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Abstract: We study the Riemann problem for the isentropic compressible Euler equations in
two space dimensions with the pressure law describing the Chaplygin gas. It is well known that
there are Riemann initial data for which the 1D Riemann problem does not have a classical BV
solution, instead a δ-shock appears, which can be viewed as a generalized measure–valued solution
with a concentration measure in the density component. We prove that in the case of two space
dimensions there exists infinitely many bounded admissible weak solutions starting from the same
initial data. Moreover, we show the same property also for a subset of initial data for which the
classical 1D Riemann solution consists of two contact discontinuities. As a consequence of the
latter result we observe that any criterion based on the principle of maximal dissipation of energy
will not pick the classical 1D solution as the physical one.

1 Introduction

We consider the isentropic compressible Euler system in the whole two–dimensional space, i.e.

∂t% + divx(%v) = 0,

∂t(%v) + divx(%v ⊗ v) +∇xp(%) = 0,

%(0, ·) = %0,

v(0, ·) = v0,

(1.1)

where %(t, x) : [0,∞) × R2 → R+ is the unknown density and v(t, x) : [0,∞) × R2 → R2 the
unknown velocity field. Throughout this paper we use the notation v = (v1, v2) for the components
of the velocity and x = (x1, x2) for the space variable. We work with the pressure law describing
the Chaplygin gas

p(%) = −1
%
. (1.2)

This model has been introduced by Chaplygin [3], see also [20] or [21], as an approximation for the
calculation of a lifting force on a wing of a plane. Recently, the equation (1.2) was also considered
as a suitable model for dark energy, see for example [15].

Note that (1.2) satisfies the standard condition p′ > 0 which guarantees the hyperbolicity of
the system of equations (1.1). It is well known that solutions to hyperbolic systems of conservation
laws may develop singularities even if the initial conditions are smooth, therefore it is reasonable
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to work with weaker notions of solutions. On the other hand, weak solutions may be non–unique
and some admissibility conditions have to be considered. A natural way motivated by the 1D
theory and the theory of scalar conservation laws is to use the entropy inequality. In the case of
system (1.1), the only mathematical entropy is actually the total energy η = %ε(%) + % |v|

2

2 , where
ε(%) is the internal energy related to the pressure p(%) through p(%) = %2ε′(%). In the case of the
pressure law (1.2) we get

ε(%) =
1

2%2
. (1.3)

In this paper we call solutions admissible if they satisfy the entropy inequality

∂t

(
%ε(%) + %

|v|2

2

)
+ divx

((
%ε(%) + %

|v|2

2
+ p(%)

)
v

)
≤ 0, (1.4)

which can be also viewed as a form of energy balance.
We will focus on the study of the Riemann problem, i.e. the problem with the initial data

(%0,v0)(x) =

{
(%−,v−) for x2 < 0
(%+,v+) for x2 > 0,

(1.5)

with %±,v± constant, %± > 0. As the initial data (1.5) are one–dimensional, one can use the clas-
sical 1D theory to construct one–dimensional solutions and these solutions are further referenced
as classical 1D solutions. This paper studies the question of non–uniqueness of such solutions.

The groundbreaking theory of De Lellis and Székelyhidi [11], [12] developed for the incom-
pressible Euler system yielded several applications in the compressible world. Already in [12] the
authors proved the existence of bounded initial data (%0,v0) for which there exists infinitely many
admissible weak solutions to the system (1.1). Chiodaroli [5] and Feireisl [13] proved that such
initial data can be taken with smooth density and later Chiodaroli, De Lellis and Kreml [6] proved
non–uniqueness for Lipschitz initial data with the pressure law p(%) = %2. Here the authors in
particular used the Riemann problem as a building block in their proof.

This motivated further studies of uniqueness and non–uniqueness of bounded admissible weak
solutions to the Riemann problem for (1.1) with p(%) = %γ with γ ≥ 1. Uniqueness of the 1D
solution in the case when the 1D solution consists only of rarefaction waves was proved by Chen
and Chen [4] (see also [14]), whereas non–uniqueness was addressed in the series of papers [7], [8],
[17], [2] with the final result being non–uniqueness for all Riemann initial data allowing for 1D
solution containing a shock. It is interesting to mention that the question whether a stationary
solution with the initial data %− = %+ = 1, v± = (±1, 0) is unique or not is still open, this solution
consists of a single contact discontinuity created by a discontinuity in the first component of the
velocity. In the incompressible case it was shown by Székelyhidi [19] that such solution is not
unique.

We also mention the result of Klingenberg and Markfelder [18], where the authors proved
that the system (1.1) with p(ρ) = ργ , γ ≥ 1 may have infinitely solutions satisfying the energy
equality, i.e. (1.4) holds with the equality sign. This result is again based on the study of the
Riemann problem. Recently, non–uniqueness of admissible weak solutions was also proved for
the Riemann problem for the full Euler system (including temperature) in the case when the 1D
solution contains two shocks, see [1].

It is well known that for a certain range of Riemann initial data (1.5) the Riemann problem
for the Chaplygin gas does not possess a classical bounded BV solution and instead there is a
solution in the form of a δ-shock, which can be viewed as a generalized measure–valued solution.
One of the main results of this paper shows that when the two–dimensional system of equations is
considered, there exists infinitely many bounded admissible weak solutions for initial data allowing
the formation of a δ-shock. We also prove that in some cases when the classical 1D solution consists
of two contact discontinuities, there also exists infinitely many admissible weak solutions.

The latter result has interesting consequences with respect to the admissibility criteria based
on the concept of maximal dissipation of energy. We discuss this issue in the final section.
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Our main theorems follow.

Theorem 1.1. Let p(%) = −%−1. For every Riemann initial data (1.5) such that the classical 1D
solution consists of a δ-shock, that is whenever

v−2 − v+2 ≥
1

%−
+

1
%+

, (1.6)

there exists infinitely many bounded admissible weak solutions to (1.1), (1.5). If, moreover,
%− = %+, then there exists infinitely many bounded admissible weak solutions satisfying the energy
equality.

Theorem 1.2. Let p(%) = −%−1. Assume that the Riemann initial data (1.5) satisfy

max
{

1
%−

,
1

%+

}
< v−2 − v+2 <

1
%−

+
1

%+
. (1.7)

Then there exists infinitely many bounded admissible weak solutions to (1.1), (1.5). If, moreover,
%− = %+, then there exists infinitely many bounded admissible weak solutions satisfying the energy
equality.

The paper is structured as follows. In Section 2 we recall the theory of classical 1D solutions
to the Riemann problem for Chaplygin gas. In Section 3 we introduce all the necessary material
for the proofs of Theorems 1.1 and 1.2. In Section 4 we prove Theorem 1.1 and in Section 5 we
prove Theorem 1.2. Finally, in Section 6 we discuss the consequences of Theorem 1.2 with respect
to two admissibility criteria based on the concept of maximal dissipation of energy.

2 1D solutions to the Riemann problem

In this section we present the classical theory of one–dimensional solutions to the Riemann problem
for system (1.1) with the Chaplygin gas pressure law (1.2). For more details about the general
theory of self-similar BV solutions we refer for example to [10], the theory for the 1D equations
for Chaplygin gas including δ-shocks can be found for example in [16, Section 2.1].

To start this investigation it is reasonable to study the system in conservative variables. We
search for functions %(t, x2), m(t, x2) = (m1,m2)(t, x2) = (%v1, %v2)(t, x2) that depend in the
space variable only on x2 and solve the two–dimensional isentropic Euler system (1.1) formulated
as

∂t% + ∂x2m2 = 0,

∂tm1 + ∂x2

m1m2

%
= 0,

∂tm2 + ∂x2

(
m2

2

%
− 1

%

)
= 0

(2.1)

with the initial data

(%0(x),m0(x)) =

{
(%−,m−) = (%−, %−v−) for x2 < 0
(%+,m+) = (%+, %+v+) for x2 > 0.

(2.2)

The state vector is thus defined as U = (%,m)T and the flux is F (U) = (m2,
m1m2

% ,
m2

2
% − 1

% )T .
The eigenvalues of the Jacobian matrix of F (U) are

λ1 =
m2

%
− 1

%
, λ2 =

m2

%
, λ3 =

m2

%
+

1
%

(2.3)

3



and the right eigenvectors are

R1 =

 1
m1
%

m2
% − 1

%

 , R2 =

 0
1
0

 , R3 =

 1
m1
%

m2
% + 1

%

 . (2.4)

Since we observe that ∇λi · Ri = 0 for all i = 1, 2, 3, we conclude that all three characteristic
families of the system (2.1) are linearly degenerate and therefore all elementary waves are contact
discontinuities. Moreover, the variable m1 appears only in the equation (2.1)2 and thus the system
can be decoupled. In particular, if we consider bounded solutions, we first solve the system (2.1)1,
(2.1)3 and to its solution we add a contact discontinuity with the speed λ2 = m2

% = v2, where the
velocity component v1 jumps from v−1 to v+1.

As we already observed, bounded solutions of (2.1)1, (2.1)3 are contact discontinuities with
the speeds λ1 or λ3, satisfying the Rankine-Hugoniot conditions

σ[%] = [%v2],

σ[%v2] = [%v2
2 −

1
%
],

(2.5)

where [q] = qR − qL. Here, the index R denotes the constant state on the right and L denotes the
constant state on the left, and σ is the speed of the contact discontinuity. We easily obtain for
the 1-characteristic family that

σ = λ1 = v2R −
1

%R
= v2L −

1
%L

(2.6)

and for the 3-characteristic family that

σ = λ3 = v2R +
1

%R
= v2L +

1
%L

. (2.7)

With this information we can draw the characteristic curves starting from a point (%−, v−2) in
the state space as

v2 −
1
%

= v−2 −
1

%−
, (2.8)

v2 +
1
%

= v−2 +
1

%−
(2.9)

and conclude the following:

• If (%+, v+2) = (%−, v−2), then this constant state is a solution.

• If (%+, v+2) lies on one of the curves (2.8), (2.9), then the solution consists of one contact
discontinuity.

• If (%+, v+2) does not lie on neither of the curves (2.8), (2.9) and it holds

v−2 − v+2 <
1

%−
+

1
%+

, (2.10)

then the solution consists of two contact discontinuities with the intermediate constant state
(%m, vm2) given by

1
%m

=
1
2

(v+2 − v−2) +
1
2

(
1

%+
+

1
%−

)
, vm2 =

1
2

(v+2 + v−2) +
1
2

(
1

%+
− 1

%−

)
. (2.11)
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• In the case
v−2 − v+2 ≥

1
%−

+
1

%+
(2.12)

there does not exist a self-similar BV solution to the Riemann problem (2.1)1, (2.1)3 with
the initial data (2.2).

We will now discuss the last case in detail. We introduce solutions with Dirac delta measures
supported at a jump, i.e. we search for a solution in the form

(%, v1, v2)(t, x2) =


(%−, v−1, v−2) for x2 < σt

(ω(t)δx2−σt, ξ, σ) for x2 = σt

(%+, v+1, v+2) for x2 > σt,

(2.13)

where the δ-shock speed σ is also the value of the second component of the velocity on the δ-shock,
ξ is the value of the first component of the velocity on the δ-shock, and together with the density
weight ω(t) they satisfy the generalized Rankine-Hugoniot conditions

dω(t)
dt

= σ(%+ − %−)− (%+v+2 − %−v−2), (2.14)

dω(t)ξ
dt

= σ(%+v+1 − %−v−1)− (%+v+1v+2 − %−v−1v−2), (2.15)

dω(t)σ
dt

= σ(%+v+2 − %−v−2)−
(

%+v2
+2 − %−v2

−2 −
1

%+
+

1
%−

)
. (2.16)

Here we set the initial data ω(0) = 0 and we define 1
% = 0 for x2 = σt. This yields the following

solution to (2.14)-(2.16)

ω(t) =

√√√√%+%−

(
(v+2 − v−2)2 −

(
%− − %+

%−%+

)2
)

t, (2.17)

σ =

%+v+2 − %−v−2 +

√
%+%−

(
(v+2 − v−2)2 −

(
%−−%+
%−%+

)2
)

%+ − %−
, (2.18)

ξ =

(%+v+1 − %−v−1)

√
%+%−

(
(v+2 − v−2)2 −

(
%−−%+
%−%+

)2
)

+ %−%+(v+2 − v−2)(v+1 − v−1)

(%+ − %−)

√
%+%−

(
(v+2 − v−2)2 −

(
%−−%+
%−%+

)2
)

(2.19)

in the case %+ 6= %− and

ω(t) = (%−v−2 − %+v+2)t, (2.20)

σ =
1
2
(v+2 + v−2), (2.21)

ξ =
1
2
(v+1 + v−1) (2.22)

in the case %+ = %−. Note that an easy calculation shows v+2 < σ < v−2 and similarly one can
show that min{v−1, v+1} ≤ ξ ≤ max{v−1, v+1} with equalities if and only if v−1 = v+1.

Next we specify the sense in which the Euler system is satisfied in the case of a δ-shock.
Such solution can be viewed as a generalized measure–valued solution (νt,x,m%), where νt,x ∈
L∞w ((0,∞)× R2;P(R+ × R2)) is a standard atomic probability measure defined simply as

νt,x =

{
δ(%−,v−) for x2 < σt

δ(%+,v+) for x2 > σt
(2.23)
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and m% ∈M([0,∞)× R2) is a concentration measure defined by

m% = ω(t)δx2−σt dx1 dt. (2.24)

In particular, the duality between this measure and a smooth function ϕ is defined as

〈m%, ϕ〉 =
∫ ∞

0

∫
R

ω(t)ϕ(t, x1, σt) dx1 dt. (2.25)

If we denote

(%,v) =

{
(%−,v−) for x2 < σt

(%+,v+) for x2 > σt,
(2.26)

then the equations (1.1) are satisfied in the sense∫ ∞

0

∫
R2

%∂tϕ dxdt + 〈m%, ∂tϕ〉+
∫ ∞

0

∫
R2

%v · ∇xϕ dxdt + 〈m%, (ξ, σ) · ∇xϕ〉

= −
∫

R2
%0(x)ϕ(0, x) dx (2.27)

for all ϕ ∈ C∞
c ([0,∞)× R2) and∫ ∞

0

∫
R2

%v · ∂tϕ dxdt + 〈m%, (ξ, σ) · ∂tϕ〉

+
∫ ∞

0

∫
R2

(
%v ⊗ v − 1

%

)
: ∇xϕ dxdt + 〈m%, (ξ, σ)⊗ (ξ, σ) : ∇xϕ〉

= −
∫

R2
%0(x)v0(x) ·ϕ(0, x) dx (2.28)

for all ϕ ∈ C∞
c ([0,∞)× R2).

We close this section with examining the validity of the energy inequality (1.4) for the 1D
solutions mentioned above. It is not difficult to observe that in the case of a solution consisting
only of contact discontinuities, the energy inequality (1.4) (more precisely its weak formulation)
holds as an equality. In the case of δ-shock we have the following Lemma.

Lemma 2.1. Let (%±,v±) are Riemann initial data such that (2.12) holds. Assume that ω(t), σ
and ξ are given by (2.17)-(2.19) in the case %− 6= %+ and by (2.20)-(2.22) in the case %− = %+.
Then the couple (νt,x,m%) defining the δ-shock solution given as in (2.23), (2.24) satisfies the
following version of the energy inequality∫ ∞

0

∫
R2

(
1
2%

+ %
|v|2

2

)
∂tϕ dxdt + 〈m%,

ξ2 + σ2

2
∂tϕ〉

+
∫ ∞

0

∫
R2

(
%
|v|2

2
− 1

2%

)
v · ∇xϕ dxdt + 〈m%,

ξ2 + σ2

2
(ξ, σ) · ∇xϕ〉

≥ −
∫

R2

(
1

2%0(x)
+ %0(x)

|v0(x)|2

2

)
ϕ(0, x) dx (2.29)

for all ϕ ∈ C∞
c ([0,∞)× R2), ϕ ≥ 0.

In order to prove Lemma 2.1 it is useful to introduce the Galilean transformation for δ-shock
solutions.
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Lemma 2.2. Let (%,v) and m% be a δ-shock solution to (1.1), (1.5) as defined in (2.23), (2.24)
and (2.26). Then for any c = (c1, c2) ∈ R2

%̃(t, x) := %(t, x− ct),
ṽ(t, x) := v(t, x− ct) + c,

ω̃(t) := ω(t),
σ̃ := σ + c2,

ξ̃ := ξ + c1,

m̃% := ω̃(t)δx2−σ̃t dx1 dt

(2.30)

is a δ-shock solution to (1.1) with the initial data (%̃0(x), ṽ0(x)) = (%0(x),v0(x) + c).

Proof. The Galilean transformation is a standard tool in the framework of weak solutions for
Euler equations. Here we simply need to verify the Rankine-Hugoniot conditions (2.14)–(2.16)
with ω̃ and σ̃ defined in (2.30). We recall that for two arbitrary functions f and g it holds
[f(g + c)] = [fg] + c[f ] for any constant c ∈ R. The first condition (2.14) rewrites as

dω̃(t)
dt

=
dω(t)

dt
= σ[%]− [%v2] = σ̃[%̃]− c2[%̃]− [%̃ṽ2] + c2[%̃] = σ̃[%̃]− [%̃ṽ2].

This relation is then used in the derivation of the second condition (2.15) since

dω̃(t)ξ̃
dt

=
dω(t)ξ

dt
+ c1

dω̃(t)
dt

= σ[%v1]− [%v1v2] + c1σ̃[%̃]− c1[%̃ṽ2]

= σ̃[%̃ṽ1]− c1σ̃[%̃]− c2[%̃ṽ1] + c1c2[%̃]− [%̃ṽ1ṽ2] + c1[%̃ṽ2] + c2[%̃ṽ1]− c1c2[%̃] + c1σ̃[%̃]− c1[%̃ṽ2]
= σ̃[%̃ṽ1]− [%̃ṽ1ṽ2]

and the third condition (2.16) since

dω̃(t)σ̃
dt

=
dω(t)σ

dt
+ c2

dω̃(t)
dt

= σ[%v2]− [%v2
2 ] + [%−1] + c2σ̃[%̃]− c2[%̃ṽ2]

= σ̃[%̃ṽ2]− c2σ̃[%̃]− c2[%̃ṽ2] + c2
2[%̃]− [%̃ṽ2

2 ] + 2c2[%̃ṽ2]− c2
2[%̃] + [%−1] + c2σ̃[%̃]− c2[%̃ṽ2]

= σ̃[%̃ṽ2]− [%̃ṽ2
2 − %̃−1].

Now we can prove Lemma 2.1.

Proof. Thanks to Lemma 2.2 we may assume that σ = 0 and ξ = 0. This together with (2.15)-
(2.16) yield the relations

%+v+1v+2 − %−v−1v−2 = 0, (2.31)

%+v2
+2 − %−v2

−2 −
1

%+
+

1
%−

= 0. (2.32)

Further, since σ = 0, we can split the first integral on the left of (2.29) and calculate∫ ∞

0

∫
R2

(
1
2%

+ %
|v|2

2

)
∂tϕ dxdt

=
∫ ∞

0

∫
x2<0

(
1
2%

+ %
|v|2

2

)
∂tϕ dxdt +

∫ ∞

0

∫
x2>0

(
1
2%

+ %
|v|2

2

)
∂tϕ dxdt

= −
∫

x2<0

(
1

2%0
+ %0 |v0|2

2

)
ϕ(0, x) dx−

∫
x2>0

(
1

2%0
+ %0 |v0|2

2

)
ϕ(0, x) dx

= −
∫

R2

(
1

2%0
+ %0 |v0|2

2

)
dx. (2.33)
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Moreover, since ξ = σ = 0, the duality pairings with the measure m% in (2.29) are trivially zero.
So to prove (2.29) it is enough to show that∫ ∞

0

∫
R2

(
%
|v|2

2
− 1

2%

)
v · ∇xϕ dxdt =

∫ ∞

0

∫
R2

(
%
v2
1 + v2

2

2
− 1

2%

)
(v1 ∂x1ϕ + v2 ∂x2ϕ) dxdt ≥ 0.

(2.34)
To do so, we split once again the integral over R2 into the negative and the positive x2-half-planes
and observe that ∫ ∞

0

∫
±x2>0

∫
R

(
%
v2
1 + v2

2

2
− 1

2%

)
v1∂x1ϕ dx1 dx2 dt = 0. (2.35)

Therefore, to get (2.34) we must show that

%+v3
+2 − %−v3

−2 −
v+2

%+
+

v−2

%−
+ %+v2

+1v+2 − %−v2
−1v−2 ≤ 0. (2.36)

First, we observe that %+v2
+1v+2− %−v2

−1v−2 ≤ 0. Indeed, using (2.31) we get that the expression
on the left-hand side is equal to (v+1−v−1)%+v+1v+2 and we already know that %+ > 0, the terms
v+1 and v+1 − v−1 have the same sign and v+2 < σ = 0.

Second, we prove the inequality

%+v3
+2 − %−v3

−2 −
v+2

%+
+

v−2

%−
≤ 0 (2.37)

by working backwards. Since 2(2.37)− v+2(2.32)− v−2(2.32) yields

%+v3
+2 − %−v3

−2 −
v+2

%+
+

v−2

%−
+ %−v2

−2v+2 − %+v2
+2v−2 +

v−2

%+
− v+2

%−
≤ 0,

we get that

(v−2 − v+2)
(

1
%+

− %+2v
2
+2

)
+ (v+2 − v−2)

(
%−v2

−2 −
1

%−

)
≤ 0 (2.38)

is equivalent to (2.37). Furthermore, as v−2 − v+2 > 0 we deduce that (2.38) is equivalent to

%+v2
+2 + %−v2

−2 −
1

%−
− 1

%+
≥ 0. (2.39)

Next, summing (2.39) + (2.32), subtracting (2.39)− (2.32), respectively, we obtain that

v2
+2 ≥

1
%2
+

, resp. v2
−2 ≥

1
%2
−

has to be satisfied. Since we know that v+2 < σ = 0 < v−2 the above relations are equivalent to

v+2 ≤ − 1
%+

, resp. v−2 ≥
1

%−
. (2.40)

Finally, we use (2.32) one more time in the form

%+

(
−v+2 +

1
%+

)(
−v+2 −

1
%+

)
= %−

(
v−2 +

1
%−

)(
v−2 −

1
%−

)
. (2.41)

The first two terms in the products on both sides are clearly positive and hence −v+2 − 1
%+

and
v−2− 1

%−
have the same sign or are both equal to 0. Since the sum of these terms is non–negative,

see (2.12), both terms are non–negative and (2.40) holds true. This concludes the proof.
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3 Subsolutions

The proofs of Theorems 1.1 and 1.2 are based on the notion of admissible fan subsolutions in-
troduced originally in [6] and on the construction of infinitely many solutions related to a single
subsolution in the spirit of [11], [12]. Therefore we first introduce the necessary definitions.

Definition 3.1 (Fan partition). A fan partition of R2×(0,∞) consists of open sets P−, P1, P2, P+

of the following form

P− = {(t, x) : t > 0 and x2 < ν−t} (3.1)
P1 = {(t, x) : t > 0 and ν−t < x2 < ν0t} (3.2)
P2 = {(t, x) : t > 0 and ν0t < x2 < ν+t} (3.3)
P+ = {(t, x) : t > 0 and x2 > ν+t}, (3.4)

where ν− < ν0 < ν+ is an arbitrary trio of real numbers.

We denote by S2×2
0 the set of all symmetric 2 × 2 matrices with zero trace, by I the 2 × 2

identity matrix and by 1P the indicator function of a set P .

Definition 3.2 (Fan subsolution). A fan subsolution to the compressible isentropic Euler system
(1.1) with the initial data (1.5) is a triple (%,v, U) : R2 × (0,∞) → (R+, R2,S2×2

0 ) of piece–wise
constant functions satisfying the following requirements.

(i) There is a fan partition P−, P1, P2, P+ of R2 × (0,∞) such that

(%,v, U) = (%−,v−, U−)1P− + (%1,v1, U1)1P1 + (%2,v2, U2)1P2 + (%+,v+, U+)1P+ ,

where %i,vi, Ui (i = 1, 2) are constants with %i > 0 and U± = v± ⊗ v± − 1
2 |v±|

2I;

(ii) There exists a positive constants Ci (i = 1, 2) such that

vi ⊗ vi − Ui <
Ci

2
I ; (3.5)

(iii) The triple (%,v, U) solves the following system in the sense of distributions:

∂t% + divx(%v) = 0, (3.6)

∂t(%v) + divx

(
% U
)

+∇x

(
p(%) +

1
2

(
%|v|21P+∪P− +

2∑
i=1

Ci%i1Pi

))
= 0. (3.7)

Definition 3.3 (Admissible fan subsolution). A fan subsolution (%,v, U) is said to be admissible
if it satisfies the following inequality in the sense of distributions

∂t (%ε(%)) + divx [(%ε(%) + p(%))v] + ∂t

(
%
|v|2

2
1P+∪P−

)
+ divx

(
%
|v|2

2
v 1P+∪P−

)
+

[
∂t

(
2∑

i=1

%i
Ci

2
1Pi

)
+ divx

(
2∑

i=1

%i v
Ci

2
1Pi

)]
≤ 0 . (3.8)

A key ingredient in the proofs of main theorems of this paper is the following proposition
proved in [6].

Proposition 3.4. Let p(%) be any C1 function and (%±,v±) be such that there exists at least one
admissible fan subsolution (%,v, U) of (1.1) with initial data (1.5). Then there are infinitely many
bounded admissible solutions (%,v) to (1.1), (1.5) such that % = % and |v|2 1Pi = Ci, i = 1, 2.
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The infinitely many bounded admissible weak solutions (%,v) are constructed by adding, in a
non–unique way, solutions to the linearized pressureless incompressible Euler equations supported
in sets P1 and P2 to the single subsolution. The procedure is described in the following lemma,
which is a key building block of the proof of Proposition 3.4, cf. [6, Lemma 3.7].

Lemma 3.5. Let (ṽ, Ũ) ∈ R2 × S2×2
0 and C0 > 0 be such that ṽ ⊗ ṽ − Ũ < C0

2 I. For any open
set Ω ⊂ R2×R there are infinitely many maps (v, U) ∈ L∞(R2×R; R2×S2×2

0 ) with the following
property

(i) v and U vanish identically outside Ω;

(ii) divxv = 0 and ∂tv + divxU = 0;

(iii) (ṽ + v)⊗ (ṽ + v)− (Ũ + U) = C0
2 I a.e. on Ω.

It is easy to see that the application of Lemma 3.5 with Ω = Pi, (ṽ, Ũ) = (vi, Ui) and C0 = Ci

yields the proof of Proposition 3.4. One only needs to check that each couple (%,v +
∑2

i=1 vi)
is an admissible weak solution to (1.1) with the initial data (1.5). More details of the proof are
available in [6, Section 3.3].

4 Proof of Theorem 1.1

Using Proposition 3.4 we know that in order to prove Theorem 1.1 it is enough to find a single
admissible fan subsolution. Therefore let us now fix such initial data %−, %+, v− and v+ that they
allow for a 1D solution in the form of a δ-shock, namely they satisfy

v−2 − v+2 ≥
1

%−
+

1
%+

. (4.1)

In accordance with Definition 3.2 we have to find the interface speeds ν− < ν0 < ν+, the con-
stant middle states (%i,vi, Ui) and positive constants Ci, i = 1, 2 in order to obtain an admissible
fan subsolution (%,v, U). We denote vi = (αi, βi) and

Ui =
(

γi δi

δi −γi

)
. (4.2)

Then the equations (3.6) and (3.7) translate to the following set of Rankine-Hugoniot conditions
on the left interface:

ν−(%− − %1) = %−v−2 − %1β1, (4.3)
ν−(%−v−1 − %1α1) = %−v−1v−2 − %1δ1, (4.4)

ν−(%−v−2 − %1β1) = %−v2
−2 + %1γ1 + p(%−)− p(%1)− %1

C1

2
; (4.5)

on the middle interface:

ν0(%1 − %2) = %1β1 − %2β2, (4.6)
ν0(%1α1 − %2α2) = %1δ1 − %2δ2, (4.7)

ν0(%1β1 − %2β2) = %1
C1

2
− %1γ1 + p(%1)− %2

C2

2
+ %2γ2 − p(%2) ; (4.8)

and on the right interface:

ν+(%2 − %+) = %2β2 − %+v+2, (4.9)
ν+(%2α2 − %+v+1) = %2δ2 − %+v+1v+2, (4.10)

ν+(%1β1 − %+v+2) = −%2γ2 − %+v2
+2 + p(%2)− p(%+) + %2

C2

2
. (4.11)
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The subsolution condition (3.5) can be rewritten as

α2
i + β2

i < Ci, (4.12)(
Ci

2
− αi

2 + γi

)(
Ci

2
− βi

2 − γi

)
− (δi − αiβi)

2
> 0 (4.13)

for i = 1, 2 and finally the admissibility inequality (3.8) yields on the left interface:

ν−(%−ε(%−)− %1ε(%1)) + ν−

(
%−
|v−|2

2
− %1

C1

2

)

≤ [(%−ε(%−) + p(%−))v−2 − (%1ε(%1) + p(%1))β1] +

(
%−v−2

|v−|2

2
− %1β1

C1

2

)
; (4.14)

on the middle interface:

ν0(%1ε(%1)− %2ε(%2)) + ν0

(
%1

C1

2
− %2

C2

2

)
≤ [(%1ε(%1) + p(%1))β1 − (%2ε(%2) + p(%2))β2] +

(
%1β1

C1

2
− %2β2

C2

2

)
; (4.15)

and on the right interface:

ν+(%2ε(%2)− %+ε(%+)) + ν+

(
%2

C2

2
− %+

|v+|2

2

)

≤ [(%2ε(%2) + p(%2))β2 − (%+ε(%+) + p(%+))v+2] +

(
%2β2

C2

2
− %+v+2

|v+|2

2

)
. (4.16)

Now we make the following choice of some unknowns. We set

α1 = v−1, (4.17)
α2 = v+1, (4.18)
%1 = %2, (4.19)
β1 = β2 =: β. (4.20)

This way (4.6) is satisfied trivially and (4.8) simplifies to

γ1 −
C1

2
= γ2 −

C2

2
. (4.21)

Moreover we can easily calculate that δi = αiβ from (4.4) and (4.10), which in turn yields ν0 = β
from (4.7). The admissibility inequality (4.15) is satisfied trivially as an equality. We define
ε1 = C1

2 − γ1 − β2, ε2 = C1 − v2
−1 − β2 − ε1, ε′2 = C2 − v2

+1 − β2 − ε1 and we make the ansatz
ε2 = ε′2.

Now we can follow the arguments in [7, Lemma 4.3 - Lemma 4.4] and transform (4.3)-(4.16)
to

ν−(%− − %1) = %−v−2 − %1β, (4.22)

ν−(%−v−2 − %1β) = %−v2
−2 − %1(β2 + ε1) + p(%−)− p(%1) ; (4.23)

ν+(%1 − %+) = %1β − %+v+2, (4.24)

ν+(%1β − %+v+2) = %1(β2 + ε1)− %+v2
+2 + p(%1)− p(%+) ; (4.25)
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ε1 > 0, (4.26)
ε2 > 0 ; (4.27)

(β − v−2)
(

p(%−) + p(%1)− 2%−%1
ε(%−)− ε(%1)

%− − %1

)
≤ε1%1(v−2 + β)− (ε1 + ε2)

%−%1(β − v−2)
%− − %1

; (4.28)

(v+2 − β)
(

p(%1) + p(%+)− 2%1%+
ε(%1)− ε(%+)

%1 − %+

)
≤− ε1%1(v+2 + β) + (ε1 + ε2)

%1%+(v+2 − β)
%1 − %+

. (4.29)

A key feature of the Chaplygin gas pressure law (1.2) is that

P (r, s) := p(r) + p(s)− 2rs
ε(r)− ε(s)

r − s
= 0 (4.30)

for all r 6= s, r, s > 0. This is an important difference from the more common pressure law
p(%) = %γ , γ ≥ 1, where P (r, s) > 0.

Therefore (4.28), (4.29) simplify further to

0 ≤ ε1%1(v−2 + β)− (ε1 + ε2)
%−%1(β − v−2)

%− − %1
; (4.31)

0 ≤ −ε1%1(v+2 + β) + (ε1 + ε2)
%1%+(v+2 − β)

%1 − %+
. (4.32)

Observing that relations (4.22)-(4.25) consist of four equations for five unknowns %1, ν±, β, ε1

we start with expressing ν±, β and ε1 as functions of %1 which we treat as a parameter. To this
end we introduce the notation

R := %− − %+, (4.33)
A := %−v−2 − %+v+2, (4.34)
u := v−2 − v+2, (4.35)

B := %−%+u2 − R2

%−%+
(4.36)

and observe that (4.1) ensures that we have u > 0 and B > 0. We make the ansatz %1 >
max{%−, %+} and assuming R 6= 0 this yields

ν− =
A

R
−
√

B

R

√
%1 − %+

%1 − %−
, (4.37)

ν+ =
A

R
−
√

B

R

√
%1 − %−
%1 − %+

(4.38)

and we see that ν− < ν+ is satisfied. We can express β from (4.22) as follows

β =
%−v−2

%1
− (%− − %1)A

R%1
−
√

B

R%1

√
(%1 − %−)(%1 − %+) (4.39)

and finally we get from (4.23)

ε1 =

(√
B

R

√
%1 − %+

%1 − %−
− %+u

R

)2
%−(%1 − %−)

%2
1

− %1 − %−
%2
1%−

, (4.40)
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which is useful to study the case R > 0. Note that we could also express ε1 using (4.25) to get a
different expression, which is useful for studying the case R < 0, namely

ε1 =

(√
B

R

√
%1 − %−
%1 − %+

− %−u

R

)2
%+(%1 − %+)

%2
1

− %1 − %+

%2
1%+

. (4.41)

In the case R = 0 the expressions are much easier, namely

ν− =
v−2 + v+2

2
− %−u

2(%1 − %−)
, (4.42)

ν+ =
v−2 + v+2

2
+

%−u

2(%1 − %−)
, (4.43)

β =
v−2 + v+2

2
, (4.44)

ε1 =
%−u2

4(%1 − %−)
+

1
%2
1

− 1
%1%−

. (4.45)

Lemma 4.1. Let (4.1) be satisfied. Then ε1 > 0 for all %1 > max{%−, %+}.

Proof. We start with the case R = 0. Then ε1 > 0 yields the following quadratic inequality for %1

(%2
−u2 − 4)%2

1 + 8%−%1 − 4%2
− > 0 (4.46)

and we notice that (4.1) is, in this case, equivalent to %2
−u2 − 4 > 0. The quadratic expression on

the left–hand side has two roots
%1,12 = 2%−

2± %−u

4− %2
−u2

, (4.47)

and both of them satisfy %1,12 < %−. Therefore we get that ε1 > 0 for all %1 > %−.
Let us now handle the case R > 0. First observe that for %1 → %− we have ε1 → B%−

R > 0 and
hence it is enough to show that

ε̃1 =
%2
1

%−(%1 − %−)
ε1 =

(√
B

R

√
%1 − %+

%1 − %−
− %+u

R

)2

− 1
%2
−

> 0 (4.48)

for all %1 > %−. It is also easy to check that
√

B > %+u and thus ε̃1(%1) is a decreasing function.
We examine its limit as %1 →∞. We have

lim
%1→∞

ε̃1(%1) =
(
√

B − %+u)2

R2
− 1

%2
−

=

(√
B − %+u

R
+

1
%−

)(√
B − %+u

R
− 1

%−

)
. (4.49)

The first term in the product on the right hand side is clearly positive, so it remains to prove
non–negativity of the second term. Indeed, this is equivalent to

√
B ≥ R

%−
+ %+u. (4.50)

Plugging in (4.36) and making square of (4.50) we get the following quadratic inequality in terms
of u

%+u2 − 2
%+

%−
u− R(%− + %+)

%2
−%+

≥ 0 (4.51)

and we observe that the inequality (4.51) holds for all u ≥ 1
%+

+ 1
%−

, i.e. in the case (4.1).
The case R < 0 can be treated similarly using (4.41) instead of (4.40) to express ε1. We omit

the calculation here.
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It remains to check the order of the speeds of the interfaces ν− < ν0 = β < ν+ and the
admissibility conditions (4.31) and (4.32). More precisely, if it is possible to find ε2 positive such
that both of these inequalities hold. These questions are closely connected, as is demonstrated by
observing that

β − ν− =
%−
%1

(v−2 − ν−), (4.52)

v−2 − β =
ρ1 − ρ−

ρ1
(v−2 − ν−) , (4.53)

ν+ − β =
%+

%1
(ν+ − v+2), (4.54)

β − v+2 =
ρ1 − ρ+

ρ1
(ν+ − v+2) (4.55)

and the following lemma.

Lemma 4.2. Let (4.1) be satisfied. Then v−2−ν− > 0 and ν+−v+2 > 0 for all %1 > max{%−, %+}.

Proof. If R = 0 the claim follows directly from (4.42) and (4.43). Next, we assume R > 0 and
since

v−2 − ν− =
√

B

R

√
%1 − %+

%1 − %−
− %+u

R
, (4.56)

the claim v−2 − ν− > 0 follows thanks to
√

B > %+u.
Concerning the expression ν+ − v+2 we calculate similarly that

ν+ − v+2 =
%−u

R
−
√

B

R

√
%1 − %−
%1 − %+

>
%−u−

√
B

R
> 0. (4.57)

The case R < 0 is proved using the same arguments.

This shows that we have correct order of the interface speeds ν− < ν0 = β < ν+. Moreover,
knowing now that the expressions v−2 − β and β − v+2 have positive signs we obtain from (4.31)
and (4.32) that

ε2 ≤ ε1

(
v−2 + β

v−2 − β

%1 − %−
%−

− 1
)

, (4.58)

ε2 ≤ ε1

(
v+2 + β

v+2 − β

%1 − %+

%+
− 1
)

. (4.59)

We want to show that the expressions on the right hand sides of (4.58) and (4.59) can be made
positive by choosing %1 large enough. In particular it is easy to observe that in the case β = 0, the
choice %1 > 2 max{%−, %+} ensures that the right–hand sides are positive and thus it is possible
to find ε2 > 0 satisfying both (4.58), (4.59). We get a subsolution and therefore using Proposition
3.4 infinitely many bounded admissible weak solutions.

Finally, we claim that using the Galilean transformation, the assumption β = 0 can be made
without loss of generality. We use the following argument. Starting with any couple (%−,v−),
(%+,v+) characterizing the Riemann initial data (1.5) we fix %1 > 2 max{%−, %+} and express
β from (4.39). If β 6= 0 we use the Galilean transformation with constant velocity (0, β) and
study the case with Riemann initial data (%−, (v−1, v−2 − β)), (%+, (v+1, v+2 − β)). We obtain
infinitely many bounded admissible weak solutions (%,v)(t, x) starting from this data and using
the transformation backwards we get that (%,v + (0, β))(t, x− βt) are solutions with the original
initial data (1.5).

In the case %− = %+ and β = 0, the inequalities (4.58), (4.59) are the same. Therefore choosing
%1 > 2%− and ε2 = ε1

%1−2%−
%−

we get that both (4.58), (4.59) are satisfied as equalities and thus
solutions constructed from this subsolution satisfy the energy equality. This concludes the proof
of Theorem 1.1.
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5 Proof of Theorem 1.2

Let us fix such initial data %−, %+,v−,v+ that

max
{

1
%−

,
1

%+

}
< v−2 − v+2 <

1
%−

+
1

%+
. (5.1)

Once again our goal is to find a single admissible fan subsolution. We follow the steps from the
previous section and first simplify the set of equations and inequalities to (4.22)-(4.27), (4.31),
(4.32). Continuing further, we get again that B > 0 and search for subsolutions with %1 >
max{%−, %+}. The expressions (4.37)-(4.45) hold here as well, however instead of Lemma 4.1 we
show the following.

Lemma 5.1. Let (5.1) be satisfied. There exists a unique %max such that ε1 > 0 for all %1 ∈
(max{%−, %+}, %max) and ε1 < 0 for all %1 > %max.

Proof. We start with the case R = 0. Note that from (5.1) we have 0 < u < 2
%−

. Using (4.45) we
easily obtain that

ε̃1(%1) =
%2
1

%−(%1 − %−)
ε1(%1) =

%2
1u

2

4(%1 − %−)2
− 1

%2
−

(5.2)

is a decreasing function with a single root %max = 2%−
2−%−u > %−, which proves the claim.

Next we handle the case R > 0. Once again we define the function

ε̃1(%1) =
%2
1

%−(%1 − %−)
ε1(%1) =

(√
B

R

√
%1 − %+

%1 − %−
− %+u

R

)2

− 1
%2
−

(5.3)

and observe that under the condition (5.1) it holds
√

B > %+u. Indeed, we assume u2 > 1
%2
+

that

is more strict than u2 > 1
%+

( 1
%+
− 1

%−
). Hence the function ε̃1 is once again obviously decreasing

and it is a matter of a straightforward calculation to find its root, which is

%max =
%+B − %−

(
R
%−

+ %+u
)2

B −
(

R
%−

+ %+u
)2 =

2%−%+u + 2R

2%+u + R(%−+%+)
%−%+

− %−%+u2
. (5.4)

One can check that the denominator of the last expression is positive for u > 1
%+
− 1

%−
and under

the same condition it also holds %max > %−.
The case R < 0 can be done in a similar way to R > 0 using expression (4.41). We omit the

details.

The proof of Lemma 5.1 provides the necessary arguments for the analog of Lemma 4.2 to also
hold under the assumption (5.1). More precisely, we can show the following.

Lemma 5.2. Let (5.1) be satisfied. Then v−2 − ν− > 0 and ν+ − v+2 > 0 for all %1 ∈
(max{%−, %+}, %max).

Therefore we know the correct order of the interface speeds ν− < ν0 = β < ν+. Since we
also know that v−2 − β and β − v+2 are positive, we can transform the admissibility inequalities
(4.31), (4.32) once again into (4.58), (4.59). We observe that in the case β = 0, the inequalities
(4.58),(4.59) can be satisfied with a positive ε2 under the condition %1 > 2 max{%−, %+}. Thus, in
order to conclude the proof, it only remains to ensure that %max > 2 max{%−, %+}.

In the case R > 0 this condition yields the following quadratic inequality for u:

%−%2
+u2 − %2

+u−R = (%+u− 1)(%−%+u + R) > 0, (5.5)

and hence we end up with %max > 2%− whenever u > 1
%+

. The cases R = 0 and R < 0 are similar.
Finally, as in the previous section, we use the the Galilean transformation argument to claim

that the choice β = 0 can be made without loss of generality.
In the case R = 0, i.e. %− = %+, and β = 0, the inequalities (4.58), (4.59) are the same, so

choosing ε2 = ε1
%1−2%−

%−
> 0 we construct solutions satisfying the energy equality.
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6 Maximal dissipation criteria

Theorems 1.1 and 1.2 are another examples in now a quite large series of results proving that the
energy inequality (1.4) in itself is not strong enough to single out a unique physical solution in a
set of (bounded) weak solutions in more than one space dimension. The list of such results was
provided in the Introduction.

A natural question therefore rises, whether there is another criterion strong enough to restore
the uniqueness in the multi–dimensional case. One of the concepts mentioned in the literature
is the principle of maximal dissipation of energy. Roughly speaking, physical solutions should
be those solutions that dissipate the most energy, or in mathematical terms produce the most
entropy.

Motivated by Dafermos [9] the entropy rate admissibility criterion was studied in [7] and [13].
In order to define this criterion, we introduce the total energy EL[%,v] of a solution (%,v) to (1.1)
and the energy dissipation rate DL[%,v] as follows

EL[%,v](t) =
∫

(−L,L)2

(
%ε(%) + %

|v|2

2

)
dx, (6.1)

DL[%,v](t) =
d+EL[%,v](t)

dt
. (6.2)

Note that the restriction to the finite set (−L,L)2 is necessary, since the solutions discussed in
this paper clearly have the property EL[%,v] → ∞ as L → ∞. Also note that DL[%,v] is a
non–positive quantity for any admissible weak solution (%,v).

Definition 6.1 (Entropy rate admissible solution). A weak solution (%,v) of (1.1) is called entropy
rate admissible if there exists L∗ > 0 such that there is no other weak solution (%,v) with the
property that for some τ ≥ 0, (%,v)(x, t) = (%,v)(x, t) on R2× [0, τ ] and DL[%,v](τ) < DL[%,v](τ)
for all L ≥ L∗.

Feireisl in [13] proved global existence of infinitely many admissible weak solutions to (1.1)
with the pressure p(%) = %γ , γ > 1 starting from smooth density %0 and some irregular velocity
v0. He also proved that none of these solutions is entropy rate admissible.

On the other hand, Chiodaroli and Kreml [7] showed that for the pressure p(%) = %γ , γ ∈
[1, 3), there exist Riemann initial data (1.5) for which the classical 1D solution consisting of two
admissible shocks is not entropy rate admissible, in particular there exist solutions constructed by
the method of De Lellis and Székelyhidi [11], [12] that dissipate more total energy than the classical
1D self-similar solution. Note that the authors in [7] do not claim that any of the nonstandard
solutions is entropy rate admissible, on the contrary, as was also shown in [13], the feature of the
construction of solutions based on the method of De Lellis and Székelyhidi is that none of these
solutions can be entropy rate admissible, because for each such solution there exists another one
constructed by the same method that dissipates more energy.

As was pointed out by E. Feireisl in private discussions on the topic of maximal dissipation,
the entropy rate admissibility criterion as defined in Definition 6.1 only measures the dissipation of
the total energy. A stronger version of the maximal dissipation criterion would take into account
that the maximality should be achieved locally everywhere in space.

In order to accomodate this idea and to propose another admissibility criterion based on
the notion of maximal dissipation, we first introduce the energy dissipation measure (or entropy
production measure) µ[%,v] ∈M((0,∞)× R2) for a weak solution (%,v) as follows

∂t

(
%ε(%) + %

|v|2

2

)
+ divx

((
%ε(%) + %

|v|2

2
+ p(%)

)
v

)
=: −µ[%,v]. (6.3)

It is clear that for any admissible weak solution µ[%,v] is a non–negative measure. In the termi-
nology of hyperbolic conservation laws this measure is called entropy production measure.

16



Definition 6.2 (Entropy production measure admissible solution). A weak solution (%,v) of (1.1)
is called entropy production measure admissible if there is no other weak solution (%,v) with the
property that for some τ ≥ 0, (%,v)(x, t) = (%,v)(x, t) on R2 × [0, τ ] and µ[%,v] > µ[%,v] on
(τ,∞)× R2.

We point out that nonstandard solutions to the system (1.1) with the pressure law p(%) =
%γ , γ ≥ 1 constructed in [7] have the energy dissipation measure incomparable with the energy
dissipation measure of the classical 1D solution consisting of two shocks, starting from the same
initial data. This is a direct consequence of the fact, that the energy dissipation measure is
supported on the shocks (for the classical 1D solution) or interfaces (in the case of nonstandard
solutions) and in the construction in [7] the speeds of the interfaces cannot coincide with the shock
speeds. The same also holds for solutions constructed in [8] and [17].

Therefore it was possible to hope that the classical 1D solutions may be entropy production
measure admissible, at least in the class of solutions which can be constructed using the theory of
De Lellis and Székelyhidi, i.e. that one cannot construct nonstandard solutions with dissipation
measure strictly larger than the dissipation measure of the classical 1D solution. However, solutions
constructed in Theorem 1.2 violate this claim.

Theorem 6.3. Let p(%) = −%−1. Assume that the Riemann initial data (1.5) satisfy

max
{

1
%−

,
1

%+

}
< v−2 − v+2 <

1
%−

+
1

%+
. (6.4)

Then the classical 1D solution to (1.1), (1.4), (1.5) consisting of two (for v−1 = v+1) or three (for
v−1 6= v+1) contact discontinuities is not entropy rate admissible and it is not entropy production
measure admissible.

Proof. The theorem is a direct consequence of Theorem 1.2. Since the classical 1D solution (%c,vc)
consists only of contact discontinuities, we have that DL[%c,vc](t) = 0 for all L > 0 and t > 0 and
also µ[%c,vc] = 0.

On the other hand, nonstandard solutions (%,v) in Theorem 1.2 can be constructed in such a
way that they satisfy the energy inequality (1.4) as a strict inequality on the interfaces x = ν−t,
x = ν+t. Thus these solutions satisfy DL[%,v](t) < 0 for all t > 0 and L > 0 large enough with
respect to t, and also µ[%,v] > 0.

We conclude with the remark, that all results in this paper can be directly generalized to any
space dimension higher than 2.
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