INSTITUTE OF MATHEMATICS

\sim
\cup
\sim

The Robin problem for the Brinkman system and for the
Darcy-Forchheimer-Brinkman system

$\stackrel{\square}{\circ}$

工
N

THE ACADEMY

Dagmar Medková

Preprint No. 36-2018

THE ROBIN PROBLEM FOR THE BRINKMAN SYSTEM AND FOR THE DARCY-FORCHHEIMER-BRINKMAN SYSTEM

DAGMAR MEDKOVÁ ${ }^{\dagger}$

Abstract

In this paper we study the Neumann problem and the Robin problem for the Darcy-Forchheimer-Brinkman system in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ for a bounded domain $\Omega \subset \mathbb{R}^{m}$ with Lipschitz boundary. First we study the Neumann problem and the Robin problem for the Brinkman system by the integral equation method. If $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with Lipschitz boundary and $2 \leq m \leq 3$, then we prove the unique solvability of the Neumann problem and the Robin problem for the Brinkman system in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$, where $3 / 2<q<3$. Then we get results for the Darcy-Forchheimer-Brinkman system from the results for the Brinkman system using the fixed point theorem. If $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with Lipschitz boundary, $2 \leq m \leq 3$, $3 / 2<q<3$, then we prove the existence of a solution of the Neumann problem and the Robin problem for the Darcy-Forchheimer-Brinkman system in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ for small given data.

1. Introduction

Boundary value problems for the Darcy-Forchheimer-Brinkman system

$$
\begin{equation*}
\nabla p-\Delta \mathbf{u}+\lambda \mathbf{u}+\alpha|\mathbf{u}| \mathbf{u}+\beta(\mathbf{u} \cdot \nabla) \mathbf{u}=\mathbf{f}, \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

have been extensively studied lately. This system describes flows through porous media saturated with viscous incompressible fluids, where the inertia of such fluid is not negligible. The constants $\lambda, \alpha, \beta>0$ are determined by the physical properties of such a porous medium. (For further details we refer the reader to the book [21, p. 17] and the references therein.)
T. Grosan, M. Kohr and W. L. Wendland studied in [7] the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\mathbf{f} \equiv 0$ in $W^{1,2}\left(\Omega, \mathbb{R}^{m}\right) \times L^{2}(\Omega)$, where $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with connected Lipschitz boundary and $m=2$ or $m=3$. R. Gutt and T. Grosan studied in [8] the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\mathbf{f} \equiv 0$ in $W^{s, 2}\left(\Omega, \mathbb{R}^{m}\right) \times W^{s-1,2}(\Omega)$, where $1 \leq s<3 / 2, \Omega \subset \mathbb{R}^{m}$ is a bounded domain with connected Lipschitz boundary and $m=2$ or $m=3$. M. Kohr, M. Lanza de Cristoforis, W. L. Wendland studied in [13] the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\mathbf{f} \equiv 0, \beta=0$ in $W^{s, 2}\left(\Omega, \mathbb{R}^{m}\right) \times W^{s-1,2}(\Omega)$, where $1 \leq s<3 / 2, \Omega \subset \mathbb{R}^{m}$ is a bounded domain with connected Lipschitz boundary and $2 \leq m \leq 4$. The author studied in [18] a bounded solutions of the Dirichlet problem for the Darcy-ForchheimerBrinkman system (1.1) with $\beta=0$ on a bounded domain $\Omega \subset \mathbb{R}^{m}$ with Ljapunov boundary. M. Kohr, M. Lanza de Cristoforis, W. L. Wendland studied in [12] the

[^0]Robin problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\beta=0$ in the space $H^{s}\left(\Omega, \mathbb{R}^{m}\right) \times H^{s-1}(\Omega)$, where $1<s<3 / 2, \Omega \subset \mathbb{R}^{m}$ is a bounded domain with connected Lipschitz boundary and $m \in\{2,3\}$. M. Kohr, M. Lanza de Cristoforis, W. L. Wendland studied in [12] the mixed Dirichlet-Robin problem for the Darcy-Forchheimer-Brinkman system (1.1) with $\beta=0$ in $H^{3 / 2}\left(\Omega, \mathbb{R}^{3}\right) \times H^{1 / 2}(\Omega)$, where $\Omega \subset \mathbb{R}^{3}$ is a bounded creased domain with connected Lipschitz boundary. M. Kohr, M. Lanza de Cristoforis, W. L. Wendland studied in [12] the problem of Navier's type for the Darcy-Forchheimer-Brinkman system (1.1) with $\beta=0$ in $H^{1}\left(\Omega, \mathbb{R}^{3}\right) \times$ $L^{2}(\Omega)$, where $\Omega \subset \mathbb{R}^{3}$ is a bounded domain with connected Lipschitz boundary. M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov, W. L. Wendland studied in [10] the transmission problem, where the Darcy-Forchheimer-Brinkman system is given in a bounded domain $\Omega_{+} \subset \mathbb{R}^{3}$ with connected Lipschitz boundary and the Stokes system is given on its complementary domain Ω_{-}. Solutions are from $\mathcal{H}^{1}\left(\Omega_{ \pm}\right) \times$ $L^{2}\left(\Omega_{ \pm}\right)$, where $\mathcal{H}^{1}(\Omega)=\left\{\mathbf{u} \in L_{\mathrm{loc}}^{2}\left(\Omega, \mathbb{R}^{)} ; \partial_{j} u_{i} \in L^{2}(\Omega),\left(1+|\mathbf{x}|^{2}\right)^{-1 / 2} u_{j}(\mathbf{x}) \in\right.\right.$ $\left.L^{2}(\Omega)\right\}$.

In this paper we study the Neumann problem and the Robin problem for the Darcy-Forchheimer-Brinkman system in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ for a bounded domain $\Omega \subset \mathbb{R}^{m}$ with Lipschitz boundary. First we study the Neumann problem and the Robin problem for the Brinkman system by the integral equation method. If $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with Lipschitz boundary and $2 \leq m \leq 3$, then we prove the unique solvability of the Neumann problem and the Robin problem for the Brinkman system in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$, where $3 / 2<q<3$. Then we get results for the Darcy-Forchheimer-Brinkman system from the results for the Brinkman system using the fixed point theorem. If $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with Lipschitz boundary, $2 \leq m \leq 3,3 / 2<q<3$, then we prove the existence of a solution of the Neumann problem and the Robin problem for the Darcy-Forchheimer-Brinkman system in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ for small given data.

2. Function spaces

First we remember definitions of several function spaces.
Let $\Omega \subset \mathbb{R}^{m}$ be an open set. We denote by $\mathcal{C}_{c}^{\infty}(\Omega)$ the space of infinitely differentiable functions with compact support in Ω. If $k \in \mathbb{N}_{0}, 1<q<\infty$ we define the Sobolev space $W^{k, q}(\Omega):=\left\{f \in L^{q}(\Omega) ; \partial^{\alpha} f \in L^{q}(\Omega)\right.$ for $\left.|\alpha| \leq m\right\}$ endowed with the norm

$$
\|u\|_{W^{k, q}(\Omega)}=\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{L^{q}(\Omega)} .
$$

(Clearly $W^{0, q}(\Omega)=L^{q}(\Omega)$.) If $s=k+\lambda, 0<\lambda<1$, denote $W^{s, q}(\Omega)=\{u \in$ $\left.W^{k, q}(\Omega) ;\|u\|_{W^{s, q}(\Omega)}<\infty\right\}$ where

$$
\|u\|_{W^{s, q}(\Omega)}=\left[\|u\|_{W^{k, q}(\Omega)}^{q}+\sum_{|\alpha|=k_{\Omega \times \Omega}} \int_{\times \Omega} \frac{\left|\partial^{\alpha} u(\mathbf{x})-\partial^{\alpha} u(\mathbf{y})\right|^{q}}{|\mathbf{x}-\mathbf{y}|^{m+q \lambda}} \mathrm{~d}(\mathbf{x}, \mathbf{y})\right]^{1 / q} .
$$

Denote by $\dot{W}^{k, p}(\Omega)$ the closure of $\mathcal{C}_{c}^{\infty}(\Omega)$ in $W^{k, p}(\Omega)$.
If X is a Banach space we denote by X^{\prime} its dual space. If $0<s<\infty$, denote $W^{-s, q}(\Omega):=\left[\dot{W}^{s, q^{\prime}}(\Omega)\right]^{\prime}$, where $q^{\prime}=q /(q-1)$.

Denote by $D^{-1, q}(\Omega)$ the set of distributions u on Ω such that $\partial_{j} \in W^{-1, q}(\Omega)$ for $j=1, \ldots, m$.

If $\Omega \subset V \subset \bar{\Omega}$ then we denote by $L_{\mathrm{loc}}^{q}(V)$ the space of all measurable functions u on Ω such that $u \in L^{q}(\omega)$ for each bounded open set ω with $\bar{\omega} \subset V$.

If $\Omega \subset \mathbb{R}^{m}$ is an open set with compact Lipschitz boundary, $0<s<1,1<q<$ ∞, denote $W^{s, q}(\partial \Omega)=\left\{u \in L^{q}(\partial \Omega) ;\|u\|_{W^{s, q}(\partial \Omega)}<\infty\right\}$ where

$$
\|u\|_{W^{s, q}(\partial \Omega)}=\left[\|u\|_{L^{q}(\partial \Omega)}^{q}+\int_{\partial \Omega \times \partial \Omega} \frac{|u(\mathbf{x})-u(\mathbf{y})|^{q}}{|\mathbf{x}-\mathbf{y}|^{m-1+q s}} \mathrm{~d}(\mathbf{x}, \mathbf{y})\right]^{1 / q}
$$

Further, $W^{-s, q}(\partial \Omega):=\left[W^{s, q^{\prime}}(\partial \Omega)\right]^{\prime}$, where $q^{\prime}=q /(q-1)$.
We denote $\mathcal{C}_{c}^{\infty}\left(\Omega ; \mathbb{R}^{m}\right):=\left\{\left(v_{1}, \ldots, v_{m}\right) ; v_{j} \in \mathcal{C}_{c}^{\infty}(\Omega)\right\}$. Similarly for other spaces of functions.

Lemma 2.1. Let $\Omega \subset \mathbb{R}^{m}$ be a domain, i.e. an open connected set. If $1<q<\infty$ then $D^{-1, q}(\Omega) \subset L_{\mathrm{loc}}^{q}(\Omega)$. Choose a bounded non-empty domain ω such that $\bar{\omega} \subset \Omega$. Then $D^{-1, q}(\Omega)$ is a Banach space equipped with the norm

$$
\begin{equation*}
\|u\|_{D^{-1, q}(\Omega)}:=\|u\|_{L^{q}(\omega)}+\|\nabla u\|_{W^{-1, q}(\Omega)} . \tag{2.1}
\end{equation*}
$$

Different choices of ω give equivalent norms.
Proof. Let $u \in D^{-1, q}(\Omega)$. According to [24, Proposition I.1.1]

$$
\begin{equation*}
\langle\nabla u, \boldsymbol{\Phi}\rangle=0 \quad \forall \boldsymbol{\Phi} \in \mathcal{C}_{c}^{\infty}\left(\Omega, \mathbb{R}^{m}\right), \nabla \cdot \boldsymbol{\Phi}=0 \tag{2.2}
\end{equation*}
$$

Let $\omega \subset \Omega$ be a bounded domain with Lipschitz boundary such that $\bar{\omega} \subset \Omega$. Since u satisfies (2.2), [22, Lemma 2.1.1] gives that there exists $p \in L^{q}(\omega)$ such that $\nabla p=\nabla u$ in ω. Since $\nabla(u-p)=0$ in $\omega, u-p$ is constant in ω. Hence $u \in L_{\mathrm{loc}}^{q}(\Omega)$.

Let ω be a bounded non-empty domain such that $\bar{\omega} \subset \Omega$. Let u_{n} be a Cauchy sequence with respect to the norm (2.1). Then $\left(u_{n}, \nabla u_{n}\right)$ is a Cauchy sequence in $L^{q}(\omega) \times W^{-1, q}(\Omega) \times \cdots \times W^{-1, q}(\Omega)$. So, $\left(u_{n}, \nabla u_{n}\right) \rightarrow\left(f_{0}, f_{1}, \ldots, f_{m}\right)$ in $L^{q}(\omega) \times$ $W^{-1, q}(\Omega) \times \cdots \times W^{-1, q}(\Omega)$. Clearly, $\partial_{j} f_{0}=f_{j}$ in ω in the sense of distributions for $j=1, \ldots, m$. Define $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right)$. Since u_{n} satisfy (2.2), we get

$$
\begin{equation*}
\langle\mathbf{f}, \boldsymbol{\Phi}\rangle=0 \quad \forall \boldsymbol{\Phi} \in \mathcal{C}_{c}^{\infty}\left(\Omega, \mathbb{R}^{m}\right), \nabla \cdot \boldsymbol{\Phi}=0 \tag{2.3}
\end{equation*}
$$

According to [24, Proposition I.1.1] there exists a distribution u in Ω such that $\nabla u=\mathbf{f}$. Since $\nabla\left(u-f_{0}\right)=0$ in $\omega, u-f_{0}$ is constant. We can suppose that $u=f_{0}$ in ω. Let G be a bounded domain with Lipschitz boundary such that $\omega \subset G \subset \bar{G} \subset \Omega$. Since \mathbf{f} satisfies (2.3), [22, Lemma 2.1.1] gives that there exists $p \in L^{q}(G)$ such that $\nabla p=\nabla u$ in G. Since $\nabla(u-p)=0$ in $G, u-p$ is constant in G. Thus $u \in D^{-1, q}(\Omega)$ and $u_{n} \rightarrow u$ in $D^{-1, q}(\Omega)$.

Let ω, G be bounded non-empty domains such that $G \subset \omega \subset \bar{\omega} \subset \Omega$. If $u \in$ $D^{-1, q}(\Omega)$ then

$$
\|u\|_{L^{q}(G)}+\|\nabla u\|_{W^{-1, q}(\Omega)} \leq\|u\|_{L^{q}(\omega)}+\|\nabla u\|_{W^{-1, q}(\Omega)} .
$$

[31, Chapter II, $\S 5$, Corollary] gives that there exist a positive constant C such that

$$
\|u\|_{L^{q}(\omega)}+\|\nabla u\|_{W^{-1, q}(\Omega)} \leq C\left[\|u\|_{L^{q}(G)}+\|\nabla u\|_{W^{-1, q}(\Omega)}\right] \quad \forall u \in D^{-1, q}(\Omega)
$$

3. Formulation of the problem

Suppose first that $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with Lipschitz boundary, and $(\mathbf{u}, p) \in \mathcal{C}^{2}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times \mathcal{C}^{1}(\bar{\Omega})$ is a classical solution of the Robin problem for the Brinkman system

$$
\begin{align*}
\nabla p-\Delta \mathbf{u}+\lambda \mathbf{u}=\mathbf{f} \quad \text { in } \Omega, & \nabla \cdot \mathbf{u}=0 \quad \text { in } \Omega \tag{3.1a}\\
T(\mathbf{u}, p) \mathbf{n}+h \mathbf{u}=\mathbf{g} & \text { on } \partial \Omega \tag{3.1b}
\end{align*}
$$

where

$$
T(\mathbf{u}, p)=2 \hat{\nabla} \mathbf{u}-p I, \quad \hat{\nabla} \mathbf{u}=\frac{1}{2}\left[\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right]
$$

and I is the identity matrix. If $\boldsymbol{\Phi} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, then the Green formula gives
$\int_{\Omega} \mathbf{f} \cdot \boldsymbol{\Phi} \mathrm{d} \mathbf{x}+\int_{\partial \Omega} \mathbf{g} \cdot \boldsymbol{\Phi} \mathrm{d} \sigma=\int_{\Omega}[2 \hat{\nabla} \mathbf{u} \cdot \hat{\nabla} \boldsymbol{\Phi}-p(\nabla \cdot \boldsymbol{\Phi})+\lambda \boldsymbol{\Phi} \cdot \mathbf{u}] \mathrm{d} \mathbf{x}+\int_{\partial \Omega} h \mathbf{u} \cdot \boldsymbol{\Phi} \mathrm{~d} \sigma$.
(Compare [29, p. 14].) This formula motivates definition of a weak solution of the Robin problem for the Brinkman system.

Let $\Omega \subset \mathbb{R}^{m}$ be an open set with compact Lipschitz boundary, $h \in L^{\infty}(\partial \Omega)$, $1<q<\infty, q^{\prime}=q /(q-1), \mathbf{F} \in\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}$. We say that $(\mathbf{u}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times$ $L_{\mathrm{loc}}^{q}(\bar{\Omega})$ is a weak solution of the Robin problem for the Brinkman system

$$
\begin{align*}
\nabla p-\Delta \mathbf{u}+\lambda \mathbf{u}=\mathbf{F} \quad \text { in } \quad \Omega, & \nabla \cdot \mathbf{u}=0 \quad \text { in } \Omega \tag{3.2a}\\
T(\mathbf{u}, p) \mathbf{n}+h \mathbf{u}=\mathbf{F} & \text { on } \partial \Omega \tag{3.2~b}
\end{align*}
$$

if $\nabla \cdot \mathbf{u}=0$ in Ω and

$$
\begin{equation*}
\langle\mathbf{F}, \boldsymbol{\Phi}\rangle=\int_{\Omega}[2 \hat{\nabla} \mathbf{u} \cdot \hat{\nabla} \boldsymbol{\Phi}-p(\nabla \cdot \boldsymbol{\Phi})+\lambda \boldsymbol{\Phi} \cdot \mathbf{u}] \mathrm{d} \mathbf{x}+\int_{\partial \Omega} h \mathbf{u} \cdot \boldsymbol{\Phi} \mathrm{~d} \sigma \tag{3.3}
\end{equation*}
$$

for all $\boldsymbol{\Phi} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$. If $h \equiv 0$ we say about the Neumann problem for the Brinkman system.

If Ω is bounded then $p \in L^{q}(\Omega)$ and the density of $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ in $W^{1, q^{\prime}}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ gives that (3.3) holds for all $\boldsymbol{\Phi} \in W^{1, q^{\prime}}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.

If \mathbf{F} is supported on the boundary then (\mathbf{u}, p) is a weak solution of the problem (3.1) with $\mathbf{f} \equiv 0$ and $\mathbf{g}=\mathbf{F}$.

If $(\mathbf{u}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L_{\mathrm{loc}}^{q}(\bar{\Omega})$ then (3.3) holds for all $\boldsymbol{\Phi} \in \mathcal{C}_{c}^{\infty}\left(\Omega, \mathbb{R}^{m}\right)$ if and only if (\mathbf{u}, p) is a solution of (3.2a) in the sense of distributions.

Remark that if $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with Lipschitz boundary and $(\mathbf{u}, p) \in \mathcal{C}^{2}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times \mathcal{C}^{1}(\bar{\Omega})$ is a classical solution of the problem (3.1), then (\mathbf{u}, p) is a weak solution of the problem (3.2) with

$$
\langle\mathbf{F}, \boldsymbol{\Phi}\rangle:=\int_{\Omega} \mathbf{f} \cdot \boldsymbol{\Phi} \mathrm{d} \mathbf{x}+\int_{\partial \Omega} \mathbf{g} \cdot \boldsymbol{\Phi} \mathrm{d} \sigma .
$$

4. BRinkman system in \mathbb{R}^{m}

Lemma 4.1. For $t \in(0, \infty)$ define $L_{t} \varphi(\mathbf{x}):=\varphi(t \mathbf{x})$ for $\varphi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}\right)$. More generally, for a distribution f we define

$$
\left\langle L_{t} f, \varphi\right\rangle:=\left\langle f, t^{m} L_{1 / t} \varphi\right\rangle
$$

Suppose that

$$
\begin{equation*}
\nabla p-\Delta \mathbf{u}+\lambda \mathbf{u}=\mathbf{f}, \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \mathbb{R}^{m} \tag{4.1}
\end{equation*}
$$

in the sense of distributions. Define $\tilde{p}:=t^{-1} L_{t} p, \tilde{\mathbf{u}}:=t^{-2} L_{t} \mathbf{u}, \tilde{\mathbf{f}}:=L_{t} \mathbf{f}$. Then

$$
\begin{equation*}
\nabla \tilde{p}-\Delta \tilde{\mathbf{u}}+t^{2} \lambda \tilde{\mathbf{u}}=\tilde{\mathbf{f}}, \quad \nabla \cdot \tilde{\mathbf{u}}=0 \tag{4.2}
\end{equation*}
$$

Proof. If $p \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}\right), \mathbf{u} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ then easy calculation yields (4.2). If \mathbf{u}, p are distributions we can choose $p_{k} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}\right)$, $\mathbf{u}_{k} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ such that $p_{k} \rightarrow p$, $\mathbf{u}_{k} \rightarrow \mathbf{u}$ in the sense of distributions. Now we get (4.2) by the limit process.

Proposition 4.2. Let $\lambda \in(0, \infty), 1<q<\infty, \mathbf{f} \in W^{-1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Then there exists a solution $(\mathbf{u}, p) \in W^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \times L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{m}\right)$ of (4.1). A velocity \mathbf{u} is unique, a pressure p is unique up to an additive constant. Moreover, $p \in D^{-1, q}\left(\mathbb{R}^{m}\right)$ and

$$
\begin{equation*}
\|\mathbf{u}\|_{W^{1, q}\left(\mathbb{R}^{m}\right)}+\inf _{c \in \mathbb{R}^{1}}\|p+c\|_{D^{-1, q}\left(\mathbb{R}^{m}\right)} \leq C\|\mathbf{f}\|_{W^{-1, q}\left(\mathbb{R}^{m}\right)} \tag{4.3}
\end{equation*}
$$

where C depends only on m, λ, q and a choice of ω in (2.1).
Proof. If $\lambda=1$ then there exists a solution $(\mathbf{u}, p) \in W^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \times L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{m}\right)$ of (4.1) by [30, Theorem 5.5] and [5, Lemma IV.1.1]. Lemma 4.1 gives that there exists a solution $(\mathbf{u}, p) \in W^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \times L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{m}\right)$ of (4.1) for arbitrary $\lambda \in(0, \infty)$. Let $(\tilde{\mathbf{u}}, \tilde{p}) \in W^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \times L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{m}\right)$ be another solution of (4.1). Then $u_{j}-\tilde{u}_{j}, p-\tilde{p}_{j}$ are polynomials by $\left[18\right.$, Proposition 5.1]. Since $u_{j}-\tilde{u}_{j} \in W^{1, q}\left(\mathbb{R}^{m}\right)$, we infer that $u_{j}-\tilde{u}_{j} \equiv 0$. Thus $\nabla(p-\tilde{p}) \equiv 0$ by (4.1). This forces that $p-\tilde{p}$ is constant. Since $\partial_{j} p=\Delta u_{j}-\lambda u_{j}+f_{j} \in W^{-1, q}\left(\mathbb{R}^{m}\right)$, we infer $p \in D^{-1, q}\left(\mathbb{R}^{m}\right)$.

Define

$$
Q(\mathbf{u}, p):=\int_{\Omega} p \mathrm{~d} \mathbf{x}
$$

Then $(\mathbf{u}, p) \mapsto(\nabla p-\Delta \mathbf{u}+\lambda \mathbf{u}, Q p)$ is a bounded linear operator from the Banach space $W_{\sigma}^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \times D^{-1, q}\left(\mathbb{R}^{m}\right)$ to $W^{-1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, where $W_{\sigma}^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right):=$ $\left\{\mathbf{u} \in W^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) ; \nabla \cdot \mathbf{u} \equiv 0\right\}$. Since it is one-to-one and onto, it is an isomorphism. This gives the estimate (4.3).

5. Fundamental solution of the Brinkman system

Let $\lambda \geq 0$. Then there exists a unique fundamental solution $E^{\lambda}=\left(E_{i j}^{\lambda}\right), Q^{\lambda}=$ $\left(Q_{j}^{\lambda}\right)$ of the Brinkman system

$$
\begin{equation*}
-\Delta \mathbf{u}+\lambda \mathbf{u}+\nabla p=0, \quad \nabla \mathbf{u}=0 \tag{5.1}
\end{equation*}
$$

in \mathbb{R}^{m} such that $E^{\lambda}(x)=o(|x|), Q^{\lambda}(x)=o(|x|)$ as $|x| \rightarrow \infty$. Remember that for $i, j \in\{1, \ldots, m\}$ we have

$$
\begin{gather*}
-\Delta E_{i j}^{\lambda}+\lambda E_{i j}^{\lambda}+\partial_{i} Q_{j}^{\lambda}=\delta_{i j} \delta_{0}, \quad \partial_{1} E_{1 j}^{\lambda}+\ldots \partial_{m} E_{m j}^{\lambda}=0 \tag{5.2}\\
-\Delta E_{i, m+1}^{\lambda}+\lambda E_{i, m+1}^{\lambda}+\partial_{i} Q_{m+1}^{\lambda}=0, \quad \partial_{1} E_{1, m+1}^{\lambda}+\ldots \partial_{m} E_{m, m+1}^{\lambda}=\delta_{0} \tag{5.3}
\end{gather*}
$$

Clearly,

$$
\begin{equation*}
E^{\lambda}(-\mathbf{x})=E^{\lambda}(\mathbf{x}), \quad Q^{\lambda}(-\mathbf{x})=-Q^{\lambda}(\mathbf{x}) \tag{5.4}
\end{equation*}
$$

If $j \in\{1, \ldots, m\}$ then

$$
\begin{gathered}
Q_{j}^{\lambda}(x)=E_{j, m+1}^{\lambda}(x)=\frac{1}{\omega_{n}} \frac{x_{j}}{|x|^{m}}, \\
Q_{m+1}^{\lambda}= \begin{cases}\delta_{0}(x)+\left(\lambda / \omega_{m}\right) \ln |x|^{-1}, & m=2 \\
\delta_{0}(x)+\left(\lambda / \omega_{m}\right)(m-2)^{-1}|x|^{2-m}, & m>2\end{cases}
\end{gathered}
$$

where ω_{m} is the area of the unit sphere in \mathbb{R}^{m}. (See [29, p. 60].) The expressions of E^{λ} can be found in the book [29, Chapter 2]. We omit them for the sake of brevity. For $\lambda=0$ we obtain the fundamental solution of the Stokes system. If $i, j \in$ $\{1, \ldots, m\}$, the components of E^{0} are given by

$$
\begin{gather*}
E_{i j}^{0}(x)=\frac{1}{2 \omega_{m}}\left\{\frac{\delta_{i j}}{(m-2)|x|^{m-2}}+\frac{x_{i} x_{j}}{|x|^{m}}\right\}, \quad m \geq 3 \tag{5.5}\\
E_{i j}^{0}(x)=\frac{1}{4 \pi}\left\{\delta_{i j} \ln \frac{1}{|x|}+\frac{x_{j} x_{k}}{|x|^{2}}\right\}, \quad m=2, \tag{5.6}
\end{gather*}
$$

(see, e.g., [29, p. 16]).
If $i, j \leq m$ then

$$
\begin{align*}
E_{i j}^{\lambda} & =E_{j i}^{\lambda} \tag{5.7}\\
\left|E_{i j}^{\lambda}(x)-E_{i j}^{0}(x)\right| & =O(1) \quad \text { as }|x| \rightarrow 0 \tag{5.8}
\end{align*}
$$

by [29, p. 66] and

$$
\begin{equation*}
\left|\nabla E_{i j}^{\lambda}(x)-\nabla E_{i j}^{0}(x)\right|=O\left(|x|^{2-m}\right) \quad \text { as }|x| \rightarrow 0 \tag{5.9}
\end{equation*}
$$

by [18, Lemma 4.1].
If $i, j \leq m$ and $\lambda>0$, then

$$
\begin{equation*}
\partial^{\alpha} E_{i j}(x)=O\left(|x|^{-m-|\alpha|}\right), \quad|x| \rightarrow \infty \tag{5.10}
\end{equation*}
$$

for each multiindex α. (See [14, Lemma 3.1].)

6. Volume potential

We denote $Q(x)=\left(Q_{1}^{0}(x), \ldots, Q_{m}^{0}(x)\right)=\left(Q_{1}^{\lambda}(x), \ldots, Q_{m}^{\lambda}(x)\right)$. By \tilde{E}^{λ} we denote the matrix of the type $m \times m$, where $\tilde{E}_{i j}^{\lambda}(x)=E_{i j}^{\lambda}(x)$ for $i, j \leq m$.

Proposition 6.1. Let $0<\lambda<\infty, 1<q<\infty, s \in \mathbb{R}^{1}$. Then $\mathbf{f} \mapsto \tilde{E}^{\lambda} * \mathbf{f}$, $\mathbf{f} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, can be extended by a unique way as a bounded linear operator from $W^{s, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ to $W^{s+2, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.

Proof. $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ is a dense subset of $W^{s, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ by $[25, \S 2.3 .3],[26, \S 2.12$, Theorem] and [1, Theorem 4.2.2]. This gives a uniqueness.

Suppose first that $s=-1$. If $\mathbf{f} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, then $\mathbf{u}:=\tilde{E}^{\lambda} * \mathbf{f}, p:=Q * \mathbf{f}$ is a solution of (4.1). According to Proposition 4.2 there exists a solution $(\tilde{\mathbf{u}}, \tilde{p}) \in$ $W^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \times L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{m}\right)$ of (4.1) such that

$$
\|\tilde{\mathbf{u}}\|_{W^{1, q}\left(\mathbb{R}^{m}\right)} \leq C_{1}\|\mathbf{f}\|_{W^{-1, q}\left(\mathbb{R}^{m}\right)}
$$

with C_{1} independent of \mathbf{f}. [18, Proposition 5.1] gives that $u_{j}-\tilde{u}_{j}$ are polynomials. Since $\mathbf{u} \in L^{q}(\{|\mathbf{x}| \geq r\})$ for sufficiently large r by (5.10), we infer that $\mathbf{u} \equiv \tilde{\mathbf{u}}$. Therefore $B: \mathbf{f} \mapsto \tilde{E}^{\lambda} * \mathbf{f}, \mathbf{f} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, can be extended as a bounded linear operator $B: W^{-1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \rightarrow W^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.

Let now $k \in \mathbb{N}_{0}$. Then $W^{k, q}\left(\mathbb{R}^{m}\right) \hookrightarrow W^{-1, q}\left(\mathbb{R}^{m}\right)$ by [26, $\S 2.3 .3$, Remark 4]. In particular, there exists a constant C_{2} such that

$$
\begin{equation*}
\|\mathbf{f}\|_{W^{-1, q}\left(\mathbb{R}^{m}\right)} \leq C_{2}\|\mathbf{f}\|_{L^{q}\left(\mathbb{R}^{m}\right)} \tag{6.1}
\end{equation*}
$$

If $\mathbf{f} \in W^{k, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ and α is a multi-index with $|\alpha| \leq k+1$, then $\partial^{\alpha} \tilde{E}^{\lambda} * \mathbf{f}=$ $\tilde{E}^{\lambda} * \partial^{\alpha} \mathbf{f}$ and therefore

$$
\left\|\partial^{\alpha} \tilde{E}^{\lambda} * \mathbf{f}\right\|_{W^{1, q}\left(\mathbb{R}^{m}\right)} \leq C_{1}\left\|\partial^{\alpha} \mathbf{f}\right\|_{W^{-1, q}\left(\mathbb{R}^{m}\right)}
$$

This, (6.1) and $\partial_{j}: L^{q}\left(\mathbb{R}^{m}\right) \rightarrow W^{-1, q}\left(\mathbb{R}^{m}\right)$ bounded yield that

$$
B: W^{k, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \rightarrow W^{k+2, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)
$$

is bounded.
Let now $k \in \mathbb{N}_{0}, 0<\theta<1, s=k-1+\theta$. Then

$$
\begin{aligned}
\left(W^{k-1, q}\left(\mathbb{R}^{m}\right), W^{k, q}\left(\mathbb{R}^{m}\right)\right)_{\theta, q} & =W^{s, q}\left(\mathbb{R}^{m}\right) \\
\left(W^{k+1, q}\left(\mathbb{R}^{m}\right), W^{k+2, q}\left(\mathbb{R}^{m}\right)\right)_{\theta, q} & =W^{s+2, q}\left(\mathbb{R}^{m}\right)
\end{aligned}
$$

where $(,)_{\theta, q}$ denotes the real interpolation. (See [3, Theorem 6.4.5].) Thus B : $W^{s, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \rightarrow W^{s+2, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ is bounded by [23, Lemma 22.3].

Let now $s<-1$. Denote $q^{\prime}=q /(q-1)$. Since $B: W^{-s-2, q^{\prime}}\left(\mathbb{R}^{m}\right) \rightarrow W^{-s, q^{\prime}}\left(\mathbb{R}^{m}\right)$ is bounded, we infer that $B^{\prime}: W^{s, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \rightarrow W^{s+2, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ is bounded. Since $\tilde{E}^{\lambda}(-\mathbf{x})=\tilde{E}^{\lambda}(\mathbf{x})$ by (5.4) and $\tilde{E}_{i j}=\tilde{E}_{j i}$ by (5.7), Fubini's theorem yields that $B^{\prime}=B$.

7. BRINKMAN BOUNDARY LAYER POTENTIALS

Let now $\Omega \subset \mathbb{R}^{m}$ be an open set with compact Lipschitz boundary. If $1<q<\infty$ and $\mathbf{g} \in L^{q}\left(\partial \Omega, \mathbb{R}^{m}\right)$ then the single-layer potential for the Brinkman system $E_{\Omega}^{\lambda} \mathbf{g}$ and its associated pressure potential Q_{Ω} g are given by

$$
\begin{aligned}
E_{\Omega}^{\lambda} \mathbf{g}(x) & :=\int_{\partial \Omega} \tilde{E}^{\lambda}(x-y) \mathbf{g}(y) \mathrm{d} \sigma(y) \\
Q_{\Omega} \mathbf{g}(x) & :=\int_{\partial \Omega} Q(x-y) \mathbf{g}(y) \mathrm{d} \sigma(y)
\end{aligned}
$$

More generally, if $\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right)$, where g_{j} are distributions supported on $\partial \Omega$ then we define

$$
E_{\Omega}^{\lambda} \mathbf{g}(x):=\left\langle\mathbf{g}, \tilde{E}^{\lambda}(x-\cdot)\right\rangle, \quad Q_{\Omega} \mathbf{g}(x):=\langle\mathbf{g}, Q(x-\cdot)\rangle
$$

Remark that $\left(E_{\Omega}^{\lambda} \mathbf{g}, Q_{\Omega} \mathbf{g}\right)$ is a solution of the Brinkman system (5.1) in the set $\mathbb{R}^{m} \backslash \partial \Omega$.

Denote

$$
K_{\Omega}^{\lambda}(y, x)=-T_{x}\left(\tilde{E}^{\lambda}(x-y), Q(x-y)\right) \mathbf{n}^{\Omega}(x)
$$

where

$$
T(\mathbf{u}, p)=2 \hat{\nabla} \mathbf{u}-p I, \quad \hat{\nabla} \mathbf{u}=\frac{1}{2}\left[\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right]
$$

is the stress tensor corresponding to a velocity \mathbf{u} and a pressure p. Now we define a double layer potential. For $\boldsymbol{\Psi} \in L^{q}\left(\partial \Omega, \mathbb{R}^{m}\right)$ define in $\mathbb{R}^{m} \backslash \partial \Omega$

$$
\begin{equation*}
\left(D_{\Omega}^{\lambda} \boldsymbol{\Psi}\right)(x)=\int_{\partial \Omega} K_{\Omega}^{\lambda}(x, y) \boldsymbol{\Psi}(y) \mathrm{d} \sigma(y) \tag{7.1}
\end{equation*}
$$

and the corresponding pressure by

$$
\begin{equation*}
\left(\Pi_{\Omega}^{\lambda} \mathbf{\Psi}\right)(\mathbf{x})=\int_{\partial \Omega} \Pi_{\Omega}^{\lambda}(\mathbf{x}, \mathbf{y}) \mathbf{\Psi}(\mathbf{y}) \mathrm{d} \sigma(\mathbf{y}) \tag{7.2}
\end{equation*}
$$

If $m>2$ then
$\Pi_{\Omega}^{\lambda}(\mathbf{x}, \mathbf{y})=\frac{1}{\omega_{m}}\left\{-(\mathbf{y}-\mathbf{x}) \frac{2 m(\mathbf{y}-\mathbf{x}) \cdot \mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{m+2}}+\frac{2 \mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{m}}-\lambda \frac{|\mathbf{x}-\mathbf{y}|^{2-m}}{m-2} \mathbf{n}^{\Omega}(\mathbf{y})\right\}$,
where ω_{m} is the surface of the unit sphere. If $m=2$ then
$\Pi_{\Omega}^{\lambda}(\mathbf{x}, \mathbf{y})=\frac{1}{2 \pi}\left\{-(\mathbf{y}-\mathbf{x}) \frac{4(\mathbf{y}-\mathbf{x}) \cdot \mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{4}}+\frac{2 \mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{m}}-\lambda\left(\ln \frac{1}{|\mathbf{x}-\mathbf{y}|}\right) \mathbf{n}^{\Omega}(\mathbf{y})\right\}$.
Remark that $D_{\Omega}^{\lambda} \boldsymbol{\Psi} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{m} \backslash \partial \Omega, \mathbb{R}^{m}\right), \Pi_{\Omega}^{\lambda} \boldsymbol{\Psi} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{m} \backslash \partial \Omega, \mathbb{R}^{1}\right)$ and $\nabla \Pi_{\Omega}^{\lambda} \boldsymbol{\Psi}-$ $\Delta D_{\Omega}^{\lambda} \boldsymbol{\Psi}+\lambda D_{\Omega}^{\lambda} \boldsymbol{\Psi}=0, \nabla \cdot D_{\Omega}^{\lambda} \boldsymbol{\Psi}=0$ in $\mathbb{R}^{m} \backslash \partial \Omega$.

Define

$$
K_{\Omega, \lambda} \boldsymbol{\Psi}(\mathbf{x})=\lim _{\epsilon \searrow 0} \int_{\partial \Omega \backslash B(\mathbf{x} ; \epsilon)} K_{\Omega}^{\lambda}(\mathbf{x}, \mathbf{y}) \boldsymbol{\Psi}(\mathbf{y}) \mathrm{d} \sigma(\mathbf{y}), \quad \mathbf{x} \in \partial \Omega
$$

where $B(\mathbf{x} ; \epsilon)=\left\{\mathbf{y} \in \mathbb{R}^{m} ;|\mathbf{x}-\mathbf{y}|<\epsilon\right\}$.
Lemma 7.1. Let $\Omega \subset \mathbb{R}^{m}$ be an open set with compact Lipschitz boundary, $\lambda \geq 0$, $1<q<\infty, 0<s<1$. Then $K_{\Omega, \lambda}$ is a bounded linear operator on $W^{s, q}\left(\partial \Omega, \mathbb{R}^{m}\right)$ and its adjoint operator $K_{\Omega, \lambda}^{\prime}$ is a bounded linear operator on $W^{-s, q /(q-1)}\left(\partial \Omega, \mathbb{R}^{m}\right)$.
(See [11, Lemma 3.1].)
Lemma 7.2. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded open set with Lipschitz boundary, $\lambda \geq 0$, $1<q<\infty, 0<s<1$. If $s \neq 2$ suppose moreover that $s \neq 1-1 / q$. Then $D_{\Omega}^{\lambda}: W^{s, q}\left(\partial \Omega, \mathbb{R}^{m}\right) \rightarrow W^{s+1 / q, q}\left(\Omega, \mathbb{R}^{m}\right)$ is a bounded linear operator. If $\boldsymbol{\Phi} \in$ $W^{s, q}\left(\partial \Omega, \mathbb{R}^{m}\right)$ then $\frac{1}{2} \boldsymbol{\Phi}+K_{\Omega, \lambda} \boldsymbol{\Phi}$ is the trace of $D_{\Omega}^{\lambda} \boldsymbol{\Phi}$.
(See [11, Lemma 3.1].)
Proposition 7.3. Let $\Omega \subset \mathbb{R}^{m}$ be an open set with compact Lipschitz boundary, $\lambda>0,1<q<\infty,-1<s<0$. Then $E_{\Omega}^{\lambda}: W^{s, q}\left(\partial \Omega, \mathbb{R}^{m}\right) \rightarrow W^{s+1+1 / q, q}\left(\mathbb{R}^{m}\right)$ is bounded.

Proof. Put $q^{\prime}=q /(q-1)$. Then

$$
W^{s, q}\left(\partial \Omega, \mathbb{R}^{m}\right) \hookrightarrow\left[\dot{W}^{1 / q^{\prime}-s, q^{\prime}}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)\right]^{\prime}=W^{s-1 / q^{\prime}, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)
$$

by [9, Chapter VI, Theorem 1] and [19, Theorem 3.18]. Since $s-1 / q^{\prime}+2=s+1+1 / q$, Proposition 6.1 gives the proposition.

Lemma 7.4. Let $\Omega \subset \mathbb{R}^{m}$ be an open set with compact Lipschitz boundary, $1<$ $q<\infty, \boldsymbol{\Phi} \in W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{m}\right), \lambda \geq 0$. Denote by $\mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}$ the restricition of $E_{\Omega}^{\lambda} \boldsymbol{\Phi}$ onto $\partial \Omega$. Then $\mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}$ is the trace of $E_{\Omega}^{\lambda} \boldsymbol{\Phi}$. If $h \in L^{\infty}(\partial \Omega)$, then $(\mathbf{u}, p):=\left(E_{\Omega}^{\lambda} \boldsymbol{\Phi}, Q_{\Omega} \boldsymbol{\Phi}\right)$ is a solution of the Robin problem (3.1) with $\mathbf{f} \equiv 0$ and $\mathbf{g}=\frac{1}{2} \boldsymbol{\Phi}-K_{\Omega, \lambda}^{\prime} \boldsymbol{\Phi}+h \mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}$. Moreover, $\mathcal{E}_{\Omega}^{\lambda}: W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{m}\right) \rightarrow W^{1-1 / q, q}\left(\partial \Omega, \mathbb{R}^{m}\right)$ is a bounded operator.
(See [11, Lemma 3.1].)
Proposition 7.5. Let $\Omega \subset \mathbb{R}^{m}$ be an open set with compact Lipschitz boundary, $1<q<\infty, \lambda \geq 0,0<s<1$. Suppose that one from the following conditions is fulfilled:
(1) $q=2$.
(2) $\partial \Omega$ is of class \mathcal{C}^{1}.
(3) $2 \leq m \leq 3$ and $3 / 2 \leq q \leq 3$.

Then $\frac{1}{2} I \pm K_{\Omega, \lambda}$ are Fredholm operators with index 0 in $W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ and in $W^{s, 2}\left(\partial \Omega ; \mathbb{R}^{m}\right)$, and $\frac{1}{2} I \pm K_{\Omega, \lambda}^{\prime}$ in $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ are Fredholm operators with index 0.

Proof. Denote $q^{\prime}=q /(q-1)$. If $\partial \Omega$ is of class \mathcal{C}^{1} then $K_{\Omega, 0}$ is a compact operator on $W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ and on $W^{1-1 / q^{\prime}, q^{\prime}}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ by [16, p. 232]. Therefore $K_{\Omega, 0}^{\prime}$ is a compact operator on $\left[W^{1-1 / q^{\prime}, q^{\prime}}\left(\partial \Omega ; \mathbb{R}^{m}\right)\right]^{\prime}=W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$. Hence $\frac{1}{2} I \pm K_{\Omega, 0}$ are Fredholm operators with index 0 in $W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$, and $\frac{1}{2} I \pm K_{\Omega, 0}^{\prime}$ are Fredholm operators with index 0 in $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$.
$\frac{1}{2} I \pm K_{\Omega, 0}$ are Fredholm operators with index 0 in $W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ and in $W^{s, 2}\left(\partial \Omega ; \mathbb{R}^{m}\right)$, and $\frac{1}{2} I \pm K_{\Omega, 0}^{\prime}$ are Fredholm operators with index 0 in the space $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ in the other cases by [20, Theorem 10.5.3].
$K_{\Omega, \lambda}-K_{\Omega, 0}$ is a compact operator in $W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ and in $W^{s, 2}\left(\partial \Omega ; \mathbb{R}^{m}\right)$, $K_{\Omega, \lambda}^{\prime}-K_{\Omega, 0}^{\prime}$ is a compact operator in $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ by [11, Theorem 3.1]. This gives the proposition.

8. Integral representation

The following lemma is well known for classical solutions of the Neumann problem for the Brinkman system.

Lemma 8.1. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded open set with Lipschitz boundary. Let $\lambda \geq$ $0,1<q<\infty, \mathbf{f} \equiv 0, \mathbf{g} \in W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right), h \equiv 0$. If $(\mathbf{u}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ is a solution of the Neumann problem (3.1) then

$$
\begin{align*}
& D_{\Omega}^{\lambda} \mathbf{u}(\mathbf{x})+E_{\Omega}^{\lambda} \mathbf{g}(\mathbf{x})= \begin{cases}\mathbf{u}(\mathbf{x}), & \mathbf{x} \in \Omega \\
0, & \mathbf{x} \notin \bar{\Omega}\end{cases} \tag{8.1}\\
& \Pi_{\Omega}^{\lambda} \mathbf{u}(\mathbf{x})+Q_{\Omega} \mathbf{g}(\mathbf{x})= \begin{cases}p(\mathbf{x}), & \mathbf{x} \in \Omega \\
0, & \mathbf{x} \notin \bar{\Omega}\end{cases} \tag{8.2}
\end{align*}
$$

Proof. If $\mathbf{x} \notin \bar{\Omega}$ then (8.1), (8.2) are an easy consequence of the Green formula. (See the proof of the lemma for classical solutions of the Robin problem in [29].)

Let now $\mathbf{x} \in \Omega$. Put $\omega:=\Omega \backslash \overline{B(\mathbf{x} ; r)}$. Define $\mathbf{g}=T(\mathbf{u}, p) \mathbf{n}^{\omega}$ on $\partial \omega \backslash \partial \Omega$. Then

$$
\begin{equation*}
D_{\omega}^{\lambda} \mathbf{u}(\mathbf{x})+E_{\omega}^{\lambda} \mathbf{g}(\mathbf{x})=0, \quad \Pi_{\omega}^{\lambda} \mathbf{u}(\mathbf{x})+Q_{\omega} \mathbf{g}(\mathbf{x})=0 \tag{8.3}
\end{equation*}
$$

[29, p. 60] gives

$$
\begin{equation*}
D_{B(\mathbf{x} ; r)}^{\lambda} \mathbf{u}(\mathbf{x})-E_{B(\mathbf{x} ; r)}^{\lambda} \mathbf{g}(\mathbf{x})=\mathbf{u}(\mathbf{x}), \quad \Pi_{B(\mathbf{x} ; r)}^{\lambda} \mathbf{u}(\mathbf{x})-Q_{B(\mathbf{x} ; r)} \mathbf{g}(\mathbf{x})=p(\mathbf{x}) \tag{8.4}
\end{equation*}
$$

Adding (8.3) and (8.4) we obtain (8.1), (8.2).

9. Robin problem for the Brinkman system

First we study the problem (3.1) with $\mathbf{f} \equiv 0$ and $\mathbf{g} \in W^{1 / q-1, q}\left(\partial \Omega, \mathbb{R}^{m}\right)$. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary. Let $G(1), \ldots, G(k)$ be all bounded components of $\mathbb{R}^{m} \backslash \bar{\Omega}$. Fix open balls $B(j)$ such that $\bar{B}(j) \subset G(j)$. Choose $\boldsymbol{\Psi}_{j} \in W^{1, \infty}\left(\partial G(j), \mathbb{R}^{m}\right)$ such that

$$
\begin{equation*}
\int_{\partial G(j)} \boldsymbol{\Psi}_{j} \cdot \mathbf{n}^{\Omega} \mathrm{d} \sigma \neq 0 \tag{9.1}
\end{equation*}
$$

Define $\boldsymbol{\Psi}_{j}=0$ on $\partial \Omega \backslash \partial G(j)$. If $\boldsymbol{\Phi} \in W^{1 / q-1, q}\left(\partial \Omega, \mathbb{R}^{m}\right)$ we define the modified Brinkman single layer potential by

$$
\begin{align*}
& \grave{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}:=E_{\Omega}^{\lambda} \boldsymbol{\Phi}+\sum_{j=1}^{k}\left\langle\boldsymbol{\Phi}, \boldsymbol{\Psi}_{j}\right\rangle D_{B(j)}^{\lambda} \mathbf{n}^{B(j)} \tag{9.2}\\
& \grave{Q}_{\Omega}^{\lambda} \boldsymbol{\Phi}:=Q_{\Omega}^{\lambda} \boldsymbol{\Phi}+\sum_{j=1}^{k}\left\langle\boldsymbol{\Phi}, \boldsymbol{\Psi}_{j}\right\rangle \Pi_{B(j)}^{\lambda} \mathbf{n}^{B(j)} . \tag{9.3}
\end{align*}
$$

(If $\partial \Omega$ is connected then $\grave{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}=E_{\Omega}^{\lambda} \boldsymbol{\Phi}, \grave{Q}_{\Omega}^{\lambda} \boldsymbol{\Phi}=Q_{\Omega}^{\lambda} \boldsymbol{\Phi}$.) Proposition 7.3 and Lemma 7.4 give that $\left(\grave{E}_{\Omega}^{\lambda} \Phi, \grave{Q}_{\Omega}^{\lambda} \boldsymbol{\Phi}\right)$ is a solution of the Robin problem (3.1) if and only if $\tau_{\Omega, h}^{\lambda} \boldsymbol{\Phi}=\mathbf{g}$ where

$$
\tau_{\Omega, h}^{\lambda} \boldsymbol{\Phi}:=\frac{1}{2} \boldsymbol{\Phi}-K_{\Omega, \lambda}^{\prime} \boldsymbol{\Phi}+\sum_{j=1}^{k}\left\langle\boldsymbol{\Phi}, \boldsymbol{\Psi}_{j}\right\rangle T\left(D_{B(j)}^{\lambda} \mathbf{n}^{B(j)}, \Pi_{B(j)}^{\lambda} \mathbf{n}^{B(j)}\right) \mathbf{n}^{\Omega}+h \grave{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}
$$

Lemma 9.1. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary, $1<q<$ $\infty, \lambda>0, h \in L^{\infty}(\partial \Omega)$. Suppose that one from the following conditions is fulfilled:
a) $q=2$.
b) $\partial \Omega$ is of class \mathcal{C}^{1}.
c) $2 \leq m \leq 3$ and $3 / 2 \leq q \leq 3$.

Let $(\mathbf{u}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ be a weak solution of (3.2).
(1) If $q=2$ then

$$
\begin{equation*}
\langle\mathbf{F}, \mathbf{u}\rangle=\int_{\Omega}\left[2|\hat{\nabla} \mathbf{u}|^{2}+\lambda|\mathbf{u}|^{2}\right] \mathrm{d} \mathbf{x}+\int_{\partial \Omega} h|\mathbf{u}|^{2} \mathrm{~d} \sigma . \tag{9.4}
\end{equation*}
$$

(2) If $h \geq 0$ and $\mathbf{F} \equiv 0$ then $\mathbf{u} \equiv 0, p \equiv 0$.

Proof. Suppose first that $q=2$. The definition of the weak solution of the Robin problem and the density of $\mathcal{C}_{c}^{\infty}\left(\Omega, \mathbb{R}^{m}\right)$ in $W^{1,2}\left(\Omega, \mathbb{R}^{m}\right)$ give (9.4).

Let now $h \geq 0$ and $\mathbf{F} \equiv 0$. Since $T(\mathbf{u}, p) \mathbf{n}^{\Omega}=-h \mathbf{u}$, Lemma 8.1 gives

$$
\begin{equation*}
\mathbf{u}=D_{\Omega}^{\lambda} \mathbf{u}-E_{\Omega}^{\lambda}(h \mathbf{u}), \quad p=\Pi_{\Omega}^{\lambda} \mathbf{u}-Q_{\Omega}(h \mathbf{u}) \quad \text { in } \Omega . \tag{9.5}
\end{equation*}
$$

For the trace of \mathbf{u} we obtain from Lemma 7.2 and Lemma 7.4

$$
\mathbf{u}=\frac{1}{2} \mathbf{u}+K_{\Omega, \lambda} \mathbf{u}-\mathcal{E}_{\Omega}^{\lambda} h \mathbf{u} \quad \text { on } \partial \Omega .
$$

Hence $H \mathbf{u}=0$, where $H \mathbf{v}=\frac{1}{2} \mathbf{v}-K_{\Omega, \lambda} \mathbf{v}+\mathcal{E}_{\Omega}^{\lambda} h \mathbf{v}$. The operator $\frac{1}{2} I-K_{\Omega, \lambda}$ is a Fredholm operator with index 0 in $W^{1-1 / q, q}\left(\Omega, \mathbb{R}^{m}\right)$, in $W^{1-1 / q, 2}\left(\Omega, \mathbb{R}^{m}\right)$ and in $W^{1 / 2,2}\left(\Omega, \mathbb{R}^{m}\right)$ by Proposition 7.5. The operator $\mathbf{v} \mapsto \mathcal{E}_{\Omega}^{\lambda} h \mathbf{v}$ is a compact operator in $W^{1-1 / q, q}\left(\Omega, \mathbb{R}^{m}\right)$, in $W^{1-1 / q, 2}\left(\Omega, \mathbb{R}^{m}\right)$ and in $W^{1 / 2,2}\left(\Omega, \mathbb{R}^{m}\right)$ by [11, Lemma 3.1]. So, H is a Fredholm operator with index 0 in $W^{1-1 / q, q}\left(\Omega, \mathbb{R}^{m}\right)$, in $W^{1-1 / q, 2}\left(\Omega, \mathbb{R}^{m}\right)$ and in $W^{1 / 2,2}\left(\Omega, \mathbb{R}^{m}\right)$. [17, Lemma 9] gives that $\mathbf{u} \in W^{1 / 2,2}\left(\partial \Omega ; \mathbb{R}^{m}\right)$. According to [11, Lemma 3.1] one has $D_{\Omega}^{\lambda} \mathbf{u} \in W^{1,2}\left(\Omega ; \mathbb{R}^{m}\right), \Pi_{\Omega}^{\lambda} \mathbf{u} \in L^{2}(\Omega)$. The representation (9.5), Proposition 7.3 and [11, Lemma 3.1] give that $(\mathbf{u}, p) \in W^{1,2}\left(\Omega, \mathbb{R}^{m}\right) \times L^{2}(\Omega)$. Thus

$$
0=\langle\mathbf{F}, \mathbf{u}\rangle=\int_{\Omega}\left[|\hat{\nabla} \mathbf{u}|^{2}+\lambda|\mathbf{u}|^{2}\right] \mathrm{d} \mathbf{x}+\int_{\partial \Omega} h|\mathbf{u}|^{2} \mathrm{~d} \sigma
$$

Hence $\mathbf{u} \equiv 0$. Since $\nabla p=\Delta \mathbf{u}-\lambda \mathbf{u} \equiv 0$, there exists a constant c such that $p \equiv 0$. So, (\mathbf{u}, p) is a classical solution of the Robin problem (3.1). So, $0=$ $T(\mathbf{u}, \mathbf{p}) \mathbf{n}^{\Omega}+h \mathbf{u}=-c \mathbf{n}^{\Omega}$. Hence $c=0$.

Theorem 9.2. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary, $1<$ $q<\infty, \lambda>0, h \in L^{\infty}(\partial \Omega), h \geq 0$. Suppose that one from the following conditions is fulfilled:
(1) $q=2$.
(2) $\partial \Omega$ is of class \mathcal{C}^{1}.
(3) $2 \leq m \leq 3$ and $3 / 2 \leq q \leq 3$.

Then $\tau_{\Omega, h}^{\lambda}$ is an isomorphism in $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$. If $\mathbf{g} \in W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ then

$$
\begin{equation*}
(\mathbf{u}, p):=\left(\grave{E}_{\Omega}^{\lambda}\left(\tau_{\Omega, h}^{\lambda}\right)^{-1} \mathbf{g}, \grave{Q}_{\Omega}^{\lambda}\left(\tau_{\Omega, h}^{\lambda}\right)^{-1} \mathbf{g}\right) \tag{9.6}
\end{equation*}
$$

is a unique solution in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ of the Robin problem (3.1) with $\mathbf{f} \equiv 0$. Moreover,

$$
\begin{equation*}
\|\mathbf{u}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}+\|p\|_{L^{q}(\Omega)} \leq C\|\mathbf{g}\|_{W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)} \tag{9.7}
\end{equation*}
$$

where a constant C does not depend on \mathbf{g}.
Proof. $\mathcal{E}_{\Omega}^{\lambda}: W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{m}\right) \rightarrow W^{1-1 / q, q}\left(\partial \Omega, \mathbb{R}^{m}\right) \hookrightarrow L^{q}\left(\partial \Omega, \mathbb{R}^{m}\right)$ by Lemma 7.4. $L^{q}\left(\partial \Omega, \mathbb{R}^{m}\right) \hookrightarrow W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{m}\right)$ compactly by [28, Theorem 1.97], [27, §2.5.7, Proposition] and [25, $\S 2.3 .2$, Proposition 2]. Thus $\tau_{\Omega, h}^{\lambda}-\left[\frac{1}{2} I-K_{\Omega, \lambda}^{\prime}\right]$ is a compact operator in $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$. Since $\frac{1}{2} I-K_{\Omega, \lambda}^{\prime}$ is a Fredholm operator with index 0 in $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ by Proposition 7.5 , we infer that $\tau_{\Omega, h}^{\lambda}$ is a Fredholm operator with index 0 in $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$.

The uniqueness of a solution of the problem (3.1) in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ follows from Lemma 9.1. Let $\boldsymbol{\Phi} \in W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right), \tau_{\Omega, h}^{\lambda} \boldsymbol{\Phi}=0$. Then $(\mathbf{u}, p):=$ $\left(\grave{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}, \grave{Q}_{\Omega}^{\lambda} \boldsymbol{\Phi}\right)$ is a weak solution of the Robin problem (3.1) in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ with $\mathbf{f} \equiv 0, \mathbf{g} \equiv 0$. So, $\mathbf{u}=0$ in $\Omega, p=0$ in Ω. The trace of \mathbf{u} is equal to

$$
\begin{equation*}
\mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}+\sum_{j=1}^{k}\left\langle\boldsymbol{\Phi}, \boldsymbol{\Psi}_{j}\right\rangle D_{B(j)}^{\lambda} \mathbf{n}^{B(j)}=0 \tag{9.8}
\end{equation*}
$$

by Lemma 7.4. Since $\nabla \cdot \mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}=0, \nabla \cdot D_{B(j)}^{\lambda} \mathbf{n}^{B(j)}=0$ in $G(i)$ for $j \neq i$, Green's formula gives

$$
\int_{\partial G(i)} \mathbf{n}^{\Omega} \cdot \mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi} \mathrm{d} \sigma=0, \quad \int_{\partial G(i)} \mathbf{n}^{\Omega} \cdot D_{B(j)}^{\lambda} \mathbf{n}^{B(j)} \mathrm{d} \sigma=0, \quad j \neq i
$$

This and (9.8) give

$$
\begin{equation*}
\left\langle\boldsymbol{\Phi}, \boldsymbol{\Psi}_{i}\right\rangle \int_{\partial G(i)} \mathbf{n}^{\Omega} \cdot D_{B(i)}^{\lambda} \mathbf{n}^{B(i)} \mathrm{d} \sigma=0 . \tag{9.9}
\end{equation*}
$$

Using [18, Proposition 7.2] on $B(i)$ and $G(i) \backslash \overline{B(i)}$

$$
\begin{gathered}
\int_{\partial B(i)} \mathbf{n}^{B(i)} \cdot\left[\frac{1}{2} \mathbf{n}^{B(i)}+K_{B(i), \lambda} \mathbf{n}^{B(i)}\right] \mathrm{d} \sigma=0 \\
\int_{\partial B(i)} \mathbf{n}^{B(i)} \cdot\left[\frac{1}{2} \mathbf{n}^{B(i)}-K_{B(i), \lambda} \mathbf{n}^{B(i)}\right] \mathrm{d} \sigma+\int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot D_{B(i)}^{\lambda} \mathbf{n}^{B(i)} \mathrm{d} \sigma=0 .
\end{gathered}
$$

Adding

$$
\int_{\partial G(i)} \mathbf{n}^{G(i)} \cdot D_{B(i)}^{\lambda} \mathbf{n}^{B(i)} \mathrm{d} \sigma=-\int_{\partial B(i)} \mathbf{n}^{B(i)} \cdot \mathbf{n}^{B(i)} \mathrm{d} \sigma \neq 0
$$

This and (9.9) give $\left\langle\boldsymbol{\Phi}, \boldsymbol{\Psi}_{i}\right\rangle=0$. So,

$$
0=(\mathbf{u}, p)=\left(\grave{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}, \grave{Q}_{\Omega}^{\lambda} \boldsymbol{\Phi}\right)=\left(E_{\Omega}^{\lambda} \boldsymbol{\Phi}, Q_{\Omega} \boldsymbol{\Phi}\right) \quad \text { in } \Omega
$$

Hence $\mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}=0$ on $\partial \Omega$ by Lemma 7.4. Since $\tau_{\Omega, h}^{\lambda}$ is a Fredholm operator with index 0 in $W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ and in $W^{-1 / 2,2}\left(\partial \Omega ; \mathbb{R}^{m}\right)$, [17, Lemma 9] gives that $\boldsymbol{\Phi} \in W^{-1 / 2,2}\left(\partial \Omega ; \mathbb{R}^{m}\right)$. Thus $E_{\Omega}^{\lambda} \boldsymbol{\Phi} \in W^{1,2}\left(\mathbb{R}^{m} ; \mathbb{R}^{m}\right)$ by Proposition 7.3 and $Q_{\Omega} \boldsymbol{\Phi} \in$ $L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{m}\right)$ by [20, Theorem 10.5.1]. For a fixed $i \in\{1, \ldots, k\}$ there exist $\mathbf{F} \in$ $\left[W^{1,2}\left(G(i) ; \mathbb{R}^{m}\right)\right]^{\prime}$ such that $\left(E_{\Omega}^{\lambda} \boldsymbol{\Phi}, Q_{\Omega} \boldsymbol{\Phi}\right)$ is a weak solution of the Robin problem (3.2) in $G(i)$. Since $\left(E_{\Omega}^{\lambda} \boldsymbol{\Phi}, Q_{\Omega} \boldsymbol{\Phi}\right)$ is a solution of the homogeneous Brinkman system in $G(i)$, we infer that \mathbf{F} is supported on $\partial G(i)$. Since $\mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}=0$ on $\partial G(i)$, Lemma 9.1 gives

$$
0=\left\langle\mathbf{F}, \mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}\right\rangle=\int_{G(i)}\left[2\left|\hat{\nabla} E_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2}+\lambda\left|E_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2}\right] \mathrm{d} \mathbf{x}+\int_{\partial G(i)} h\left|\mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2} \mathrm{~d} \sigma
$$

Hence $E_{\Omega}^{\lambda} \boldsymbol{\Phi}=0$ in $G(i)$. So,

$$
\nabla Q_{\Omega} \boldsymbol{\Phi}=\Delta E_{\Omega}^{\lambda} \boldsymbol{\Phi}-\lambda E_{\Omega}^{\lambda} \boldsymbol{\Phi}=0
$$

in $G(i)$. Therefore there exists a constant c_{i} such that $Q_{\Omega} \boldsymbol{\Phi}=c_{i}$ on $G(i)$. Denote by $G(0)$ the unbounded component of $\mathbb{R}^{m} \backslash \bar{\Omega}$. Put $h=0$ on $\mathbb{R}^{m} \backslash \partial \Omega$. For $r>0$ denote $\omega(r):=G(0) \cap B(0 ; r)$. For a fixed $r>0$ there exist $\mathbf{F} \in\left[W^{1,2}\left(\omega(r) ; \mathbb{R}^{m}\right)\right]^{\prime}$ such that $\left(E_{\Omega}^{\lambda} \boldsymbol{\Phi}, Q_{\Omega} \boldsymbol{\Phi}\right)$ is a weak solution of the Robin problem (3.2) in $\omega(r)$. Since $\left(E_{\Omega}^{\lambda} \boldsymbol{\Phi}, Q_{\Omega} \boldsymbol{\Phi}\right)$ is a solution of the homogeneous Brinkman system in $\omega(r)$, we infer that \mathbf{F} is supported on $\partial \omega(r)$. Lemma 9.1 gives

$$
\left\langle\mathbf{F}, \mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}\right\rangle=\int_{\omega(r)}\left[2\left|\hat{\nabla} E_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2}+\lambda\left|E_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2}\right] \mathrm{d} \mathbf{x}+\int_{\partial \omega(r)} h\left|E_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2} \mathrm{~d} \sigma
$$

Since $h=0$ on $\partial \omega(r) \backslash \partial \Omega$ and $E_{\Omega}^{\lambda} \Phi=0$ on $\partial \Omega$, we obtain

$$
\int_{\omega(r)}\left[2\left|\hat{\nabla} E_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2}+\lambda\left|E_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2}\right] \mathrm{d} \mathbf{x}+\int_{\partial \Omega} h\left|\mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2} \mathrm{~d} \sigma=\int_{\partial B(0 ; r)}\left(E_{\Omega}^{\lambda} \boldsymbol{\Phi}\right) T\left(E_{\Omega}^{\lambda} \boldsymbol{\Phi}, Q_{\Omega} \boldsymbol{\Phi}\right) \mathbf{n} .
$$

Letting $r \rightarrow \infty$ we obtain by (5.10)

$$
\int_{G(0)}\left[2\left|\hat{\nabla} E_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2}+\lambda\left|E_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2}\right] \mathrm{d} \mathbf{x}+\int_{\partial \Omega} h\left|\mathcal{E}_{\Omega}^{\lambda} \boldsymbol{\Phi}\right|^{2} \mathrm{~d} \sigma=0
$$

Hence $E_{\Omega}^{\lambda} \boldsymbol{\Phi}=0$ in $G(0)$. So,

$$
\nabla Q_{\Omega} \boldsymbol{\Phi}=\Delta E_{\Omega}^{\lambda} \boldsymbol{\Phi}-\lambda E_{\Omega}^{\lambda} \boldsymbol{\Phi}=0
$$

in $G(0)$. Therefore there exists a constant c_{0} such that $Q_{\Omega} \Phi=c_{0}$ on $G(0)$. Since $Q_{\Omega} \boldsymbol{\Phi}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$, we infer that $c_{0}=0$. Using Lemma 7.4 on Ω and on $G(i)$ we infer that $\left(\frac{1}{2}-K_{\Omega, \lambda}^{\prime}\right) \boldsymbol{\Phi}=0,\left(\frac{1}{2}+K_{\Omega, \lambda}^{\prime}\right) \boldsymbol{\Phi}=-c(i) \mathbf{n}^{\Omega}$ on $\partial G(i)$. So,

$$
\mathbf{\Phi}=\left(\frac{1}{2}-K_{\Omega, \lambda}^{\prime}\right) \mathbf{\Phi}+\left(\frac{1}{2}+K_{\Omega, \lambda}^{\prime}\right) \mathbf{\Phi}=-c(i) \mathbf{n}^{\Omega} \quad \text { on } \partial G(i)
$$

We have proved for $i \in\{1, \ldots, k\}$ that $\left\langle\boldsymbol{\Phi}, \boldsymbol{\Psi}_{i}\right\rangle=0$. So, (9.1) gives that $c(i)=0$. Hence $\boldsymbol{\Phi} \equiv 0$. Since $\tau_{\Omega, h}^{\lambda}$ is a Fredholm operator with index 0 in $W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{m}\right)$ and trivial kernel, it is an isomorphism.

If $\mathbf{g} \in W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ then (\mathbf{u}, p) given by (9.6) is a unique solution in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ of the Robin problem (3.1) with $\mathbf{f} \equiv 0$. The estimate (9.7) is a consequence of Proposition 7.3.

Theorem 9.3. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary, $1<$ $q<\infty, q^{\prime}=q /(q-1), \lambda>0, h \in L^{\infty}(\partial \Omega), h \geq 0$. Suppose that one from the following conditions is fulfilled:
(1) $q=2$.
(2) $\partial \Omega$ is of class \mathcal{C}^{1}.
(3) $2 \leq m \leq 3$ and $3 / 2 \leq q \leq 3$.

If $\mathbf{F} \in\left[W^{1, q^{\prime}}\left(\partial \Omega ; \mathbb{R}^{m}\right)\right]$ then there exists a unique solution $(\mathbf{u}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times$ $L^{q}(\Omega)$ of the Robin problem (3.2). Moreover,

$$
\begin{equation*}
\|\mathbf{u}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}+\|p\|_{L^{q}(\Omega)} \leq C\|\mathbf{F}\|_{\left[W^{1, q^{\prime}}\left(\Omega ; \mathbb{R}^{m}\right)\right]^{\prime}} \tag{9.10}
\end{equation*}
$$

where a constant C does not depend on \mathbf{F}.
Proof. Define $\langle\tilde{\mathbf{F}}, \boldsymbol{\Psi}\rangle:=\langle\mathbf{F}, \boldsymbol{\Psi}\rangle$ for $\boldsymbol{\Psi} \in \dot{W}^{1, q^{\prime}}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Then $\tilde{\mathbf{F}} \in W^{-1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ and

$$
\begin{equation*}
\|\tilde{\mathbf{F}}\|_{W^{-1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)} \leq\|\mathbf{F}\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}} \tag{9.11}
\end{equation*}
$$

According to Proposition 4.2 there exists $(\tilde{\mathbf{u}}, \tilde{p}) \in W^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \times L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{m}\right)$ such that

$$
\nabla \tilde{p}-\Delta \tilde{\mathbf{u}}+\lambda \tilde{\mathbf{u}}=\tilde{\mathbf{F}}, \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \mathbb{R}^{m}
$$

and

$$
\begin{equation*}
\|\tilde{\mathbf{u}}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}+\|\tilde{p}\|_{L^{q}(\Omega)} \leq C_{1}\|\tilde{\mathbf{F}}\|_{W^{-1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)} \tag{9.12}
\end{equation*}
$$

where C_{1} does not depend on $\tilde{\mathbf{F}}$. Clearly, there exists $\mathbf{G} \in\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}$ such that $(\tilde{\mathbf{u}}, p)$ is a solution of the Robin problem

$$
\begin{aligned}
\nabla \tilde{p}-\Delta \tilde{\mathbf{u}}+\lambda \tilde{\mathbf{u}}=\mathbf{G} \quad \text { in } \Omega, & \nabla \cdot \tilde{\mathbf{u}}=0 \quad \text { in } \Omega \\
T(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n}+h \tilde{\mathbf{u}}=\mathbf{G} & \text { on } \partial \Omega
\end{aligned}
$$

Moreover,

$$
\begin{equation*}
\|\mathbf{G}\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}} \leq C_{2}\left[\|\tilde{\mathbf{u}}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}+\|\tilde{p}\|_{L^{q}(\Omega)}\right] \tag{9.13}
\end{equation*}
$$

where C_{2} does not depend on $\tilde{\mathbf{u}}$ and \tilde{p}. Since $\tilde{\mathbf{F}}=\mathbf{F}$ in Ω, we infer that \mathbf{F} \mathbf{G} is supported on $\partial \Omega$. Using [6, Theorem 1.5.1.2] we deduce that $\mathbf{F}-\mathbf{G} \in$ $\left[W^{1-1 / q^{\prime}, q^{\prime}}\left(\partial \Omega ; \mathbb{R}^{m}\right)\right]^{\prime}=W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ and

$$
\begin{equation*}
\|\mathbf{F}-\mathbf{G}\|_{W^{-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)} \leq C_{3}\|\mathbf{F}-\mathbf{G}\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}} \tag{9.14}
\end{equation*}
$$

where C_{3} does not depend on \mathbf{F} and \mathbf{G}. According to Theorem 9.2 there exists a solution $(\hat{\mathbf{u}}, \hat{p}) \in W^{1, q}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \times L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{m}\right)$ of the problem

$$
\begin{array}{rrr}
\nabla \hat{p}-\Delta \hat{\mathbf{u}}+\lambda \hat{\mathbf{u}}=0 \quad \text { in } \quad \Omega, & \nabla \cdot \tilde{\mathbf{u}}=0 & \text { in } \Omega \\
T(\hat{\mathbf{u}}, \hat{p}) \mathbf{n}+h \hat{\mathbf{u}}=\mathbf{F}-\mathbf{G} & \text { on } \partial \Omega
\end{array}
$$

Moreover,

$$
\begin{equation*}
\|\hat{\mathbf{u}}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}+\|\hat{p}\|_{L^{q}(\Omega)} \leq C_{4}\|\mathbf{F}-\mathbf{G}\|_{W^{-1 / q, q}\left(\partial \Omega, \mathbb{R}^{m}\right)} \tag{9.15}
\end{equation*}
$$

where C_{4} does not depend on \mathbf{F} and \mathbf{G}. Put $\mathbf{u}:=\tilde{\mathbf{u}}+\hat{\mathbf{u}}, p:=\tilde{p}+\hat{p}$. Then $(\mathbf{u}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ is a solution of the Robin problem (3.2). This
solution is unique by Theorem 9.2. The estimate (9.10) is a consequence of (9.11), (9.12), (9.13), (9.14) and (9.15).

10. Robin problem for the Darcy-Forchheimer-Brinkman system

In this section we study the Robin problem for the Darcy-Forchheimer-Brinkman system

$$
\begin{gather*}
\nabla p-\Delta \mathbf{u}+\lambda \mathbf{u}+\alpha|\mathbf{u}| \mathbf{u}+\beta(\mathbf{u} \cdot \nabla) \mathbf{u}=\mathbf{G} \quad \text { in } \quad \Omega, \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \Omega \tag{10.1a}\\
T(\mathbf{u}, p) \mathbf{n}+h \mathbf{u}=\mathbf{G} \quad \text { on } \partial \Omega \tag{10.1b}
\end{gather*}
$$

in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ for Ω bounded. Denote

$$
L_{\alpha, \beta} \mathbf{u}:=\alpha|\mathbf{u}| \mathbf{u}+\beta(\mathbf{u} \cdot \nabla) \mathbf{u}
$$

We restrict ourselves to such q for which $L_{\alpha, \beta} \mathbf{u} \in L^{1}\left(\Omega, \mathbb{R}^{m}\right) \cap\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}$ for $\mathbf{u} \in W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)$ and $q^{\prime}=q /(q-1)$. If $\alpha, \beta \in \mathbb{R}^{1}, h \in L^{\infty}(\Omega), \mathbf{G} \in\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}$ then $(\mathbf{u}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ is a weak solution of the Robin problem for the Darcy-Forchheimer-Brinkman system (10.1) if $\nabla \cdot \mathbf{u}=0$ in Ω and
$\langle\mathbf{G}, \boldsymbol{\Phi}\rangle=\int_{\Omega}\{2 \hat{\nabla} \mathbf{u} \cdot \hat{\nabla} \boldsymbol{\Phi}-p(\nabla \cdot \boldsymbol{\Phi})+\boldsymbol{\Phi} \cdot[\lambda \mathbf{u}+\alpha|\mathbf{u}| \mathbf{u}+\beta(\mathbf{u} \cdot \nabla) \mathbf{u}]\} \mathrm{d} \mathbf{x}+\int_{\partial \Omega} h \mathbf{u} \cdot \boldsymbol{\Phi} \mathrm{~d} \sigma$ for all $\boldsymbol{\Phi} \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ (or equivalently for all $\boldsymbol{\Phi} \in W^{1, q^{\prime}}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$).

Theorem 10.1. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with Lipschitz boundary, $2 \leq$ $m \leq 3$. Let $1<q<\infty, q^{\prime}=q /(q-1), \lambda>0, \alpha, \beta \in \mathbb{R}^{1}, h \in L^{\infty}(\partial \Omega), h \geq 0$. Suppose that one from the following conditions is fulfilled:
(1) $3 / 2<q \leq 3$.
(2) $q=3 / 2$ and $m=2$.
(3) $q=3 / 2$ and $\beta=0$.
(4) $\partial \Omega$ is of class $\mathcal{C}^{1}, m=2$ and $\beta=0$.
(5) $\partial \Omega$ is of class $\mathcal{C}^{1}, m=3, \beta=0$ and $q>6 / 5$.
(6) $\partial \Omega$ is of class \mathcal{C}^{1} and $\frac{6-m}{5-m}<q$.

Then the following hold:

- $L_{\alpha, \beta} \mathbf{u} \in L^{1}\left(\Omega, \mathbb{R}^{m}\right) \cap\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}$ for all $\mathbf{u} \in W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)$.
- There exist $\delta, \epsilon, C \in(0, \infty)$ such that the following holds: If

$$
\begin{equation*}
\mathbf{G} \in\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}, \quad\|\mathbf{G}\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}}<\delta \tag{10.2}
\end{equation*}
$$

then there exists a unique weak solution $(\mathbf{u}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ of the Robin problem for the Darcy-Forchheimer-Brinkman system (10.1) such that

$$
\begin{equation*}
\|\mathbf{u}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}<\epsilon \tag{10.3}
\end{equation*}
$$

If $\mathbf{G}, \tilde{\mathbf{G}} \in\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime},(\mathbf{u}, p),(\tilde{\mathbf{u}}, \tilde{p}) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega),(10.3)$, (10.1), $\|\tilde{\mathbf{u}}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}<\epsilon$,
(10.4a) $\quad \nabla \tilde{p}-\Delta \tilde{\mathbf{u}}+\lambda \tilde{\mathbf{u}}+\alpha|\tilde{\mathbf{u}}| \tilde{\mathbf{u}}+\beta(\tilde{\mathbf{u}} \cdot \nabla) \tilde{\mathbf{u}}=\tilde{\mathbf{G}} \quad$ in $\quad \Omega, \quad \nabla \cdot \tilde{\mathbf{u}}=0 \quad$ in Ω,

$$
\begin{equation*}
T(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n}+h \tilde{\mathbf{u}}=\tilde{\mathbf{G}} \quad \text { on } \partial \Omega \tag{10.4b}
\end{equation*}
$$

then

$$
\begin{equation*}
\|\mathbf{u}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}+\|p\|_{L^{q}(\Omega)} \leq C\|\mathbf{G}\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}} \tag{10.5}
\end{equation*}
$$

$$
\begin{equation*}
\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}+\|p-\tilde{p}\|_{L^{q}(\Omega)} \leq C\|\mathbf{G}-\tilde{\mathbf{G}}\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}} . \tag{10.6}
\end{equation*}
$$

Proof. According to Lemma 11.2 and Lemma 11.3 there exists a constant C_{1} such that if $\mathbf{u}, \tilde{\mathbf{u}} \in W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)$ then $L_{\alpha, \beta} \mathbf{u} \in L^{1}\left(\Omega, \mathbb{R}^{m}\right) \cap\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}$ and

$$
\begin{gather*}
\left\|L_{\alpha, \beta} \mathbf{u}\right\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}} \leq C_{1}\|\mathbf{u}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}^{2}, \tag{10.7}\\
\left\|L_{\alpha, \beta} \mathbf{u}-L_{\alpha, \beta} \tilde{\mathbf{u}}\right\|_{\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}} \leq C_{1}\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{1, q}(\Omega)}\left[\|\mathbf{u}\|_{W^{1, q}(\Omega)}+\|\tilde{\mathbf{u}}\|_{W^{1, q}(\Omega)}\right]
\end{gather*}
$$

because
$L_{\alpha, \beta} \mathbf{u}-L_{\alpha, \beta} \tilde{\mathbf{u}}=\alpha|\mathbf{u}|(\mathbf{u}-\tilde{\mathbf{u}})+\beta(\mathbf{u} \cdot \nabla)(\mathbf{u}-\tilde{\mathbf{u}})+\alpha(|\mathbf{u}|-|\tilde{\mathbf{u}}|) \tilde{\mathbf{u}}+\beta[(\mathbf{u}-\tilde{\mathbf{u}}) \cdot \nabla] \tilde{\mathbf{u}}$.
According to Theorem 9.3 there exists a constant C_{2} such that for each $\mathbf{F} \in$ $\left[W^{1, q^{\prime}}\left(\partial \Omega ; \mathbb{R}^{m}\right)\right]$ there exists a unique solution $(\mathbf{u}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ of the Robin problem (3.2) and

$$
\begin{equation*}
\|\mathbf{u}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}+\|p\|_{L^{q}(\Omega)} \leq C_{2}\|\mathbf{F}\|_{\left[W^{1, q^{\prime}}\left(\Omega ; \mathbb{R}^{m}\right)\right]^{\prime}} . \tag{10.9}
\end{equation*}
$$

Remark that (\mathbf{u}, p) is a solution of (10.1) if (\mathbf{u}, p) is a solution of (3.2) with $\mathbf{F}=\mathbf{G}-L_{\alpha, \beta} \mathbf{u}$. Put

$$
\epsilon:=\frac{1}{4\left(C_{1}+1\right)\left(C_{2}+1\right)}, \quad \delta:=\frac{\epsilon}{2\left(C_{2}+1\right)} .
$$

If $(\mathbf{u}, p),(\tilde{\mathbf{u}}, \tilde{p}) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ are solution of (10.1) and (10.4) with (10.3) and $\|\tilde{\mathbf{u}}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}<\epsilon$, then

$$
\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}+\|p-\tilde{p}\|_{L^{q}(\Omega)} \leq C_{2}\left[\|\mathbf{G}-\tilde{\mathbf{G}}\|_{\left[W^{1}, q^{\prime}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}}\right.
$$

$\left.+\left\|L_{\alpha, \beta} \mathbf{u}-L_{\alpha, \beta} \tilde{\mathbf{u}}\right\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}}\right] \leq C_{2}\left[\|\mathbf{G}-\tilde{\mathbf{G}}\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}}+2 \epsilon C_{1}\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}\right]$.
Since $2 C_{1} C_{2} \epsilon<1 / 2$ we get subtracting $2 \epsilon C_{1} C_{2}\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}$ from the both sides

$$
\|\mathbf{u}-\tilde{\mathbf{u}}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}+\|p-\tilde{p}\|_{L^{q}(\Omega)} \leq 2 C_{2}\|\mathbf{G}-\tilde{\mathbf{G}}\|_{\left[W^{1}, q^{\prime}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}} .
$$

Therefore a solution of (10.1) satisfying (10.3) is unique. Putting $\tilde{p} \equiv 0, \tilde{\mathbf{u}} \equiv 0$, $\tilde{\mathbf{G}} \equiv 0$ we obtain (10.5) with $C=2 C_{2}$.

Put $X:=\left\{\mathbf{v} \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) ;\|\mathbf{v}\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)} \leq \epsilon\right\}$. Fix \mathbf{G} satisfying (10.2). For $\mathbf{v} \in X$ there exists a unique solution $\left(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}\right) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ of (3.2) with $\mathbf{F}=\mathbf{G}-L_{\alpha, \beta} \mathbf{v}$. Remember that $\left(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}\right)$ is a solution of (10.1) if and only if $\mathbf{u}^{\mathbf{v}}=\mathbf{v}$. According to (10.9), (10.7)

$$
\left\|\mathbf{u}^{\mathbf{v}}\right\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)} \leq C_{2}\left[\|\mathbf{G}\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}}+\left\|L_{\alpha, \beta} \mathbf{v}\right\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}}\right] \leq C_{2} \delta+C_{2} C_{1} \epsilon^{2} .
$$

Since $C_{2} \delta+C_{2} C_{1} \epsilon^{2}<\epsilon$, we infer $\mathbf{u}^{\mathbf{v}} \in X$. If $\mathbf{w} \in X$ then

$$
\left\|\mathbf{u}^{\mathbf{v}}-\mathbf{u}^{\mathbf{w}}\right\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)} \leq C_{2}\left\|L_{\alpha, \beta} \mathbf{v}-L_{\alpha, \beta} \mathbf{w}\right\|_{\left[W^{1, q^{\prime}}\left(\Omega, \mathbb{R}^{m}\right)\right]^{\prime}} \leq 2 \epsilon\left\|\mathbf{u}^{\mathbf{v}}-\mathbf{u}^{\mathbf{w}}\right\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)}
$$

by (10.8). Since $2 \epsilon<1$, the Fixed point theorem ([4, Satz 1.24]) gives that there exists $\mathbf{v} \in X$ such that $\mathbf{u}^{\mathbf{v}}=\mathbf{v}$. So, $\left(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}\right)$ is a solution of (10.1) in $W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times$ $L^{q}(\Omega)$ satisfying $\left\|\mathbf{u}^{\mathbf{v}}\right\|_{W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)} \leq \epsilon$.

11. Appendix

Lemma 11.1. Let $\Omega \subset R^{m}$ be a bounded domain with Lipschitz boundary. Let $s(i) \geq s \in N_{0}, 1 \leq p, p(1), p(2)<\infty, s(i)-s \geq m[1 / p(i)-1 / p], s(1)+s(2)-s>$ $m[1 / p(1)+1 / p(2)-1 / p] \geq 0$. Then there exists a constant C such that the following holds: If $u \in W^{s(1), p(1)}(\Omega), v \in W^{s(2), p(2)}(\Omega)$ then $u v \in W^{s, p}(\Omega)$ and

$$
\|u v\|_{W^{s, p}(\Omega)} \leq C\|u\|_{W^{s(1), p(1)}(\Omega)}\|v\|_{W^{s(2), p(2)}(\Omega)}
$$

(See [2, Corollary 6.3].)
Lemma 11.2. Let $\Omega \subset R^{m}$ be a bounded domain with Lipschitz boundary, $m \in$ $\{2,3\}$. Let $1<q<\infty, q^{\prime}=q /(q-1)$. If $m=3$ suppose moreover $q>6 / 5$. Then there exists a constant C such that if $u, v \in W^{1, q}(\Omega), \mathbf{w}, \tilde{\mathbf{w}} \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right)$ then $u v,|\mathbf{w}| v \in L^{1}(\Omega) \cap\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}$ and

$$
\begin{gather*}
\|u v\|_{\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}} \leq C\|u\|_{W^{1, q}(\Omega)}\|v\|_{W^{1, q}(\Omega)} \tag{11.1}\\
\||\mathbf{w}| v\|_{\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}} \leq C\|\mathbf{w}\|_{W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)}\|v\|_{W^{1, q}(\Omega)} \tag{11.2}\\
\||\mathbf{w}| v-|\tilde{\mathbf{w}}| v\|_{\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}} \leq C\|\mathbf{w}-\tilde{\mathbf{w}}\|_{W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)}\|v\|_{W^{1, q}(\Omega)} \tag{11.3}
\end{gather*}
$$

Proof. Suppose first that $m=2$. Since $1-0>0=2(1 / q-1 / q), 1+1-0>2 / q=$ $2(1 / q+1 / q-1 / q)$, Lemma 11.1 gives that $u v \in L^{q}(\Omega)$ and there exists a constant C_{1} such that

$$
\begin{equation*}
\|u v\|_{L^{q}(\Omega)} \leq C_{1}\|u\|_{W^{1, q}(\Omega)}\|v\|_{W^{1, q}(\Omega)} . \tag{11.4}
\end{equation*}
$$

Thus $u v \in\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}$ and Hölder's inequality forces (11.1). [32, Corollary 2.1.8] gives $\left|w_{j}\right| \in W^{1, q}(\Omega)$ for $j=1, \ldots, m$ and

$$
\left\|\left|w_{j}\right|\right\|_{W^{1, q}(\Omega)}=\left\|w_{j}\right\|_{W^{1, q}(\Omega)}
$$

Thus

$$
\||\mathbf{w}| v\|_{L^{q}(\Omega)} \leq \sum_{j=1}^{m}\left\|\left|w_{j}\right| v\right\|_{L^{q}(\Omega)} \leq m C_{1}\|\mathbf{w}\|_{W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)}\|v\|_{W^{1, q}(\Omega)}
$$

So, $|\mathbf{w}| v \in\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}$ and Hölder's inequality forces (11.2). Since

$$
\||\mathbf{w}| v-|\tilde{\mathbf{w}}| v\|_{L^{q}(\Omega)} \leq\||\mathbf{w}-\tilde{\mathbf{w}}| v\|_{L^{q}(\Omega)} \leq m C_{1}\|\mathbf{w}-\tilde{\mathbf{w}}\|_{W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right)}\|v\|_{W^{1, q}(\Omega)}
$$

we obtain (11.3) by Hölder's inequality.
Let now $m=3$. Suppose first that $q>3 / 2$. Since $1-0>0=3(1 / q-1 / q)$, $1+1-0>3 / q=3(1 / q+1 / q-1 / q)$, Lemma 11.1 gives that $u v \in L^{q}(\Omega)$ and there exists a constant C_{1} such that (11.4) holds. Thus $u v \in\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}$ and Hölder's inequality gives (11.1). Let now $6 / 5<q \leq 3 / 2$. Then there exists $r \in(1, q)$ such that $1+1-0>3(1 / q+1 / q-1 / r) \geq 0$. Since $1-0>0>3(1 / q-1 / r)$, Lemma 11.1 gives that $u v \in L^{r}(\Omega)$ and there exists a constant C_{1} such that

$$
\|u v\|_{L^{r}(\Omega)} \leq C_{1}\|u\|_{W^{1, q}(\Omega)}\|v\|_{W^{1, q}(\Omega)} .
$$

Put $r^{\prime}=r /(r-1)$. Since $q^{\prime} \geq 3$, [15, Theorem 5.7.7, Theorem 5.7.8] give that $W^{1, q^{\prime}}(\Omega) \hookrightarrow L^{r^{\prime}}(\Omega)$. Hölder's inequality gives (11.1). The relations (11.2), (11.3) we deduce by the same way as in the case $m=2$.

Lemma 11.3. Let $\Omega \subset R^{m}$ be a bounded domain with Lipschitz boundary, $m \in$ $\{2,3\}$. Let $\frac{6-m}{5-m}<q<\infty, q^{\prime}=q /(q-1)$. Then there exists a constant C such that if $u \in W^{1, q}(\Omega), v \in L^{q}(\Omega)$ then $u v \in L^{1}(\Omega) \cap\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}$ and

$$
\begin{equation*}
\|u v\|_{\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}} \leq C\|u\|_{W^{1, q}(\Omega)}\|v\|_{L^{q}(\Omega)} \tag{11.5}
\end{equation*}
$$

Proof. Suppose first that $q>m$. Since $\min (1-0,0-0)=0=m(1 / q-1 / q)$, $1+0-0>m / q=m(1 / q+1 / q-1 / q)$, Lemma 11.1 gives that $u v \in L^{q}(\Omega)$ and there exists a constant C_{1} such that

$$
\|u v\|_{L^{q}(\Omega)} \leq C_{1}\|u\|_{W^{1, q}(\Omega)}\|v\|_{L^{q}(\Omega)} .
$$

Thus $u v \in\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}$ and Hölder's inequality forces (11.5).
Let now $q \leq m$. Suppose first that $m=2$. Then there exists $r \in(1, q)$ such that $1+0-0>2(1 / q+1 / q-1 / r) \geq 0$. Since $\min (1-0,0-0)=0>2(1 / q-1 / r)$, Lemma 11.1 gives that $u v \in L^{r}(\Omega)$ and there exists a constant C_{1} such that

$$
\|u v\|_{L^{r}(\Omega)} \leq C_{1}\|u\|_{W^{1, q}(\Omega)}\|v\|_{L^{q}(\Omega)}
$$

Put $r^{\prime}=r /(r-1)$. Since $q^{\prime} \geq 2$, [15, Theorem 5.7.7, Theorem 5.7.8] give that $W^{1, q^{\prime}}(\Omega) \hookrightarrow L^{r^{\prime}}(\Omega)$. Hölder's inequality gives (11.5).

Suppose now that $m=3$. Since $3 / 2 \leq q^{\prime}<3$, [15, Theorem 5.7.7, Theorem 5.7.8] and [32, Corollary 2.1.8] give that there exists a constant C_{1} such that

$$
\begin{gathered}
\|u\|_{L^{3}(\Omega)} \leq C_{1}\|u\|_{W^{1, q}(\Omega)}=C_{1}\||u|\|_{W^{1, q}(\Omega)}, \\
\|\varphi\|_{L^{3 q^{\prime} /\left(3-q^{\prime}\right)}(\Omega)} \leq C_{1}\|\varphi\|_{W^{1, q^{\prime}}(\Omega)}=C_{1}\||\varphi|\|_{W^{1, q^{\prime}}(\Omega)} \quad \forall \varphi \in W^{1, q^{\prime}}(\Omega)
\end{gathered}
$$

Since

$$
\frac{1}{q}+\frac{3-q^{\prime}}{3 q^{\prime}}+\frac{1}{3}=\frac{1}{q}+\frac{1}{q^{\prime}}=1
$$

Hölder's inequality yields

$$
\begin{aligned}
\left|\int_{\Omega} u v \varphi \mathrm{~d} \mathbf{x}\right| \leq & \int_{\Omega}|u\|v\| \varphi| \mathrm{d} \mathbf{x} \leq\|u\|_{L^{3}(\Omega)}\|v\|_{L^{q}(\Omega)}\|\varphi\|_{L^{3 q^{\prime} /\left(3-q^{\prime}\right)}(\Omega)} \\
& \leq C_{1}^{2}\|u\|_{W^{1, q}(\Omega)}\|v\|_{L^{q}(\Omega)}\|\varphi\|_{W^{1, q^{\prime}}(\Omega)}
\end{aligned}
$$

(In particular for $\varphi \equiv 1$ we obtain $u v \in L^{1}(\Omega)$.) Thus $u v \in\left[W^{1, q^{\prime}}(\Omega)\right]^{\prime}$ and (11.5) holds.

References

[1] Adams, D.R., Hedberg, L.I.: Function spaces and Potential Theory. Springer, Berlin Heidelberg (1996)
[2] Behzadan, A., Holst, M.: Multiplication in Sobolev spaces. revisited, arXiv:1512.07379v1
[3] Berg, J., Löström, J.: Interpolation spaces. An Introduction. Springer, Berlin - Heidelberg New York (1976)
[4] Dobrowolski, M.: Angewandte Functionanalysis. Functionanalysis, Sobolev-Räume und elliptische Differentialgleichungen. Springer, Berlin Heidelberg (2006)
[5] Galdi, G.P.: An introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady State Problems. Springer, New York - Dordrecht - Heidelberg - London (2011)
[6] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia (2011)
[7] Grosan, T., Kohr, M., Wendland, W.L.: Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains. Math. Meth. Appl. Sci. 38, 3615-3628 (2015)
[8] Gutt, R., Grosan, T.: On the lid-driven problem in a porous cavity: A theoretical and numerical approach. Appl. Math. Comput. 266, 1070-1082 (2015)
[9] Jonsson, A., Wallin, H.: Function spaces on subsets of R^{n}. Harwood Academic Publishers, London (1984)
[10] Kohr, M., Lanza de Cristoforis, M., Mikhailov, S.E., Wendland, W.L.: Integral potential method for a transmission problem with Lipschitz interface in R^{3} for the Stokes and Darcy-Forchheimer-Brinkman PDE systems. Z. Angew. Math. Phys. 67, 116 (2016)
[11] Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal.38, 1123-1171 (2013)
[12] Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains. J. Math. Fluid Mech. 16, 595-630 (2014)
[13] Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Poisson problems for semilinear Brinkman systems on Lipschitz domains in R^{n}. Z. Angew. Math. Phys. 66, 833-864 (2015)
[14] Kohr, M., Medková, D., Wendland, W.L.: On the Oseen-Brinkman flow around an ($m-1$)dimensional solid obstacle. Monatsh. Math. 183, 269-302 (2017)
[15] Kufner, A. , John, O., Fučík, S.: Function Spaces. Academia, Prague (1977)
[16] Maz'ya, V., Mitrea, M., Shaposhnikova, T.: The inhomogenous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to $V M O^{*}$. Funct. Anal. Appl. 43, 217-235 (2009)
[17] Medková, D.: Regularity of solutions of the Neumann problem for the Laplace equation. Le Matematiche, LXI, 287-300 (2006)
[18] Medková, D.: Bounded solutions of the Dirichlet problem for the Stokes resolvent system. Complex Var. Elliptic Equ. 61, 1689-1715 (2016)
[19] Mitrea, I., Mitrea, M.: Multi-Layer Potntials and Boundary Problems for Higher-Order Elliptic Systems in Lipschitz Domains. Springer, Berlin Heidelberg (2013)
[20] Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344, Paris (2012)
[21] Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2013)
[22] Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel - Boston - Berlin (2001)
[23] Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin Heidelberg (2007)
[24] Temam, R.: Navier-Stokes Equations. North Holland, Amsterdam (1979)
[25] Triebel, H.: Höhere Analysis. VEB Deutscher Verlag der Wissenschaften, Berlin (1972)
[26] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)
[27] Triebel, H.: Theory of function spaces. Birkhäuser, Basel - Boston - Stuttgart (1983)
[28] Triebel, H.: Theory of function spaces III. Birkhäuser, Basel (2006)
[29] Varnhorn, W.: The Stokes equations. Akademie Verlag, Berlin (1994)
[30] Wolf, J.: On the local pressure of the Navier-Stokes equations and related systems. Advances Diff. Equ. 22, 305-338 (2017)
[31] Yosida, K.: Functional Analysis. Springer, Berlin (1965)
[32] Ziemer, W.P.: Weakly Differentiable Functions. Springer, New York (1989)
Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic

E-mail address: medkova@math.cas.cz

[^0]: 2000 Mathematics Subject Classification. 35Q35.
 Key words and phrases. Brinkman system; Neumann problem; Robin problem; Darcy-Forchheimer-Brinkman system; boundary layer potentials.

 The work was supported by RVO: 67985840 and GAČR grant No. 17-01747S.

