\Omega}\mathbf{g}$ are given by

$$E_{\Omega}^{\lambda} \mathbf{g}(x) := \int_{\partial \Omega} \tilde{E}^{\lambda}(x-y) \mathbf{g}(y) \, \mathrm{d}\sigma(y),$$
$$Q_{\Omega} \mathbf{g}(x) := \int_{\partial \Omega} Q(x-y) \mathbf{g}(y) \, \mathrm{d}\sigma(y).$$

More generally, if $\mathbf{g} = (g_1, \ldots, g_m)$, where g_j are distributions supported on $\partial \Omega$ then we define

$$E_{\Omega}^{\lambda}\mathbf{g}(x) := \langle \mathbf{g}, \tilde{E}^{\lambda}(x-\cdot) \rangle, \quad Q_{\Omega}\mathbf{g}(x) := \langle \mathbf{g}, Q(x-\cdot) \rangle.$$

Remark that $(E_{\Omega}^{\lambda}\mathbf{g}, Q_{\Omega}\mathbf{g})$ is a solution of the Brinkman system (5.1) in the set $\mathbb{R}^m \setminus \partial\Omega$.

Denote

$$K_{\Omega}^{\lambda}(y,x) = -T_x(\tilde{E}^{\lambda}(x-y), Q(x-y))\mathbf{n}^{\Omega}(x),$$

where

$$T(\mathbf{u}, p) = 2\hat{\nabla}\mathbf{u} - pI, \quad \hat{\nabla}\mathbf{u} = \frac{1}{2}[\nabla\mathbf{u} + (\nabla\mathbf{u})^T]$$

is the stress tensor corresponding to a velocity **u** and a pressure p. Now we define a double layer potential. For $\Psi \in L^q(\partial\Omega, \mathbb{R}^m)$ define in $\mathbb{R}^m \setminus \partial\Omega$

(7.1)
$$(D_{\Omega}^{\lambda} \Psi)(x) = \int_{\partial \Omega} K_{\Omega}^{\lambda}(x, y) \Psi(y) \, \mathrm{d}\sigma(y),$$

and the corresponding pressure by

(7.2)
$$(\Pi_{\Omega}^{\lambda} \Psi)(\mathbf{x}) = \int_{\partial \Omega} \Pi_{\Omega}^{\lambda}(\mathbf{x}, \mathbf{y}) \Psi(\mathbf{y}) \, \mathrm{d}\sigma(\mathbf{y}).$$

If m > 2 then

$$\begin{split} \Pi_{\Omega}^{\lambda}(\mathbf{x},\mathbf{y}) &= \frac{1}{\omega_{m}} \left\{ -(\mathbf{y}-\mathbf{x}) \frac{2m(\mathbf{y}-\mathbf{x})\cdot\mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{m+2}} + \frac{2\mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{m}} - \lambda \frac{|\mathbf{x}-\mathbf{y}|^{2-m}}{m-2} \mathbf{n}^{\Omega}(\mathbf{y}) \right\} \\ \text{where } \omega_{m} \text{ is the surface of the unit sphere. If } m = 2 \text{ then} \\ \Pi_{\Omega}^{\lambda}(\mathbf{x},\mathbf{y}) &= \frac{1}{2\pi} \left\{ -(\mathbf{y}-\mathbf{x}) \frac{4(\mathbf{y}-\mathbf{x})\cdot\mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{4}} + \frac{2\mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{m}} - \lambda \left(\ln \frac{1}{|\mathbf{x}-\mathbf{y}|} \right) \mathbf{n}^{\Omega}(\mathbf{y}) \right\} \\ \text{Remark that } D_{\Omega}^{\lambda} \Psi \in \mathcal{C}^{\infty}(\mathbb{R}^{m} \setminus \partial\Omega, \mathbb{R}^{m}), \\ \Pi_{\Omega}^{\lambda} \Psi \in \mathcal{C}^{\infty}(\mathbb{R}^{m} \setminus \partial\Omega, \mathbb{R}^{1}) \text{ and } \nabla \Pi_{\Omega}^{\lambda} \Psi - \Delta D_{\Omega}^{\lambda} \Psi + \lambda D_{\Omega}^{\lambda} \Psi = 0, \\ \nabla \cdot D_{\Omega}^{\lambda} \Psi = 0 \text{ in } \mathbb{R}^{m} \setminus \partial\Omega. \end{split}$$

$$K_{\Omega,\lambda}\Psi(\mathbf{x}) = \lim_{\epsilon \searrow 0} \int_{\partial\Omega \setminus B(\mathbf{x};\epsilon)} K_{\Omega}^{\lambda}(\mathbf{x}, \mathbf{y})\Psi(\mathbf{y}) \, \mathrm{d}\sigma(\mathbf{y}), \quad \mathbf{x} \in \partial\Omega,$$

where $B(\mathbf{x}; \epsilon) = \{ \mathbf{y} \in \mathbb{R}^m; |\mathbf{x} - \mathbf{y}| < \epsilon \}.$

Lemma 7.1. Let $\Omega \subset \mathbb{R}^m$ be an open set with compact Lipschitz boundary, $\lambda \geq 0$, $1 < q < \infty$, 0 < s < 1. Then $K_{\Omega,\lambda}$ is a bounded linear operator on $W^{s,q}(\partial\Omega, \mathbb{R}^m)$ and its adjoint operator $K'_{\Omega,\lambda}$ is a bounded linear operator on $W^{-s,q/(q-1)}(\partial\Omega, \mathbb{R}^m)$.

(See [11, Lemma 3.1].)

Lemma 7.2. Let $\Omega \subset \mathbb{R}^m$ be a bounded open set with Lipschitz boundary, $\lambda \geq 0$, $1 < q < \infty$, 0 < s < 1. If $s \neq 2$ suppose moreover that $s \neq 1 - 1/q$. Then $D_{\Omega}^{\lambda} : W^{s,q}(\partial\Omega, \mathbb{R}^m) \to W^{s+1/q,q}(\Omega, \mathbb{R}^m)$ is a bounded linear operator. If $\Phi \in W^{s,q}(\partial\Omega, \mathbb{R}^m)$ then $\frac{1}{2}\Phi + K_{\Omega,\lambda}\Phi$ is the trace of $D_{\Omega}^{\lambda}\Phi$.

(See [11, Lemma 3.1].)

Proposition 7.3. Let $\Omega \subset \mathbb{R}^m$ be an open set with compact Lipschitz boundary, $\lambda > 0, 1 < q < \infty, -1 < s < 0$. Then $E_{\Omega}^{\lambda} : W^{s,q}(\partial\Omega, \mathbb{R}^m) \to W^{s+1+1/q,q}(\mathbb{R}^m)$ is bounded.

Proof. Put q' = q/(q-1). Then

$$W^{s,q}(\partial\Omega,\mathbb{R}^m) \hookrightarrow [\mathring{W}^{1/q'-s,q'}(\mathbb{R}^m,\mathbb{R}^m)]' = W^{s-1/q',q}(\mathbb{R}^m,\mathbb{R}^m)$$

by [9, Chapter VI, Theorem 1] and [19, Theorem 3.18]. Since s-1/q'+2 = s+1+1/q, Proposition 6.1 gives the proposition.

Lemma 7.4. Let $\Omega \subset \mathbb{R}^m$ be an open set with compact Lipschitz boundary, $1 < q < \infty$, $\Phi \in W^{-1/q,q}(\partial\Omega, \mathbb{R}^m)$, $\lambda \ge 0$. Denote by $\mathcal{E}^{\lambda}_{\Omega}\Phi$ the restriction of $E^{\lambda}_{\Omega}\Phi$ onto $\partial\Omega$. Then $\mathcal{E}^{\lambda}_{\Omega}\Phi$ is the trace of $E^{\lambda}_{\Omega}\Phi$. If $h \in L^{\infty}(\partial\Omega)$, then $(\mathbf{u}, p) := (E^{\lambda}_{\Omega}\Phi, Q_{\Omega}\Phi)$ is a solution of the Robin problem (3.1) with $\mathbf{f} \equiv 0$ and $\mathbf{g} = \frac{1}{2}\Phi - K'_{\Omega,\lambda}\Phi + h\mathcal{E}^{\lambda}_{\Omega}\Phi$. Moreover, $\mathcal{E}^{\lambda}_{\Omega} : W^{-1/q,q}(\partial\Omega, \mathbb{R}^m) \to W^{1-1/q,q}(\partial\Omega, \mathbb{R}^m)$ is a bounded operator.

(See [11, Lemma 3.1].)

Proposition 7.5. Let $\Omega \subset \mathbb{R}^m$ be an open set with compact Lipschitz boundary, $1 < q < \infty, \lambda \ge 0, 0 < s < 1$. Suppose that one from the following conditions is fulfilled:

- (1) q = 2.
- (2) $\partial \Omega$ is of class C^1 .
- (3) $2 \le m \le 3$ and $3/2 \le q \le 3$.

Then $\frac{1}{2}I \pm K_{\Omega,\lambda}$ are Fredholm operators with index 0 in $W^{1-1/q,q}(\partial\Omega;\mathbb{R}^m)$ and in $W^{s,2}(\partial\Omega;\mathbb{R}^m)$, and $\frac{1}{2}I \pm K'_{\Omega,\lambda}$ in $W^{-1/q,q}(\partial\Omega;\mathbb{R}^m)$ are Fredholm operators with index 0.

Proof. Denote q' = q/(q-1). If $\partial\Omega$ is of class \mathcal{C}^1 then $K_{\Omega,0}$ is a compact operator on $W^{1-1/q,q}(\partial\Omega;\mathbb{R}^m)$ and on $W^{1-1/q',q'}(\partial\Omega;\mathbb{R}^m)$ by [16, p. 232]. Therefore $K'_{\Omega,0}$ is a compact operator on $[W^{1-1/q',q'}(\partial\Omega;\mathbb{R}^m)]' = W^{-1/q,q}(\partial\Omega;\mathbb{R}^m)$. Hence $\frac{1}{2}I \pm K_{\Omega,0}$ are Fredholm operators with index 0 in $W^{1-1/q,q}(\partial\Omega;\mathbb{R}^m)$, and $\frac{1}{2}I \pm K'_{\Omega,0}$ are Fredholm operators with index 0 in $W^{-1/q,q}(\partial\Omega;\mathbb{R}^m)$.

 $\frac{1}{2}I \pm K_{\Omega,0}$ are Fredholm operators with index 0 in $W^{1-1/q,q}(\partial\Omega;\mathbb{R}^m)$ and in $W^{s,2}(\partial\Omega;\mathbb{R}^m)$, and $\frac{1}{2}I \pm K'_{\Omega,0}$ are Fredholm operators with index 0 in the space $W^{-1/q,q}(\partial\Omega;\mathbb{R}^m)$ in the other cases by [20, Theorem 10.5.3].

 $K_{\Omega,\lambda} - K_{\Omega,0}$ is a compact operator in $W^{1-1/q,q}(\partial\Omega; \mathbb{R}^m)$ and in $W^{s,2}(\partial\Omega; \mathbb{R}^m)$, $K'_{\Omega,\lambda} - K'_{\Omega,0}$ is a compact operator in $W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ by [11, Theorem 3.1]. This gives the proposition.

8. INTEGRAL REPRESENTATION

The following lemma is well known for classical solutions of the Neumann problem for the Brinkman system.

Lemma 8.1. Let $\Omega \subset \mathbb{R}^m$ be a bounded open set with Lipschitz boundary. Let $\lambda \geq 0, 1 < q < \infty, \mathbf{f} \equiv 0, \mathbf{g} \in W^{-1/q,q}(\partial\Omega; \mathbb{R}^m), h \equiv 0$. If $(\mathbf{u}, p) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ is a solution of the Neumann problem (3.1) then

(8.1)
$$D_{\Omega}^{\lambda}\mathbf{u}(\mathbf{x}) + E_{\Omega}^{\lambda}\mathbf{g}(\mathbf{x}) = \begin{cases} \mathbf{u}(\mathbf{x}), & \mathbf{x} \in \Omega, \\ 0, & \mathbf{x} \notin \overline{\Omega}, \end{cases}$$

(8.2)
$$\Pi_{\Omega}^{\lambda} \mathbf{u}(\mathbf{x}) + Q_{\Omega} \mathbf{g}(\mathbf{x}) = \begin{cases} p(\mathbf{x}), & \mathbf{x} \in \Omega, \\ 0, & \mathbf{x} \notin \overline{\Omega}. \end{cases}$$

Proof. If $\mathbf{x} \notin \overline{\Omega}$ then (8.1), (8.2) are an easy consequence of the Green formula. (See the proof of the lemma for classical solutions of the Robin problem in [29].)

Let now $\mathbf{x} \in \Omega$. Put $\omega := \Omega \setminus \overline{B(\mathbf{x}; r)}$. Define $\mathbf{g} = T(\mathbf{u}, p)\mathbf{n}^{\omega}$ on $\partial \omega \setminus \partial \Omega$. Then

(8.3)
$$D^{\lambda}_{\omega}\mathbf{u}(\mathbf{x}) + E^{\lambda}_{\omega}\mathbf{g}(\mathbf{x}) = 0, \quad \Pi^{\lambda}_{\omega}\mathbf{u}(\mathbf{x}) + Q_{\omega}\mathbf{g}(\mathbf{x}) = 0.$$

[29, p. 60] gives

(8.4)
$$D_{B(\mathbf{x};r)}^{\lambda}\mathbf{u}(\mathbf{x}) - E_{B(\mathbf{x};r)}^{\lambda}\mathbf{g}(\mathbf{x}) = \mathbf{u}(\mathbf{x}), \quad \Pi_{B(\mathbf{x};r)}^{\lambda}\mathbf{u}(\mathbf{x}) - Q_{B(\mathbf{x};r)}\mathbf{g}(\mathbf{x}) = p(\mathbf{x}).$$

Adding (8.3) and (8.4) we obtain (8.1), (8.2).

9. Robin problem for the Brinkman system

First we study the problem (3.1) with $\mathbf{f} \equiv 0$ and $\mathbf{g} \in W^{1/q-1,q}(\partial\Omega, \mathbb{R}^m)$. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary. Let $G(1), \ldots, G(k)$ be all bounded components of $\mathbb{R}^m \setminus \overline{\Omega}$. Fix open balls B(j) such that $\overline{B}(j) \subset G(j)$. Choose $\Psi_j \in W^{1,\infty}(\partial G(j), \mathbb{R}^m)$ such that

(9.1)
$$\int_{\partial G(j)} \Psi_j \cdot \mathbf{n}^{\Omega} \, \mathrm{d}\sigma \neq 0.$$

Define $\Psi_i = 0$ on $\partial\Omega \setminus \partial G(j)$. If $\Phi \in W^{1/q-1,q}(\partial\Omega,\mathbb{R}^m)$ we define the modified Brinkman single layer potential by

(9.2)
$$\dot{E}_{\Omega}^{\lambda} \mathbf{\Phi} := E_{\Omega}^{\lambda} \mathbf{\Phi} + \sum_{j=1}^{k} \langle \mathbf{\Phi}, \mathbf{\Psi}_{j} \rangle D_{B(j)}^{\lambda} \mathbf{n}^{B(j)},$$

(9.3)
$$\dot{Q}_{\Omega}^{\lambda} \mathbf{\Phi} := Q_{\Omega}^{\lambda} \mathbf{\Phi} + \sum_{j=1}^{k} \langle \mathbf{\Phi}, \Psi_{j} \rangle \Pi_{B(j)}^{\lambda} \mathbf{n}^{B(j)}.$$

(If $\partial\Omega$ is connected then $\dot{E}^{\lambda}_{\Omega}\Phi = E^{\lambda}_{\Omega}\Phi, \dot{Q}^{\lambda}_{\Omega}\Phi = Q^{\lambda}_{\Omega}\Phi$.) Proposition 7.3 and Lemma 7.4 give that $(\dot{E}^{\lambda}_{\Omega} \Phi, \dot{Q}^{\lambda}_{\Omega} \Phi)$ is a solution of the Robin problem (3.1) if and only if $\tau_{\Omega,h}^{\lambda} \mathbf{\Phi} = \mathbf{g}$ where

$$\tau_{\Omega,h}^{\lambda} \mathbf{\Phi} := \frac{1}{2} \mathbf{\Phi} - K_{\Omega,\lambda}' \mathbf{\Phi} + \sum_{j=1}^{k} \langle \mathbf{\Phi}, \mathbf{\Psi}_j \rangle T(D_{B(j)}^{\lambda} \mathbf{n}^{B(j)}, \Pi_{B(j)}^{\lambda} \mathbf{n}^{B(j)}) \mathbf{n}^{\Omega} + h \dot{E}_{\Omega}^{\lambda} \mathbf{\Phi}.$$

Lemma 9.1. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, 1 < q < 1 $\infty, \lambda > 0, h \in L^{\infty}(\partial\Omega)$. Suppose that one from the following conditions is fulfilled:

- a) q = 2.
- b) $\partial \Omega$ is of class C^1 .
- c) $2 \le m \le 3$ and $3/2 \le q \le 3$.
- Let $(\mathbf{u}, p) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ be a weak solution of (3.2).
 - (1) If q = 2 then

(9.4)
$$\langle \mathbf{F}, \mathbf{u} \rangle = \int_{\Omega} [2|\hat{\nabla}\mathbf{u}|^2 + \lambda |\mathbf{u}|^2] \, \mathrm{d}\mathbf{x} + \int_{\partial\Omega} h |\mathbf{u}|^2 \mathrm{d}\sigma.$$

(2) If
$$h \ge 0$$
 and $\mathbf{F} \equiv 0$ then $\mathbf{u} \equiv 0$, $p \equiv 0$.

Proof. Suppose first that q = 2. The definition of the weak solution of the Robin problem and the density of $\mathcal{C}_{c}^{\infty}(\Omega, \mathbb{R}^{m})$ in $W^{1,2}(\Omega, \mathbb{R}^{m})$ give (9.4). Let now $h \geq 0$ and $\mathbf{F} \equiv 0$. Since $T(\mathbf{u}, p)\mathbf{n}^{\Omega} = -h\mathbf{u}$, Lemma 8.1 gives

(9.5)
$$\mathbf{u} = D_{\Omega}^{\lambda} \mathbf{u} - E_{\Omega}^{\lambda}(h\mathbf{u}), \quad p = \Pi_{\Omega}^{\lambda} \mathbf{u} - Q_{\Omega}(h\mathbf{u}) \quad \text{in } \Omega$$

For the trace of \mathbf{u} we obtain from Lemma 7.2 and Lemma 7.4

$$\mathbf{u} = \frac{1}{2}\mathbf{u} + K_{\Omega,\lambda}\mathbf{u} - \mathcal{E}_{\Omega}^{\lambda}h\mathbf{u} \quad \text{on } \partial\Omega.$$

Hence $H\mathbf{u} = 0$, where $H\mathbf{v} = \frac{1}{2}\mathbf{v} - K_{\Omega,\lambda}\mathbf{v} + \mathcal{E}_{\Omega}^{\lambda}h\mathbf{v}$. The operator $\frac{1}{2}I - K_{\Omega,\lambda}$ is a Fredholm operator with index 0 in $W^{1-1/q,q}(\Omega, \mathbb{R}^m)$, in $W^{1-1/q,2}(\Omega, \mathbb{R}^m)$ and in $W^{1/2,2}(\Omega,\mathbb{R}^m)$ by Proposition 7.5. The operator $\mathbf{v}\mapsto \mathcal{E}_{\Omega}^{\lambda}h\mathbf{v}$ is a compact operator in $W^{1-1/q,q}(\Omega, \mathbb{R}^m)$, in $W^{1-1/q,2}(\Omega, \mathbb{R}^m)$ and in $W^{1/2,2}(\Omega, \mathbb{R}^m)$ by [11, Lemma 3.1]. So, H is a Fredholm operator with index 0 in $W^{1-1/q,q}(\Omega,\mathbb{R}^m)$, in $W^{1-1/q,2}(\Omega,\mathbb{R}^m)$ and in $W^{1/2,2}(\Omega, \mathbb{R}^m)$. [17, Lemma 9] gives that $\mathbf{u} \in W^{1/2,2}(\partial\Omega; \mathbb{R}^m)$. According to [11, Lemma 3.1] one has $D_{\Omega}^{\lambda} \mathbf{u} \in W^{1,2}(\Omega; \mathbb{R}^m), \Pi_{\Omega}^{\lambda} \mathbf{u} \in L^2(\Omega)$. The representation (9.5), Proposition 7.3 and [11, Lemma 3.1] give that $(\mathbf{u}, p) \in W^{1,2}(\Omega, \mathbb{R}^m) \times L^2(\Omega)$. Thus

$$0 = \langle \mathbf{F}, \mathbf{u} \rangle = \int_{\Omega} [|\hat{\nabla}\mathbf{u}|^2 + \lambda |\mathbf{u}|^2] \, \mathrm{d}\mathbf{x} + \int_{\partial \Omega} h |\mathbf{u}|^2 \mathrm{d}\sigma.$$

Hence $\mathbf{u} \equiv 0$. Since $\nabla p = \Delta \mathbf{u} - \lambda \mathbf{u} \equiv 0$, there exists a constant c such that $p \equiv 0$. So, (\mathbf{u}, p) is a classical solution of the Robin problem (3.1). So, $0 = T(\mathbf{u}, \mathbf{p})\mathbf{n}^{\Omega} + h\mathbf{u} = -c\mathbf{n}^{\Omega}$. Hence c = 0.

Theorem 9.2. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $1 < q < \infty$, $\lambda > 0$, $h \in L^{\infty}(\partial \Omega)$, $h \ge 0$. Suppose that one from the following conditions is fulfilled:

- (1) q = 2.
- (2) $\partial \Omega$ is of class C^1 .
- (3) $2 \le m \le 3$ and $3/2 \le q \le 3$.

Then $\tau_{\Omega,h}^{\lambda}$ is an isomorphism in $W^{-1/q,q}(\partial\Omega;\mathbb{R}^m)$. If $\mathbf{g} \in W^{-1/q,q}(\partial\Omega;\mathbb{R}^m)$ then

(9.6)
$$(\mathbf{u}, p) := (\dot{E}^{\lambda}_{\Omega}(\tau^{\lambda}_{\Omega,h})^{-1}\mathbf{g}, \dot{Q}^{\lambda}_{\Omega}(\tau^{\lambda}_{\Omega,h})^{-1}\mathbf{g})$$

is a unique solution in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ of the Robin problem (3.1) with $\mathbf{f} \equiv 0$. Moreover,

(9.7)
$$\|\mathbf{u}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} + \|p\|_{L^q(\Omega)} \le C \|\mathbf{g}\|_{W^{-1/q,q}(\partial\Omega;\mathbb{R}^m)}$$

where a constant C does not depend on \mathbf{g} .

Proof. $\mathcal{E}_{\Omega}^{\lambda}: W^{-1/q,q}(\partial\Omega, \mathbb{R}^m) \to W^{1-1/q,q}(\partial\Omega, \mathbb{R}^m) \hookrightarrow L^q(\partial\Omega, \mathbb{R}^m)$ by Lemma 7.4. $L^q(\partial\Omega, \mathbb{R}^m) \hookrightarrow W^{-1/q,q}(\partial\Omega, \mathbb{R}^m)$ compactly by [28, Theorem 1.97], [27, §2.5.7, Proposition] and [25, §2.3.2, Proposition 2]. Thus $\tau_{\Omega,h}^{\lambda} - [\frac{1}{2}I - K'_{\Omega,\lambda}]$ is a compact operator in $W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$. Since $\frac{1}{2}I - K'_{\Omega,\lambda}$ is a Fredholm operator with index 0 in $W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ by Proposition 7.5, we infer that $\tau_{\Omega,h}^{\lambda}$ is a Fredholm operator with index 0 in $W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$.

The uniqueness of a solution of the problem (3.1) in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ follows from Lemma 9.1. Let $\mathbf{\Phi} \in W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$, $\tau_{\Omega,h}^{\lambda}\mathbf{\Phi} = 0$. Then $(\mathbf{u}, p) :=$ $(\dot{E}_{\Omega}^{\lambda}\mathbf{\Phi}, \dot{Q}_{\Omega}^{\lambda}\mathbf{\Phi})$ is a weak solution of the Robin problem (3.1) in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ with $\mathbf{f} \equiv 0$, $\mathbf{g} \equiv 0$. So, $\mathbf{u} = 0$ in Ω , p = 0 in Ω . The trace of \mathbf{u} is equal to

(9.8)
$$\mathcal{E}_{\Omega}^{\lambda} \Phi + \sum_{j=1}^{k} \langle \Phi, \Psi_{j} \rangle D_{B(j)}^{\lambda} \mathbf{n}^{B(j)} = 0$$

by Lemma 7.4. Since $\nabla \cdot \mathcal{E}_{\Omega}^{\lambda} \Phi = 0$, $\nabla \cdot D_{B(j)}^{\lambda} \mathbf{n}^{B(j)} = 0$ in G(i) for $j \neq i$, Green's formula gives

$$\int_{\partial G(i)} \mathbf{n}^{\Omega} \cdot \mathcal{E}_{\Omega}^{\lambda} \mathbf{\Phi} \, \mathrm{d}\sigma = 0, \quad \int_{\partial G(i)} \mathbf{n}^{\Omega} \cdot D_{B(j)}^{\lambda} \mathbf{n}^{B(j)} \, \mathrm{d}\sigma = 0, \quad j \neq i.$$

This and (9.8) give

(9.9)
$$\langle \mathbf{\Phi}, \mathbf{\Psi}_i \rangle \int_{\partial G(i)} \mathbf{n}^{\Omega} \cdot D^{\lambda}_{B(i)} \mathbf{n}^{B(i)} \, \mathrm{d}\sigma = 0$$

Using [18, Proposition 7.2] on B(i) and $G(i) \setminus B(i)$

$$\int_{\partial B(i)} \mathbf{n}^{B(i)} \cdot \left[\frac{1}{2}\mathbf{n}^{B(i)} + K_{B(i),\lambda}\mathbf{n}^{B(i)}\right] \, \mathrm{d}\sigma = 0,$$
$$\int_{\partial B(i)} \mathbf{n}^{B(i)} \cdot \left[\frac{1}{2}\mathbf{n}^{B(i)} - K_{B(i),\lambda}\mathbf{n}^{B(i)}\right] \, \mathrm{d}\sigma + \int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot D_{B(i)}^{\lambda}\mathbf{n}^{B(i)} \, \mathrm{d}\sigma = 0.$$

Adding

$$\int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot D^{\lambda}_{B(i)} \mathbf{n}^{B(i)} \, \mathrm{d}\sigma = -\int_{\partial B(i)} \mathbf{n}^{B(i)} \cdot \mathbf{n}^{B(i)} \, \mathrm{d}\sigma \neq 0.$$

This and (9.9) give $\langle \Phi, \Psi_i \rangle = 0$. So,

$$0 = (\mathbf{u}, p) = (\dot{E}^{\lambda}_{\Omega} \mathbf{\Phi}, \dot{Q}^{\lambda}_{\Omega} \mathbf{\Phi}) = (E^{\lambda}_{\Omega} \mathbf{\Phi}, Q_{\Omega} \mathbf{\Phi}) \quad \text{in } \Omega.$$

Hence $\mathcal{E}_{\Omega}^{\lambda} \Phi = 0$ on $\partial\Omega$ by Lemma 7.4. Since $\tau_{\Omega,h}^{\lambda}$ is a Fredholm operator with index 0 in $W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ and in $W^{-1/2,2}(\partial\Omega; \mathbb{R}^m)$, [17, Lemma 9] gives that $\Phi \in W^{-1/2,2}(\partial\Omega; \mathbb{R}^m)$. Thus $E_{\Omega}^{\lambda} \Phi \in W^{1,2}(\mathbb{R}^m; \mathbb{R}^m)$ by Proposition 7.3 and $Q_{\Omega} \Phi \in L^2_{\text{loc}}(\mathbb{R}^m)$ by [20, Theorem 10.5.1]. For a fixed $i \in \{1, \ldots, k\}$ there exist $\mathbf{F} \in [W^{1,2}(G(i); \mathbb{R}^m)]'$ such that $(E_{\Omega}^{\lambda} \Phi, Q_{\Omega} \Phi)$ is a weak solution of the Robin problem (3.2) in G(i). Since $(E_{\Omega}^{\lambda} \Phi, Q_{\Omega} \Phi)$ is a solution of the homogeneous Brinkman system in G(i), we infer that \mathbf{F} is supported on $\partial G(i)$. Since $\mathcal{E}_{\Omega}^{\lambda} \Phi = 0$ on $\partial G(i)$, Lemma 9.1 gives

$$0 = \langle \mathbf{F}, \mathcal{E}_{\Omega}^{\lambda} \mathbf{\Phi} \rangle = \int_{G(i)} [2|\hat{\nabla} E_{\Omega}^{\lambda} \mathbf{\Phi}|^{2} + \lambda |E_{\Omega}^{\lambda} \mathbf{\Phi}|^{2}] \, \mathrm{d}\mathbf{x} + \int_{\partial G(i)} h |\mathcal{E}_{\Omega}^{\lambda} \mathbf{\Phi}|^{2} \, \mathrm{d}\sigma.$$

Hence $E_{\Omega}^{\lambda} \mathbf{\Phi} = 0$ in G(i). So,

$$\nabla Q_{\Omega} \mathbf{\Phi} = \Delta E_{\Omega}^{\lambda} \mathbf{\Phi} - \lambda E_{\Omega}^{\lambda} \mathbf{\Phi} = 0$$

in G(i). Therefore there exists a constant c_i such that $Q_{\Omega} \Phi = c_i$ on G(i). Denote by G(0) the unbounded component of $\mathbb{R}^m \setminus \overline{\Omega}$. Put h = 0 on $\mathbb{R}^m \setminus \partial \Omega$. For r > 0denote $\omega(r) := G(0) \cap B(0; r)$. For a fixed r > 0 there exist $\mathbf{F} \in [W^{1,2}(\omega(r); \mathbb{R}^m)]'$ such that $(E_{\Omega}^{\lambda} \Phi, Q_{\Omega} \Phi)$ is a weak solution of the Robin problem (3.2) in $\omega(r)$. Since $(E_{\Omega}^{\lambda} \Phi, Q_{\Omega} \Phi)$ is a solution of the homogeneous Brinkman system in $\omega(r)$, we infer that \mathbf{F} is supported on $\partial \omega(r)$. Lemma 9.1 gives

$$\langle \mathbf{F}, \mathcal{E}_{\Omega}^{\lambda} \mathbf{\Phi} \rangle = \int_{\omega(r)} [2|\hat{\nabla} E_{\Omega}^{\lambda} \mathbf{\Phi}|^2 + \lambda |E_{\Omega}^{\lambda} \mathbf{\Phi}|^2] \, \mathrm{d}\mathbf{x} + \int_{\partial \omega(r)} h |E_{\Omega}^{\lambda} \mathbf{\Phi}|^2 \, \mathrm{d}\sigma.$$

Since h = 0 on $\partial \omega(r) \setminus \partial \Omega$ and $E_{\Omega}^{\lambda} \Phi = 0$ on $\partial \Omega$, we obtain

$$\int_{\omega(r)} [2|\hat{\nabla} E_{\Omega}^{\lambda} \Phi|^{2} + \lambda |E_{\Omega}^{\lambda} \Phi|^{2}] \, \mathrm{d}\mathbf{x} + \int_{\partial\Omega} h |\mathcal{E}_{\Omega}^{\lambda} \Phi|^{2} \, \mathrm{d}\sigma = \int_{\partial B(0;r)} (E_{\Omega}^{\lambda} \Phi) T(E_{\Omega}^{\lambda} \Phi, Q_{\Omega} \Phi) \mathbf{n}$$

Letting $r \to \infty$ we obtain by (5.10)

$$\int_{G(0)} [2|\hat{\nabla} E_{\Omega}^{\lambda} \mathbf{\Phi}|^{2} + \lambda |E_{\Omega}^{\lambda} \mathbf{\Phi}|^{2}] \, \mathrm{d}\mathbf{x} + \int_{\partial\Omega} h |\mathcal{E}_{\Omega}^{\lambda} \mathbf{\Phi}|^{2} \, \mathrm{d}\sigma = 0.$$

Hence $E_{\Omega}^{\lambda} \mathbf{\Phi} = 0$ in G(0). So,

$$\nabla Q_{\Omega} \Phi = \Delta E_{\Omega}^{\lambda} \Phi - \lambda E_{\Omega}^{\lambda} \Phi = 0$$

in G(0). Therefore there exists a constant c_0 such that $Q_\Omega \Phi = c_0$ on G(0). Since $Q_\Omega \Phi(\mathbf{x}) \to 0$ as $|\mathbf{x}| \to \infty$, we infer that $c_0 = 0$. Using Lemma 7.4 on Ω and on G(i) we infer that $(\frac{1}{2} - K'_{\Omega,\lambda})\Phi = 0, (\frac{1}{2} + K'_{\Omega,\lambda})\Phi = -c(i)\mathbf{n}^\Omega$ on $\partial G(i)$. So,

$$\mathbf{\Phi} = \left(\frac{1}{2} - K'_{\Omega,\lambda}\right) \mathbf{\Phi} + \left(\frac{1}{2} + K'_{\Omega,\lambda}\right) \mathbf{\Phi} = -c(i)\mathbf{n}^{\Omega} \quad \text{on } \partial G(i).$$

We have proved for $i \in \{1, \ldots, k\}$ that $\langle \Phi, \Psi_i \rangle = 0$. So, (9.1) gives that c(i) = 0. Hence $\Phi \equiv 0$. Since $\tau_{\Omega,h}^{\lambda}$ is a Fredholm operator with index 0 in $W^{-1/q,q}(\partial\Omega, \mathbb{R}^m)$ and trivial kernel, it is an isomorphism.

If $\mathbf{g} \in W^{-1/q,q}(\partial\Omega; \mathbb{R}^m)$ then (\mathbf{u}, p) given by (9.6) is a unique solution in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ of the Robin problem (3.1) with $\mathbf{f} \equiv 0$. The estimate (9.7) is a consequence of Proposition 7.3.

Theorem 9.3. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $1 < q < \infty$, q' = q/(q-1), $\lambda > 0$, $h \in L^{\infty}(\partial\Omega)$, $h \ge 0$. Suppose that one from the following conditions is fulfilled:

(1) q = 2.

(2) $\partial \Omega$ is of class C^1 .

(3) $2 \le m \le 3$ and $3/2 \le q \le 3$.

If $\mathbf{F} \in [W^{1,q'}(\partial\Omega; \mathbb{R}^m)]$ then there exists a unique solution $(\mathbf{u}, p) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ of the Robin problem (3.2). Moreover,

(9.10)
$$\|\mathbf{u}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} + \|p\|_{L^q(\Omega)} \le C \|\mathbf{F}\|_{[W^{1,q'}(\Omega;\mathbb{R}^m)]'}$$

where a constant C does not depend on \mathbf{F} .

Proof. Define $\langle \tilde{\mathbf{F}}, \Psi \rangle := \langle \mathbf{F}, \Psi \rangle$ for $\Psi \in \mathring{W}^{1,q'}(\mathbb{R}^m, \mathbb{R}^m)$. Then $\tilde{\mathbf{F}} \in W^{-1,q}(\mathbb{R}^m, \mathbb{R}^m)$ and

(9.11)
$$\|\mathbf{F}\|_{W^{-1,q}(\mathbb{R}^m,\mathbb{R}^m)} \le \|\mathbf{F}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'}.$$

According to Proposition 4.2 there exists $(\tilde{\mathbf{u}}, \tilde{p}) \in W^{1,q}(\mathbb{R}^m, \mathbb{R}^m) \times L^q_{\text{loc}}(\mathbb{R}^m)$ such that

$$\nabla \tilde{p} - \Delta \tilde{\mathbf{u}} + \lambda \tilde{\mathbf{u}} = \mathbf{F}, \quad \nabla \cdot \mathbf{u} = 0 \quad \text{in } \mathbb{R}^n$$

and

(9.12)
$$\|\tilde{\mathbf{u}}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} + \|\tilde{p}\|_{L^q(\Omega)} \le C_1 \|\mathbf{F}\|_{W^{-1,q}(\mathbb{R}^m,\mathbb{R}^m)}$$

where C_1 does not depend on $\tilde{\mathbf{F}}$. Clearly, there exists $\mathbf{G} \in [W^{1,q'}(\Omega, \mathbb{R}^m)]'$ such that $(\tilde{\mathbf{u}}, p)$ is a solution of the Robin problem

$$\nabla \tilde{p} - \Delta \tilde{\mathbf{u}} + \lambda \tilde{\mathbf{u}} = \mathbf{G} \quad \text{in} \quad \Omega, \qquad \nabla \cdot \tilde{\mathbf{u}} = 0 \quad \text{in} \ \Omega,$$
$$T(\tilde{\mathbf{u}}, \tilde{p})\mathbf{n} + h\tilde{\mathbf{u}} = \mathbf{G} \qquad \text{on} \ \partial\Omega.$$

Moreover,

(9.13)
$$\|\mathbf{G}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'} \le C_2 \left[\|\tilde{\mathbf{u}}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} + \|\tilde{p}\|_{L^q(\Omega)} \right]$$

where C_2 does not depend on $\tilde{\mathbf{u}}$ and \tilde{p} . Since $\tilde{\mathbf{F}} = \mathbf{F}$ in Ω , we infer that $\mathbf{F} - \mathbf{G}$ is supported on $\partial\Omega$. Using [6, Theorem 1.5.1.2] we deduce that $\mathbf{F} - \mathbf{G} \in [W^{1-1/q',q'}(\partial\Omega;\mathbb{R}^m)]' = W^{-1/q,q}(\partial\Omega;\mathbb{R}^m)$ and

(9.14)
$$\|\mathbf{F} - \mathbf{G}\|_{W^{-1/q,q}(\partial\Omega;\mathbb{R}^m)} \le C_3 \|\mathbf{F} - \mathbf{G}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]}$$

where C_3 does not depend on **F** and **G**. According to Theorem 9.2 there exists a solution $(\hat{\mathbf{u}}, \hat{p}) \in W^{1,q}(\mathbb{R}^m, \mathbb{R}^m) \times L^q_{\text{loc}}(\mathbb{R}^m)$ of the problem

$$\nabla \hat{p} - \Delta \hat{\mathbf{u}} + \lambda \hat{\mathbf{u}} = 0 \quad \text{in} \quad \Omega, \qquad \nabla \cdot \tilde{\mathbf{u}} = 0 \quad \text{in} \ \Omega,$$
$$T(\hat{\mathbf{u}}, \hat{p})\mathbf{n} + h\hat{\mathbf{u}} = \mathbf{F} - \mathbf{G} \qquad \text{on} \ \partial\Omega.$$

Moreover,

(9.15)
$$\|\hat{\mathbf{u}}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} + \|\hat{p}\|_{L^q(\Omega)} \le C_4 \|\mathbf{F} - \mathbf{G}\|_{W^{-1/q,q}(\partial\Omega,\mathbb{R}^m)}$$

where C_4 does not depend on **F** and **G**. Put $\mathbf{u} := \tilde{\mathbf{u}} + \hat{\mathbf{u}}, p := \tilde{p} + \hat{p}$. Then $(\mathbf{u}, p) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ is a solution of the Robin problem (3.2). This solution is unique by Theorem 9.2. The estimate (9.10) is a consequence of (9.11), (9.12), (9.13), (9.14) and (9.15).

10. Robin problem for the Darcy-Forchheimer-Brinkman system

In this section we study the Robin problem for the Darcy-Forchheimer-Brinkman system

(10.1a)
$$\nabla p - \Delta \mathbf{u} + \lambda \mathbf{u} + \alpha |\mathbf{u}| \mathbf{u} + \beta (\mathbf{u} \cdot \nabla) \mathbf{u} = \mathbf{G}$$
 in Ω , $\nabla \cdot \mathbf{u} = 0$ in Ω ,

(10.1b)
$$T(\mathbf{u}, p)\mathbf{n} + h\mathbf{u} = \mathbf{G} \quad \text{on } \partial\Omega$$

in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ for Ω bounded. Denote

 $L_{\alpha,\beta}\mathbf{u} := \alpha |\mathbf{u}| \mathbf{u} + \beta (\mathbf{u} \cdot \nabla) \mathbf{u}.$

We restrict ourselves to such q for which $L_{\alpha,\beta}\mathbf{u} \in L^1(\Omega, \mathbb{R}^m) \cap [W^{1,q'}(\Omega, \mathbb{R}^m)]'$ for $\mathbf{u} \in W^{1,q'}(\Omega, \mathbb{R}^m)$ and q' = q/(q-1). If $\alpha, \beta \in \mathbb{R}^1, h \in L^{\infty}(\Omega), \mathbf{G} \in [W^{1,q'}(\Omega, \mathbb{R}^m)]'$ then $(\mathbf{u}, p) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ is a weak solution of the Robin problem for the Darcy-Forchheimer-Brinkman system (10.1) if $\nabla \cdot \mathbf{u} = 0$ in Ω and

$$\langle \mathbf{G}, \mathbf{\Phi} \rangle = \int_{\Omega} \{ 2 \hat{\nabla} \mathbf{u} \cdot \hat{\nabla} \mathbf{\Phi} - p(\nabla \cdot \mathbf{\Phi}) + \mathbf{\Phi} \cdot [\lambda \mathbf{u} + \alpha | \mathbf{u} | \mathbf{u} + \beta (\mathbf{u} \cdot \nabla) \mathbf{u}] \} \, \mathrm{d}\mathbf{x} + \int_{\partial \Omega} h \mathbf{u} \cdot \mathbf{\Phi} \, \mathrm{d}\sigma$$

for all $\mathbf{\Phi} \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{m},\mathbb{R}^{m})$ (or equivalently for all $\mathbf{\Phi} \in W^{1,q'}(\mathbb{R}^{m},\mathbb{R}^{m})$).

Theorem 10.1. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $2 \leq m \leq 3$. Let $1 < q < \infty$, q' = q/(q-1), $\lambda > 0$, $\alpha, \beta \in \mathbb{R}^1$, $h \in L^{\infty}(\partial\Omega)$, $h \geq 0$. Suppose that one from the following conditions is fulfilled:

- (1) $3/2 < q \leq 3$.
- (2) q = 3/2 and m = 2.
- (3) q = 3/2 and $\beta = 0$.
- (4) $\partial \Omega$ is of class C^1 , m = 2 and $\beta = 0$.
- (5) $\partial \Omega$ is of class C^1 , m = 3, $\beta = 0$ and q > 6/5.
- (6) $\partial \Omega$ is of class C^1 and $\frac{6-m}{5-m} < q$.

Then the following hold:

•
$$L_{\alpha,\beta}\mathbf{u} \in L^1(\Omega, \mathbb{R}^m) \cap [W^{1,q'}(\Omega, \mathbb{R}^m)]'$$
 for all $\mathbf{u} \in W^{1,q'}(\Omega, \mathbb{R}^m)$.

• There exist $\delta, \epsilon, C \in (0, \infty)$ such that the following holds: If

(10.2)
$$\mathbf{G} \in [W^{1,q'}(\Omega,\mathbb{R}^m)]', \quad \|\mathbf{G}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'} < \delta_{2}$$

then there exists a unique weak solution $(\mathbf{u}, p) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ of the Robin problem for the Darcy-Forchheimer-Brinkman system (10.1) such that

(10.3)
$$\|\mathbf{u}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} < \epsilon.$$

If $\mathbf{G}, \tilde{\mathbf{G}} \in [W^{1,q'}(\Omega, \mathbb{R}^m)]', \ (\mathbf{u}, p), (\tilde{\mathbf{u}}, \tilde{p}) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega), \ (10.3),$ (10.1), $\|\tilde{\mathbf{u}}\|_{W^{1,q}(\Omega, \mathbb{R}^m)} < \epsilon,$

(10.4a)
$$\nabla \tilde{p} - \Delta \tilde{\mathbf{u}} + \lambda \tilde{\mathbf{u}} + \alpha |\tilde{\mathbf{u}}| \tilde{\mathbf{u}} + \beta (\tilde{\mathbf{u}} \cdot \nabla) \tilde{\mathbf{u}} = \tilde{\mathbf{G}} \quad in \quad \Omega, \qquad \nabla \cdot \tilde{\mathbf{u}} = 0 \quad in \ \Omega,$$

(10.4b)
$$T(\tilde{\mathbf{u}}, \tilde{p})\mathbf{n} + h\tilde{\mathbf{u}} = \tilde{\mathbf{G}} \quad on \ \partial\Omega,$$

then

(10.5)
$$\|\mathbf{u}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} + \|p\|_{L^q(\Omega)} \le C \|\mathbf{G}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'},$$

(10.6)
$$\|\mathbf{u} - \tilde{\mathbf{u}}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} + \|p - \tilde{p}\|_{L^q(\Omega)} \le C \|\mathbf{G} - \mathbf{G}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'}$$

Proof. According to Lemma 11.2 and Lemma 11.3 there exists a constant C_1 such that if $\mathbf{u}, \tilde{\mathbf{u}} \in W^{1,q'}(\Omega, \mathbb{R}^m)$ then $L_{\alpha,\beta}\mathbf{u} \in L^1(\Omega, \mathbb{R}^m) \cap [W^{1,q'}(\Omega, \mathbb{R}^m)]'$ and

(10.7)
$$\|L_{\alpha,\beta}\mathbf{u}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'} \le C_1 \|\mathbf{u}\|_{W^{1,q}(\Omega,\mathbb{R}^m)}^2$$

(10.8) $\|L_{\alpha,\beta}\mathbf{u} - L_{\alpha,\beta}\tilde{\mathbf{u}}\|_{[W^{1,q'}(\Omega)]'} \le C_1 \|\mathbf{u} - \tilde{\mathbf{u}}\|_{W^{1,q}(\Omega)} [\|\mathbf{u}\|_{W^{1,q}(\Omega)} + \|\tilde{\mathbf{u}}\|_{W^{1,q}(\Omega)}]$

because

$$L_{\alpha,\beta}\mathbf{u} - L_{\alpha,\beta}\tilde{\mathbf{u}} = \alpha |\mathbf{u}|(\mathbf{u} - \tilde{\mathbf{u}}) + \beta(\mathbf{u} \cdot \nabla)(\mathbf{u} - \tilde{\mathbf{u}}) + \alpha(|\mathbf{u}| - |\tilde{\mathbf{u}}|)\tilde{\mathbf{u}} + \beta[(\mathbf{u} - \tilde{\mathbf{u}}) \cdot \nabla]\tilde{\mathbf{u}}.$$

According to Theorem 9.3 there exists a constant C_2 such that for each $\mathbf{F} \in [W^{1,q'}(\partial\Omega;\mathbb{R}^m)]$ there exists a unique solution $(\mathbf{u},p) \in W^{1,q}(\Omega,\mathbb{R}^m) \times L^q(\Omega)$ of the Robin problem (3.2) and

(10.9)
$$\|\mathbf{u}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} + \|p\|_{L^q(\Omega)} \le C_2 \|\mathbf{F}\|_{[W^{1,q'}(\Omega;\mathbb{R}^m)]'}.$$

Remark that (\mathbf{u}, p) is a solution of (10.1) if (\mathbf{u}, p) is a solution of (3.2) with $\mathbf{F} = \mathbf{G} - L_{\alpha,\beta}\mathbf{u}$. Put

$$\epsilon := \frac{1}{4(C_1+1)(C_2+1)}, \quad \delta := \frac{\epsilon}{2(C_2+1)},$$

If $(\mathbf{u}, p), (\tilde{\mathbf{u}}, \tilde{p}) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ are solution of (10.1) and (10.4) with (10.3) and $\|\tilde{\mathbf{u}}\|_{W^{1,q}(\Omega, \mathbb{R}^m)} < \epsilon$, then

$$\|\mathbf{u} - \tilde{\mathbf{u}}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} + \|p - \tilde{p}\|_{L^q(\Omega)} \le C_2[\|\mathbf{G} - \tilde{\mathbf{G}}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'}]$$

 $+\|L_{\alpha,\beta}\mathbf{u}-L_{\alpha,\beta}\tilde{\mathbf{u}}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'}] \leq C_2[\|\mathbf{G}-\tilde{\mathbf{G}}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'}+2\epsilon C_1\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{1,q}(\Omega,\mathbb{R}^m)}].$ Since $2C_1C_2\epsilon < 1/2$ we get subtracting $2\epsilon C_1C_2\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{1,q}(\Omega,\mathbb{R}^m)}$ from the both sides

$$\|\mathbf{u} - \tilde{\mathbf{u}}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} + \|p - \tilde{p}\|_{L^q(\Omega)} \le 2C_2 \|\mathbf{G} - \mathbf{G}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'}$$

Therefore a solution of (10.1) satisfying (10.3) is unique. Putting $\tilde{p} \equiv 0$, $\tilde{\mathbf{u}} \equiv 0$, $\tilde{\mathbf{G}} \equiv 0$ we obtain (10.5) with $C = 2C_2$.

Put $X := \{\mathbf{v} \in W^{1,q}(\Omega, \mathbb{R}^m); \|\mathbf{v}\|_{W^{1,q}(\Omega, \mathbb{R}^m)} \leq \epsilon\}$. Fix **G** satisfying (10.2). For $\mathbf{v} \in X$ there exists a unique solution $(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}) \in W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ of (3.2) with $\mathbf{F} = \mathbf{G} - L_{\alpha,\beta}\mathbf{v}$. Remember that $(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}})$ is a solution of (10.1) if and only if $\mathbf{u}^{\mathbf{v}} = \mathbf{v}$. According to (10.9), (10.7)

$$\|\mathbf{u}^{\mathbf{v}}\|_{W^{1,q}(\Omega,\mathbb{R}^{m})} \leq C_{2} \left[\|\mathbf{G}\|_{[W^{1,q'}(\Omega,\mathbb{R}^{m})]'} + \|L_{\alpha,\beta}\mathbf{v}\|_{[W^{1,q'}(\Omega,\mathbb{R}^{m})]'} \right] \leq C_{2}\delta + C_{2}C_{1}\epsilon^{2}.$$

Since $C_2\delta + C_2C_1\epsilon^2 < \epsilon$, we infer $\mathbf{u}^{\mathbf{v}} \in X$. If $\mathbf{w} \in X$ then

$$\|\mathbf{u}^{\mathbf{v}} - \mathbf{u}^{\mathbf{w}}\|_{W^{1,q}(\Omega,\mathbb{R}^m)} \le C_2 \|L_{\alpha,\beta}\mathbf{v} - L_{\alpha,\beta}\mathbf{w}\|_{[W^{1,q'}(\Omega,\mathbb{R}^m)]'} \le 2\epsilon \|\mathbf{u}^{\mathbf{v}} - \mathbf{u}^{\mathbf{w}}\|_{W^{1,q}(\Omega,\mathbb{R}^m)}$$

by (10.8). Since $2\epsilon < 1$, the Fixed point theorem ([4, Satz 1.24]) gives that there exists $\mathbf{v} \in X$ such that $\mathbf{u}^{\mathbf{v}} = \mathbf{v}$. So, $(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}})$ is a solution of (10.1) in $W^{1,q}(\Omega, \mathbb{R}^m) \times L^q(\Omega)$ satisfying $\|\mathbf{u}^{\mathbf{v}}\|_{W^{1,q}(\Omega, \mathbb{R}^m)} \leq \epsilon$.

11. Appendix

Lemma 11.1. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary. Let $s(i) \geq s \in N_0, 1 \leq p, p(1), p(2) < \infty, s(i) - s \geq m[1/p(i) - 1/p], s(1) + s(2) - s > m[1/p(1)+1/p(2)-1/p] \geq 0$. Then there exists a constant C such that the following holds: If $u \in W^{s(1),p(1)}(\Omega), v \in W^{s(2),p(2)}(\Omega)$ then $uv \in W^{s,p}(\Omega)$ and

 $\|uv\|_{W^{s,p}(\Omega)} \le C \|u\|_{W^{s(1),p(1)}(\Omega)} \|v\|_{W^{s(2),p(2)}(\Omega)}.$

(See [2, Corollary 6.3].)

Lemma 11.2. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $m \in \{2,3\}$. Let $1 < q < \infty$, q' = q/(q-1). If m = 3 suppose moreover q > 6/5. Then there exists a constant C such that if $u, v \in W^{1,q}(\Omega)$, $\mathbf{w}, \tilde{\mathbf{w}} \in W^{1,q}(\Omega, \mathbb{R}^m)$ then $uv, |\mathbf{w}|v \in L^1(\Omega) \cap [W^{1,q'}(\Omega)]'$ and

(11.1) $\|uv\|_{[W^{1,q'}(\Omega)]'} \le C \|u\|_{W^{1,q}(\Omega)} \|v\|_{W^{1,q}(\Omega)},$

(11.2)
$$\| \| \mathbf{w} \|_{[W^{1,q'}(\Omega)]'} \le C \| \mathbf{w} \|_{W^{1,q}(\Omega;\mathbb{R}^m)} \| v \|_{W^{1,q}(\Omega)}$$

(11.3)
$$\| \| \mathbf{w} \| v - \| \tilde{\mathbf{w}} \| v \|_{[W^{1,q'}(\Omega)]'} \le C \| \mathbf{w} - \tilde{\mathbf{w}} \|_{W^{1,q}(\Omega;\mathbb{R}^m)} \| v \|_{W^{1,q}(\Omega)}.$$

Proof. Suppose first that m = 2. Since 1 - 0 > 0 = 2(1/q - 1/q), 1 + 1 - 0 > 2/q = 2(1/q + 1/q - 1/q), Lemma 11.1 gives that $uv \in L^q(\Omega)$ and there exists a constant C_1 such that

(11.4)
$$\|uv\|_{L^{q}(\Omega)} \leq C_{1} \|u\|_{W^{1,q}(\Omega)} \|v\|_{W^{1,q}(\Omega)}$$

Thus $uv \in [W^{1,q'}(\Omega)]'$ and Hölder's inequality forces (11.1). [32, Corollary 2.1.8] gives $|w_j| \in W^{1,q}(\Omega)$ for $j = 1, \ldots, m$ and

$$|| |w_j| ||_{W^{1,q}(\Omega)} = ||w_j||_{W^{1,q}(\Omega)}$$

Thus

$$\| \| \mathbf{w} \|_{L^{q}(\Omega)} \leq \sum_{j=1}^{m} \| \| w_{j} \|_{L^{q}(\Omega)} \leq mC_{1} \| \mathbf{w} \|_{W^{1,q}(\Omega;\mathbb{R}^{m})} \| v \|_{W^{1,q}(\Omega)}.$$

So, $|\mathbf{w}|v \in [W^{1,q'}(\Omega)]'$ and Hölder's inequality forces (11.2). Since

 $\| \| \mathbf{w} \| v - \| \tilde{\mathbf{w}} \| v \|_{L^{q}(\Omega)} \leq \| \| \mathbf{w} - \tilde{\mathbf{w}} \| v \|_{L^{q}(\Omega)} \leq m C_{1} \| \mathbf{w} - \tilde{\mathbf{w}} \|_{W^{1,q}(\Omega;\mathbb{R}^{m})} \| v \|_{W^{1,q}(\Omega)}$

we obtain (11.3) by Hölder's inequality.

Let now m = 3. Suppose first that q > 3/2. Since 1 - 0 > 0 = 3(1/q - 1/q), 1 + 1 - 0 > 3/q = 3(1/q + 1/q - 1/q), Lemma 11.1 gives that $uv \in L^q(\Omega)$ and there exists a constant C_1 such that (11.4) holds. Thus $uv \in [W^{1,q'}(\Omega)]'$ and Hölder's inequality gives (11.1). Let now $6/5 < q \le 3/2$. Then there exists $r \in (1,q)$ such that $1 + 1 - 0 > 3(1/q + 1/q - 1/r) \ge 0$. Since 1 - 0 > 0 > 3(1/q - 1/r), Lemma 11.1 gives that $uv \in L^r(\Omega)$ and there exists a constant C_1 such that

$$||uv||_{L^{r}(\Omega)} \leq C_{1} ||u||_{W^{1,q}(\Omega)} ||v||_{W^{1,q}(\Omega)}.$$

Put r' = r/(r-1). Since $q' \ge 3$, [15, Theorem 5.7.7, Theorem 5.7.8] give that $W^{1,q'}(\Omega) \hookrightarrow L^{r'}(\Omega)$. Hölder's inequality gives (11.1). The relations (11.2), (11.3) we deduce by the same way as in the case m = 2.

Lemma 11.3. Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with Lipschitz boundary, $m \in \{2,3\}$. Let $\frac{6-m}{5-m} < q < \infty$, q' = q/(q-1). Then there exists a constant C such that if $u \in W^{1,q}(\Omega)$, $v \in L^q(\Omega)$ then $uv \in L^1(\Omega) \cap [W^{1,q'}(\Omega)]'$ and

(11.5)
$$\|uv\|_{[W^{1,q'}(\Omega)]'} \le C \|u\|_{W^{1,q}(\Omega)} \|v\|_{L^q(\Omega)}.$$

Proof. Suppose first that q > m. Since $\min(1-0, 0-0) = 0 = m(1/q - 1/q)$, 1+0-0 > m/q = m(1/q + 1/q - 1/q), Lemma 11.1 gives that $uv \in L^q(\Omega)$ and there exists a constant C_1 such that

$$\|uv\|_{L^{q}(\Omega)} \leq C_{1} \|u\|_{W^{1,q}(\Omega)} \|v\|_{L^{q}(\Omega)}$$

Thus $uv \in [W^{1,q'}(\Omega)]'$ and Hölder's inequality forces (11.5).

Let now $q \leq m$. Suppose first that m = 2. Then there exists $r \in (1, q)$ such that $1 + 0 - 0 > 2(1/q + 1/q - 1/r) \geq 0$. Since $\min(1 - 0, 0 - 0) = 0 > 2(1/q - 1/r)$, Lemma 11.1 gives that $uv \in L^r(\Omega)$ and there exists a constant C_1 such that

 $||uv||_{L^{r}(\Omega)} \leq C_{1} ||u||_{W^{1,q}(\Omega)} ||v||_{L^{q}(\Omega)}.$

Put r' = r/(r-1). Since $q' \ge 2$, [15, Theorem 5.7.7, Theorem 5.7.8] give that $W^{1,q'}(\Omega) \hookrightarrow L^{r'}(\Omega)$. Hölder's inequality gives (11.5).

Suppose now that m = 3. Since $3/2 \le q' < 3$, [15, Theorem 5.7.7, Theorem 5.7.8] and [32, Corollary 2.1.8] give that there exists a constant C_1 such that

$$||u||_{L^{3}(\Omega)} \leq C_{1} ||u||_{W^{1,q}(\Omega)} = C_{1} ||u|||_{W^{1,q}(\Omega)}$$

$$\|\varphi\|_{L^{3q'/(3-q')}(\Omega)} \le C_1 \|\varphi\|_{W^{1,q'}(\Omega)} = C_1 \| |\varphi| \|_{W^{1,q'}(\Omega)} \quad \forall \varphi \in W^{1,q'}(\Omega).$$

Since

$$\frac{1}{q} + \frac{3 - q'}{3q'} + \frac{1}{3} = \frac{1}{q} + \frac{1}{q'} = 1$$

Hölder's inequality yields

$$\left| \int_{\Omega} uv\varphi \, \mathrm{d}\mathbf{x} \right| \leq \int_{\Omega} |u| |v| |\varphi| \, \mathrm{d}\mathbf{x} \leq ||u||_{L^{3}(\Omega)} ||v||_{L^{q}(\Omega)} ||\varphi||_{L^{3q'/(3-q')}(\Omega)}$$
$$\leq C_{1}^{2} ||u||_{W^{1,q}(\Omega)} ||v||_{L^{q}(\Omega)} ||\varphi||_{W^{1,q'}(\Omega)}.$$

(In particular for $\varphi \equiv 1$ we obtain $uv \in L^1(\Omega)$.) Thus $uv \in [W^{1,q'}(\Omega)]'$ and (11.5) holds.

References

- Adams, D.R., Hedberg, L.I.: Function spaces and Potential Theory. Springer, Berlin Heidelberg (1996)
- [2] Behzadan, A., Holst, M.: Multiplication in Sobolev spaces. revisited, arXiv:1512.07379v1
- [3] Berg, J., Löström, J.: Interpolation spaces. An Introduction. Springer, Berlin Heidelberg New York (1976)
- [4] Dobrowolski, M.: Angewandte Functionanalysis. Functionanalysis, Sobolev-Räume und elliptische Differentialgleichungen. Springer, Berlin Heidelberg (2006)
- [5] Galdi, G.P.: An introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady State Problems. Springer, New York – Dordrecht – Heidelberg – London (2011)
- [6] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia (2011)
- [7] Grosan, T., Kohr, M., Wendland, W.L.: Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains. Math. Meth. Appl. Sci. 38, 3615–3628 (2015)
- [8] Gutt, R., Grosan, T.: On the lid-driven problem in a porous cavity: A theoretical and numerical approach. Appl. Math. Comput. 266, 1070–1082 (2015)

- [9] Jonsson, A., Wallin, H.: Function spaces on subsets of \mathbb{R}^n . Harwood Academic Publishers, London (1984)
- [10] Kohr, M., Lanza de Cristoforis, M., Mikhailov, S.E., Wendland, W.L.: Integral potential method for a transmission problem with Lipschitz interface in R³ for the Stokes and Darcy-Forchheimer-Brinkman PDE systems. Z. Angew. Math. Phys. 67, 116 (2016)
- Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal.38, 1123–1171 (2013)
- [12] Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains. J. Math. Fluid Mech. 16, 595–630 (2014)
- [13] Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Poisson problems for semilinear Brinkman systems on Lipschitz domains in Rⁿ. Z. Angew. Math. Phys. 66, 833–864 (2015)
- [14] Kohr, M., Medková, D., Wendland, W.L.: On the Oseen-Brinkman flow around an (m-1)-dimensional solid obstacle. Monatsh. Math. 183, 269–302 (2017)
- [15] Kufner, A., John, O., Fučík, S.: Function Spaces. Academia, Prague (1977)
- [16] Maz'ya, V., Mitrea, M., Shaposhnikova, T.: The inhomogenous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to VMO*. Funct. Anal. Appl. 43, 217–235 (2009)
- [17] Medková, D.: Regularity of solutions of the Neumann problem for the Laplace equation. Le Matematiche, LXI, 287–300 (2006)
- [18] Medková, D.: Bounded solutions of the Dirichlet problem for the Stokes resolvent system. Complex Var. Elliptic Equ. 61, 1689–1715 (2016)
- [19] Mitrea, I., Mitrea, M.: Multi-Layer Potntials and Boundary Problems for Higher-Order Elliptic Systems in Lipschitz Domains. Springer, Berlin Heidelberg (2013)
- [20] Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344, Paris (2012)
- [21] Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2013)
- [22] Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel – Boston – Berlin (2001)
- [23] Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin Heidelberg (2007)
- [24] Temam, R.: Navier-Stokes Equations. North Holland, Amsterdam (1979)
- [25] Triebel, H.: Höhere Analysis. VEB Deutscher Verlag der Wissenschaften, Berlin (1972)
- [26] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)
- [27] Triebel, H.: Theory of function spaces. Birkhäuser, Basel Boston Stuttgart (1983)
- [28] Triebel, H.: Theory of function spaces III. Birkhäuser, Basel (2006)
- [29] Varnhorn, W.: The Stokes equations. Akademie Verlag, Berlin (1994)
- [30] Wolf, J.: On the local pressure of the Navier-Stokes equations and related systems. Advances Diff. Equ. 22, 305–338 (2017)
- [31] Yosida, K.: Functional Analysis. Springer, Berlin (1965)
- [32] Ziemer, W.P.: Weakly Differentiable Functions. Springer, New York (1989)

INSTITUTE OF MATHEMATICS OF THE CZECH ACADEMY OF SCIENCES, ŽITNÁ 25, 115 67 PRAHA 1, CZECH REPUBLIC

E-mail address: medkova@math.cas.cz