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WEAK SOLUTIONS OF THE ROBIN PROBLEM FOR THE
OSEEN SYSTEM

DAGMAR MEDKOVÁ

Abstract. We study the Robin problem for the Oseen system in the Sobolev

space W 1,q(Ω; Rm) × Lq(Ω) on a bounded domain Ω ⊂ Rm with Lipschitz
boundary for m = 2 or m = 3. We prove the unique solvability of the problem

for 3/2 < q < 3 and ∂Ω Lipschitz, and for 1 < q < ∞ and ∂Ω of class C1.

Then we study the problem on exterior domains. First we study the problem

for the homogeneous Oseen system with (u, p) ∈ W 1,q
loc (Ω; Rm)× Lq

loc(Ω) and

the additional condition u(x) → 0, p(x) → 0 as |x| → ∞. Then we study

the Robin problem for the non-homogeneous Oseen system in homogeneous
Sobolev spaces D1,q(Ω, Rm) × Lq(Ω). Denote by W̃ 1,q(Ω; Rm) the closure of

C∞c (Rm; Rm) in D1,q(Ω, Rm). If Ω ⊂ R3 is an exterior domain with Lipschitz

boundary and 3/2 < q < 3 then there exists a unique solution of the Robin

problem in W̃ 1,q(Ω, Rm)×Lq(Ω). We characterize all solutions of the problem

in D1,q(Ω, Rm)× Lq(Ω).

1. Introduction

This paper is devoted to the Robin problem for the stationary Oseen system.
The Dirichlet problem for the Oseen system is studied very often - see for example
[4], [5], [6], [7], [10], [15], [17], [19], [33]. But there are only a few papers concerning
the Robin problem for the Oseen system. A. Russo and A. Tartaglione studied in
[32] an Lq-solution of the Robin problem for the Oseen system

(1.1) ∇p−∆u + λ∂1u = 0 ∇ · u = 0 in Ω,

T (u, p)n + hu = g on ∂Ω
where h is a sufficiently large positive number. Here Ω ⊂ R3 is an exterior domain
with connected Lipschitz boundary, and q = 2 or ∂Ω is of class C1, 1 < q < ∞.
The boundary condition g ∈ Lq(∂Ω; R3) is satisfied in the sense of non-tangential
limit. The author studied in [27] an Lq-solutions of the Robin problem for the
Oseen system (1.1),

(1.2) T (u, p)nΩ − λ

2
n1u + hu = g on ∂Ω

for bounded and unbounded domains in Rm with compact Lipschitz boundary and
m = 2 or m = 3. Here h is a non-negative bounded function. It is supposed that
q = 2 or ∂Ω is of class C1.

This paper is devoted to the Robin problem for the Oseen system on bounded and
unbounded domains with compact Lipschitz boundary in Rm with m = 2 or m = 3.
We formulate a weak solution of the problem in Sobolev spaces W 1,q(Ω, Rm)×Lq(Ω)
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for Ω bounded by an analogical way as it is usual for elliptic equations (see [31]).
Since C∞(Rm, Rm) × C∞(Rm) is a dense subset of W 1,q(Ω, Rm) × Lq(Ω), it is the
only possible way how to extend the Robin problem to this space and ensure that
classical solutions of the problem are weak solutions of the same problem. We prove
the unique solvability of the Robin problem under the assumption that 3/2 < q < 3
for ∂Ω Lipschitz, and 1 < q < ∞ for ∂Ω of class C1. Then we study weak solutions
of the Robin problem in homogeneous Sobolev spaces for Ω unbounded.

2. Sobolev spaces

If X is a Banach space we denote by X ′ its dual space.
If Ω ⊂ Rm is an open set and 1 < q < ∞, we define the Sobolev space

W 1,q(Ω) := {u ∈ Lq(Ω); ∂ju ∈ Lq(Ω) for j = 1, . . . ,m}. Further we denote by
W̊ 1,q(Ω) the closure of C∞c (Ω) (the space of infinitely differentiable functions with
compact support in Ω) in W 1,q(Ω). It is usual to denote W−1,q(Ω) := [W̊ 1,q′(Ω)]′

where q′ = q/(q − 1). If Ω is unbounded we denote by W 1,q
loc (Ω) (by Lq

loc(Ω)) the
space of all functions u such that u ∈ W 1,q(G) (that u ∈ Lq(G)) for all bounded
open subsets G of Ω, respectively.

Suppose now that Ω has compact Lipschitz boundary. If 0 < s < 1 we define
W s,q(∂Ω) := {u ∈ Lq(∂Ω); ‖u‖W s,q(∂Ω) < ∞} where

‖u‖W s,q(∂Ω) :=
[
‖u‖q

Lq(∂Ω) +
∫

∂Ω

∫
∂Ω

|u(x)− u(y)|q

|x− y|m−1+qs
dσ(x) dσ(y)

]1/q

.

Further we denote W−s,q(∂Ω) := [W s,q′(∂Ω)]′. According to [23, Theorem 6.8.13]
there exists a unique continuous linear mapping γΩ : W 1,q(Ω) → W 1−1/q,q(∂Ω)
called the trace such that γΩu = u for all u ∈ C∞c (Rm). So, if u ∈ W 1,q′(Ω) then
γΩu ∈ W 1−1/q′,q′(∂Ω) = W 1/q,q′(∂Ω). Therefore W−1/q,q(∂Ω) ↪→ [W 1,q′(Ω)]′ if we
define

〈f, u〉 := 〈f, γΩu〉, f ∈ W−1/q,q(∂Ω), u ∈ W 1,q′(Ω).

3. Weak solution of the problem (1.1), (1.2)

Let Ω ⊂ Rm be an open set with compact Lipschitz boundary. We are going to
study the Robin problem for the Oseen system (1.1) with the boundary condition

(3.1) Tλ(u, p)n + hu = g on ∂Ω.

Here n = nΩ is the outward unit normal vector of Ω, u = (u1, . . . , um) is a velocity
field, p is a pressure, ∇ · u = ∂1u1 + · · ·+ ∂mum, ∇̂u = [∇u + (∇u)T ]/2,

(3.2) T (u, p) ≡ 2∇̂u− pI, Tλ(u, p)n = T (u, p)n− λ

2
n1u

and T (u, p) is the stress tensor. (I means the identity operator represented by the
unit matrix.) If h ≡ 0 we say about the Neumann problem.

If (u, p) ∈ C2(Ω; Rm) × C1(Ω) is a classical solution of the problem (1.1), (3.1)
and Φ ∈ C∞c (Rm, Rm), then the Green formula gives

(3.3)
∫

∂Ω

g·Φ dσ =
∫

Ω

[2∇̂u·∇̂Φ−p(∇·Φ)+
λ

2
(Φ·∂1u−u·∂1Φ)] dx+

∫
∂Ω

hu·Φ dσ.

(Compare [37, p. 14].) This formula motivates definition of a weak solution of the
Robin problem (1.1), (3.1).
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Suppose first that Ω is bounded. Let g ∈ W−1/q,q(∂Ω; Rm) with 1 < q < ∞,
q′ = q/(q− 1). We say that (u, p) ∈ W 1,q(Ω, Rm)×Lq(Ω) is a weak solution of the
problem (1.1), (3.1) if ∇ · u = 0 in Ω and∫

Ω
[2∇̂u · ∇̂Φ− p(∇ ·Φ) + λ

2 (Φ · ∂1u− u · ∂1Φ)] dx(3.4)

+
∫

∂Ω
hγΩu · γΩΦ dσ = 〈g, γΩΦ〉

for all Φ ∈ W 1,q′(Ω, Rm) (equivalently for all Φ ∈ C∞c (Rm, Rm)).
Let now Ω be unbounded. Let g ∈ W−1/q,q(∂Ω; Rm) with 1 < q < ∞. We say

that (u, p) ∈ W 1,q
loc (Ω, Rm) × Lq

loc(Ω) is a weak solution of the problem (1.1), (3.1)
if ∇ · u = 0 in Ω and (3.4) holds for all Φ ∈ C∞c (Rm, Rm).

Remark that if (u, p) ∈ W 1,q
loc (Ω, Rm)×Lq

loc(Ω) is a weak solution of the problem
(1.1), (3.1), then the Green formula gives that (u, p) is a solution of (1.1) in Ω in
the sense of distributions.

Lemma 3.1. Let Ω ⊂ Rm be open, λ ∈ R1. If (u, p) is a solution of the Oseen
system (1.1) in Ω in the sense of distributions, then u ∈ C∞(Ω, Rm), p ∈ C∞(Ω)
and therefore (u, p) is a classical solution of (1.1) in Ω.

Proof. p ∈ C∞(Ω) by [22, p. 30]. Since −∆u + λ∂1u ∈ C∞(Ω, Rm), [12, Chapter
II, §8, Proposition 5] gives u ∈ C∞(Ω, Rm). �

4. Oseen fundamental tensor

We are going to look for a solution of the problem (1.1), (3.1) in the form of an
appropriate combination of boundary layer potentials. For this reason we need to
define a fundamental solution of the Oseen system and boundary layer potentials.

If Ojk(x), Zj(x) are tempered distributions, j = 1, . . . ,m, and k = 1, . . . ,m + 1,
then O = {Ojk}, Z = {Zj} is called a fundamental tensor for the Oseen equation
(1.1) in Rm if

−∆Ojk + λ∂1Ojk + ∂jZk = δjkδ0,

∂1O1k + · · ·+ ∂mOmk = δk(m+1)δ0.

According to [27, Corollary 1] there exists a unique fundamental tensor Oλ, Qλ of
the Oseen equation (1.1) such that |Oλ(x)|, |Qλ(x)| = o(|x|) as |x| → ∞. If k ≤ m
then

Oλ
k,(m+1)(x) = Qλ

k(x) = Qk(x) =
xk

σm|x|m
where σm is the surface of the unit sphere in Rm,

O0
jk(x) =


1

2σm

[
δjk

|x|2−m

m−2 + xjxk

|x|m

]
, m > 2,

1
4π

[
δjk ln 1

|x| + xjxk

|x|2

]
, m = 2,

Qλ
m+1(x) = δ0(x)− λ

x1

σm|x|m
.

The explicit formula of Oλ
ji for j, k ≤ m and λ 6= 0 can be found in [17]. This formula

is very complicated and we only gather properties of the fundamental tensor. We
have Oλ

jk = Oλ
kj ∈ C∞(Rm \ {0}). If β is a multi-index, then we have

(4.1) |∂βOλ
jk(x)| = O(|x|(1−m−|β|)/2) as |x| → ∞.

If z 6= [c, 0, . . . , 0] then

(4.2) lim
r→∞

|Oλ(rz)|r(m−1)/2 = 0.
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If r > 0 and q > 1 + 1/m then we have

(4.3) |∇Oλ
jk| ∈ Lq(Rm \B(0; r)),

where B(x; r) = {y ∈ Rm; |x− y| < r}. If m = 3 then

(4.4) |∂α(Oλ(x)−O0(x))| = O(|x|−|α|) as |x| → 0.

If m = 2 then

(4.5) |Oλ(x)−O0(x)| = O(1) as |x| → 0,

(4.6) |∇(Oλ(x)−O0(x))| = O(ln |x|) as |x| → 0,

(4.7) |∂α(Oλ(x)−O0(x))| = O(|x|−|α|+1) as |x| → 0 for |α| ≥ 2.

Easy calculation yields

(4.8) Oλ
jk(−x) = O−λ

jk (x), 1 ≤ j, k ≤ m.

5. Potentials

Denote Q(x) := (Q1(x), . . . , Qm(x)), Ŏλ := (Oλ
ij)i,j≤m. For Ψ ∈ Lq(∂Ω, Rm)

with 1 < q < ∞ define the velocity part of the Oseen single layer potential with
density Ψ by

Oλ
ΩΨ(x) =

∫
∂Ω

Ŏλ(x− y)Ψ(y) dσ(y)

and the corresponding pressure part by

QΩΨ(x) =
∫

∂Ω

Q(x− y)Ψ(y) dσ(y).

More generally, if Ψ = (Ψ1, . . . ,Ψm), where Ψj are distributions supported on ∂Ω,
then we define

[Oλ
ΩΨ(x)]i :=

m∑
j=1

〈Ψj , O
λ
ij(x−·)〉, QΩΨ(x) :=

m∑
j=1

〈Ψj , Qj((x−·)〉, x ∈ Rm\∂Ω.

Clearly (Oλ
ΩΨ, QΩΨ) is a solution of the Oseen system (1.1) in Rm \ ∂Ω.

Define KΩ,λ(·,y) = Tλ(Ŏλ(· − y), Q(· − y))nΩ(y) for y ∈ ∂Ω, x ∈ Rm \ {y}, i.e.

KΩ,λ
j,k (x,y) = nΩ(y) · ∇yOλ

jk(x− y) +
m∑

i=1

nΩ
i (y)

∂

∂yk
Oλ

ji(x− y)

+nΩ
k (y)Qλ

j (x− y) +
λnΩ

1 (y)
2

Oλ
jk(x− y)

for j, k ≤ m. Denote

ΠΩ,λ
k (x,y) = nΩ(y) · ∇yQλ

k(x− y) +
m∑

i=1

nΩ
i (y)

∂

∂yk
Qλ

i (x− y)

+nΩ
k (y)Qλ

m+1(x− y) +
λnΩ

1 (y)
2

Qλ
k(x− y)

for k ≤ m. For Ψ ∈ Lq(∂Ω, Rm) we define the velocity part of the Oseen double
layer potential with density Ψ by

(Dλ
ΩΨ)(x) =

∫
∂Ω

KΩ,λ(x,y)Ψ(y) dσ(y), x ∈ Rm \ ∂Ω
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and the corresponding pressure part by

(Πλ
ΩΨ)(x) =

∫
∂Ω

ΠΩ,λ(x,y)Ψ(y) dσ(y), x ∈ Rm \ ∂Ω.

For x ∈ ∂Ω we denote

(KΩ,λΨ)(x) = lim
δ↓0

∫
∂Ω\B(x,δ)

KΩ,λ(x,y)Ψ(y) dσ(y),

(K ′
Ω,λΨ)(x) = lim

δ↓0

∫
∂Ω\B(x,δ)

KΩ,λ(y,x)Ψ(y) dσ(y).

Lemma 5.1. Let λ 6= 0, 1 < q < ∞. If f ∈ W−1,q(Rm; Rm) has compact support,
and m = 2 or m = 3, then Ŏλ ∗ f ∈ W 1,q

loc (Rm; Rm), Q ∗ f ∈ Lq
loc(Rm).

Proof. According to [2, Theorem 4.11] there exist u ∈ W 1,q
loc (Rm; Rm), p ∈ Lq

loc(Rm)
such that

∇p−∆u + λ∂1u = f , ∇ · u = 0 in Rm.

(Ŏλ ∗ f , Q ∗ f) is a solution of the same system by the definition of the fundamental
solution. Lemma 3.1 gives that (Q ∗ f − p) ∈ C∞(Rm), (Ŏλ ∗ f −u) ∈ C∞(Rm; Rm).

�

Lemma 5.2. Let Ω ⊂ Rm be a bounded open set with Lipschitz boundary, m = 2
or m = 3. Suppose that λ 6= 0 and 1 < q < ∞. Then Oλ

Ω : W−1/q,q(∂Ω; Rm) →
W 1,q(Ω; Rm), QΩ : W−1/q,q(∂Ω; Rm) → Lq(Ω) are bounded linear operators.

Proof. QΩ : W−1/q,q(∂Ω; Rm) → Lq(Ω) is a bounded linear operator by [24, Theo-
rem 4.4].

Denote q′ = q/(q − 1). If f ∈ W−1/q,q(∂Ω; Rm) then f ∈ [W 1,q′(Ω; Rm)]′ ⊂
W−1,q(Rm; Rm). Since f has compact support, Lemma 5.1 forces that Oλ

Ωf =
Ŏλ ∗ f ∈ W 1,q(Ω; Rm). Since Oλ

Ω : W−1/q,q(∂Ω; Rm) → W 1,q(Ω; Rm) is a closed
linear operator, it is bounded by the Closed graph theorem. �

Lemma 5.3. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, m = 2
or m = 3. Suppose that λ 6= 0 and 1 < q < ∞. If f ∈ Lq(∂Ω; Rm) denote by
Oλ

Ωf the restriction of Oλ
Ωf onto ∂Ω. Then Oλ

Ω : Lq(∂Ω; Rm) → W 1,q(∂Ω; Rm) is
bounded. The operator Oλ

Ω can be extended by a unique way to a bounded linear
operator Oλ

Ω : W−1/q,q(∂Ω; Rm) → W 1−1/q,q(∂Ω; Rm). If f ∈ W−1/q,q(∂Ω; Rm),
then Oλ

Ωf ∈ W 1,q
loc (Ω) and Oλ

Ωf is the trace of Oλ
Ωf .

Proof. Oλ
Ω : Lq(∂Ω; Rm) → W 1,q(∂Ω; Rm) is bounded by [30, Corollary 4.2.4] and

[21, Lemma 3.7]. Since Lq(∂Ω; Rm) is a dense subspace of W−1/q,q(∂Ω; Rm), a pos-
sible continuous extension Oλ

Ω : W−1/q,q(∂Ω; Rm) → W 1−1/q,q(∂Ω; Rm) is unique.
Put q′ = q/(q − 1). Since O−λ

Ω : Lq′(∂Ω, Rm) → W 1,q′(∂Ω, Rm) is bounded,
the adjoint operator [O−λ

Ω ]′ : W−1,q(∂Ω, Rm) → Lq(∂Ω, Rm) is bounded, too.
The symmetry of Ŏλ and the relation (4.8) give that [O−λ

Ω ]′ = Oλ
Ω. Thus Oλ

Ω :
W−1,q(∂Ω; Rm) → Lq(∂Ω; Rm) is bounded. We now use the real interpolation.
One has

(Lq(∂Ω),W 1,q(∂Ω))1−1/q,q = W 1−1/q,q(∂Ω)

(W−1,q(∂Ω), Lq(∂Ω))1−1/q,q = W−1/q,q(∂Ω)
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by [1, Theorem 7.48] and [34, Lemma 41.3]. Thus Oλ
Ω : W−1/q,q(∂Ω; Rm) →

W 1−1/q,q(∂Ω; Rm) is bounded by [8, Proposition 1.6 ].
Let f ∈ W−1/q,q(∂Ω; Rm). Choose fk ∈ Lq(∂Ω; Rm) such that fk → f in

W−1/q,q(∂Ω; Rm) as k → ∞. Let r > 0 be such that ∂Ω ⊂ B(0; r). Put
ω = Ω ∩B(0; r) and define f = 0, fk = 0 on ∂ω \ ∂Ω. Then Oλ

Ωf = Oλ
ωf ∈ W 1,q(ω)

and Oλ
Ωfk → Oλ

Ωf in W 1,q(ω) as k → ∞ by Lemma 5.2. Moreover, Oλ
Ωfk(x) is the

non-tangential limit of Oλ
Ωfk for almost all x ∈ ∂Ω by Lemma 12.3. Since the non-

tangential limit is equal to the trace for functions from W 1,q
loc (Ω) by Lemma 12.2,

we infer that γΩOλ
Ωfk = Oλ

Ωfk. Since γω : W 1,q(ω) → W 1−1/q,q(∂ω) is continuous,
we obtain γΩOλ

Ωf = Oλ
Ωf . �

Lemma 5.4. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, m = 2
or m = 3. Suppose that λ 6= 0, 0 ≤ s ≤ 1 and 1 < q < ∞. Then KΩ,λ is a bounded
linear operator on W s,q(∂Ω, Rm), and KΩ,λ − KΩ,0 is compact on W s,q(∂Ω, Rm).
The operator K ′

Ω,λ can be extended as a continuous operator on W−s,q(∂Ω, Rm).

Proof. KΩ,λ is a bounded operator on Lq(∂Ω, Rm) and on W 1,q(∂Ω, Rm), and
KΩ,λ−KΩ,0 is compact on Lq(∂Ω, Rm) and on W 1,q(∂Ω, Rm) by [24, Corollary 3.3],
[24, Proposition 3.5], [21, Proposition 3.1] and [21, Proposition 3.2]. Let now
0 < s < 1. We use the real interpolation. Since

(Lq(∂Ω, Rm),W 1,q(∂Ω, Rm))s,q = W s,q(∂Ω, Rm)

by [36, §7.3.1, Theorem], [34, Lemma 22.3] gives that KΩ,λ is a bounded operator
on W s,q(∂Ω, Rm). Moreover, KΩ,λ − KΩ,0 is compact on W s,q(∂Ω, Rm) by [11,
Theorem 1.1].

Put q′ = q/(q − 1). Since K ′
Ω,λ is the adjoint operator of KΩ,λ, and KΩ,λ is

bounded on W s,q′(∂Ω, Rm), K ′
Ω,λ is bounded on W−s,q(∂Ω, Rm). �

Lemma 5.5. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, m =
2 or m = 3. Suppose that λ 6= 0, 1 < q < ∞ and h ∈ L∞(∂Ω). If f ∈
W−1/q,q(∂Ω; Rm), then (u, p) := (Oλ

Ωf , QΩf) ∈ W 1,q
loc (Ω; Rm) × Lq

loc(Ω) is a weak
solution of (1.1), (3.1) with g = 1

2 f −K ′
Ω,λf + hOλ

Ωf .

Proof. According to Lemma 5.3 we can suppose h ≡ 0. If f ∈ W−1/q,q(∂Ω; Rm),
then (Oλ

Ωf , QΩf) ∈ W 1,q
loc (Ω; Rm)× Lq

loc(Ω) by Lemma 5.3 and [24, Theorem 4.4].
Suppose first that f ∈ Lq(∂Ω; Rm) and Ω is bounded. (See the Appendix for

the definition of the non-tangential cone Γa(x), a non-tangential maximal function
Ma(v) and a non-tangential limit vΩ.) According to Lemma 12.3 and Lemma 12.4
there exist non-tangential limits of Oλ

Ωf , ∇Oλ
Ωf and QΩf at almost all points of ∂Ω

and

[Tλ(Oλ
Ωf , QΩf)n]Ω =

1
2
f −K ′

Ω,λf a.e. on ∂Ω,

‖Ma(QΩf)‖Lq(∂Ω) + ‖Ma(∇Oλ
Ωf)‖Lq(∂Ω) + ‖Ma(Oλ

Ωf)‖Lq(∂Ω) ≤ C‖f‖Lq(∂Ω).

According to [38, Theorem 1.12] there is a sequence of domains Ωj with boundaries
of class C∞ such that

• Ωj ⊂ Ω.
• There are a > 0 and homeomorphisms Λj : ∂Ω → ∂Ωj , such that Λj(y) ∈

Γa(y) for each j and each y ∈ ∂Ω and sup{|y − Λj(y)|;y ∈ ∂Ω} → 0 as
j →∞.
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• There are positive functions ωj on ∂Ω bounded away from zero and infinity
uniformly in j such that for any measurable set E ⊂ ∂Ω,

∫
E

ωj dσ =∫
Λj(E)

1 dσ, and so that ωj → 1 point-wise a.e. and in every Ls(∂Ω),
1 ≤ s < ∞.

• The normal vectors to Ωj , n(Λj(y)), converge point-wise a.e. and in every
Ls(∂Ω), 1 ≤ s < ∞, to n(y).

Fix Φ ∈ C∞c (Rm, Rm). According to Lebesgue’s lemma and Green’s formula we
obtain∫

∂Ω

Φ·
[
1
2
f −K ′

Ω,λf
]

dσ = lim
j→∞

∫
∂Ωj

Φ·Tλ(u, p)n dσ = lim
j→∞

∫
Ωj

[2∇̂u·∇̂Φ−p(∇·Φ)

+
λ

2
(Φ · ∂1u− u · ∂1Φ)] dx =

∫
Ω

[2∇̂u · ∇̂Φ− p(∇ ·Φ) +
λ

2
(Φ · ∂1u− u · ∂1Φ)] dx.

Suppose now that Ω is bounded and f ∈ W−1/q,q(∂Ω; Rm). Choose fk ∈
Lq(∂Ω; Rm) such that fk → f in W−1/q,q(∂Ω; Rm) as k → ∞. Denote (uk, pk) :=
(Oλ

Ωfk, QΩfk). Fix Φ ∈ C∞c (Rm, Rm). According to Lemma 5.4 and Lemma 5.2〈
1
2
f −K ′

Ω,λf ,Φ
〉

= lim
k→∞

∫
∂Ω

Φ ·
[
1
2
fk −K ′

Ω,λfk

]
dσ

= lim
k→∞

∫
Ω

[2∇̂uk · ∇̂Φ− pk(∇ ·Φ) +
λ

2
(Φ · ∂1uk − uk · ∂1Φ)] dx

=
∫

Ω

[2∇̂u · ∇̂Φ− p(∇ ·Φ) +
λ

2
(Φ · ∂1u− u · ∂1Φ)] dx.

Suppose now that Ω is unbounded and f ∈ W−1/q,q(∂Ω; Rm). Let us fix Φ ∈
C∞c (Rm, Rm). Choose r ∈ (0,∞) such that Φ is supported in B(0; r). Denote
ω := Ω ∩ B(0; r). Define f = 0 on ∂ω \ ∂Ω. Clearly K ′

ω,λf = K ′
Ω,λf on ∂Ω. Since

Φ = 0 on ∂ω \ ∂Ω, one has〈
1
2
f −K ′

Ω,λf ,Φ
〉

=
〈

1
2
f −K ′

ω,λf ,Φ
〉

=
∫

ω

[2∇̂u · ∇̂Φ− p(∇ ·Φ) +
λ

2
(Φ · ∂1u

−u · ∂1Φ)] dx =
∫

Ω

[2∇̂u · ∇̂Φ− p(∇ ·Φ) +
λ

2
(Φ · ∂1u− u · ∂1Φ)] dx.

�

Lemma 5.6. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, m = 2
or m = 3. Let λ ∈ R1. If 1 < p ≤ 2 ≤ q < ∞ then 1

2I ± KΩ,λ are Fredholm
operators with index 0 in Lq(∂Ω, Rm) and in W 1,p(∂Ω, Rm).

Proof. For λ = 0 see [30, Corollary 9.1.2]. Since KΩ,λ − KΩ,0 is compact on
Lq(∂Ω, Rm) and on W 1,q(∂Ω, Rm) by Lemma 5.4, we obtain the Lemma. �

6. Liouville’s theorem for the Oseen system

Lemma 6.1. Let λ ∈ R1\{0}, p be a distribution in Rm and u1, . . . , um be tempered
distributions in Rm. If −∆u + λ∂1u + ∇p = 0, ∇ · u = 0 in Rm in the sense of
distributions, then u1, . . . , um and p are polynomials.
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Proof. See [27, Lemma 1] if p is a tempered distribution. Let now p be general.
Since ∂αuj is a tempered distribution for arbitrary multi-index α, we infer that
∂jp = ∆uj − λ∂1uj is a tempered distribution. Since −∆∂ju + λ∂1∂ju +∇∂jp =
0, ∇ · ∂ju = 0 in Rm, we deduce that ∂ju1, . . . , ∂jum and ∂jp are polynomials.
Therefore u1, . . . , um and p are polynomials. �

7. Integral representation

Proposition 7.1. Let Ω ⊂ Rm be a bounded open set with Lispchitz boundary,
λ ∈ R1, 1 < q < ∞, h ≡ 0. If (u, p) ∈ W 1,q(Ω; Rm) × Lq(Ω) is a weak solution of
the Neumann problem (1.1), (3.1) then

(7.1) u = Oλ
Ωg +Dλ

ΩγΩu, p = QΩg + Πλ
ΩγΩu.

Proof. Fix x ∈ Ω. Fix r > 0 such that B(x; r) ⊂ Ω. Put U := B(x; r), ω := Ω \ U ,
F := Tλ(u, p)nU on ∂U , G := g on ∂Ω, G := −F on ∂U . Since (u, p) is a classical
solution of the problem

(7.2) ∇p−∆u + λ∂1u = 0, ∇ · u = 0 in U, Tλ(u, p)nU = F on ∂U,

one has

(7.3) u(x) = Oλ
UF(x) +Dλ

Uu(x), p = QUF + Πλ
Uu

by [21, Proposition 3.4]. Since (u, p) is a weak solution of the problem (7.2), (u, p)
is a weak solution of the problem

∇p−∆u + λ∂1u = 0, ∇ · u = 0 in ω, Tλ(u, p)nω = G on ∂ω.

Fix k ∈ {1, . . . ,m} and put Φ(y) := (Oλ
1k(x−y), . . . , Oλ

mk(x−y)), ϕ(y) := Qk(x−
y), Φ̃(y) := (Oλ

1,m+1(x−y), . . . , Oλ
m,m+1(x−y)), ϕ̃(y) := Qm+1(x−y). Remember

that
−∆Φ− λ∂1Φ +∇ϕ = 0, ∇ ·Φ = 0 in ω,

−∆Φ̃− λ∂1Φ̃ +∇ϕ̃ = 0, ∇ · Φ̃ = 0 in ω.

According to the Green formula

[Oλ
ωG(x)]k = 〈G,Φ〉 =

∫
ω

[2∇̂u · ∇̂Φ +
λ

2
(Φ · ∂1u− u∂1Φ)] dy = −[Dλ

ωu(x)]k,

QωG(x) = 〈G, Φ̃〉 =
∫

ω

[2∇̂u · ∇̂Φ̃ +
λ

2
(Φ̃ · ∂1u− u∂1Φ̃)] dy = −Πλ

ωu(x).

Adding with (7.3) we obtain (7.1). �

Proposition 7.2. Let Ω ⊂ Rm be an unbounded open set with compact Lispchitz
boundary, λ ∈ R1 \ {0}, 1 < q < ∞, h ≡ 0. Suppose that (u, p) ∈ W 1,q

loc (Ω; Rm) ×
Lq

loc(Ω) is a weak solution of the Neumann problem (1.1), (3.1). Suppose that u is
bounded at infinity or ∂ju ∈ Lq(Ω; Rm) for j = 1, . . . ,m. Then there exist u∞ ∈ R3

and p∞ ∈ R1 such that u(x) → u∞, p(x) → p∞ as |x| → ∞ and

(7.4) u = Oλ
Ωg +Dλ

ΩγΩu + u∞, p = QΩg + Πλ
ΩγΩu + p∞.

Proof. Choose r ∈ (0,∞) such that ∂Ω ⊂ B(0; r) and put G := Ω∩B(0; r). Define
g := Tλ(u, p)nG on ∂B(0; r). Then

(7.5) u = Oλ
Gg +Dλ

GγGu, p = QGg + Πλ
GγGu in G



WEAK SOLUTIONS OF THE ROBIN PROBLEM FOR THE OSEEN SYSTEM 9

by Proposition 7.1. So, if we define

(7.6) v =
{

u−Oλ
Ωg −Dλ

ΩγΩu, in Ω,
Oλ

B(0;r)g +Dλ
B(0;r)γB(0;r)u, in B(0; r),

(7.7) τ =
{

p−QΩg −Πλ
ΩγΩu, in Ω,

QB(0;r)g + Πλ
B(0;r)γB(0;r)u, in B(0; r),

then v, τ are well defined on Ω ∩ B(0; r). Clearly, (v, τ) is a solution of (1.1) in
Rm. Moreover, v1, . . . , vm are tempered distributions. (See [28, Lemma 1.25.9].)
Lemma 6.1 gives that τ, v1, . . . , vm are polynomials.

We now show that v is constant. If u is bounded at infinity, then v is bounded at
infinity and therefore v ≡ u∞ for some constant u∞. Let now ∂juk ∈ Lq(Ω). Since
∂jO

λ
Ωg(x) + ∂jDλ

ΩγΩu(x) → 0 as |x| → ∞ and ∂jvk = ∂juk − ∂jO
λ
Ωgk − ∂jDλ

ΩγΩuk

is a polynomial, we deduce that ∂jvk ≡ 0. Therefore there exists u∞ ∈ Rm such
that v ≡ u∞.

The equation (1.1) gives ∇τ ≡ 0. So, there exists p∞ ∈ R1 such that τ ≡ p∞.
Thus (7.4) holds. Properties of the fundamental solution give that p(x) → p∞,
u(x) → u∞ as |x| → ∞. �

8. Solvability of the problem (1.1), (3.1)

Let Ω ⊂ Rm be a domain with compact Lipschitz boundary, m = 2 or m = 3,
and λ 6= 0. Let G(1), . . . , G(k) be all bounded components of Rm\Ω. Fix open balls
B(j) such that B(j) ⊂ G(j). It is a tradition to look for a solution of the Robin
problem in the form of a single layer potential. Unfortunately, it is not possible for
domains with holes. We look for a solution of the Robin problem (1.1), (3.1) by
virtue of a modified Oseen single layer potential. Choose Ψj ∈ W 1,∞(∂G(j), Rm)
such that

(8.1)
∫

∂G(j)

Ψj · nΩ dσ 6= 0.

For f ∈ W−1/q,q(∂Ω, Rm) with 1 < q < ∞ define the modified Oseen single layer
potential by

(8.2) Õλ
Ωf := Oλ

Ωf +
k∑

j=1

(Dλ
B(j)n

B(j))〈f ,Ψj〉,

(8.3) Q̃λ
Ωf := QΩf +

k∑
j=1

(Πλ
B(j)n

B(j))〈f ,Ψj〉.

(If Ω is a bounded domain with connected boundary then Õλ
Ωf = Oλ

Ωf , Q̃λ
Ωf = QΩf .)

Put

τλ
h,Ωf :=

1
2
f −K ′

Ω,λf +
k∑

j=1

[Tλ(Dλ
B(j)n

B(j),Πλ
B(j)n

B(j))nΩ]〈f ,Ψj〉+ hÕλ
Ωf .

Then (u, p) = (Õλ
Ωf , Q̃λ

Ωf) is a weak solution of the problem (1.1), (3.1) in the space
W 1,q

loc (Ω; Rm)× Lq
loc(Ω) if and only if τλ

h,Ωf = g. (See Lemma 5.5.)
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Proposition 8.1. Let Ω ⊂ Rm be a domain with compact Lipschitz boundary,
m = 2 or m = 3. Let λ ∈ R1, 1 < q < ∞, h ∈ L∞(∂Ω). Suppose that 3/2 < q < 3
or ∂Ω is of class C1. Then 1

2I ± K ′
Ω,λ and τλ

h,Ω are bounded Fredholm operators
with index 0 in W−1/q,q(∂Ω, Rm), and 1

2I ±KΩ,λ are bounded Fredholm operators
with index 0 in W 1−1/q,q(∂Ω, Rm).

Proof. First we show that 1
2I±KΩ,λ are bounded Fredholm operators with index 0

in W 1−1/q,q(∂Ω, Rm). If ∂Ω is of class C1, then 1
2I ±KΩ,0 are Fredholm operators

with index 0 in W 1−1/q,q(∂Ω, Rm) by [24, p. 232]. Since KΩ,λ −KΩ,0 is compact
in W 1−1/q,q(∂Ω, Rm) by Lemma 5.4, 1

2I ±KΩ,λ are Fredholm operators with index
0 in W 1−1/q,q(∂Ω, Rm). Let now 3/2 < q < 3. Since 1/2 < q − 1 < 2 there exist
p, r′ ∈ (1, 2) such that q − 1 = p/r′. Denote r = r′/(r′ − 1). Now we use the real
interpolation. Put θ = 1−1/q. Since (1−θ)/r+θ/p = (1/q)[1/r+(q−1)/p] = 1/q,
one has

[Lr(∂Ω),W 1,p(∂Ω)]θ,q = W 1−1/q,q(∂Ω).
(Compare [14, Corollary 6.8].) Remark that r ∈ (2,∞). Lemma 5.6 gives that
1
2I ± KΩ,λ are bounded Fredholm operators with index 0 in W 1,p(∂Ω, Rm) and
in Lr(∂Ω, Rm). So, 1

2I ± KΩ,λ are bounded Fredholm operators with index 0 in
W 1−1/q,q(∂Ω, Rm) by [28, Proposition 1.10.4].

Denote q′ = q/(q − 1). We have proved that 1
2I ±KΩ,λ are bounded Fredholm

operators with index 0 in W 1−1/q′,q′(∂Ω, Rm). The duality argument gives that
1
2I±K ′

Ω,λ are bounded Fredholm operators with index 0 in [W 1−1/q′,q′(∂Ω, Rm)]′ =
W−1/q,q(∂Ω, Rm).

The operator τλ
h,Ω − [ 12I −K ′

Ω,λ] is compact in W−1/q,q(∂Ω, Rm) by Lemma 5.3.
Hence τλ

h,Ω is a Fredholm operator with index 0 in W−1/q,q(∂Ω, Rm). �

Lemma 8.2. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, λ ∈
R1 \ {0}, h ∈ L∞(∂Ω), h ≥ 0, g ∈ W−1/2,2(∂Ω; Rm). Suppose that (u, p) is a
weak solution of the Robin problem (1.1), (3.1) in W 1,2

loc (Ω; Rm) × L2
loc(Ω). If Ω is

unbounded suppose moreover u(x) → 0, p(x) → 0 as |x| → ∞. If γΩu = 0 on ∂Ω
then u ≡ 0. If g ≡ 0, then u ≡ 0 and p ≡ 0.

Proof. Suppose that g ≡ 0 or γΩu = 0 on ∂Ω. If Ω is bounded then

(8.4) 0 = 〈g, γΩu〉 = 2
∫

Ω

|∇̂u|2 dx +
∫

∂Ω

h|u|2 dσ.

Suppose now that Ω is unbounded. Define h = 0 on Rm \ ∂Ω. Choose r0 > 0
such that ∂Ω ⊂ B(0; r0). For r > r0 denote Ω(r) = Ω ∩ B(0; r), gr = g on ∂Ω,
gr = Tλ(u, p)nΩ(r) on ∂Ω(r) \ ∂Ω. Then (u, p) is a weak solution of

∇p−∆u + λ∂1u = 0 ∇ · u = 0 in Ω(r),

Tλ(u, p)n + hu = gr on ∂Ω(r).
Thus

(8.5) 〈gr, γΩ(r)u〉 = 2
∫

Ω(r)

|∇̂u|2 dx +
∫

∂Ω

h|u|2 dσ.

Proposition 7.2 gives u = Oλ
Ω(g − hγΩu) + Dλ

ΩγΩu, p = QΩ(g − hγΩu) + Πλ
ΩγΩu.

According to (4.1) there exists a constant C such that

|u(ry)||Tλ(u(ry), p(ry)| ≤ Cr1−m for |y| = 1.
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If y 6= [c, 0, . . . , 0] then |u(ry)||Tλ(u(ry), p(ry)|rm−1 → 0 as r →∞ by (4.2). Since
〈g, γΩu〉 = 0, we get from (8.5) using Lebesgues lemma

2
∫

Ω

|∇̂u|2 dx +
∫

∂Ω

h|u|2 dσ = lim
r→∞

2
∫

Ω(r)

|∇̂u|2 dx +
∫

∂Ω

h|u|2 dσ

= lim
r→∞

〈gr, γΩ(r)u〉 = lim
r→∞

∫
∂B(0;1)

rm−1u(ry) · Tλ(u(ry), p(ry))n(y) dσ(y) = 0.

Since (8.4) holds, we infer ∇̂u = 0 in Ω. So, [26, Lemma 3.1] gives that u is
linear. Thus ∆u ≡ 0, ∇p = −λ∂1u and p ∈ C∞(Ω). If γΩu = 0 on ∂Ω, then u ≡ 0
by the maximum principle for the Laplace equation. If g ≡ 0, then u ≡ 0, p ≡ 0
by [27, Theorem 1]. �

Theorem 8.3. Let Ω ⊂ Rm be a domain with compact Lipschitz boundary, m = 2
or m = 3. Let λ ∈ R1 \ {0}, 1 < q < ∞, h ∈ L∞(∂Ω), h ≥ 0. Suppose that 3/2 <
q < 3 or ∂Ω is of class C1. Then τλ

h,Ω is an isomorphism on W−1/q,q(∂Ω, Rm). Let
g ∈ W−1/q,q(∂Ω, Rm). Put

(8.6) u := Õλ
Ω[τλ

h,Ω]−1g, p := Q̃λ
Ω[τλ

h,Ω]−1g.

If Ω is bounded then (u, p) is a unique weak solution of the Robin problem (1.1),
(3.1) in W 1,q(Ω, Rm) × Lq(Ω). If Ω is unbounded then (u, p) is a unique weak
solution of the Robin problem (1.1), (3.1),

(8.7) u(x) → 0, p(x) → 0 as |x| → ∞

in W 1,q
loc (Ω, Rm)× Lq

loc(Ω).

Proof. Let us remark that

W 1−1/q(2),q(2)(∂Ω) ↪→ W 1−1/q(1),q(1)(∂Ω), W−1/q(2),q(2)(∂Ω) ↪→ W−1/q(1),q(1)(∂Ω)

for 1 < q(1) < q(2) < ∞ by [35, Theorem 1.97].
Let now (ũ, p̃) be a weak solution of the Robin problem (1.1), (3.1) with g ≡ 0 in

W 1,q
loc (Ω, Rm) × Lq

loc(Ω). If Ω is unbounded suppose moreover ũ(x) → 0, p̃(x) → 0
as |x| → ∞. Since Tλ(ũ, p̃)nΩ = −hγΩũ, Proposition 7.1 and Proposition 7.2 give

(8.8) ũ = −Oλ
Ω(hγΩũ) +Dλ

ΩγΩũ, p̃ = −QΩ(hγΩũ) + Πλ
ΩγΩũ in Ω.

According to Lemma 5.3, Lemma 12.2 and Lemma 12.4

γΩũ = −Oλ
Ω(hγΩũ) +

1
2
γΩũ + KΩ,λγΩũ on ∂Ω.

Define

Lf :=
1
2
f −KΩ,λf +Oλ

Ωhf .

We have proved that L(γΩũ) = 0. Moreover, γΩũ ∈ W 1−1/q,q(∂Ω; Rm). The opera-
tor L is a Fredholm operator with index 0 in W 1−1/q,q(∂Ω; Rm), in W 1/2,2(∂Ω; Rm)
and in W 1,2(∂Ω; Rm) by Proposition 8.1, Lemma 5.6 and Lemma 5.3. Thus γΩũ ∈
W 1,2(∂Ω; Rm) by [28, Lemma 1.8.4]. So, (ũ, p̃) ∈ W 1,2

loc (Ω, Rm)× L2
loc(Ω) by (8.8),

Lemma 5.3, Lemma 5.2, [30, Theorem 10.5.1], [21, Proposition 3.2] and [28, Lemma
1.28.1]. Lemma 8.2 gives that ũ ≡ 0, p̃ ≡ 0.
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Let f ∈ W−1/q,q(∂Ω, Rm) and τλ
h,Ωf = 0. Then (Õλ

Ωf , Q̃λ
Ωf) is a weak solution

of the problem (1.1), (3.1) with g ≡ 0 in W 1,q
loc (Ω, Rm)× Lq

loc(Ω). We have proved
that Õλ

Ωf = 0 and Q̃λ
Ωf = 0 in Ω. The Green formula gives∫

∂G(i)

nG(i) · Oλ
Ωf dσ =

∫
G(i)

∇ ·Oλ
Ωf dx = 0, i = 1, . . . , k,

∫
∂G(i)

nG(i) ·Dλ
B(j)n

B(j) dσ =
∫

G(i)

∇ ·Dλ
B(j)n

B(j) dx = 0, i 6= j.

Thus

(8.9) 0 =
∫

∂G(i)

nG(i) · Õλ
Ωf dσ = 〈f ,Ψi〉

∫
∂G(i)

nG(i) ·Dλ
B(i)n

B(i) dx.

Using Lemma 12.4 and Lemma 12.5 for Dλ
B(i)n

B(i) on B(i) and on G(i) \ B(i) we
obtain ∫

∂B(i)

nB(i) ·
(

1
2
nB(i) + KB(i),λnB(i)

)
dσ = 0,∫

∂B(i)

nB(i) ·
(
−1

2
nB(i) + KB(i),λnB(i)

)
dσ +

∫
∂G(i)

nG(i) ·Dλ
B(i)n

B(i) dx = 0.

Hence ∫
∂G(i)

nG(i) ·Dλ
B(i)n

B(i) dx =
∫

∂B(i)

nB(i) · nB(i) dσ 6= 0.

According to (8.9) we have

(8.10) 〈f ,Ψi〉 = 0, i = 1, . . . , k.

Thus Oλ
Ωf = Õλ

Ωf = 0 and QΩf = Q̃λ
Ωf = 0 in Ω. So,

(8.11)
1
2
f −K ′

Ω,λf = 0

by Lemma 5.5 and Oλ
Ωf = 0 on ∂Ω by Lemma 5.3. Using Lemma 8.2 for (Oλ

Ωf , QΩf)
on ω = Rm \ Ω we obtain Oλ

Ωf = 0 in ω. Since ∇QΩf = ∆Oλ
Ωf − λOλ

Ωf = 0 in ω,
the function QΩf is locally constant in ω. So, if S is a component of ∂ω, then there
exists a constant cS such that

1
2
f −K ′

ω,λf = cSnω on S

by Lemma 5.5. Since K ′
Ω,λ = −K ′

ω,λ we get by adding (8.11) that f = −cSnΩ on
S. (8.10) and (8.1) give that c∂G(i) = 0. So, if Ω is unbounded then f ≡ 0. Let
now Ω be bounded. Denote by C the boundary of the unbounded component of ω.
Then f = 0 on ∂Ω \ C, f = cnΩ on C. According to [26] we have QΩf = c in Ω.
Therefore

1
2
f −K ′

Ω,λf = Tλ(Oλ
Ωf , QΩf)nΩ = −cnΩ.

(8.11) gives that c = 0 and thus f ≡ 0.
τλ
h,Ω is a Fredholm operator with index 0 in W−1/q,q(∂Ω, Rm) by Proposition 8.1.

Since the kernel of τλ
h,Ω is trivial, τλ

h,Ω is an isomorphism in W−1/q,q(∂Ω, Rm). So,
(u, p) given by (8.6) is a weak solution of the problem (1.1), (3.1) in W 1,q

loc (Ω, Rm)×
Lq

loc(Ω). If Ω is unbounded then (8.7) holds. �
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9. Non-homogeneous system on bounded domains

Suppose that Ω ⊂ Rm is a bounded open set with Lipschitz boundary. If u ∈
C2(Ω; Rm), p ∈ C1(Ω) and

∇p−∆u + λ∂1u = f in Ω, ∇ · u = 0 in Ω,

Tλ(u, p)n + hu = g on ∂Ω

and Φ ∈ C∞c (Rm, Rm), then the Green formula gives∫
Ω

f ·Φ dx +
∫

∂Ω

g ·Φ dσ =
∫

Ω

[2∇̂u · ∇̂Φ− p(∇ ·Φ)

+
λ

2
(Φ · ∂1u− u · ∂1Φ)] dx +

∫
∂Ω

hu ·Φ dσ.

(Compare [37, p. 14].) If we define

〈F,Φ〉 :=
∫

Ω

f ·Φ dx +
∫

∂Ω

g ·Φ dσ,

then∫
Ω

[2∇̂u · ∇̂Φ− p(∇ ·Φ) +
λ

2
(Φ · ∂1u− u · ∂1Φ)] dx +

∫
∂Ω

hu ·Φ dσ = 〈F,Φ〉.

We can formally write that

(9.1) [∇p−∆u + λ∂1u]|Ω + [Tλ(u, p)n + hu]|∂Ω = F.

We can interpret (9.1) and ∇ · u = 0 as

(9.2a) ∇p−∆u + λ∂1u = F|Ω in Ω, ∇ · u = 0 in Ω,

(9.2b) Tλ(u, p)n + hu = F|∂Ω on ∂Ω.

This motivates the following definition of a weak solution of (9.2):
Let 1 < q < ∞, q′ = q/(q − 1), F ∈ [W 1,q′(Ω, Rm)]′. We say that (u, p) ∈

W 1,q(Ω, Rm)×Lq(Ω) is a weak solution of the problem (9.2) (or equivalently of the
problem (9.1)) if ∇ · u = 0 and∫

Ω

[2∇̂u · ∇̂Φ− p(∇ ·Φ) +
λ

2
(Φ · ∂1u−u · ∂1Φ)] dx +

∫
∂Ω

hγΩu · γΩΦ dσ = 〈F,Φ〉

for all Φ ∈ W 1,q′(Ω, Rm) (equivalently for all Φ ∈ C∞c (Rm, Rm)).
Since C2(Ω; Rm)×C1(Ω) is a dense subset of W 1,q(Ω, Rm)×Lq(Ω), every defini-

tion of the Robin problem for the Oseen system in W 1,q(Ω, Rm)× Lq(Ω) agreeing
to classical solutions must be equivalent with our definition.

If (u, p) ∈ W 1,q(Ω, Rm) × Lq(Ω) is a weak solution of the problem (9.2) and
Φ ∈ C∞c (Ω; Rm) then the Green formula gives

〈F,Φ〉 = −
∫

Ω

[u · (∆Φ + λ∂1Φ) + p∇ ·Φ] dx,

i.e. ∇p−∆u + λ∂1u = F in Ω in the sense of distributions.
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Theorem 9.1. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary, and m =
2 or m = 3. Suppose that λ ∈ R1 \ {0}, 1 < q < ∞, h ∈ L∞(∂Ω), h ≥ 0. Assume
that 3/2 < q < 3 or ∂Ω is of class C1. Denote q′ = q/(q−1). If F ∈ [W 1,q′(Ω, Rm)]′

then there exists a unique weak solution (u, p) ∈ W 1,q(Ω, Rm)×Lq(Ω) of the Robin
problem (9.2). Moreover,

‖u‖W 1,q(Ω) + ‖p‖Lq(Ω) ≤ C‖F‖[W 1,q′ (Ω,Rm)]′

where C does not depend on F.

Proof. The uniqueness of a solution of the problem follows from Theorem 8.3.
Denote X := {(u, p) ∈ W 1,q(Ω, Rm)×Lq(Ω);∇ ·u = 0 in Ω}. Define a mapping

Z : X → [W 1,q(Ω, Rm)]′ by

〈Z(u, p),Φ〉 :=
∫

Ω

[2∇̂u·∇̂Φ−p(∇·Φ)+
λ

2
(Φ·∂1u−u·∂1Φ)] dx+

∫
∂Ω

hγΩu·γΩΦ dσ.

Then Z is continuous.
Let now F ∈ [W 1,q′(Ω, Rm)]′. For Φ ∈ W 1,q′(Rm, Rm) we denote 〈F̃,Φ〉 :=

〈F,Φ|Ω〉. Then F̃ ∈ [W 1,q′(Rm, Rm)]′ = W−1,q(Rm, Rm) has compact support.
Lemma 5.1 gives that (Ŏλ ∗ F̃, Q ∗ F̃) ∈ W 1,q(Ω, Rm) × Lq(Ω). Properties of the
fundamental solution give that∇·(Ŏλ∗F̃) = 0, ∇(Q∗F̃)−∆(Ŏλ∗F̃)+λ∂1(Ŏλ∗F̃) =
F̃. Denote G := Z(Ŏλ ∗ F̃, Q ∗ F̃). Then (Ŏλ ∗ F̃, Q ∗ F̃) is a weak solution of the
problem

∇p̃−∆ũ + λ∂1ũ = G|Ω, ∇ · ũ = 0 in Ω,

Tλ(ũ, p̃)nΩ + hu = G|∂Ω on ∂Ω.

So, F − G ∈ [W 1,q′(Ω, Rm)]′, G = F in Ω. Lemma 12.1 gives that F − G ∈
W−1/q,q(∂Ω, Rm). According to Theorem 8.3 there exists a weak solution (û, p̂) ∈
W 1,q(Ω, Rm)× Lq(Ω) of the problem

∇p̂−∆û + λ∂1û = 0, ∇ · û = 0 in Ω,

Tλ(û, p̂)nΩ + hu = F−G on ∂Ω.

Thus (u, p) := (Ŏλ ∗ F̃, Q ∗ F̃) + (û, p̂) ∈ W 1,q(Ω, Rm) × Lq(Ω) is a weak solution
of the Robin problem (9.2).

Z is an injective continuous linear mapping X onto [W 1,q′(Ω, Rm)]′. So, it is an
isomorphism. �

10. Function spaces on unbounded domains

It is well known that it is not reasonable to study boundary value problems for
unbounded domains in Sobolev spaces. So, boundary value problems are studied
in homogeneous Sobolev spaces (see for example [13], [16], [17], [18], [19],[20]) or in
weighted Sobolev spaces (see for example [3], [4], [5], [15]).

Let Ω ⊂ Rm be a domain (i.e. an open connected set). For 1 < q < ∞ we define
the homogeneous Sobolev space Dk,q(Ω) := {u ∈ L1

loc(Ω); ∂βu ∈ Lq(Ω) ∀|β| = k}.
Then Dk,q(Ω) ⊂ W k,q

loc (Ω). Fix a bounded open set G such that G ⊂ Ω. Then
Dk,q(Ω) is a Banach space with the norm

‖u‖Dk,q(Ω),G := ‖u‖Lq(G) + ‖ |∇ku| ‖Lq(Ω).

Moreover, different choices of G give equivalent norms. (See [25, §1.5.3, Corol-
lary 2].) See more about homogeneous Sobolev spaces in the books [17] and [25].
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Members of [D1,q(Ω)]′ are not distributions in general. That is a reason why we
define some smaller space. Denote by W̃ 1,q(Ω) the closure of C∞c (Rm) in D1,q(Ω).
Clearly, [W̃ 1,q(Ω)]′ is formed by distributions.

Lemma 10.1. Suppose that Ω = Rm or Ω is a domain with compact Lipschitz
boundary, and 1 < q < ∞. Then D1,q(Ω) ⊂ W 1,q

loc (Ω). If Ω is bounded then
D1,q(Ω) = W 1,q(Ω) and the corresponding norms are equivalent.

(See [25, §1.5.2–§1.5.4] or [28, Proposition 1.25.2].)

Lemma 10.2. Let Ω ⊂ Rm be a domain such that Ω 6= Rm. Let 1 < q < ∞. Denote
by D̊1,q(Ω) the closure of C∞c (Ω) in D1,q(Ω). Then ‖∇ϕ‖Lq(Ω) is an equivalent norm
in D̊1,q(Ω).

(See [28, Lemma 1.25.4].)

Lemma 10.3. Let Ω ⊂ Rm be an unbounded domain with compact Lipchitz bound-
ary and 1 < q < ∞. Denote by P0(Rm) the space of constant functions on Rm.

• If q ≥ m then W̃ 1,q(Ω) = D1,q(Ω).
• If q < m then D1,q(Ω) = W̃ 1,q(Ω) ⊕ P0(Rm), and W̃ 1,q(Ω) is formed by

u ∈ D1,q(Ω) such that

(10.1) lim
r→∞

∫
∂B(0;1)

|u(rx)| dσ(x) = 0.

If we denote

‖u‖W̃ 1,q(Ω) := ‖∇u‖Lq(Ω),

then ‖u‖W̃ 1,q(Ω) is a norm on W̃ 1,q(Ω) equivalent to the norm induced from
D1,q(Ω).

Proof. If q ≥ m then W̃ 1,q(Ω) = D1,q(Ω) by [28, Lemma 3.38.11].
Let q < m. Then D1,q(Ω) = W̃ 1,q(Ω) ⊕ P0(Rm) by [28, Lemma 3.38.11]. So,

W̃ 1,q(Ω) is isomorphic with the factor space D1,q(Ω)/P0(Rm). Since ‖∇u‖Lq(Ω) is
an equivalent norm on D1,q(Ω)/P0(Rm) by [28, Lemma 1.25.5], it is an equivalent
norm on W̃ 1,q(Ω). Fix ϕ ∈ C∞c (Rm) such that ϕ = 1 on a neighborhood of Rm \Ω.
For u ∈ D1,q(Ω) define vu = (1 − ϕ)u in Ω, vu = 0 elsewhere. Then u ∈ W̃ 1,q(Ω)
if and only if vu ∈ D̊1,q(Ω). [28, Proposition 3.38.5] gives that u ∈ W̃ 1,q(Ω) if and
only if (10.1) holds. �

11. Non-homogeneous system on unbounded domains

Suppose that Ω ⊂ Rm is an unbounded domain with compact Lipschitz bound-
ary. Let F1, . . . , Fm be distributions in Rm, F = (F1, . . . , Fm), u ∈ W 1,q

loc (Ω, Rm)
and p ∈ Lq

loc(Ω) with 1 < q < ∞. We say that (u, p) is a weak solution of the
problem (9.2) if ∇ · u = 0 and∫

Ω

[2∇̂u · ∇̂Φ− p(∇ ·Φ) +
λ

2
(Φ · ∂1u−u · ∂1Φ)] dx +

∫
∂Ω

hγΩu · γΩΦ dσ = 〈F,Φ〉

for all Φ ∈ C∞c (Rm, Rm).
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Theorem 11.1. Let Ω ⊂ Rm be an unbounded domain with compact Lipschitz
boundary, and m = 2 or m = 3. Suppose that λ ∈ R1 \ {0}, h ∈ L∞(∂Ω), h ≥ 0.
Let q ∈ (2, 3) for m = 2, and q ∈ (3/2,∞) for m = 3. Suppose that 3/2 < q < 3 or
∂Ω is of class C1. Put q′ = q/(q − 1). Fix F ∈ [W̃ 1,q′(Ω, Rm)]′. Then there exists
a weak solution (u, p) ∈ W̃ 1,q(Ω, Rm)× Lq(Ω) of the Robin problem (9.2).

• For k = 1, . . . ,m denote bk = (δ1k, . . . , δmk). Then there exists a unique
weak solution (wk, τk) ∈ D1,q(Ω, Rm) × Lq(Ω) of (1.1), (3.1) with g ≡ 0
such that wk(x) → bk as |x| → ∞. Moreover, (w1, τ1), . . . , (wm, τm) are
linearly independent, and the general form of a weak solution (w, τ) of the
Robin problem (9.2) in D1,q(Ω, Rm)× Lq(Ω) is

(11.1) w = u +
m∑

k=1

ckwk, τ = p +
m∑

k=1

ckτk, cj ∈ R1.

(Remember that D1,q(Ω, Rm) = W̃ 1,q(Ω, Rm) for q ≥ m.)
• If m = 3 and 3/2 < q < 3 (i.e. if q < m) then (u, p) is a unique solution

of (9.2) in W̃ 1,q(Ω, Rm)× Lq(Ω).

Proof. First we show that there exists a solution (v, ρ) ∈ W̃ 1,q(Ω, Rm)× Lq(Ω) of
(9.2a). Fix z ∈ Rm and r ∈ (0,∞) such that B(z; 3r)∩Ω = ∅. Put ω := Rm\B(z; r).
For w ∈ D̊1,q′(Ω; Rm) define Ew = w in Ω, Ew = 0 elsewhere. Then X :=
{Ew;w ∈ D̊1,q′(Ω; Rm)} is a closed subspace of D̊1,q′(ω; Rm). Define F̃(Ew) :=
F(w) for w ∈ D̊1,q′(Ω, Rm). Then F̃ is a bounded linear operator on X. Remark
that F̃ = F in Ω in the sense of distributions. According to Hahn-Banach theorem
there exists F ∈ [D̊1,q′(ω, Rm)]′ such that F = F̃ on X. Lemma 10.2, [17, Theorem
VII.7.2 and Remark VII.7.3] give that there exists (w, ρ) ∈ D1,q(Rm, Rm)×Lq(Rm)
such that −∆w + λ∂1w + ∇ρ = F , ∇ ·w = 0 in Rm. According to Lemma 10.3
there exist c ∈ Rm and v ∈ W̃ 1,q(Ω, Rm) such that w = v + c. Clearly, (v, ρ) is a
solution of (9.2a).

For Φ ∈ C∞c (Rm, Rm) define

〈G,Φ〉 :=
∫

Ω

[2∇̂v · ∇̂Φ− ρ(∇ ·Φ) +
λ

2
(Φ · ∂1v − v · ∂1Φ)] dx +

∫
∂Ω

hv ·Φ dσ.

Then G = F in Ω. Choose r ∈ (0,∞) such that ∂Ω ⊂ B(0; r). Then g := G−F ∈
[W 1,q′(Ω ∩ B(0; r); Rm)]′. Since g is supported on ∂Ω, Lemma 12.1 gives that
g ∈ W−1/q,q(∂Ω, Rm). Put f := [τλ

h,Ω]−1g, ũ := Õλ
Ωf , p̃ := Q̃λ

Ωf . Theorem 8.3
gives that (ũ, p̃) ∈ W 1,q

loc (Ω, Rm) × Lq
loc(Ω) is a weak solution of (1.1), (3.1), (8.7).

Moreover, (ũ, p̃) ∈ W̃ 1,q(Ω, Rm) × Lq(Ω) by (4.1), (4.3) and Lemma 10.3. Thus
(u, p) := (v + ũ, ρ + p̃) ∈ W̃ 1,q(Ω, Rm) × Lq(Ω) is a weak solution of the problem
(9.2).

Put fk := [τλ
h,Ω]−1(h + n1/2)bk, wk := bk − Õλ

Ωfk, τk := −Q̃λ
Ωfk. Theorem 8.3

gives that (wk, τk) ∈ W 1,q
loc (Ω, Rm)×Lq

loc(Ω) is a unique weak solution of (1.1), (3.1)
with g ≡ 0 such that wk(x) → bk as |x| → ∞. Moreover, (wk, τk) ∈ D1,q(Ω, Rm)×
Lq(Ω) by (4.1) and (4.3). Since b1, . . . ,bm are linearly independent, we deduce that
(w1, τ1), . . . , (wm, τm) are linearly independent. If (w, τ) is given by (11.1), then
(w, τ) is a weak solution of the Robin problem (9.2) in D1,q(Ω, Rm)× Lq(∂Ω).

Let (w, τ) be a weak solution of the Robin problem (9.2) in D1,q(Ω, Rm)×Lq(Ω).
Then (w− u, τ − p) is a weak solution of (1.1), (3.1) with g ≡ 0 in D1,q(Ω, Rm)×
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Lq(Ω). According to Proposition 7.2 there exist τ∞ ∈ R1 and c = (c1, . . . , cm) ∈ Rm

such that (w(x)−u(x)) → c, (τ(x)−p(x)) → τ∞ as |x| → ∞. Since (τ−p) ∈ Lq(Ω)
we deduce that τ∞ = 0. Put

w̃ := w − u−
m∑

k=1

ckwk, τ̃ := τ − p−
m∑

k=1

ckτk.

Then (w̃, τ̃) is a weak solution of (1.1), (3.1), (8.7) with g ≡ 0 in D1,q(Ω, Rm) ×
Lq(Ω). Theorem 8.3 gives that (w̃, τ̃) ≡ 0. So, (w, τ) is given by (11.1).

Let now m = 3 and 3/2 < q < 3 (i.e. if q < m). Suppose that (w, τ) is a weak
solution of the Robin problem (9.2) in W̃ 1,q(Ω, Rm) × Lq(Ω). Then there exist
c1, . . . , cm such that (11.1) holds. Since u,w ∈ W̃ 1,q(Ω, Rm), Lemma 10.3 gives

0 = lim
r→∞

∫
∂B(0;1)

|u(rx)| dσ(x) = |c|.

Thus c1 = · · · = cm = 0 and w = u, τ = p. �

12. Appendix

12.1. Function spaces.

Lemma 12.1. Let Ω ⊂ Rm be a bounded open set with Lipschitz boundary, 1 <
q < ∞, q′ = q/(q − 1). Then {f ∈ [W 1,q′(Ω)]′; spt f ⊂ ∂Ω} = W−1/q,q(∂Ω).

Proof. γΩ : W 1,q′(Ω) → W 1/q,q′(∂Ω) is bounded. On the other hand, there exists
a bounded extension operator E : W 1/q,q′(∂Ω) → W 1,q′(Ω) by [23, Theorem 6.9.2].
Hence {f ∈ [W 1,q′(Ω)]′; spt f ⊂ ∂Ω} = [W 1/q,q′(∂Ω)]′ = W−1/q,q(∂Ω). �

12.2. Non-tangential limit. Let Ω ⊂ Rm be an open set with compact Lipschitz
boundary. If x ∈ ∂Ω, a > 0 denote the non-tangential approach regions of opening
a at the point x by

Γa(x) := {y ∈ Ω; |x− y| < (1 + a) dist(y, ∂Ω)}.

If v is a function defined in Ω then

vΩ(x) := lim
Γa(x)3y→x

v(y)

is the non-tangential limit of v at x. We denote the non-tangential maximal func-
tion of v on ∂Ω by

Ma(v)(x) = sup{|v(y)|;y ∈ Γa(x)}.

Lemma 12.2. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, and
1 < q < ∞. Let u ∈ W 1,q

loc (Ω). If there exists the non-tangential limit of u at almost
all points of ∂Ω, then the non-tangential limit of u is equal to the trace of u.

(See [9, Corollary 5.7].)

Lemma 12.3. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, m = 2
or m = 3. Suppose that λ ∈ R1 and 1 < q < ∞. If f ∈ Lq(∂Ω; Rm) then Oλ

Ωf(x) is
the non-tangential limit of Oλ

Ωf at x for almost all x ∈ ∂Ω and

‖Ma(Oλ
Ωf)‖Lq(∂Ω) ≤ C‖f‖Lq(∂Ω).

Proof. It is a consequence of [27, Proposition 1] and (4.4), (4.5). �
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Lemma 12.4. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, m = 2
or m = 3. Suppose that λ ∈ R1 and 1 < q < ∞. Then there exists a constant C
such that if f ∈ Lq(∂Ω, Rm) then

‖Ma(QΩf)‖Lq(∂Ω) + ‖Ma(∇Oλ
Ωf)‖Lq(∂Ω) + ‖Ma(Dλ

Ωf)‖Lq(∂Ω) ≤ C‖f‖Lq(∂Ω),

there exist non-tangential limits of QΩf , ∇Oλ
Ωf , Dλ

Ωf at almost all points of ∂Ω and

[Tλ(Oλ
Ωf , QΩf)n]Ω =

1
2
f −K ′

Ω,λf a.e. on ∂Ω,

[Dλ
Ωf ]Ω =

1
2
f + KΩ,λf a.e. on ∂Ω.

Proof. For λ = 0 see [30, Proposition 4.2.3 and Corollary 4.3.2] and [24, Proposi-
tion 3.2]. Let now λ 6= 0. Since there exists a constant c such that |∇(Oλ(x) −
O0(x))| ≤ c|x|3/2−m, the lemma is a consequence of [27, Proposition 1] and Lemma
12.3. �

Lemma 12.5. Let Ω ⊂ Rm be a bounded open set with Lipschitz boundary, m = 2
or m = 3. Suppose that λ ∈ R1 and 1 < q < ∞. If f ∈ Lq(∂Ω; Rm) then∫

∂Ω

nΩ · [Dλ
Ωf ]Ω dσ =

∫
∂Ω

nΩ ·
(

1
2
f + KΩ,λf

)
dσ = 0.

Proof. The lemma is a consequence of Lemma 12.4 and [29, Proposition 2.4 ]. �
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[13] Deuring, P., Kračmar, S.: Artificial boundary conditions for the Oseen system in 3D exterior
domains. Analysis 20, 65–90 (2000)

[14] Devore, R.A., Sharpley, R.C.: Besov spaces on domains in Rd. Trans. Math. Soc. 335, 843–864
(1993)

[15] Farwig, R.: The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in

anisotropically weighted Sobolev spaces. Math. Z. 211, 409–447 (1992)
[16] Finn, R.: On the exterior stationary problem for the Navier-Stokes equations, and associated

perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965)



WEAK SOLUTIONS OF THE ROBIN PROBLEM FOR THE OSEEN SYSTEM 19

[17] Galdi, G.P.: An introduction to the Mathematical Theory of the Navier-Stokes Equations,

Steady State Problems. Springer, New York – Dordrecht – Heidelberg – London (2011)

[18] Heck, H., Kim, H., Kozono, H.: Weak solutions of the stationary Navier-Stokes equations for
a viscous incompressible fluid past an obstacle. Math. Ann. 356, 653–681 (2013)

[19] Kim, D., Kim, H.: Lq-estimates for the stationary Oseen equations on exterior domains. J.

Diff. Equ. 257, 3669-3699 (2014)
[20] Kim, D., Kim, H., Park, S.: Very weak solutions of the stationary Stokes equations on exterior

domains. Adv. Diff. Equ. 20, 1119–1164 (2015)
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