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The bounded convergence theorem, whose first mention dates back to Arzelá’s
paper [1], is concerned with the convergence of integrals provided the sequence of
Riemann integrable functions is uniformly bounded and has an integrable pointwise
limit. One could say that this result is the Lebesgue dominated convergence theorem
counterpart for Riemann integrals. Indeed, this is how many textbooks approach the
bounded convergence theorem: as a trivial consequence of Lebesgue integration theory.
The story is not much different when the Stieltjes–type integral is considered. In [5],
Luxemburg briefly remarks that the result for Riemann–Stieltjes integral is strongly
connected to the properties of the Stieltjes measure for intervals. In [3], the proof of the
bounded convergence theorem for the Riemann–Stieltjes integral happens to be long
and intricate. Reasoning by contradiction, the proof in [3] relies on a result known
as Arzela’s lemma, a result whose proof is rather technical unless a background on
measure theory is assumed. Therefore, disregarding the knowledge of measure theory,
the bounded convergence theorem makes its reputation as being a difficult problem.
A number of authors have addressed the question of obtaining a proof independent of
the theory of Lebesgue measure for such convergence result, see [5] and the references
therein. An interesting elementary proof of the bounded convergence theorem for
Riemann integrals was given in [4]; later, similar ideas have been applied to abstract
Stieltjes-type integrals in [6]. Inspired by these two papers, our goal is to present a
constructive proof of the following theorem:

Theorem A. Let g be a function of bounded variation on [a, b] and let {fn} be a
sequence of real-valued functions defined on [a, b] with the pointwise limit f : [a, b] → R.
Assume that there exists a constant M ≥ 0 such that |fn(t)| ≤ M for all n ∈ N and

t ∈ [a, b]. If the integrals
∫ b

a
f dg and

∫ b

a
fn dg exist for each n ∈ N, then

lim
n→∞

∫ b

a

fn dg =

∫ b

a

f dg.
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An important step in early proofs of this theorem is the understanding of the
concepts of figures and ‘length’ of a figure, see [2]. Closely related to the notion of
figures is the idea of elementary sets that we consider in this work. Having this in
mind, our approach relies on an extended notion of variation which has been briefly
discussed in [6]. As we will see, the variation over elementary sets has some properties
of a measure. The main analytic tool for proving the bounded convergence theorem is
then an analogue of the result presented in [4], with the variation over elementary sets
in the place of the Lebesgue measure (see also [6]).

We would like to highlight that the results contained in this notes are the outcome
of the research carried out during the preparation of the monograph [7] which shall
appear in 2018.

1 Preliminaries

To define the Riemann-Stieltjes we recall that a set D = {α0, α1, . . . , αν(D)}, with
ν(D) ∈ N, is said to be a division of [a, b] if a = α0 < α1 < · · · < αν(D) = b. A
partition of [a, b] is a tagged division, that is, P = (D, ξ) where D is a division of [a, b]
and ξ = (ξ1, . . . , ξν(D)) with ξj ∈ [αj−1, αj], j = 1, . . . , ν(D). Given a pair of functions

f, g : [a, b] → R, the Riemann–Stieltjes integral
∫ b

a
fdg is defined and equals I if for

every ε > 0, there exists a division Dε of [a, b] satisfying

∣∣∣ ν(D)∑
j=1

f(ξj)
(
g(αj)− g(αj−1)

)
− I

∣∣∣ < ε

for all partitions P = (D, ξ) of [a, b] such that D ⊃ Dε.
The (Jordan) variation of f on [a, b] is given by

varb
af = sup

ν(D)∑
j=1

|f(αj)− f(αj−1)|

where the supremum is taken over all divisions D = {α0, α1, . . . , αν(D)} of [a, b]. If
varb

af < ∞ we say that f is of bounded variation on [a, b]. We remark that a function
of bounded variation has at most countably many points of discontinuity. Moreover,
the one–sided limits f(t−) and f(t+) exist at every point t ∈ [a, b] (with the convention
f(a−) = f(a) and f(b+) = f(b) ), and the following inequality holds∑

t∈[a,b]

(
|∆+f(t)|+ |∆−f(t)|

)
≤ varb

af, (1.1)

where ∆−f(t) = f(t)− f(t−) and ∆+f(t) = f(t+)− f(t) for t ∈ [a, b].
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The notion of Jordan variation can be easily extended to arbitrary intervals by
rethinking the meaning of divisions. More precisely, for f : [a, b] → R and a subinterval
J ⊂ [a, b], the variation of f over J is defined by

var(f, J) = sup

ν(D)∑
j=1

|f(αj)− f(αj−1)|,

where the supremum is taken over all finite subsets D = {α0, α1, . . . , αν(D)} of J with
α0 < α1 < · · · < αν(D). We use the convention that var(f, ∅) = 0 and var(f, [c]) = 0,
where [c] denotes the degenerate interval consisting of a single real number c ∈ [a, b].
Clearly, for J = [c, d] ⊂ [a, b] we have var(f, J) = vard

cf . Moreover, it follows from the
definition that var(f, J2) ≤ var(f, J1) for J2 ⊂ J1 subintervals of [a, b].

Among the properties of variation over arbitrary intervals which have been discussed
in [6], we highlight the following: If f is a function of bounded variation on [a, b], and
a ≤ c < d ≤ b, then

vard
cf = var[c,d)f + |∆−f(d)|, (1.2)

vard
cf = var(c,d]f + |∆+f(c)|, (1.3)

var d
c f = var(c,d)f + |∆+f(c)|+ |∆−f(d)|. (1.4)

Naturally, if f is a function of bounded variation which is also continuous, then

vard
cf = var[c,d)f = var(c,d]f = var(c,d)f for a ≤ c < d ≤ b.

It is well-known that a function f of bounded variation on [a, b] can be decomposed
into continuous and jump parts, namely, f = fC + fB where fC is continuous and fB

is given by

fB(t) = f(a) +
∞∑

k=1

(
∆+f(sk) χ(sk,b](t) + ∆−f(sk) χ[sk,b](t)

)
for t ∈ [a, b],

where {sk} is the set of discontinuity points of f in [a, b], and χA stands for the
characteristic function of the set A ⊂ R. A simple computation shows that

∆±fB(t) = ∆±f(t), t ∈ [a, b], varb
af

B =
∑

t∈[a,b]

(
|∆+f(t)|+ |∆−f(t)|

)
. (1.5)

(Note that (1.1) ensures that the sum above is finite). Therefore, using the relations
(1.2)–(1.4), we can estimate the variation of the jump part, fB, over arbitrary intervals.
Indeed, assuming J = [c, d) for some c < d in [a, b], it follows from (1.2) and (1.5) that

var(fB, J) = vard
cf

B − |∆−fB(d)| = |∆+f(c)|+
∑

s∈(c,d)

(
|∆+f(s)|+ |∆−f(s)|

)
.
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Similar expressions can be derived in the cases J = (c, d] or J = (c, d), yielding the
following lemma.

Lemma 1.1. Let f be a function of bounded variation on [a, b] and let D denote the
set of discontinuity points of f in [a, b]. Then for every subinterval J of [a, b] we have

var(fB, J) ≤
∑

s∈J∩D

(
|∆+f(s)|+ |∆−f(s)|

)
.

We now consider the notion of variation over elementary sets introduced in [6].
By an elementary set we mean a finite union of bounded intervals. A collection of
intervals {Jk: k = 1, . . . , N} is called a minimal decomposition of an elementary set E
if E =

⋃N
k=1 Jk and the union Jk ∪ J` is not an interval whenever k 6= `. Note that the

minimal decomposition of an elementary set is uniquely determined. Moreover, the
intervals of such a decomposition are pairwise disjoint. Having this in mind, we define:

Definition 1.2. Given a function f : [a, b] → R and an elementary subset E of [a, b],
the variation of f over E is

var(f, E) =
N∑

k=1

var(f, Jk),

where {Jk: k = 1, . . . , N} is the minimal decomposition of E.

Out of curiosity, we list here some properties of the variation over elementary sets:

(i) For E2 ⊂ E1 elementary subsets of [a, b], we have var(f, E2) ≤ var(f, E1).

(ii) If f is of bounded variation on [a, b], then var(f, E) is finite for every elementary
subset E of [a, b].

(iii) If f is of bounded variation on [a, b], and E is an elementary subset of [a, b], then
for every ε > 0, there exists an elementary subset Hε of E such that Hε is closed
in [a, b] and

var(f, E)− ε < var(f, Hε).

(iv) If f is of bounded variation and continuous on [a, b], then for every E1 and E2

elementary subsets of [a, b] we have

var(f, E1 ∪ E2) ≤ var(f, E1) + var(f, E2).

In the particular case when E1 and E2 are nonoverlapping, the equality holds.
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The properties above indicate that the variation over elementary sets behaves some-
how like a measure. Next, we present an assertion which resembles the property of
continuity from above for measures. This property has been already established in [6]
in the case when f is a continuous function with bounded variation. For the reader’s
convenience, we repeat its statement here. To this end, we fix the following notation:
For each set A ⊂ [a, b], let

v(A) := sup{ var(f, E) : E elementary subset of A}.

Lemma 1.3. Let f be a function of bounded variation on [a, b] which is also continuous.
Assume that {An} is a sequence of subsets of [a, b] such that An+1 ⊂ An for n ∈ N,
and

⋂
n An 6= ∅. Then limn→∞ v(An) = 0.

The following theorem is a generalization of the lemma above and is an essential
tool in our approach to a constructive proof of the bounded convergence theorem.

Theorem 1.4. Let f be a function of bounded variation on [a, b]. Assume that {An}
is a sequence of subsets of [a, b] such that An+1 ⊂ An for n ∈ N, and

⋂
n An 6= ∅. Then

limn→∞ v(An) = 0.

Proof. First, let us write f = fC + fB, where fC and fB are the continuous part and
the jump part of the function f, respectively. For A ⊂ [a, b] let

vC(A) = sup{ var(fC, E) : E elementary subset of A},
vB(A) = sup{ var(fB, E) : E elementary subset of A}.

Clearly v(A) ≤ vC(A) + vB(A) for every A ⊂ [a, b]. In view of Lemma 1.3 it suffices to
prove that limn→∞ vB(An) = 0.

Let ε > 0 be given and denote by {sk} the set of discontinuity points of f in [a, b].
The absolute convergence of the series in (1.1) guarantees that there exists n0 ∈ N
satisfying

∞∑
k=n0+1

(
|∆+f(sk)|+ |∆−f(sk)|

)
<

ε

2
, (1.6)

For each n ∈ N, by the definition of vB(An), we can choose an elementary subset En

of An such that

vB(An)− ε

2
< var(fB, En). (1.7)

Note that by Lemma 1.1 we have

var(fB, En) ≤
∑

sk∈En

(
|∆+f(sk)|+ |∆−f(sk)|

)
≤

∑
sk∈An

(
|∆+f(sk)|+ |∆−f(sk)|

)
.
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Since
⋂

n An = ∅, there exists a number n1 ∈ N such that

{s1, . . . , sn0} ∩ An = ∅ for all n ≥ n1,

and as a consequence of (1.6) we obtain

var(fB, En) ≤
∑

sk∈An

(
|∆+f(sk)|+ |∆−f(sk)|

)
<

ε

2
for n ≥ n1.

This together with (1.7) implies that vB(An) < ε for every n ≥ n1, showing that the
equality limn→∞ vB(An) = 0 holds.

2 Bounded convergence theorem

Let g be a function of bounded variation on [a, b], and assume that {fn} and f sat-
isfy the assumptions of the bounded convergence theorem (Theorem A). In this case,
{|fn − f |} defines a sequence of nonnegative functions which is uniformly bounded

and converges pointwise to zero. Moreover, the existence of the integrals
∫ b

a
f dg and∫ b

a
fn dg implies that the integral

∫ b

a
|fn(x)−f(x)| d(varx

a g) exists for every n ∈ N, and

∣∣∣ ∫ b

a

fn(x) dg(x)−
∫ b

a

f(x) dg(x)
∣∣∣ ≤ ∫ b

a

|fn(x)− f(x)| d(varx
a g),

(see Theorem II.14.4 in [3] for details). Consequently, in order to obtain Theorem A it
is enough to prove the following assertion:

Theorem B. Let g be a nondecreasing function defined on [a, b]. Assume that {fn}
is a sequence of functions defined on [a, b] which satisfies the following conditions:

(i) limn→∞ fn(t) = 0 for t ∈ [a, b];

(ii) There exists M ≥ 0 such that 0 ≤ fn(t) ≤ M for all t ∈ [a, b] and n ∈ N;

(iii) The integral
∫ b

a
fn dg exist for each n ∈ N.

Then

lim
n→∞

∫ b

a

fn dg = 0. (2.1)

In order to prove Theorem B, we can benefit from the relation between the Riemann–
Stietjes integral and the Darboux–Stieltjes integral. The latter approach to Stielt-
jes integration is based on lower and upper sums. More precisely, for a pair of
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functions f, g : [a, b] → R, with f bounded and g nondecreasing, given a division
D = {α0, α1, . . . , αν(D)} of [a, b], we define

L(f, dg,D) =

ν(D)∑
j=1

mj(g(αj)− g(αj−1)), U(f, dg,D) =

ν(D)∑
j=1

Mj(g(αj)− g(αj−1)),

where mj = inft∈[αj−1,αj ] f(t) and Mj = supt∈[αj−1,αj ]
f(t), j = 1, . . . , ν(D). The lower

integral of f with respect to g is given by∫ b

a

f dg = sup
{

L(f, dg,D) : D is a division of [a, b]
}

,

while the upper integral of f with respect to g corresponds to∫ b

a

f dg = inf
{

U(f, dg,D) : D is a division of [a, b]
}

.

In the case when
∫ b

a
f dg =

∫ b

a
f dg is a finite number, the common value of both

integrals is called the Darboux–Stieltjes integral of f with respect to g.

As observed in Section II.13 in [3], for g nondecreasing and f bounded, the existence
of the Riemann–Stieltjes integral is equivalent to the existence of the Darboux–Stieltjes
integral, and ∫ b

a

f dg =

∫ b

a

f dg =

∫ b

a

f dg. (2.2)

We are now ready to prove Theorem B.

Proof of Theorem B. Without loss of generality, assume that g is nonconstant
(otherwise the statement is obvious), and denote γ = g(b)−g(a). Given ε > 0, for each
n ∈ N define

An =
{
t ∈ [a, b] : fm(t) ≥ ε

3 γ
for some m ≥ n

}
.

It is not difficult to see that An+1 ⊂ An for n ∈ N and
⋂

n An = ∅. Let

v(An) = sup{ var(g, E) : E elementary subset of An}, n ∈ N,

(with v(An) = 0 in case An = ∅). From Theorem 1.4 we know that limn→∞ v(An) = 0,
thus there exists nε ∈ N such that v(An) < ε

3 M
for n ≥ nε, and consequently

var(g, E) <
ε

3 M
for n ≥ nε and E elementary subset of An. (2.3)
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Now, fix an arbitrary n ≥ nε. By (2.2) we have
∫ b

a
fn dg =

∫ b

a
fn dg. Hence, we can

choose a division D = {α0, α1, . . . , αν(D)} of [a, b] such that

∫ b

a

fn dg − ε

3
< L(fn, dg,D) =

ν(D)∑
j=1

mj (g(αj)− g(αj−1)), (2.4)

where mj = inft∈[αj−1,αj ] fn(t). Consider the sets

Λ =
{
j ∈ {1, . . . , ν(D)} : mj ≥

ε

3 γ

}
, E =

⋃
j∈Λ

[αj−1, αj].

Clearly E is an elementary set (possibly empty) with E ⊂ An; and (2.3) yields∑
j∈Λ

(g(αj)− g(αj−1)) = var(g, E) <
ε

3 M
. (2.5)

Noting that mj < ε
3 γ

for j 6∈ Λ, and using (2.4)-(2.5) we obtain∫ b

a

fn dg <
ε

3
+

∑
j∈Λ

mj (g(αj)− g(αj−1)) +
∑
j 6∈Λ

mj (g(αj)− g(αj−1))

<
ε

3
+ M

∑
j∈Λ

(g(αj)− g(αj−1)) +
ε

3 γ

∑
j 6∈Λ

(g(αj)− g(αj−1))

≤ 2 ε

3
+

ε

3 γ
(g(b)− g(a)) < ε.

In summary, ∫ b

a

fn dg < ε for every n ≥ nε,

which shows that (2.1) holds and concludes the proof. �
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