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Abstract

We investigate ideal versions of Scheepers’ S1(Γ,Γ)-space, Arkhangel’skĭı’s α4-space and Scheepers’ mono-
tonic sequence selection property, i.e., S1(I-Γ,J -Γ)-space, S1(I-Γ0,J -Γ0)-space and S1(I-Γm

0 ,J -Γ0)-space,
respectively. We show that cardinal invariant λ(I,J ) introduced in [42] is their common critical cardinality
and we study this combinatorial characteristic in its own. For instance, we show that

min{cov∗(I), b} ≤ λ(I,J ) ≤ bJ

and consequently if cov∗(I) ≥ b and J has the Baire property then λ(I,J ) = b. Moreover, we show that
control sequence 〈2−n : n ∈ ω〉 in the definition of (I, sJ )wQN-space in [6] is not essential.
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1. Introduction

All topological spaces are assumed to be infinite and Hausdorff. By a function, if not stated otherwise,
we mean real-valued function. Basic set-theoretical and topological terminology follows mainly [5] and [17].
The paper [27] is a long survey on ideals. The terminology will be recalled later.

L. Bukovský, P. Das and J.Š. [6] introduced an ideal version of Arkhangel’skĭı’s α4-space [1], denoted
S1(I-Γ0,J -Γ0) in this paper and (I,J -α4) in [6]. Let X be a topological space, I, J being ideals on ω.
Cp(X), the space of all continuous functions on X, has the property S1(I-Γ0,J -Γ0) if:

for any sequence 〈〈fn,m : m ∈ ω〉 : n ∈ ω〉 of sequences of continuous real-valued functions such that

fn,m
I−→ 0 for each n, there exists a sequence 〈mn : n ∈ ω〉 such that fn,mn

J−→ 0.

If X is a γ-set then Cp(X) has S1(I-Γ0,J -Γ0) by [6]. Considering the inclusion of the ideal Fin in every
ideal I,J and several other facts discussed later, one obtains the following basic diagram of relations
for Cp(X).
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Fréchet

S1(I-Γ0,Γ0) S1(I-Γ0,J -Γ0)

S1(Γ0,Γ0) S1(Γ0,J -Γ0) S1(Γ0,Ω0) IndZ(X) = 0

Diagram 1: Selection principles for functions.

D. Fremlin and M. Scheepers [23, 38, 39] characterized wQN-space by this property, i.e., any topological
space X is a wQN-space if and only if Cp(X) has a property S1(Γ0,Γ0). Moreover, L. Bukovský and
J. Haleš [8] found its covering characterization. In [6], Theorems 4.1 and 6.1 are ideal versions of Fremlin–
Scheepers’ and Bukovský–Haleš’ characterizations. Let us summarize the results here, the applied notation
will be explained later.3

Theorem 1.1 (L. Bukovský–P. Das–J.Š.). If X is a normal topological space then the following are
equivalent. Moreover, the equivalence (a) ≡ (b) holds for arbitrary topological space X.

(a) Cp(X) has
[ I-Γ0

sJQN0

]
.

(b) Cp(X) is an S1(I-Γ0,J -Γ0)-space.

(c) X is an S1(I-Γsh,J -Γ)-space.

The main objective of the present paper is to investigate property S1(I-Γ0,J -Γ0) as well as property
S1(I-Γm

0 ,J -Γ0) which we introduce as ideal version of Scheepers’ monotonic sequence selection property [37].
Moreover, we shall investigate covering property S1(I-Γ,J -Γ) naturally connected to both of them.

We shall use the following schemas of selection principles. Some of them were introduced in [36]. Let P
and R be families of sets. Then

• X is an S1(P,R)-space if for a sequence 〈Un : n ∈ ω〉 of elements of P we can select a set Un ∈ Un
for each n ∈ ω such that 〈Un : n ∈ ω〉 is a member of R.

• X has
(P
R
)

if for any P ∈ P we can select a set R ∈ R such that R ⊆ P .

• X has
[P
R
]

or X is a [P,R] -space if for every 〈pn : n ∈ ω〉 ∈ P there is 〈nm : m ∈ ω〉 such that
〈pnm : m ∈ ω〉 ∈ R. We shall use this notation also in cases when P and R denote convergences of
sequences. Namely, if P and R denote convergences then X is a [Pp,Rp]-space if for every 〈pn : n ∈ ω〉
such that pn

P−→ p there is 〈nm : m ∈ ω〉 such that pnm
R−→ p.

The last schema is usually used in its special cases and different notation is applied in the literature.
To provide quick adaptation to our schema we prepared a table of standard and our corresponding notation
through [P,R]-schema in preliminary section.

The paper is divided into 10 sections. Preliminary section contains basic notation on ideals, conver-
gence, families of functions and selection principles. Third section discusses the definition of ideal version
of monotonic sequence selection property. One of main results of the paper, the one about control sequence
〈2−n : n ∈ ω〉 in the definition of (I, sJ )wQN-space in [6] is presented in Section 4. In the follow up section
we turn our attention to covers and associated selection principles. We recall basic terminology on covers
only there and present connections of ideal selection principles to standard ones. Preservation properties
with respect to standard ideals orderings are presented in Section 6. The main discussion about coverings
and functions is completed in Section 7 which contains two propositions resembling Theorem 1.1, but this
time one devoted to S1(Γm

0 ,J -Γ0) and the other one to S1(I-Γ,J -Γ). The rest of the paper is devoted

3We shall often interchange all three notions throughout the paper without any comment.
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to critical cardinality of investigated principles. We begin with purely combinatorial properties of cardinal
invariant λ(I,J ) in Section 8 and continue with connections of this invariant to our selection principles.
The last section is devoted to the summary of relations of investigated notions and associated consistency
analysis, which grows up from critical cardinality description. We provide there a solution to Problem 4.2
in [6].

2. Preliminaries

We attract a special attention of a reader to the fact that we consider only countable covers. Such
restriction is sometimes necessary since we deal with ideals on countable set.

By an ideal on M we understand a family I ⊆ P(M) that is hereditary, i.e., B ∈ I for any B ⊂ A ∈ I,
closed under finite unions, contains all finite subsets of M and M /∈ I. If not stated explicitly, ideal is
an ideal on ω. Calligraphic I, J , K and S are used exclusively to denote ideals. For A ⊆ P(M) we denote

Ad = {A ⊆M ; M \A ∈ A}.

F ⊆ P(M) is a filter if Fd is an ideal. A maximal filter U ⊆ P(M) is called an ultrafilter. For an ideal
K ⊆ P(M) we denote K+ = P(M) \ K. One can see that B ∈ K+ if and only if M \B /∈ Kd.

Let us recall that ideal I is tall if for any B ∈ [ω]ω, there exists an A ∈ I such that |A ∩B| = ω. A set
B is said to be a pseudounion of the family A if ω \ B ∈ [ω]ω and A ⊆∗ B for any A ∈ A. We can also
use the dual notion of a pseudounion. An infinite set B ⊆ ω is a pseudointersection of family A ⊂ [ω]ω

if B ⊆∗ A for any A ∈ A. Directly from previous definitions it is clear that I is not tall if and only if I has
a pseudounion if and only if Id has a pseudointersection and if and only if I ≤K Fin.

A sequence 〈xn : n ∈ ω〉 of elements of a topological space X is I-convergent to x ∈ X if the set

{n ∈ ω : xn /∈ U} ∈ I for each neighborhood U of x. We write xn
I−→ x. A sequence 〈fn : n ∈ ω〉

of functions on X I-converges to a function f on X (written fn
I−→ f), if fn(x)

I−→ f(x) for every x ∈
X. According to [14], if there exists a sequence of positive reals 〈εn : n ∈ ω〉 such that εn

I−→ 0 and
{n ∈ ω : |fn(x)− f(x)| ≥ εn} ∈ I for any x ∈ X, then a sequence 〈fn : n ∈ ω〉 is called I-quasi-normally

convergent to f on X, denoted fn
IQN−−−→ f . A sequence 〈εn : n ∈ ω〉 is called the control sequence. We

say that a sequence 〈fn : n ∈ ω〉 is called strongly I-quasi-normally convergent to f on X if fn
IQN−−−→ f

with control sequence 〈2−n : n ∈ ω〉, and denoted fn
sIQN−−−→ f .

We are interested mainly in continuous and positive upper semicontinuous functions4 on X. The set
of all such functions on X is denoted Cp(X) and USCp(X), respectively, and is equipped with inherited
topology from Tychonoff product topology of XR, i.e., topology of pointwise convergence. Similarly to
M. Scheepers [38] we define

I-Γx(X) = {A ∈ ω(X \ {x}) : A is I-convergent to x} .

Ωx(X) =
{
A ∈ ω(X \ {x}) : x ∈ {y : (∃n ∈ ω) A(n) = y}

}
.

This paper is interested mainly in I-Γx(Cp(X)), thus we omit Cp(X) from notation. Let 0 denote constant
zero-value function on X. Due to homogeneity of Cp(X) we consider only I-Γ0. We use Γ0 instead of
Fin-Γ0. Hence, we again obtain the definition of S1(I-Γ0,J -Γ0) defined explicitly in the Introduction.
Finally, a useful observation is that if 〈fn : n ∈ ω〉 ∈ I-Γ0 then 〈fn : n ∈ ω〉 ∈ Ω0.

One can meet different notation in the literature:

S1(I-Γ0,J -Γ0) = (I,J -α4) [6] S1(I-Γ0, I-Γ0) = I-SSP [13]

fn
JQN−−−→ f = fn

(J ,J )-e−−−−−→ f [20] S1(Γm
0 , I-Γ0) = I-MSSP [13]

4Function f : X → R is upper semicontinuous if for every real a the set {x ∈ X : f(x) < a} is open.
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Schema
[P
R
]

also covers many special cases used in literature, namely

Cp(X) has
[P0

R0

]
⇔ X is a w(P,R)-space [32]

Cp(X) has
[ I-Γ0

J -QN0

]
⇔ X is an (I,J )wQN-space [6]

Cp(X) has
[ I-Γ0

sJQN0

]
⇔ X is an (I, sJ )wQN-space [6]

Cp(X) has
[

Γ0

IQN0

]
⇔ X is an IwQN-space [14, 6]

Cp(X) has
[

Γ0

QN0

]
⇔ X is a wQN-space [9]

USCp(X) has
[

Γ0

QN0

]
⇔ X is a wQN∗-space [4]

There is no restriction on sequence 〈nm : m ∈ ω〉 in the definition of schema
[P
R
]
, formally it may be

constant. However, in many special cases we can ask additional properties. For example, in the definition
of [P0,Γ0] -space Cp(X) we may ask 〈nm : m ∈ ω〉 to be increasing or in the definition of [P0, I-Γ0] -space
Cp(X) we may ask 〈nm : m ∈ ω〉 to be I-diverging to +∞. Similarly for [P, I-Γ] -space.

Finally, if F ⊆ P(ω) is a filter then we shall write simple F instead of Fd in all previously recalled

and following notation whenever it does not lead to confusion. E.g., we shall write fn
FQN−−−→ f instead of

fn
FdQN−−−−→ f .

3. Monotone convergence

In the present section we are interested in a monotone version of property S1(I-Γ0,J -Γ0), inspired
by the monotonic sequence selection property introduced by M. Scheepers [37]. We say that a sequence
〈fn : n ∈ ω〉 is monotone sequence if for any n ∈ ω and x ∈ X we have fn(x) ≥ fn+1(x). We set

Γm0 = {A ∈ ω(Cp(X) \ {0}) : A is monotone and convergent to 0} .

S1(Γm
0 ,Fin-Γ0), denoted S1(Γm

0 ,Γ0) in the following, is the monotonic sequence selection property, shortly
MSSP. Thus

S1(Γm
0 ,Γ0)→ S1(Γm

0 ,J -Γ0).

Property S1(Γm
0 ,J -Γ0) was considered by D. Chandra [13] under notation J -MSSP. Since any monotone

sequence on a compact topological space convergent to 0 is uniformly convergent, one can easily see by
additivity properties of MSSP that any σ-compact space has S1(Γm

0 ,Γ0) and thus S1(Γm
0 ,J -Γ0).

We try to define the ideal modification of monotone sequence. We say that a sequence 〈fn : n ∈ ω〉
is I-monotone sequence if {n : fn � fm} ∈ I for every m ∈ ω. Members of a sequence which is
I-converging to 0 and I-monotone are non-negative functions. We say almost monotone sequence instead
of Fin-monotone sequence. Almost monotone sequences are bounded from above by monotone ones, as
Lemma 3.1 states.

Lemma 3.1. Let X be a set, E being a family of functions closed under pointwise maximum. For an almost
monotone sequence 〈fn : n ∈ ω〉 such that fn → 0 and fn ∈ E there is a monotone sequence 〈gn : n ∈ ω〉
such that gn → 0, gn ∈ E and fn ≤ gn for any n ∈ ω.

Proof. Let 〈fn : n ∈ ω〉 be an almost monotone sequence. We define sets An and sequence 〈nk : k ∈ ω〉
such that n0 = 0 and A0 = {m : fm � f0} ∪ {0} and then for k ≥ 1 we take nk = maxAk−1 + 1

Ak = {m : fm � fnk , m > nk} ∪ {nk}.

Now we can define functions gn such that for any k ∈ ω and for each i ∈ nk+1 \ nk,

gi(x) = max {fm(x) : m ∈ nk+1 \ nk} .
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Sequence 〈gn : n ∈ ω〉 is monotone since gn ≤ fnk−1
≤ gm for m ∈ nk+1 \ nk, n ∈ nk \ nk−1 and k > 0.

Moreover, it is also convergent to zero which can be seen by the first part of the latter couple of inequalities. �

For a definition of two parameter property S1(I-Γm
0 ,J -Γ0) we propose:

I-Γm0 = {A ∈ ω(Cp(X) \ {0}) : A is I-monotone and I-convergent to 0} .

Thus we have
S1(I-Γ0,J -Γ0)→ S1(I-Γm

0 ,J -Γ0) (3.1)

and by [6] we obtain that if X is a γ-set then Cp(X) has S1(I-Γm
0 ,J -Γ0).

Due to following lemma we shall use S1(Γm
0 ,J -Γ0) instead of S1(Fin-Γm

0 ,J -Γ0). We shall use similar
convention for [Γm

0 , sJQN0]-space, an ideal version of [Γm
0 ,QN0] -space introduced and investigated in [10].

Lemma 3.2. Let X be a topological space.

(1) Cp(X) has the property S1(Γm
0 ,J -Γ0) if and only if Cp(X) has the property S1(Fin-Γm

0 ,J -Γ0).

(2) Cp(X) has the property
[

Γm
0

JQN0

]
if and only if Cp(X) has the property

[
Fin-Γm

0
JQN0

]
.

(3) Cp(X) has the property
[

Γm
0

sJQN0

]
if and only if Cp(X) has the property

[
Fin-Γm

0
sJQN0

]
.

Proof. We prove only non-trivial implication of part (1). Parts (2) and (3) are shown similarly.
Let us assume that Cp(X) has the property S1(Fin-Γm

0 ,J -Γ0). Consider a sequence of almost monotone
sequences 〈〈fn,m : m ∈ ω〉 : n ∈ ω〉 and fn,m −→ 0 for all n ∈ ω. By Lemma 3.1 there are monotone
sequences 〈gn,m : n ∈ ω〉 such that fn,m ≤ gn,m for all n,m ∈ ω and gn,m −→ 0.

Since Cp(X) has the property S1(Γm
0 ,J -Γ0) there is sequence 〈mn : n ∈ ω〉 such that gn,mn

J−→ 0. Since

fn,mn ≤ gn,mn for all n ∈ ω we obtain fn,mn
J−→ 0, so Cp(X) has the property S1(Fin-Γm

0 ,J -Γ0). �

We shall show in Corollary 6.3 that property S1(Γm
0 ,J -Γ0) is equivalent to S1(Γm

0 ,Γ0) for a certain class
of ideals.

4. Control sequences

By [6], the control sequence 〈2−n : n ∈ ω〉 in the definition of [I-Γ0, sJQN0]-space may be replaced
by any sequence 〈εn : n ∈ ω〉 of positive reals such that

∑∞
n=0 εn < ∞. One can easily deduce that in

the definition of [Γ0,QN0] -space an arbitrary control sequence (converging to zero) may be asked. More
generally, such argumentation leads to

Cp(X) has
[I-Γ0

QN0

]
if and only if Cp(X) has

[I-Γ0

sQN0

]
.

Although the same is true for [I-Γ0, sJQN0]-space, we devote most of this section to the proof of this fact.
Moreover, if J is a P-ideal then the control sequence can be even J -convergent to zero, see the proof of
Corollary 3.5 in [20]. We begin with a crucial lemma.

Firstly, we need the following property of a family E of functions on X:5

E is closed under taking normally convergent series of functions from E
and (4.1)

if f ∈ E , c1, c2 > 0 then min{c1, |c2f |} ∈ E .

By E we have in mind mainly families of all continuous, Borel, non-negative upper or lower semicontinuous
functions. All these families are closed under uniformly convergent series.

5A series
∑∞

n=0 fn is normally convergent on X if the series
∑∞

n=0 sup {|fn(x)| : x ∈ X} is convergent. Normally convergent
series is uniformly convergent.
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Lemma 4.1. Let 〈εn : n ∈ ω〉, 〈δn : n ∈ ω〉 be sequences of positive reals in (0, 1] such that εn −→ 0,
〈〈fn,m : m ∈ ω〉 : n ∈ ω〉 being a sequence of sequences of functions on X. Then there is a sequence
〈gm : m ∈ ω〉 of functions with values in [0, 2] such that the following holds.

(1) If fn,m ∈ E for all n ∈ ω then gm ∈ E, assuming E satisfies (4.1).

(2) If fn,m
I−→ 0 for each n ∈ ω then gm

I−→ 0.

(3) If 〈fn,m : m ∈ ω〉 ∈ Γm0 for each n ∈ ω then 〈gm : m ∈ ω〉 ∈ Γm0 .

(4) If kn = max
{
i : 2−i ≥ εn

}
then for any x ∈ X and m ∈ ω we have

if gm(x) < εn then |fkn,m(x)| < δn
2kn
≤ δn. (4.2)

Proof. Let 〈〈fn,m : m ∈ ω〉 : n ∈ ω〉 be a sequence of sequences of functions on X. One can easily
see that kn is well-defined and moreover the set {j : kj = i} is finite. Let

θi =

{
min {δj : kj = i} (∃n ∈ ω) kn = i

1 otherwise.

Now we define functions gm : X → R by

gm(x) =
∞∑
i=0

min

{
2−i,

∣∣∣∣ 1

θi
fi,m(x)

∣∣∣∣}
for all x ∈ X.

(1) follows directly by the assumption (4.1) on family E .

(2) Let us suppose that fn,m
I−→ 0 for each n ∈ ω. Let x ∈ X and ε > 0. Then there exists n0 such that∑

n≥n0
2−n < ε

2 . If n < n0 the set Bn =
{
m : | 1

θn
fn,m(x)| ≥ ε

2n0

}
∈ I. In addition, for m /∈

⋃
n<n0

Bn we

have
gm(x) <

∑
n<n0

ε

2n0
+
∑
n≥n0

2−n < ε

Thus gm
I−→ 0.

(3) If fi,m ≥ fi,m+1 ≥ 0 then min{2−i, |θ−1
i fi,m(x)|} ≥ min{2−i, |θ−1

i fi,m+1(x)|} and after summing up
through all i’s we obtain gm ≥ gm+1.

(4) Let x ∈ X and m ∈ ω be such that gm(x) < εn. Thus gm(x) < 2−kn and for each j ∈ ω we get:

2−j < 2−kn or

∣∣∣∣ 1

θj
fj,m(x)

∣∣∣∣ < 2−kn .

However, especially for j = kn we have | 1
θkn

fkn,m(x)| < 2−kn . Thus |fkn,m(x)| < δn
2kn

. �

We are now ready to prove the main theorem of this section.

Theorem 4.2. Let X be a topological space, E being a family of functions satisfying (4.1).

(1) The following are equivalent.

(a) E has
[ I-Γ0

sJQN0

]
.

(b) There is a sequence 〈εn : n ∈ ω〉 of positive reals such that εn → 0 and for any sequence
〈fn : n ∈ ω〉 of functions from E I-converging to zero there exists a sequence 〈mn : n ∈ ω〉 such

that fmn
JQN−−−→ 0 with control sequence 〈εn : n ∈ ω〉.

(c) For every sequence 〈εn : n ∈ ω〉 of positive reals such that εn → 0 and for any sequence
〈fn : n ∈ ω〉 of functions from E I-converging to zero there exists a sequence 〈mn : n ∈ ω〉 such

that fmn
JQN−−−→ 0 with control sequence 〈εn : n ∈ ω〉.

6



(2) The following are equivalent.

(a) Cp(X) has
[

Γm
0

sJQN0

]
.

(b) There is a sequence 〈εn : n ∈ ω〉 of positive reals such that εn → 0 and for any monotone sequence
〈fn : n ∈ ω〉 of continuous functions converging to zero there exists a sequence 〈mn : n ∈ ω〉
such that fmn

JQN−−−→ 0 with control sequence 〈εn : n ∈ ω〉.
(c) For every sequence 〈εn : n ∈ ω〉 of positive reals such that εn → 0 and for any monotone sequence
〈fn : n ∈ ω〉 of continuous functions converging to zero there exists a sequence 〈mn : n ∈ ω〉
such that fmn

JQN−−−→ 0 with control sequence 〈εn : n ∈ ω〉.

Proof. Let us consider part (1). We shall show (b) → (c). The implications (a) → (b), (c) → (a) are
trivial. The proof of monotone version (2) is similar.

Let 〈εn : n ∈ ω〉 be a control sequence from part (b) and 〈δn : n ∈ ω〉 be a sequence of positive
numbers such that δn → 0. Moreover, we may assume that εn ≤ 1. Let 〈fm : m ∈ ω〉 be a sequence of

functions from E such that fm
I−→ 0. Set 〈kn : n ∈ ω〉 as in Lemma 4.1 and fn,m = fm for all n ∈ ω. Thus

by Lemma 4.1 there exists sequence of functions 〈gm : m ∈ ω〉 from E on X such that gm
I−→ 0 and property

(4.2) holds.
Since E is an [I-Γ0, sJQN0]-space with control sequence 〈εn : n ∈ ω〉 there exists sequence 〈mn : n ∈ ω〉

such that {n : gmn(x) ≥ εn} ∈ J .
Let x ∈ X. Consider any n ∈ ω such that gmn(x) < εn. By Lemma 4.1 we obtain |fmn(x)| =

|fkn,mn(x)| < δn. Thus {n : |fmn(x)| ≥ δn} ⊆ {n : gmn(x) ≥ εn} ∈ J . �

If Cp(X) is an [I-Γ0, sJQN0] -space then for any sequence 〈fn : n ∈ ω〉 of continuous functions on X

I-converging to zero there exists a sequence 〈mn : n ∈ ω〉 such that fmn
(J ,Fin)-e−−−−−−→ 0 in the sense of R. Filipów

and M. Staniszewski [20].
When we consider only discrete space D then Cp(D) is the family of all functions on D. In this sense,

the results in [21, 41] can be viewed as closely related to the investigation of [P,R] -space. Namely, R. Filipów
and M. Staniszewski [21] investigate an [I-Γ0, (I,J )-e] -space while M. Staniszewski [41] and M. Repický [32]
are interested in a more general situation of an [I-Γ0, (J ,K)-e] -space. In fact, an [I-Γ0, (J ,Fin)-e] -space
is the most interesting case for this paper since

if Cp(X) is an [I-Γ0, sJQN0]-space then Cp(X) is an [I-Γ0, (J ,Fin)-e] -space.

However, we do not know whether these notions are distinct. Let us consider a sequence 〈fn : n ∈ ω〉 of
continuous functions I-converging to 0. By Theorem 4.2, if we prescribe any converging control sequence

and Cp(X) is an [I-Γ0, sJQN0]-space then there is 〈nm : m ∈ ω〉 such that fnm
JQN−−−→ 0 with the prescribed

control. In contrary, if Cp(X) is an [I-Γ0, (J ,Fin)-e] -space then there is a control and 〈nm : m ∈ ω〉 such

that fnm
JQN−−−→ 0 with such control.

5. Coverings

Let us recall that we deal only with countable covers. Let X be a topological space. A sequence
〈Un : n ∈ ω〉 of subsets of X is called an I-γ-cover, if for every n, Un 6= X and for every x ∈ X, the set
{n ∈ ω : x /∈ Un} ∈ I, see [15]. A sequence 〈Un : n ∈ ω〉 of subsets of X is called an ω-cover, if for every
n, Un 6= X and for every finite F ⊆ X there is n such that F ⊆ Un. The symbol I-Γ denotes the family
of all open I-γ-covers of X. As usually, a γ-cover is a Fin-γ-cover and Γ = Fin-Γ.6 Ω is the family of all
open ω-covers.

6A γ-cover is standardly a family, see [6].
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A cover 〈Vn : n ∈ ω〉 is called a shrinking of the cover 〈Un : n ∈ ω〉 if Vn ⊆ Un for all n ∈ ω. Then
an I-γ-cover 〈Un : n ∈ ω〉 is shrinkable if there exists a closed I-γ-cover that is a shrinking of 〈Un : n ∈ ω〉.
The family of all open shrinkable I-γ-covers is denoted by I-Γsh.

As a corollary of Theorem 1.1 from Introduction, L. Bukovský, P. Das and J. Š. obtained the ideal version
of Scheepers’ result [39].

S1(I-Γ,J -Γ)→ S1(I-Γsh,J -Γ)⇔ S1(I-Γ0,J -Γ0)→ S1(I-Γm
0 ,J -Γ0). (5.1)

Note that by [6], any γ-set is an S1(I-Γ,J -Γ)-space. Moreover, we add a simple observation. It follows
by the fact that any γ-cover is an I-γ-cover and any J -γ-cover is an ω-cover. Similarly, set of all members
of J -convergent sequence with limit 0 contains 0 in a closure.

Observation 5.1.

(1) If X is an S1(Γ,J -Γ)-space then X is an S1(Γ,Ω)-space.

(2) If Cp(X) is an S1(Γ0,J -Γ0)-space then Cp(X) is an S1(Γ0,Ω0)-space.

The notion of an S1(Γ0,Ω0)-space was introduced by M. Scheepers [37] as the weak sequence selection
property. M. Sakai [33] showed that any normal topological space X such that Cp(X) is an S1(Γ0,Ω0)-space
is zero-dimensional.

Thus the relations of an S1(I-Γ,J -Γ)-space, its special cases for I = Fin or J = Fin and classical
covering properties S1(Ω,Γ), S1(Γ,Ω) are as follows.

S1(Ω,Γ)

S1(I-Γ,Γ) S1(I-Γ,J -Γ)

S1(Γ,Γ) S1(Γ,J -Γ) S1(Γ,Ω)

Diagram 2: Covering selection principles.

Proposition 5.2. Let X be a topological space. Then

(1) X is an S1(I-Γ,Γ)-space if and only if X has
[I-Γ

Γ

]
and S1(Γ,Γ).

(2) Cp(X) is an S1(I-Γ0,Γ0)-space if and only if Cp(X) has
[I-Γ0

Γ0

]
and S1(Γ0,Γ0).

Proof. We show only the equivalence (1), the equivalence (2) is proved similarly. Moreover, the implication
S1(I-Γ,Γ)→ S1(Γ,Γ) is trivial.

Let U be an I-γ-cover, by S1(I-Γ,Γ) for sequence 〈U : n ∈ ω〉 we obtain a γ-cover 〈Un : n ∈ ω〉 such
that Un ∈ U . Thus the implication S1(I-Γ,Γ)→

[I-Γ
Γ

]
holds.

To prove the reversed implication let 〈Un : n ∈ ω〉 be a sequence of I-γ-covers of X. Since X is
an [I-Γ,Γ] -space we can choose γ-cover 〈Un,m : m ∈ ω〉 for each n such that Un,m ∈ Un. By S1(Γ,Γ) there
is a γ-cover 〈Un,mn : n ∈ ω〉. �

The relation between an S1(Ω,Γ)-space, S1(I-Γ,Γ)-space and S1(I-Γ0,Γ0)-space is much deeper.

Lemma 5.3. (1) For any countable ω-cover U of X and its bijective enumeration 〈Un : n ∈ ω〉 there is
an ideal I such that 〈Un : n ∈ ω〉 is an I-γ-cover.

(2) For any countable family of functions E on X such that 0 ∈ E \ {0} and its bijective enumeration

〈fn : n ∈ ω〉 there is an ideal I such that fn
I−→ 0.
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Proof. (1) Let U be a countable ω-cover and 〈Un : n ∈ ω〉 its bijective enumeration. We set
a(F ) = {n ∈ ω : F ⊆ Un} for every F ∈ [X]<ω. Since U is an ω-cover, each a(F ) is infinite. Moreover,
a(F1) ∩ a(F2) = a(F1 ∪ F2) ∈ [ω]ω. Thus the family {a(F ) : F ∈ [X]<ω} has finite intersection property
and there is a filter F ⊇ {a(F ) : F ∈ [X]<ω}. Finally, 〈Un : n ∈ ω〉 is an F-γ-cover7.

(2) Consider a sequence 〈fn : n ∈ ω〉 of functions from the statement (2). We denote an(F ) =
{m : 2−m + |fm(x)| < 2−n for each x ∈ F} for every F ∈ [X]<ω. Since 0 is in the closure of the set
{2−n + |fn| : n ∈ ω} we have an(F ) ∈ [ω]ω for each n ∈ ω and each F ∈ [X]<ω. Furthermore, an(F1) ∩
ak(F2) ⊇ an(F1)∩an(F2) = an(F1∪F2) for any n ≥ k and any F1, F2 ∈ [X]<ω. Thus similarly as in previous

case there is a filter F ⊇ {an(F ) : F ∈ [X]<ω, n ∈ ω} and fn
F−→ 0.8 �

We shall use the fact that

X has
(

Ω
Γ

)
⇔ X has

[
Ω
Γ

]
and Cp(X) has

(
Ω0

Γ0

)
⇔ Cp(X) has

[
Ω0

Γ0

]
.

Let us recall a folklore result by J. Gerlits and Zs. Nagy [25] for a Tychonoff space X:9

X has
(

Ω
Γ

)
⇔ X has S1(Ω,Γ) ⇔ Cp(X) has

(
Ω0

Γ0

)
⇔ Cp(X) has S1(Ω0,Γ0).

Theorem 5.4. Let X be a Tychonoff topological space. The following statements are equivalent.10

(a) X is an S1(Ω,Γ)-space.
(b) X is an S1(I-Γ,Γ)-space for every ideal I.
(c) Cp(X) is an S1(I-Γ0,Γ0)-space for every ideal I.

(d) X has
[I-Γ

Γ

]
for every ideal I.

(e) Cp(X) has
[I-Γ0

Γ0

]
for every ideal I.

Proof. We prove only (d) → (a) and (e) → (a). Implications (a) → (b) and (b) → (c) are proven in [6].
Implications (b)→ (d) and (c)→ (e) were shown in Proposition 5.2.

To prove implication (d) → (a), let 〈Un : n ∈ ω〉 be an ω-cover of X. By part (1) of Lemma 5.3 there
is an ideal I such that 〈Un : n ∈ ω〉 is also I-γ-cover of X. Since X is an [I-Γ,Γ] -space there exists
〈nm : m ∈ ω〉 such that 〈Unm : m ∈ ω〉 is a γ-cover of X.

Proof of the implication (e) → (a) is based on Lemma 5.3 as well. Moreover, it is enough to show
that Cp(X) is an [Ω0,Γ0] -space instead of statement (a). Let 〈fn : n ∈ ω〉 be a sequence of functions

(enumerated bijectively) such that 〈fn : n ∈ ω〉 ∈ Ω0. By Lemma 5.3 there is ideal I such that fn
I−→ 0.

Since Cp(X) is an [I-Γ0,Γ0] -space there exists a sequence 〈nm : m ∈ ω〉 such that fnm −→ 0. �

6. Ideal orderings

The purpose of this section is to describe preservation of investigated properties with respect to standard
ideal orderings, see Proposition 6.2. Let us begin with recalling the orderings. Let M1,M2 be infinite sets,
K1 ⊆ P(M1), K2 ⊆ P(M2). If ϕ : M2 →M1, the image of K2 is the family

ϕ→(K2) =
{
A ⊆M1 : ϕ−1(A) ∈ K2

}
.

If K2 is an ideal on M2 then ϕ→(K2) is closed under subsets and finite unions and M1 6∈ ϕ→(K2). If ϕ is
in addition finite-to-one then ϕ→(K2) is the ideal. For ϕ : M2 → M1 we write K1 ≤ϕ K2 if K1 ⊆ ϕ→(K2),
i.e., ϕ−1(I) ∈ K2 for any I ∈ K1. Then K1 ≤K K2 if there is a function ϕ : M2 →M1 such that K1 ≤ϕ K2,
K1 ≤KB K2 if there is a finite-to-one function ϕ : M2 →M1 such that K1 ≤ϕ K2.

7In terms of ideals, Fd-γ-cover.

8In terms of ideals, fn
Fd

−−→ 0.
9J. Gerlits and Zs. Nagy [25] considered arbitrary covers and families of functions, so they use notions of a γ-set and notions

of Fréchet and strictly Fréchet space.
10The equivalence (a) ≡ (b) holds for arbitrary topological space.
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Lemma 6.1. Let I1, I2 be ideals on ω such that I1 ≤ϕ I2, 〈fn : n ∈ ω〉 being a sequence of functions.

(1) If 〈fn : n ∈ ω〉 is I1-convergent then 〈fϕ(n) : n ∈ ω〉 is I2-convergent.
(2) If 〈fn : n ∈ ω〉 is I1-quasi-normally convergent then 〈fϕ(n) : n ∈ ω〉 is I2-quasi-normally convergent.
(3) If 〈fn : n ∈ ω〉 is I1-monotone sequence then 〈fϕ(n) : n ∈ ω〉 is I2-monotone sequence.
(4) If 〈Un : n ∈ ω〉 is I1-γ-cover then 〈Uϕ(n) : n ∈ ω〉 is I2-γ-cover.

Proof. (1) Let 〈fn : n ∈ ω〉 be an I1-convergent sequence of functions on X. We can assume that

fn
I1−→ 0 and all functions are non-negative. Now we consider a sequence 〈fϕ(n) : n ∈ ω〉. For ε > 0 and

x ∈ X the set {n : fn(x) ≥ ε} ∈ I1. Therefore by definition of ϕ we have ϕ−1({n : fn(x) ≥ ε}) ∈ I2. On
the other hand, ϕ−1({n : fn(x) ≥ ε}) =

{
l : fϕ(l)(x) ≥ ε

}
and therefore

{
l : fϕ(l)(x) ≥ ε

}
∈ I2. Hence we

have fϕ(n)
I2−→ 0.

(2) We follow previous part of proof. We consider an I1-quasi-normally convergent sequence 〈fn : n ∈ ω〉
of functions on X with control sequence 〈εn : n ∈ ω〉 I1-converging to 0, i.e., {n : fn(x) ≥ εn} ∈ I1 and
{n : εn ≥ ε} ∈ I1. Then by definition of ϕ we have

{
n : fϕ(n)(x) ≥ εϕ(n)

}
= ϕ−1({n : fn(x) ≥ εn}) ∈ I2

and similarly for 〈εn : n ∈ ω〉. Hence, fϕ(n)
I2QN−−−−→ 0 with control sequence 〈εϕ(n) : n ∈ ω〉.

(3) Let us assume that 〈fn : n ∈ ω〉 is I1-monotone sequence. Thus we have {n : fn � fk} ∈ I1 for each
k ∈ ω. Consider a sequence 〈fϕ(n) : n ∈ ω〉 and let m ∈ ω. Then ϕ−1(

{
n : fn � fϕ(m)

}
) ∈ I2. However,

for any i ∈
{
l : fϕ(l) � fϕ(m)

}
we have ϕ(i) ∈

{
n : fn � fϕ(m)

}
.

(4) The proof of this part was shown in [42]. �

By [42], the property S1(I-Γ,J -Γ) is preserved in the same way as properties S1(I-Γ0,J -Γ0) and
S1(I-Γm

0 ,J -Γ0) in Proposition 6.2.

Proposition 6.2. Let I1, I2, J1, J2 be ideals on ω such that I1 ≤K I2 and J1 ≤KB J2, X being a topo-
logical space.

(1) If Cp(X) has the property S1(I2-Γ0,J1-Γ0) then Cp(X) has the property S1(I1-Γ0,J2-Γ0).
(2) If Cp(X) has the property S1(I2-Γm

0 ,J1-Γ0) then Cp(X) has the property S1(I1-Γm
0 ,J2-Γ0).

(3) If Cp(X) has
[ I2-Γ0

sJ1QN0

]
then Cp(X) has

[ I1-Γ0

sJ2QN0

]
.

Proof. We shall prove (2). (1) is shown similarly. (3) follows by (1) and Theorem 1.1.
Let X be a topological space such that Cp(X) has the property S1(I2-Γm

0 ,J1-Γ0). Since I1 ≤K I2 and
J1 ≤KB J2 there are ϕ ∈ ωω and finite-to-one ψ ∈ ωω such that I1 ≤ϕ I2 and J1 ≤ψ J2.

Consider an I1-monotone sequence of functions 〈〈fn,m : m ∈ ω〉 : n ∈ ω〉 such that fn,m
I1−→ 0 for each

n ∈ ω. By Lemma 6.1 sequences 〈fn,ϕ(m) : m ∈ ω〉 are I2-convergent and I2-monotone. Now we define
non-negative functions

hn,k =

{
max

{
fj,ϕ(k) : ψ(j) = n

}
if n ∈ ψ(ω),

0 otherwise.

Let ε > 0, x ∈ X, n ∈ ω and i ∈ {k : hn,k(x) ≥ ε}. Then there is j such that ψ(j) = n and fj,ϕ(i)(x) ≥ ε,

thus i ∈
{
m : fj,ϕ(m)(x) ≥ ε

}
. Therefore

{k : hn,k(x) ≥ ε} ⊆
⋃

ψ(j)=n

{
k : fj,ϕ(k)(x) ≥ ε

}
∈ I2

and we have hn,k
I2−→ 0 for all n ∈ ω. Similarly, we also obtain that sequences 〈hn,k : k ∈ ω〉 are all

I2-monotone. In addition, by the assumption there is a sequence 〈kn : n ∈ ω〉 such that hn,kn
J1−−→ 0, i.e.,

{n : hn,kn(x) ≥ ε} ∈ J1.
Finally, let 〈mn : n ∈ ω〉 be a sequence such that mn = ϕ(kψ(n)). For ε > 0, x ∈ X and fj,mj (x) ≥ ε

we can say that hψ(j),kψ(j)
(x) ≥ ε, thus we have

{n : fn,mn(x) ≥ ε} ⊆
{
i : hψ(i),kψ(i)

(x) ≥ ε
}
.
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Additionally, by Lemma 6.1 we obtain hψ(i),kψ(i)

J2−−→ 0 and hence fn,mn
J2−−→ 0. Therefore Cp(X) has

the property S1(I1-Γm
0 ,J2-Γ0) as well. �

Since an ideal J has a pseudounion if and only if J ≤KB Fin and if and only if J ≤K Fin we obtain

Corollary 6.3. Let X be a topological space, I,J being ideals with pseudounions.

(1) Cp(X) is an S1(I-Γ0,J -Γ0)-space if and only if Cp(X) is an S1(Γ0,Γ0)-space.

(2) Cp(X) is an S1(I-Γm
0 ,J -Γ0)-space if and only if Cp(X) is an S1(Γm

0 ,Γ0)-space.

7. The connection between coverings and functions

M. Scheepers [37, 7] has shown that the Hurewicz property is a covering characterization of the monotonic
sequence selection property and later its connection to quasi-normal convergence appeared as well [10, 7].
Similarly, L. Bukovský [4] and M. Sakai [34] described an S1(Γ,Γ)-space in terms of semicontinuous functions.
We provide an ideal version of these results.

We say that a topological space X has J -Hurewicz property11 if for each sequence 〈Un : n ∈ ω〉 of
open covers of X there are finite Vn ⊂ Un, n ∈ ω such that for each x ∈ X, {n ∈ ω : x /∈

⋃
Vn} ∈ J . J -

Hurewicz property was introduced by P. Das [15]. P. Szewczak and B. Tsaban [43] investigated J -Hurewicz
property and they showed

Hurewicz −→ J -Hurewicz −→ Menger

J -Hurewicz property is a covering characterization of S1(Γm
0 ,J -Γ0).

Proposition 7.1. If X is a perfectly normal topological space then the following are equivalent. Moreover,
if X is arbitrary topological space then (a) ≡ (b).

(a) Cp(X) has
[

Γm
0

sJQN0

]
.

(b) Cp(X) has the property S1(Γm
0 ,J -Γ0).

(c) X possesses a J -Hurewicz property.

Proof. The implication (c)→ (b) has been shown by D. Chandra [13].
(b) → (a) Consider a monotone sequence 〈fn : n ∈ ω〉 such that fn → 0. Let εn −→ 0. The similar

way as proof of Theorem 7 in [7] we set fn,m = 1
εn
fm for each n ∈ ω. By the property S1(Γm

0 ,J -Γ0) there

is a sequence 〈mn : n ∈ ω〉 such that fn,mn
J−→ 0. Thus we have fmn

JQN−−−→ 0 with control sequence
〈εn : n ∈ ω〉.

(a) → (c) The proof of this implication is based on proof by M. Scheepers [37], Lemma 3. Let Un =
〈Un,m : m ∈ ω〉 be a countable open cover of X for each n ∈ ω. Since X is perfectly normal, for each open
set Un,m we have an increasing sequence 〈Fn,m,k : k ∈ ω〉 of closed sets such that Un,m =

⋃
k∈ω Fn,m,k.

By Urysohn’s Lemma there are monotone sequences of continuous functions 〈fn,m,k : k ∈ ω〉 with values
in [0, 1] such that

fn,m,k(x) =

{
1 x /∈ Un,m,
0 x ∈ Fn,m,k,

for each n,m, k ∈ ω. Next we define functions hn,m such that hn,m(x) =
∣∣∣∏j≤m fn,j,m(x)

∣∣∣ which are

continuous. Moreover, we know that 〈hn,m : m ∈ ω〉 are monotone sequences such that hn,m → 0.
Let δn = 1 and εn = 2−n for n ∈ ω. By Lemma 4.1 there is sequence of continuous monotone functions

〈gm : m ∈ ω〉 converging to zero such that 4.2 holds. Note that kn = n. Since Cp(X) is a [Γm
0 , sJQN0]-space

there exists 〈mn : n ∈ ω〉 such that gmn
sJQN−−−−→ 0.

11P. Szewczak and B. Tsaban [43, 44] say J -Menger property instead of J -Hurewicz property.
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Finally, let Vn = {Un,j : j ≤ mn} for all n ∈ ω. If we consider any x ∈ X and n ∈ ω such that
gmn(x) < 2−n then |

∏
j≤mn fn,j,mn(x)| < 1

2n ≤ 1. Therefore there exists j ≤ mn such that x ∈ Un,j and we

obtain {n : x /∈
⋃
Vn} ⊆ {n : gmn(x) ≥ 2−n} ∈ J . Thus X possesses a J -Hurewicz property. �

Hence, let us summarize basic relations of S1(I-Γm
0 ,J -Γ0)-space for Cp(X).

S1(I-Γm
0 ,Γ0) S1(I-Γm

0 ,J -Γ0)

Hurewicz ≡ S1(Γm
0 ,Γ0) S1(Γm

0 ,J -Γ0) Menger

S1(I-Γ0,Γ0)

Diagram 3: Monotonic selection principles for functions.

An S1(I-Γ,J -Γ)-space can be characterized in terms of upper semicontinuous functions, similarly to
an S1(Γ,Γ)-space.

Proposition 7.2. Let I,J be ideals on ω. Then the following statements are equivalent.

(a) X is an S1(I-Γ,J -Γ)-space.
(b) USCp(X) has the property S1(I-Γ0,J -Γ0).

(c) USCp(X) has
[ I-Γ0

sJQN0

]
.

Proof. The proof of implication (b) → (c) is similar to proof of implication (b) → (a) of Bukovský–
Das–Šupina’s Theorem 1.1, see [6].

(a) → (b) We will follow the proof of Theorem 13 in [4]. Let 〈fn.m : m ∈ ω〉 be upper semicontinuous

functions such that fn,m
I−→ 0 for all n ∈ ω, 〈xm : m ∈ ω〉 being an arbitrary sequence of distinct points of

X. Define open sets Un,m as

Un,m = {x ∈ X : 2nfn,m(x) < 1} \ {xm}.

Sequence 〈Un,m : m ∈ ω〉 is an I-γ-cover. Since X is an S1(I-Γ,J -Γ)-space there exists sequence
〈mn : n ∈ ω〉 such that 〈Un,mn : n ∈ ω〉 is a J -γ-cover on X. Let ε > 0. Then there is n0 such that
ε ≥ 2−n0 and

{n : fn,mn(x) ≥ ε} ⊆ n0 ∪ {n : x /∈ Un,mn} ∈ J .

Hence fn,mn
J−→ 0.

(c) → (a) We will pursue the method of proof of Theorem 2.2 in [34]. Let 〈Un,m : m ∈ ω〉 be open
I-γ-cover of X for each n ∈ ω. We put Vn,m = U0,m ∩ · · · ∩Un,m for all n,m ∈ ω. Note that 〈Vn,m : m ∈ ω〉
is I-γ-cover of X. Now we define functions fm as

fm(x) =


1 if x ∈ X \ V0,m,

1
k+2 if x ∈ Vk,m \ Vk+1,m,

0 otherwise.

Every fm is upper semicontinuous. Let ε > 0 and x ∈ X. By definition of functions fm one can easily see

that {m : fm(x) ≥ ε} ⊆ {m : x /∈ Vn,m} ∈ I. Therefore fm
I−→ 0.

Since USCp(X) is an [I-Γ0, sJQN0]-space there exists sequence 〈mn : n ∈ ω〉 such that fmn
sJQN−−−−→ 0.

By Theorem 4.2 we can consider control sequence 〈δn : n ∈ ω〉 such that δn = 1
n+1 for each n ∈ ω. Then

{n : x /∈ Vn,mn} ⊆
{
n : fmn(x) ≥ 1

n+ 1

}
∈ J ,
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hence 〈Vn,mn : n ∈ ω〉 is a J -γ-cover of X. �

8. Ideals and their cardinal invariants

We shall investigate combinatorial properties of cardinal invariant λ(I,J ) introduced in [42]. Let A ⊆
P(ω). Similarly to slaloms in [2], a sequence s ∈ ωA will be called an A-slalom. However, slalom in the
sense of A. Blass [2] does not coincide with our Fin-slalom since we do not control the size of n-th coordinate
of Fin-slalom. Hence, a Fin-slalom s is called a slalom if |s(n)| = n for each n. We say that a function
ϕ ∈ ωω J -goes through A-slalom s if {n : ϕ(n) ∈ s(n)} ∈ J d, i.e., {n : ϕ(n) ∈ ω \ s(n)} ∈ J . We say
that ϕ goes through I-slalom instead of ϕ Fin-goes through I-slalom.

Let us recall a standard result by T. Bartoszynski [3] regarding slaloms. He has shown that

add(N ) = min {|R| : R ⊆ ωω, (∀ slalom s)(∃ϕ ∈ R) ¬(ϕ goes through s)} .

If one substitutes slalom by Fin-slalom then A. Blass [2] mentions that

b = min {|R| : R ⊆ ωω, (∀Fin-slalom s)(∃ϕ ∈ R) ¬(ϕ goes through s)} .

Thus the bounding number b is the minimal cardinality of a family R of functions from ωω such that there
is no single Fin-slalom with all functions from R going through this Fin-slalom. On the contrary, we are
interested in the minimal cardinality of a family of Id-slaloms such that there is no single function which
J -goes through all of them.

The above mentioned invariant is called λ(I,J ) in [42] and we restate in more formal way its definition.
We say that a function ϕ ∈ ωω J -omits A-slalom s if {n : ϕ(n) ∈ s(n)} ∈ J .

λ(I,J ) = min
{
|R| : R contains Id-slaloms, (∀ϕ ∈ ωω)(∃s ∈ R) ¬(ϕJ -goes through s)

}
= min

{
κ : (∃R ⊆ ωId)(|R| = κ ∧ (∀ϕ ∈ ωω)(∃s ∈ R) {n : ϕ(n) 6∈ s(n)} ∈ J+)

}
= min {|R| : R contains I-slaloms, (∀ϕ ∈ ωω)(∃s ∈ R) ¬(ϕJ -omits s)}
= min

{
κ : (∃R ⊆ ωI)(|R| = κ ∧ (∀ϕ ∈ ωω)(∃s ∈ R) {n : ϕ(n) ∈ s(n)} ∈ J +)

}
.

Hence, if R contains Id-slaloms and |R| < λ(I,J ) then there is a function ϕ ∈ ωω which J -goes through
every s ∈ R. If R contains I-slaloms and |R| < λ(I,J ) then there is a function ϕ ∈ ωω which J -omits
every s ∈ R. By [42], λ(Fin,J ) = bJ , if I1 ≤K I2 and J1 ≤KB J2 then λ(I2,J1) ≤ λ(I1,J2) and if I,J
are not tall ideals then λ(I,J ) = b, see [6, 42].12

We recall invariant cov∗(I) introduced in [26] for tall ideal I. Let I be a tall ideal then

cov∗(I) = min {|A| : A ⊆ I ∧ (∀S ∈ [ω]ω)(∃A ∈ A) |S ∩A| = ω}
= min {|A| : A ⊆ I ∧ A does not have a pseudounion}
= min

{
|A| : A ⊆ Id ∧ A does not have a pseudointersection

}
.

Actually, p = min {κ : (∃ an ideal I) cov∗(I) = κ} . If I1 ≤K I2 then cov∗(I2) ≤ cov∗(I1), see [27].
M. Repický [32] introduced cardinal invariant kI,J . If I ≤K J then kI,J =∞ and if I 6≤K J then

kI,J = min {|A| : A ⊆ I ∧ A 6≤K J }
= min

{
|A| : A ⊆ I ∧ (∀ϕ ∈ ωω)(∃A ∈ A) {n : ϕ(n) ∈ A} ∈ J+

}
Hence, if I is tall then kI,Fin = cov∗(I). If I 6≤K J then p ≤ kI,J ≤ c.

We are now ready to prove the main result of this section.

12It follows by relation of λ(I,J ) to covering property S1(I-Γ,J -Γ) which is equivalent to S1(Γ,Γ) for not tall I,J , see our
Sections 7 and 9.
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Theorem 8.1.

(1) If I 6≤K J then λ(I,J ) ≤ min{kI,J , bJ }.
(2) If I 6≤K J and J ≤K I then λ(I,J ) = min{kI,J , λ(J ,J )}.
(3) If I is tall then λ(I,Fin) = min{cov∗(I), b}.

Proof. (3) is a particular case of (2).
(1) We begin with the inequality λ(I,J ) ≤ kI,J . The inequality λ(I,J ) ≤ bJ is due to [42]. Suppose

that A ⊆ I, |A| = kI,J and A 6≤K J , i.e.,

(∀ϕ ∈ ωω)(∃A ∈ A) {n : ϕ(n) ∈ A} ∈ J+.

Let R be a family of constant sequences of elements from A. Then |R| = kI,J and

(∀ϕ ∈ ωω)(∃s ∈ R) {n : ϕ(n) ∈ s(n)} ∈ J +.

(2) If J ≤K I then λ(I,J ) ≤ λ(J ,J ) by [42]. To prove the inequality min{kI,J , λ(J ,J )} ≤ λ(I,J )
let us take ω ≤ κ < min{kI,J , λ(J ,J )}, R being a family of cardinality κ containing I-slaloms. Consider
a family

A = {A ⊆ ω : (∃s ∈ R)(∃n ∈ ω) A = s(n)} ⊆ I.

Since |A| ≤ ω · κ = κ there is ψ ∈ ωω such that ψ−1(A) ∈ J for all A ∈ A. We define a family P of
J -slaloms as

P =
{
p : (∃s ∈ R) p(n) = ψ−1(s(n))

}
⊆ ωJ .

In addition, |P| ≤ |R|. Therefore there exists function ϕ ∈ ωω such that for each p ∈ P we have
{n : ϕ(n) ∈ p(n)} ∈ J . Let us take arbitrary s ∈ R. Then

{n : ψ(ϕ(n)) ∈ s(n)} =
{
n : ϕ(n) ∈ ψ−1(s(n))

}
∈ J .

Therefore κ < λ(I,J ). �

Adding an upper bound for λ(I,J ) from [42], we have

min{cov∗(I), b}= λ(I,Fin)

λ(I,J )b = λ(Fin,Fin)

bJ = λ(Fin,J )

d

p

Diagram 4: Cardinal λ(I,J ).

J is a weak P(I)-ideal [42] if for any family {An : n ∈ ω} ⊆ J there is A ∈ J + such that A∩An ∈ I
for any n ∈ ω. Note that we will write a weak P-ideal instead of a weak P(Fin)-ideal. We can also describe
weak P-ideals by Katetov ordering. An ideal I is not a weak P-ideal if and only if Fin×Fin ≤K I [22, 29, 30].

Corollary 8.2.
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(1) If cov∗(I) ≥ b then b ≤ λ(I,J ) ≤ bJ .

(2) If cov∗(I) ≥ b and J has Baire property then λ(I,J ) = b.

(3) If cov∗(I) ≤ b then λ(I,Fin) = cov∗(I).

(4) If cov∗(I) ≥ b then λ(I,Fin) = b.

(5) There is an ultrafilter U such that p = λ(U ,Fin).

(6) p = min {κ : (∃ an ideal I) λ(I,Fin) = κ} .
(7) If I is not a weak P-ideal then λ(I,Fin) = cov∗(I).

Proof. (1) follows directly by Theorem 8.1. (2) By B. Farkas and L. Soukup [19] and Mathias, Jalali–Naini
and Talagrand Theorem13 we have bJ = b for ideal J with Baire property. (3) - (4) Direct consequence
of Theorem 8.1. (5) - (6) Since p = min {κ : (∃ a filter F) cov∗(F) = κ} there is an ultrafilter U such that
p = cov∗(U). (7) If I is not a weak P-ideal then Fin × Fin ≤K I. Thus, see e.g. [27], we know that
cov∗(I) ≤ cov∗(Fin× Fin) = b. Therefore by (3) we have λ(I,Fin) = cov∗(I). �

R.M. Canjar, P. Nyikos and J. Ketonen [11] showed that if an ultrafilter U is not a P-point then
cov∗(U) ≤ b. Although it follows by the fact that cov∗(I) ≤ cov∗(Fin× Fin) = b for Fin× Fin ≤K I, it is
evident after one has seen part (2) of our Corollary 8.2.

Using notation from [27], Z, nwd, ED, R, S and conv denote an asymptotic density zero ideal, nowhere
dense ideal, eventually different ideal, random graph ideal, Solecki’s ideal and ideal on Q ∩ [0, 1] generated
by sequences convergent in [0, 1], respectively. All these ideals are Borel and one can find more about their
cov∗(I) characteristics in [27]. Thus by part (7) of Corollary 8.2 we have

λ(I,J ) = b

for I ∈ {Fin,Fin× Fin,R, conv, ED} and J ∈ {Fin,Fin× Fin, ∅ × Fin,Fin× ∅,S,R, conv, ED,Z,nwd}.

Moreover, if I is a Borel ideal on ω and cov∗(I) ≥ cov(M) then λ(I,J ) ≥ λ(nwd,J ), see [27]. Possible
values of λ(I,J ) are discussed in Section 10 and values of λ(I,Fin) for well-known ideals are summarized
in Table 1.

Finally, we may also consider version of λ(I,Fin) for instance for families A ⊆ [ω]ω such that Fin ⊆ A.
Namely, for the value

λ(A,Fin) = min {|R| : R ⊂ ωA, (∀ϕ ∈ ωω)(∃s ∈ R) |{n : ϕ(n) ∈ s(n)}| = ω)}

we have λ(A,Fin) = min
{
k : {A0, . . . Ak} ⊆ A and

⋃k
i=0Ai = ω

}
for A not having finite union property,

e.g., λ(P(ω),Fin) = 1, or there is an ideal I on ω such that A ⊆ I and then p ≤ λ(I,Fin) ≤ λ(A,Fin) ≤ b.
Indeed, to prove the last inequality let {Ai : i ∈ ω} be a family of sets from Ad with empty intersection,
{fα : α ∈ κ} being a family of functions from ωω, κ < λ(A,Fin). We set sα(n) to be Ai such that fα(n) <
minAi which exists by Pigeonhole principle. There is a function ϕ which goes through every Ad-slalom sα.
One can see that ϕ is a bound for {fα : α ∈ κ}. Hence, λ(A,Fin) ≤ b.

9. Critical cardinality

Cardinal invariant λ(I,J ) was in [42] introduced such that non(S1(I-Γ,J -Γ)) = λ(I,J ).14 Hence,
by (5.1) we have non(S1(I-Γ0,J -Γ0)) ≥ λ(I,J ) and we will show that the reversed inequality holds as well,
see Corollary 9.4. The following can be considered as an ideal analogue of a result by M. Sakai [35].

13J has Baire property if and only if J is meager if and only if Fin ≤RB J (see, e.g., [18]).
14non(S1(I-Γ,J -Γ)-space) denotes the minimal cardinality of a perfectly normal space which is not an S1(I-Γ,J -Γ)-space,

non(S1(I-Γ0,J -Γ0)) denotes the minimal cardinality of a perfectly normal space X such that Cp(X) is not
an S1(I-Γ0,J -Γ0)-space etc.
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Theorem 9.1. Let I, J be ideals on ω, D being a discrete topological space. Then the following statements
are equivalent.

(a) D is an S1(I-Γ,J -Γ)-space.

(b) Cp(D) has
[ I-Γ0

sJQN0

]
.

(c) Cp(D) has the property S1(I-Γ0,J -Γ0)

(d) Cp(D) has the property S1(I-Γm
0 ,J -Γ0).

(e) |D| < λ(I,J ).

Proof. (b) ≡ (c) by Theorem 1.1 and (a) ≡ (e) by Theorem 7.3 in [42]. The implication (a) → (b) is
by (5.1) and (c)→ (d) is trivial.
¬(e) → ¬(d). Let us take a family R = {sx : x ∈ D} ⊆ ωI of I-slaloms. So |R| = |D|. Now we define

functions fn,m such that

fn,m(x) =

{
1 m ∈ sx(n),

0 otherwise.

Note that for any k ∈ ω we have {m : fn,m(x) � fn,k(x)} ⊆ sx(n) ∈ I. Therefore sequences 〈fn,m : m ∈ ω〉
are I-monotone. Take ε < 1. Then for each n ∈ ω we have {m : fn,m(x) ≥ ε} ⊆ sx(n) ∈ I, so fn,m

I−→ 0.
For any ϕ ∈ ωω there is x ∈ D such that

{
n : fn,ϕ(n)(x) ≥ ε

}
⊇ {n : ϕ(n) ∈ sx(n)} ∈ J +, thus Cp(D)

does not have S1(I-Γm
0 ,J -Γ0). �

Lemma 9.2 and Theorem 9.3 are partially covered in Theorem 3.2 by [28] and in Lemma 4.5 by [32].

Lemma 9.2 (A. Kwela–M. Repický). Let I be a tall ideal on ω. If |X| < cov∗(I) then X has
[I-Γ

Γ

]
and Cp(X) has both,

[IQN0
QN0

]
and

[I-Γ0

Γ0

]
.

Proof. A. Kwela [28] proved that if |X| < cov∗(I) then Cp(X) is [IQN0,QN0] -space. To prove that X

is [I-Γ,Γ] -space and Cp(X) is [I-Γ0,Γ0] -space, let us consider continuous fn
I−→ 0 and an open I-γ-cover

〈Un : n ∈ ω〉. One can easily see that fnm → 0 and 〈Unm : m ∈ ω〉 is a γ-cover where {nm : m ∈ ω} is
a pseudointersection of a family of sets

Amx =
{
n : fn(x) < 2−m

}
, Ax = {n : x ∈ Un} , x ∈ X, m ∈ ω. �

Theorem 9.3 (A. Kwela–M. Repický). Let D be a discrete topological space. Then the following state-
ments are equivalent.

(a) |D| < cov∗(I).

(b) Cp(D) has
[IQN0

QN0

]
.

(c) Cp(D) has
[I-Γ0

Γ0

]
.

(d) D has the property
[I-Γ

Γ

]
.

Proof. The equivalence between (a) and (b) was proven by A.Kwela in [28] and the implication
(a)→ (c) follows by Lemma 9.2.

To prove the implication (c)→ (d), let 〈Un : n ∈ ω〉 be an I-γ-cover of D and we define

fn(x) =

{
0 x ∈ Un,
1 otherwise.

We have fn
I−→ 0 and there is 〈nm : m ∈ ω〉 such that fnm −→ 0. One can see that 〈Unm : n ∈ ω〉 is

a γ-cover of D.
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¬(a)→ ¬(d) Let A ⊆ I be a family such that |A| = |D| ≥ cov∗(I) and A does not have a pseudounion.
Define Un = {A ∈ A : n /∈ A}. 〈Un : n ∈ ω〉 is an I-γ-cover of a family A. Let us consider S ∈ [ω]ω.
Since A does not have a pseudounion there exists A ∈ A such that {n ∈ S : A /∈ Un} = {n ∈ S : n ∈ A} =
S ∩A ∈ [ω]ω. �

It has been shown in [42] that any topological space of cardinality less than λ(I,J ) is an S1(I-Γ,J -Γ)-
space. Consequently, we obtain

Corollary 9.4. Let I,J ⊆ P(ω) be ideals.

(1) non(S1(I-Γ0,J -Γ0)) = non(S1(I-Γm
0 ,J -Γ0)) = non(

[ I-Γ0

sJQN0

]
) = λ(I,J ).

(2) non(S1(Γ0,J -Γ0)) = non(S1(Γm
0 ,J -Γ0)) = non(

[
Γ0

sJQN0

]
) = bJ .

If I is tall then

(3) non(S1(I-Γ,Γ)) = non(S1(I-Γ0,Γ0)) = non(S1(I-Γm0 ,Γ0)) = non(
[I-Γ0

QN0

]
) = min{cov∗(I), b}.

(4) (A. Kwela–M. Repický) non(
[IQN0

QN0

]
) = non(

[I-Γ0

Γ0

]
) = non(

[I-Γ
Γ

]
) = cov∗(I).

Moreover, according to Proposition 7.1 about relation between J -Hurewicz property and the property
S1(Γm

0 ,J -Γ0) and according to part (2) of Corollary 9.4 it is obvious that non(J -Hurewicz) = bJ which
was proved by S.G. da Silva [40]. In addition to Corollary 9.4, (3), stating non([I-Γ0,QN0] -space) =
min{cov∗(I), b}, A. Kwela [28] introduced cardinal invariant κ(J ) for any weak P-ideal J such that
non([Γ0,JQN0] -space) = κ(J ). He has shown p ≤ κ(J ) ≤ d for every P -ideal J and κ(J ) = b for
any Fσ ideal J . non([I-Γ0,JQN0]-space) in general is investigated by M. Repický [32].

M. Staniszewski [41] introduced and investigated cardinal invariant b(I,J ,K) which is naturally related
to an [I-Γ0, (J ,Fin)-e] -space. For instance, it follows that non([Fin, (J ,Fin)-e] -space)≥ b(I,Fin,Fin).

We shall prove that subsets of the Baire space which are
[

Γ0

sJQN0

]
or which have either S1(Γ0,J -Γ0) or

S1(Γm
0 ,J -Γ0) are all bounded in (ωω,≤J ).

Proposition 9.5.

(1) Let X ⊆ ωω. If Cp(X) has the property S1(I-Γm
0 ,J -Γ0), then X is bounded in (ωω,≤J ).

(2) Let I be a tall ideal. If A ⊆ I has
[I-Γ

Γ

]
or Cp(A) has

[I-Γ0

Γ0

]
or
[IQN0

QN0

]
then A has a pseudounion.

(3) Let I be a tall ideal. If A ⊆ I ∩ [ω]ω and Cp(A) is an S1(I-Γ0,Γ0) then A has a pseudounion and the
family of increasing enumerations of its elements is bounded in (ωω,≤∗).

Proof.
(1) Let X be unbounded in (ωω,≤J ), i.e., (∀ϕ ∈ ωω)(∃x ∈ X) {n : ϕ(n) ∈ x(n)} ∈ J +.
Now we define functions fn,m for all x ∈ X and n,m ∈ ω in the same way as in the proof of above

mentioned Theorem 9.3, i.e.,

fn,m(x) =

{
1 m ∈ x(n),

0 otherwise.

One can easily see that for every n ∈ ω a sequence 〈fn,m : m ∈ ω〉 is almost monotone and conver-
gent to 0. Moreover, 〈fn,m : m ∈ ω〉 are sequences of continuous functions since {x ∈ X : x(n) = k}
is open for any n, k ∈ ω and {x ∈ X : fn,m(x) = 1} = {x ∈ X : m < x(n)}, {x ∈ X : fn,m(x) = 0} =
{x ∈ X : x(n) ≤ m}. Similarly to the proof of Theorem 9.3 we can conclude that Cp(X) does not have
S1(Γm

0 ,J -Γ0). Hence, Cp(X) has neither S1(I-Γm
0 ,J -Γ0) as one can see in Diagram 3.

(2) Recall the set Un in the proof of ¬(a) → ¬(d) in Theorem 9.3, it is open and the characteristic
function fn of its complement is continuous in the Cantor topology of P(ω). Moreover, for S and A as in
the end of the proof, {n ∈ S : fn(x) ≥ εn} = S ∩A for any control 〈εn : n ∈ ω〉.

(3) LetA ⊆ I∩[ω]ω such that Cp(A) is an S1(I-Γ0,Γ0). By Proposition 5.2, Cp(A) is also [I-Γ0,Γ0] -space
and S1(Γ0,Γ0)-space. Therefore by part (2) A has a pseudounion. Moreover, A is bounded in (ωω,≤∗) from
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part (1). �

By part (1) of Proposition 9.5 and by our Proposition 7.1, we have proved Proposition 2.2 in [40].
Moreover, part (1) of our Proposition 9.5 is a consequence of our Proposition 7.1 and Proposition 4.4 by
P. Szewczak and B. Tsaban [43]. Part (2) of Proposition 9.5 appears in more general form in [32], Lemma 4.3.

By Proposition 9.5, Cp(
ωω) has neither the property S1(I-Γm

0 ,J -Γ0) nor the property S1(I-Γ0,J -Γ0).
In fact, it says more.

Corollary 9.6.

(1) If bJ ≤ µ ≤ c then there is a set X of reals of cardinality µ such that Cp(X) has neither the property
S1(I-Γm

0 ,J -Γ0) nor the property S1(I-Γ0,J -Γ0).

(2) If cov∗(I) ≤ µ ≤ c then there is a set X of reals of cardinality µ such that Cp(X) has neither

the property
[I-Γ0

Γ0

]
nor the property

[IQN0
QN0

]
and X does not have

[I-Γ
Γ

]
.

(3) If min{cov∗(I), b} ≤ µ ≤ c then there is a set X of reals of cardinality µ such that Cp(X) does not
have the property S1(I-Γ0,Γ0) and X does not have S1(I-Γ,Γ).

10. Consistency and relations

Problem 4.2 in [6] asks whether every [I-Γ0,JQN0]-space Cp(X) is an S1(I-Γ0,J -Γ0)-space. The prob-
lem is by Theorem 1.1 equivalent to the question whether every [I-Γ0,JQN0]-space Cp(X) is an [I-Γ0, sJQN0]-
space. First of all, let us recall that

Cp(X) has
[I-Γ0

QN0

]
⇔ Cp(X) has

[I-Γ0

sQN0

]
⇔ Cp(X) is an S1(I-Γ0,Γ0)-space.

On the other hand, by Observation 5.1, if Cp(X) is an [I-Γ0, sJQN0]-space then IndZ(X) = 0. Moreover, by
Corollary 9.4 we have non([I-Γ0, sJQN0]-space) = λ(I,J ). However, by [42] if J is not a weak P(I)-ideal
then any topological space is [I-Γ0,JQN0]-space. Thus by [42] we get negative answer to Problem 4.2 in [6]:

Proposition 10.1. Let I,J ⊆ P(ω) be ideals such that J is not a weak P(I)-ideal. Then there exists
an [I-Γ0,JQN0]-space which is not an [I-Γ0, sJQN0]-space.

However, beside two aforementioned cases we do not know a lot about relations between these notions. In
fact, another notion naturally fits in between.

Cp(X) has
[ I-Γ0

sJQN0

]
→ Cp(X) has

[ I-Γ0

(J ,Fin)-e

]
→ Cp(X) has

[ I-Γ0

JQN0

]
.

As we have already mentioned, there are known relations of cov∗(I) to cardinal invariants in Cichoń’s
diagram, see [27]. Thus by part (2) of Corollary 8.2 for ideals Z, nwd and S we have

Proposition 10.2. Let J be arbitrary Borel ideal.

(1) If cov(N ) ≥ b then λ(Z,J ) = b.

(2) If cov(M) ≥ b then λ(nwd,J ) = b.

(3) If non(N ) ≥ b then λ(S,J ) = b.

Since every ideal considered in Proposition 10.2 is Borel, in particular,

if min{cov(N ), cov(M)} ≥ b then λ(Z,Z) = λ(nwd,nwd) = λ(S,S) = b.

We summarize several set theoretic assumptions for λ(I,J ) or λ(I,Fin) to be or not to be the bounding
number or cov∗(I).

Proposition 10.3. Let I be arbitrary ideal.

(1) If p = b then λ(I,Fin) = b.
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(2) If b = c then λ(I,Fin) = cov∗(I).

(3) If b < cov∗(I) then λ(I,Fin) < cov∗(I).

(4) If p = d then λ(I,J ) = b.

(5) If cf(d) < d then λ(I,J ) < d.

Table 1 contains possible values of λ(I,Fin) for I being one of standard ideals considered in [27]. If
the statement in the heading of the Table 1 is provable, then we put checkmark in the corresponding
line. If such inequality is not true then crossmark is used. If we know hat the statement holds under some
additional set theoretical assumption, we specify which one. A remark in the parenthesis is a complementary
information when the exact value of λ(I,J ) or cov∗(I) is known. Finally, question mark is an open
question.15

I λ(I,Fin) = b λ(I,Fin) < b λ(I,Fin) = cov∗(I) λ(I,Fin) < cov∗(I)

Fin X × × ×

Fin× Fin X × X ×

Fin× ∅ X × × ×

∅ × Fin X × × ×

S non(N ) ≥ b non(N ) < b non(N ) ≤ b non(N ) > b

(non(N )) (non(N )) (cov∗(I) = non(N ))

Z cov(N ) ≥ b Hechler model non(N ) ≤ b ?

non(M) = b

If cov(N ) ≥ b Hechler model non(M) = b cov(N ) > b

(≤ non(M))

ED X × non(M) = b non(M) > b

(non(M)) (cov∗(I) = non(M))

R X × b = c b < c

(cof(I)) (cov∗(I) = cof(I))

conv X × b = c b < c

(cof(I)) (cov∗(I) = cof(I))

nwd cov(M) ≥ b cov(M) < b cov(M) ≤ b cov(M) > b

(cov(M)) (cov(M)) (cov∗(I) = cov(M))

EDFin cov(N ) ≥ b Hechler model non(M) = b Random model

Table 1: Well-known ideals and λ(I,Fin).

By Theorem 8.1 and Corollaries 8.2, 9.4 we obtain Proposition 10.4. Statements (1) - (2) and (4) can be
reformulated for S1(I-Γ0,J -Γ0)-space and S1(I-Γm

0 ,J -Γ0)-space as well.

Proposition 10.4.

(1) If b = c then non(S1(I-Γ,Γ)) = cov∗(I) for every tall ideal I.

15A model obtained from a model of CH by adding at least ℵ2-many random reals.
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(2) If b < cov∗(I) then non(S1(I-Γ,Γ)) < cov∗(I) for every tall ideal I.

(3) If p = b then non(S1(I-Γ,Γ)) = b.

(4) If cov∗(I) < b then non(S1(I-Γ,Γ)) < b.

(5) If bJ < d then non(S1(I-Γ,J -Γ)) < d.

G. Di Maio and Lj.D.R. Kočinac [16] investigate S1(s-Γ, s-Γ)-space, i.e., our S1(Z-Γ,Z-Γ)-space. Thus
we have shown that if cov(N ) ≥ b then non(S1(s-Γ, s-Γ)) = b.

In Diagram 5 we summarize relations of investigated notions of the present paper. We hope that prop-
erties of topological space X in one diagram with properties of topological space Cp(X) does not lead to
confusion.

S1(I-Γm
0 ,Γ0) S1(I-Γm

0 ,J -Γ0)

Hurewicz ≡ S1(Γm
0 ,Γ0) S1(Γm

0 ,J -Γ0) Menger

S1(I-Γ0,Γ0) S1(I-Γ0,J -Γ0)

S1(Γ0,Γ0) S1(Γ0,J -Γ0) S1(Γ0,Ω0) IndZ(X) = 0

[I-Γ0

J -Γ0

]

S1(Ω,Γ)

S1(I-Γ,Γ) S1(I-Γ,J -Γ)

S1(Γ,Γ) S1(Γ,J -Γ) S1(Γ,Ω)

[I-Γ
J -Γ

]

Diagram 5: The overall relations of investigated properties.

Proposition 10.5.

(1) If p < b there is an S1(Γ,Γ)-space X such that Cp(X) is not an S1(U-Γm0 ,Γ0)-space.

(2) If cov∗(I) < b there is an S1(Γ,Γ)-space X such that Cp(X) is not an S1(I-Γm0 ,Γ0)-space.

(3) For any b-Sierpiński set S there is an ultrafilter U such that Cp(S) is not an S1(U-Γ0,Γ0)-space (but
S is an S1(Γ,Γ)-space).

(4) If b < bU then there is an S1(Γ,U-Γ)-space X such that Cp(X) is not an S1(Γm0 ,Γ0)-space.

(5) If bJ < d then there is an S1(Γ,Ω)-space X such that Cp(X) is not an S1(Γm0 ,J -Γ0)-space.

(6) If b < cov∗(I) then there is an [I-Γ,Γ] -space X such that Cp(X) is not an S1(I-Γm0 ,Γ0)-space.

Proof. (1) By Corollaries 9.4 and 8.2 there is an ultrafilter U such that non(S1(U-Γm0 ,Γ0)) = p. However,
non(S1(Γ,Γ)) = b. (2) If cov∗(I) < b then by Corollaries 9.4 and 8.2 we have non(S1(I-Γm0 ,Γ0)) = cov∗(I).
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(3) Any b-Sierpiński set is an S1(Γ,Γ)-space which is not a γ-set. By Theorem 5.4, if S is a b-Sierpiński set
then there is an ultrafilter U such that S is not an S1(U-Γ,Γ)-space. (4) and (6) follow from the fact that
non(S1(Γ,U-Γ)) = bU ), non([I-Γ,Γ] -space) = cov∗(I) and non(S1(I-Γm0 ,Γ0)) = b. �

If cf(d) < d then the assumption of part (5) in Proposition 10.5 is fulfilled. R.M. Canjar [12] has
shown that there is an ultrafilter U such that bU = cf(d). Therefore if cf(d) = d then non(S1(Γ,U-Γ)) =
non(S1(Γ,Ω)) = d. Moreover, M. Sakai [33] has shown non(S1(Γ0,Ω0)) = d.

The implication S1(Ω,Γ) → S1(Γ,Γ) is irreversible (non(S1(Ω,Γ)) = p by [24]) and the implication
S1(Γ0,Γ0)→ S1(Γm0 ,Γ0) is irreversible even in ZFC (the real line). The implication S1(Γ,Γ)→ S1(Γ0,Γ0)
can be consistently equivalence (Laver model, see [31]) and it is not known whether it can be reversed
(Scheepers Conjecture [39]). However, we do not know how it is in case of ideal versions of preceding
implications when I, J are fixed ideals not equal to Fin. Cp(R) is an S1(Γm0 , I-Γ0)-space which is not
an S1(Γ0, I-Γ0)-space since R is not zero-dimensional.
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