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Abstract A bounded divergence measure field is a bounded measurable func-
tion q ¨ �q

1
ÙÜÙqn� on R

n whose weak divergence is a finite signed measure.
The Gauss-Green theorem for this class of fields on sets of finite perimeter was
established independently by Chen & Torres and the present author in 2005. To
emphasize the essentially simple nature of this result, I outline my original proof
with some amendments. In addition, future developments are briefly recapitulated
together with some remarks on the later proof by Chen, Torres & Ziemer.

AMS 2010 classification 26B20, 26B30, 28A75, 28A80, 28C05

Keywords Divergence measure fields, sets of finite perimeter, generalizedGauss-
Green theorems, normal traces

Contents

1 Introduction Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 1

2 Sets of finite perimeter Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 2

3 The Gauss-Green theorem Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 3

4 Complements and outlook Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 7

References Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 9

Acknowledgment This research was supported by RVO 67985840.



2. Sets of finite perimeter 2

1 Introduction

Bounded divergencemeasure fields are vectorfields q ¨ �q
1
ÙÜ Ùqn� X Lð�RnÙRn�

whose weak divergence div q is a finite signed measure on R
n [see Equation (6),

below]. They aremuchmore general than, say, bounded vectorfields with components
from BV�Rn�Ø In the latter case, each partial derivative ãqi¤ãxj , 1 ² iÙ j ² nÙ is
a measure, while in the former case, only the sum �

n
i¨1 ãqi¤ãxi is known to be a

measure, while the individual terms ãqi¤ãxi can be much wilder (not to speak about
the mixed derivatives ãqi¤ãxj , i © j ).

The Gauss-Green theorem for bounded divergence measure fields and open sets
with lipschitzian boundary has been proved by Anzellotti in the classical paper [2].
The theorem was generalized to sets of finite perimeter simultaneously and indepen-
dently in 2005 by Chen & Torres [7; Theorem 2] and Šilhavý [15; Theorem 4.4(i)].
These papers present identical, and final, forms of the Gauss-Green theorem for this
class; the proofs are different, though. The theoremwas later re-derived by Chen, Tor-
res& Ziemer [8] (as corrected in [9]). The approach in [8] is based on approximations
of the set of finite perimeter by smooth sets and the use of the classical Gauss-Green
theorem for these smooth sets. As declared by the authors, the main theorem of [8]
is Theorem 5.2, a detailed account of the approximation. The Gauss-Green theorem,
identical to that in [7] and [15], is Theorem 5.3.

I do not believe that the complicated apparatus of approximations by “nicer” sets
as in [8] increases the “credibility” of the Gauss-Green theorem for the present class.
No analogous extra support is given to the Federer-De Giorgi version of the Gauss-
Green theorem for lipschitzian functions and sets of finite perimeter. What is needed
in applications is the Gauss-Green theorem per se. In line with these ideas, Comi &
Payne, in their recent paper [10], attempted do simplify the proofs of [8] in some way.

Here I present my original proof of 2005, which seems to be straightforward:
mollify the vectorfield q, then apply the Federer-De Giorgi version of the Gauss-
Green theorem, and then let the mollification parameter tend to 0Ø Some amendments
and future developments are included also.

2 Sets of finite perimeter

Sets of finite perimeter are treated in detail in many sources, such as [1, 11–12]. This
section gives a brief recapitulation.

We denote byLn the Lebesgue measure and byHn−1 and the n−1-dimensional
Hausdorff measure in R

nØ Let M be a L
n measurable subset of Rn. If x X R

nÙ the
densityΘn�xÙM� ofM at x is defined by

Θn�xÙM� ¨ lim
rr0

L
n�M P B�xÙ r��¤αnr

n (1)

provided the limit exists. Here B�xÙ r� is the open ball of center x and radius r and
αn is the volume of the unit ball in R

nØ If 0 ² t ² 1Ùwe introduce the set

Mt ¨ !x X R
n Ú Θn�xÙM� ¨ t)

of of points of density tØ The essential boundary ã M ofM is defined by
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ã M ¨ R
n « �M0 TM1�Ø

Thus ã M is the set of all points x X R
n such that either the limit in (1) does not

exist or, if it exists, then 0 ° Θn�xÙM� ° 1ØWe say that a unit vector ν is an exterior
normal toM at x X R

n if the half-space

H�xÙν� Ú¨ !y X R
n Ú ν ċ �x − y� ° 0) (2)

locally approximates the setM at x in the density sense. Thismeans that the symmetric
differenceM 4 H�xÙν� Ú¨ �M«H�xÙν��T�H�xÙν�«M� has vanishing density
at x, i.e.,

Θn�xÙM 4 H�xÙν�� ¨ 0Ø

It is easy to show that the exterior normal, if it exists, is uniquely determined. Further-
more, sinceΘn�xÙH�xÙν�� ¨ 1¤2Ù one easily deduces that if the exterior normal at
x exists, then Θn�xÙM� ¨ 1¤2 and hence x X ã MØ

The following theorem introduces sets of finite perimeter in a symmetric way by
formulating four equivalent conditions characterizing them. Any of them can serve
as a definition.

Theorem 1 The following four conditions are equivalent :
(i) H

n−1�ã M� ° ðÛ
(ii) there exists a finite Rn-valued measure µ on Rn such that

�
M

∇� dLn ¨ �
Rn

� dµ

for every lipschitzian function � on R
n with compact support ;

(iii) there exists an H
n−1 integrable function νM Ú ã M r S

n−1 such that

�
M

∇� dLn ¨ �
ã M

�νM dHn−1 (3)

for every lipschitzian function � on R
n with compact support;

(iv) there exists an H
n−1 integrable function ν Ú ã M r S

n−1 such that

�
M

div vdLn ¨ �
ã M

v ċ νM dHn−1 (4)

for every lipschitzian vectorfield v Ú Rn r R
n with compact support.

If these conditions are satisfied, M is said to be a set of finite perimeter. In that case
the exterior normal is defined forHn−1 almost every x X ã M and hence

Θn�xÙM� ¨
1

2
forHn−1 almost every x X ã M. (5)

The function νM of Items (iii) and (iv) coincides with the exterior normal at Hn−1

almost every point of ã M. Equations (3) and (4) are Federer-DeGiorgi Gauss-Green
theorems for lipschitzian functions and vectorfields on sets of finite perimeter.

3 The Gauss-Green theorem

A bounded L
n measurable function q Ú Rn r R

n is called a bounded divergence

measure field if there exists a finite signed measure div q on R
n such that
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�
Rn

∇� ċ q dLn ¨ − �
Rn

� d div q (6)

for every lipschitzian function � on R
n with compact support. We denote by @q@ð

the norm of q in Lð�RnÙRn�, and by @div q@ the total variation measure for div qØ If
A ⊂ R

n is a Borel set then �div q� õ A and H
n−1 õ A denote the restrictions of

div q and H
n−1 to AØ

We are going to prove the Gauss-Green theorem for q on a bounded setM ⊂ R
n

of finite perimeter. It will be clear that it suffices to make a seemingly weaker hypothe-
sis that q is defined on some open neighborhood N of the closure ofMØHowever, one
can always extend this q from N to ( on Rn by putting ( ¨ ψq where ψ Ú Rn r R

is any smooth function with ψ ¨ 1 on the closure of M and ψ ¨ 0 outside NØ We
therefore assume that the divergence measure fields are defined on the whole of RnØ

The following auxiliary result will be needed.

Proposition If q is a bounded divergence measure then for every Borel set A ⊂ R
n

with H
n−1�A� ° ð there exists a s A X Lð�AÙHn−1� such that

�div q� õ A ¨ sAH
n−1 õ AÛ (7)

moreover, the norm of sA in Lð�AÙHn−1� satisfies

@sA@ð ² cn@q@ð (8)

where cn ¨ n�2n¤�n + 1���n−1�¤2
αn¤αn−1

Ø

Chen & Frid [4; Proposition 3.1] proved that div q is absolutely continuous with
respect to H

n−1. The Radon-Nikodym theorem then gives an integrable density
sA X L1�AÙHn−1� satisfying (7). The boundedness of sA stated above appears to
be new.

Proof Let Sn−1 be the n − 1 dimensional spherical measure, see [11; §2.10.2]. We
shall first prove that if K is a compact subset of Rn with S

n−1�K� ° ð then

@div q�K�@ ² nαn¤αn−1
S

n−1�K�Ø (9)

If 0 ° h ° 1, we define σh Ú Rn r R by

σh�x� ¨































1 if @x@ ° 1Ù

1 − �1 − @x@�¤h if 1 ² @x@ ² 1 + hÙ

0 if @x@ ± 1 + hÙ

x X R
nØ The support of σh is B�0Ù 1 + h� and σh is a lipschitzian function with

@∇σh�x�@ ¨ 1¤h if 1 ² @x@ + h and ∇σh ¨ 0 elsewhere.
Let K be a compact set with S

n−1�K� ° ð and let ε ± 0 be arbitrary. Invoking
a general property of Radon measures, we find that there exists a bounded open set
U ⊂ R

n with K ⊂ U such that

@div q@�U « K� ° ε Ø (10)

The definition ofSn−1 gives that for each sufficiently small δ ± 0we find a covering
of the compact K by open balls B�xiÙ ri�, i ¨ 1ÙÜ ÙNÙ with ri ° δÙ such that
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K P B�xiÙ ri� © ó, and αn−1

N

�
i¨1

rn−1
i ° S

n−1�K� + ε Ø (11)

Moreover, we can consider all δ small enough to satisfy

!x X R
n Ú dist�xÙK� ² 4δ) ⊂ UØ (12)

Let h be fixed, 0 ° h ° 1Ù and put

��x� ¨ sup !�i�x� Ú i ¨ 1Ù2ÙÜ ÙN)Ù where �i�x� ¨ σh��x − xi�¤ri	Ù

x X R
n. Then 0 ² � ² 1 on R

n, � ¨ 1 on K , � is lipschitzian, and, by (12),
spt� ⊂ UØ We now apply (6) to the present function � . We can thus replace the
original integration limits, Rn, by U. A rearrangement of the result provides

�
K

� d div q ¨ − �
U

∇� ċ q dLn − �
U«K

� d div qØ

Since spt�i ¨ B�xiÙ �1 + h�ri	, we have

∣

∣�
U

∇� ċ q dLn
∣

∣ ²
N

�
i¨1

∣

∣ �
B�xiÙ�1+h�ri	

∇�i ċ q dL
n

∣

∣Ø (13)

We note that ∇�i�x� is different from 0 only if x belongs to the shell Si ¨
!ri ² @x@ ² �1 + h�ri)Ù in which case @∇�i�x�@ ¨ 1¤hØ Since the volume of the
shell Si is αn��ri + h�n − rni 	Ù the magnitude of each of the integrals on the right-
hand side of (13) is estimated by αnh

−1��ri + h�n − rni 	@q@ð and so

@ �
U

∇� ċ q dLn@ ² αn@q@ðh−1
N

�
i¨1

��ri + h�n − rni 	

for any h with 0 ° h ° 1Ø Letting h r 0 in the right-hand side and the subsequent
use of (11)2 provides

@ �
U

∇� ċ q dLn@ ² nαn@q@ð
N

�
i¨1

rn−1
i ² nαn¤αn−1

@q@ð�Sn−1�K� + ε	Ø

Furthermore, since @�@ ² 1 on R
nÙ Equation (10) provides @ �U«K � d div q@ ° ε Ø

Consequently, (13) yields

@ div q�K�@ ² nαn¤αn−1�S
n−1�K� + ε	@q@ð + ε Ø

Thus the arbitrariness of ε ± 0 yields (9).
If E is a Borel set with S

n−1�E� ° ðÙ the values of the measures div q and
S

n−1 on E can be approximated by the respective values on compact subsets of EÛ
thus (9) extends to all Borel sets K ¨ E with S

n−1�E� ° ð. If EiÙ i ¨ 1ÙÜ Ù is any
Borel partition of E then

@div q@�E� ²
ð

�
i¨1

@ div q�Ei�@ ² nαn¤αn−1

ð

�
i¨1

S
n−1�Ei� ¨ nαn¤αn−1S

n−1�E�Ù

i.e.,
@div q@�E� ² nαn¤αn−1

S
n−1�E�Ø

A combination with the inequality
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S
n−1�E� ² �2n¤�n + 1���n−1�¤2

H
n−1�E�Ù

see [11; §2.10.42], then gives

@div q@�E� ² cnH
n−1�E� (14)

where cn is as in the statement of the proposition. In particular, @divq@ is absolutely
continuous with respect to H

n−1. The Radon-Nikodym theorem then gives an inte-
grable density sA X L1�AÙHn−1� satisfying (7), and (14) then implies (8). è

The next theorem is the Gauss-Green theorem for bounded divergence measure
fields. Since the essential boundary of any two sets which differ by a L

n null set
coincide, without any loss in generality we formulate it for normalized sets. These
are defined as bounded L

n measurable setsM ⊂ R
n which coincide with their own

points of density, i.e., M ¨ M1Ø

Theorem 2 (Chen & Torres [7; Theorem 2]; Šilhavý [15; Theorem 4.4(i)]) IfM is a

normalized set of finite perimeter and if q is a bounded divergence measure field then

there exists a bounded H
n−1 measurable function tM Ú ã M r R such that

�
ã M

� tM dHn−1 ¨ �
M

∇� ċ q dLn + �
M

� d div q (15)

for every lipschitzian function� onRn with compact support. The norm of tM satisfies

@tM@Lð ²
αn

2αn−1

@q@LðØ (16)

The function tM is called the normal trace of q on ã MØ Inequality (16) corrects the
inequality @tM@Lð ² @q@Lð occurring in [15; Theorem 4.4(i)].

Proof Let qρ , ρ ± 0Ù be the ρ-mollification of q, given by

qρ�x� ¨ �
Rn

ωρ�x − y�q�y� dLnÙ x X R
nÙ

whereωρ�z� ¨ ρ−nω�z¤ρ� for each z X R
nÙwhereω is any mollifier. The Gauss-

Green theorem for sets of finite perimeter (4) with v¨ �qρ gives

�
M

∇� ċ qρ dLn + �
M

� div qρ dLn ¨ �
ã M

� qρ ċ νM dHn−1Ø (17)

We now let ρ r 0 in (17) and evaluate the limits of the three terms in (17) separately.
First, we have

�
M

∇� ċ qρ dLn r �
M

∇� ċ q dLn (18)

since qρ r q uniformly. To evaluate the limit of the second term in (17), we first
note that

�div qρ��x� ¨ �div q�ρ�x� Ú¨ �
Rn

ωρ�x − y� d div q�y�Û (19)

thus

�
M

� div qρ dLn ¨ �
M

��x� �
Rn

ωρ�x − y� d div q�y� d x ¨ �
Rn

� 
ρ d div q
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where
� 
ρ�y� ¨ �

M

��x�ωρ�x − y� d xÙ y X R
nØ

Since M is a normalized set, we have Θn�yÙM� ¨ 1 for all y X M ª M1,
Θn�yÙM� ¨ 0 for all y X M0 and Θn�yÙM� ¨ 1¤2 for Hn−1 almost every
y X ã M by (5). Consequently,

lim
ρr0

� 
ρ�y� ¨







































��y� for all y X MÙ
1

2
��y� for Hn−1 almost every y X ã MÙ

0 for all y X NØ

Splitting the integral �Rn �
 
ρ�y� d y into the sum of integrals over MÙ ã M and M0Ù

and using the last equation in combination with the dominated convergence theorem,
we obtain

�
M

� 
ρ d div q r �

M

� d div qÙ �
N

� 
ρ d div q r 0Ù

and since div q is absolutely continuous with respect to H
n−1,

�
ã M

� 
ρ d div q r

1

2
�

ã M
� d div q ¨ − �

ã M
�t

1
dHn−1

where −t
1
X Lð�ã MÙHn−1� is the density of the measure

1

2
�div q� õ ã M

which exists by Proposition above. Hence (19) gives

�
M

� div qρ dLn r �
M

� d div q − �
ã M

�t
1
dHn−1Ø (20)

Finally, to take the limit of the third term in (17), we note that @qρ@ð ² @q@ð for

every ρ ± 0Ø Hence @qρ ċ νM@ð ² @q@ð for every ρ ± 0Ø A standard property of
the weak  convergence (see, e.g., [14; Theorem 3.15]) then implies that there is a
sequence ρk s 0 and a function t

2
X Lð�ã MÙHn−1� such that qρk

ċ νM o t
2
in

Lð�ã MÙHn−1�; in particular

�
ã M

� qρk
ċ νM dHn−1 r �

ã M
�t2 dH

n−1Ø (21)

Using (18), (20) and (21), we see that the limit ρ r 0 in (17) gives (15) with tM ¨
t1+ t2Ø Inequality (8) gives @t

M@Lð ² �cn¤2+ 1�@q@LðÛ the stronger Inequality (16)
is a consequence of Equation (22) (below). è

4 Complements and outlook

The Gauss-Green theorem 2 asserts the existence of the normal trace tM but does
not say how to determine it. We now give a formula for tMØ For a given bounded
divergence measure field q we define a function q0 Ú Rn � S

n−1 r R by
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q0�xÙν� ¨















































lim
rr0

n

αn−1r
n �

B�xÙr�PH�xÙν�
q�y� ċ

y − x

@y − x@
dLn�y�

if the limit exists and is finite,

0 if the limit either does not exist or is infinite,

for any x X R
n and ν X S

n−1, where H�xÙν� is the half-space from (2).

Theorem 3 ([15; Equation (4.7)]) IfM is a normalized set of finite perimeter and if

q is a bounded divergence measure field then the normal trace tM on ã M is given

by

tM�x� ¨ q0�xÙνM�x�� (22)

forHn−1 almost every x X ã M. If q is continuous then q0�xÙν� ¨ q�x� ċ ν , i.e.,

tM�x� ¨ q�x� ċ νM�x�Ù

and the Gauss-Green theorem (15) takes a more classical form

�
ã M

� q ċ νM dHn−1 ¨ �
M

∇� ċ q dLn + �
M

� d div qØ

By (22) the normal trace tM�x� at x X ã M is completely determined by x and the
exterior normal νM�x�; the higher-order characteristics such as the curvature etc. are
irrelevant. A continuum mechanics analogue of this result says that the surface trac-
tion on the boundary of a body depends only on the position and normal. (Cauchy’s
postulate.)

The paper [15] treats also the more general case of vectorfields q X Lp�RnÙRn�,
1 ² p ² ðÙ with divergence measure. The set of such vectorfields is denoted by
DM

p�Rn�, or, if they are defined only on an open subset Ω ⊂ R
nÙ by DM

p�Ω�Ø
In the case p © ðÙ the analogue of Theorem 2 is no longer simple: the normal trace
function tM must be replaced by a (nonlocal) functional on the space of Lipschitz
continuous functions on the essential boundary ã M [15; Proposition 4.4]. This non-
locality is related to the singularities of q, not to the complications of the boundary:
[18; Example 2.5] shows that it occurs even on a flat part of the boundary.

An extended divergence measure field onΩ ⊂ R
n is a finite Rn-valued measure

q onΩ whose divergence is a finite signed measure. These were introduced by Chen
and Frid in [5] and the corresponding space denoted by DM

ext�Ω�Ø Clearly, this is
a generalization of DMp�Ω�. The paper [16] discusses extended divergence mea-
sure fields in from the point of view of the geometric measure theory, specifically the
theory of flat chains of Whitney [19], as presented in Federer [11]. In Federer’s ter-
minology, extended divergence measure fields are normal one-dimensional currents
in R

n, which form a dense subset of the set of one-dimensional flat chains. Among
other things, the paper [16; Section 8] establishes a decomposition of an extended
divergence measure field into the absolutely continuous part, diffuse (¨ Cantor) part,
and a part represented by a one-dimensional rectifiable Rn-valued measure. This is
an analogue of the well known decomposition of the derivative of a BV function into
the absolutely continuous, Cantor, and the jump parts.

Closely related to divergence measure fields is the Cauchy stress theorem, a fun-
damental discovery of Cauchy [3] that the internal force system in a continuous body
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is described by a stress tensor field. The treatment of the Cauchy stress theorem on
the level of extended divergence measure fields is given in [17], where also further
literature is to be found.

Finally, to the best knowledge of the author, the most general form of the Gauss-
Green theorem is presented in [18]: the class of regions are general open sets, even
those for which the normal cannot be defined (“fractal” or “rough” sets). The vec-
tor fields are the extended divergence measure fields from DM

ext�Ω�. Again, the
normal trace is a functional on the class of lipschitzian functions on the topological
boundary.

The fields from DM
p�Ω�, 1 ² p ² ðÙ on general open sets are treated at

length in a recent paper of Chen, Comi and Torres [6] by a method different from
[18]. The results of [18], of course, apply to this special case. This provides re-
sults close to those of [6]. The only difference is in the class of testfunctions, i.e.,
functions � occurring in the Gauss-Green theorem (like � in (15)). Related to the
smaller space DM

p�Ω� ⊂ DM
ext�Ω�, the paper [6] admits a larger class of test-

functions. Specifically, continuous functions from W 1Ùp ′

�Ω� (p ′¨ the Hölder con-
jugate of p), whereas [18] admits only lipschitzian testfunctions. However, the den-
sity of Cð�Ω� PW 1Ùp�Ω� inW 1Ùp�Ω� for general open sets (see [13]) allows, not
unexpectedly, to extend the Gauss-Green theorem from [18] to continuous testfunc-
tions fromW 1Ùp ′

�Ω� by a simple limiting procedure. This possibility, overlooked in
[6], will be discussed in a future paper, together with a number of amendments. (Of
course, such an extension is not possible for general extended divergence measure
fields.)
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