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Abstract

Guaranteed a posteriori estimates on the error of approximate
eigenfunctions in both energy and L2 norms are derived for the Laplace
eigenvalue problem. The problem of ill-conditioning of eigenfunctions
in case of tight clusters and multiple eigenvalues is solved by estimat-
ing the directed distance between the spaces of exact and approximate
eigenfunctions. The error estimates for approximate eigenfunctions
are based on rigorous lower and upper bounds on eigenvalues. Such
eigenvalue bounds can be computed for example by the finite element
method along with the recently developed explicit error estimation
[24] and the Lehmann–Goerisch method. The efficiency of the derived
error bounds for eigenfunctions is illustrated by numerical examples.
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1 Introduction

This paper derives rigorous and fully computable a posteriori error bounds
for eigenfunctions of the Laplace eigenvalue problem: find eigenvalues λi ∈ R
and corresponding eigenfunctions ui 6= 0 such that

−∆ui = λiui in Ω, ui = 0 on ∂Ω, (1.1)

where Ω ⊂ Rd is a bounded d-dimensional domain. The weak formulation of
this problem and specific assumptions are provided in Section 3.

The problem to determine eigenvalues λi is well posed in the sense that
small perturbations of the data lead to small perturbations of eigenvalues.
However, the variation of eigenfunctions ui upon the perturbation of the
data is not necessary small, and can even be discontinuous. For example,
if two close and simple eigenvalues merge to one multiple eigenvalue then
the two corresponding orthogonal eigenfunctions abruptly change into a two
dimensional eigenspace. Thus, eigenfunction determination in case of tightly
clustered or multiple eigenvalues is an ill-conditioned problem.

Any attempt to estimate the error of approximate eigenfunctions has to
take into the account this ill-conditioning. Our approach is to consider the
space spanned by eigenfunctions corresponding to all eigenvalues within a
cluster. This space is well conditioned provided the cluster is well separated
from the rest of the spectrum. We propose error estimators that bound the
directed distance [29, §5.15] between the approximate and the exact space of
eigenfunctions in both the energy and L2 norms. The proposed estimators
generalize the idea from [4]; see Remark 5.2 below. The quality of these
estimators depends on the width of clusters and spectral gaps between them.

The two-sided bounds on individual eigenvalues play an important role in
the estimation of eigenfunctions. Computing eigenvalue bounds, especially
the lower bounds, is not an easy task. We use the recently developed method
based on the finite element method with explicit error estimation [24] (see

2



also, [26, 9, 10]) for the lower bounds on eigenvalues and the Lehmann–
Goerisch method [21, 22, 15] for their high-precision improvements. Note
that the Lehmann–Goerisch method should be attributed to T. Kato as well,
because his independently developed method [19], gives essentially the same
bounds as Lehmann’s method. In the current paper, we focus on the estima-
tion of eigenfunctions and the two-sided bounds of eigenvalues are assumed
to be known.

Error estimates for symmetric elliptic eigenvalue problems are widely
studied in the literature. We refer to classical works [11, 2, 5] for the funda-
mental theories about eigenvalue problems. Most existing literature concerns
error estimates valid asymptotically or containing unknown constants; see,
e.g., [13, 1, 36, 28, 12, 14, 18, 17]. Recently, fully computable (containing
no unknown constants) and guaranteed (bounding the error from above on
all meshes, not only asymptotically) error estimates for eigenvalue problems
appeared. Papers [9, 10, 24, 26, 32, 33, 34] concern the eigenvalues. Particu-
larly, as a general framework, the method proposed in [24] has been applied
to eigenvalue problems of various differential operators, including the Stokes
operator [35], the Steklov operator [37], and biharmonic operators related to
the quadratic interpolation error constants [27, 23]. Concerning eigenfunc-
tions, papers [6, 7] provide guaranteed, robust, and optimally convergent a
posteriori bounds for simple eigenvalues and corresponding eigenfunctions for
both conforming and nonconforming approximations, under the assumption
of a priori information about bounds of eigenvalues. Very recent work [8]
generalizes these results to the case of clustered and multiple eigenvalues us-
ing a different approach than we present below. In [16] an attempt to bound
the error of the first eigenfunction is presented.

Properties of error bounds derived below can be summarized as follows.

• Without any a priori information about the approximate eigenfunc-
tions, the proposed error estimator provides a rigorous upper bound
on the distance between the exact and approximate eigenspace both
in the energy and L2 norms; see estimates (4.4) and (5.1) below. The
bound in the energy norm converges with the optimal rate, while the
L2 bound with a suboptimal rate.

• For finite element approximate eigenfunctions, an optimal rate estimate
in the L2 norm is derived in (6.8). This further leads to the improved
bound (7.1) in the energy norm.
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The rest of the paper is organized as follows. Section 2 overviews the
directed distance of spaces and its properties. Section 3 briefly recalls the
Laplace eigenvalue problem. Section 4 presents the a posteriori error bound
for eigenfunctions in the energy norm. An analogous bound in the L2 norm
is provided in Section 5. Section 6 derives optimal order bound for finite
element eigenfunctions in the L2 norm. Section 7 introduces energy norm
estimates computed from L2 bounds. Section 8 presents the results of two
numerical examples and Section 9 draws the conclusions.

2 Directed distance of spaces

To measure the error of spaces of eigenfunctions, the directed distance of
spaces is employed. Its definition comes from [29, pp. 452–453]; see also [3].

Let E and Ê be two subspaces of a normed linear space V with a norm ‖ ·‖V
then

δ(E, Ê) = max
v∈E
‖v‖V =1

min
v̂∈Ê
‖v − v̂‖V (2.1)

is called the directed distance of spaces E and Ê.
The directed distance is not symmetric in general. However,

if dimE = dim Ê then δ(E, Ê) = δ(Ê, E).

It is always δ(E, Ê) ≤ 1 and if dimE = dim Ê and E⊥ ∩ Ê 6= {0} (or

E ∩ Ê⊥ 6= {0}) then δ(E, Ê) = 1. If dimE = dim Ê then the directed
distance coincides with the gap between subspaces defined as

gap(E, Ê) = max{δ(E, Ê), δ(Ê, E)}.

Notice that if dimE 6= dim Ê then gap(E, Ê) = 1. All these properties can
be found in [29, p. 454].

If V is a Hilbert space with inner product (·, ·)V and the corresponding

norm ‖ · ‖V and E and Ê are closed subspaces of V , then further characteri-
zations of the directed distance are available. Recall the orthogonal projector
Π̂ : E → Ê defined by the relation

(v − Π̂v, v̂)V = 0 ∀v̂ ∈ Ê. (2.2)
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The projection Π̂v ∈ Ê is the closest element in Ê to v ∈ E, i.e.,

min
v̂∈Ê
‖v − v̂‖V = ‖v − Π̂v‖V ∀v ∈ E.

A consequence of this fact is that the directed distance can be expressed as

δ(E, Ê) = max
v∈E
‖v‖V =1

‖v − Π̂v‖V . (2.3)

The directed distance can also be expressed using the inner product.

Lemma 2.1. Let E and Ê be two closed subspaces of a Hilbert space V with
inner product (·, ·)V , then

δ2(E, Ê) = 1− min
v∈E
‖v‖V =1

max
v̂∈Ê
‖v̂‖V =1

|(v, v̂)V |2. (2.4)

Proof. Given v ∈ V , definition (2.2) of the orthogonal projector Π̂ yields
identity

max
v̂∈Ê
‖v̂‖V =1

(v, v̂)V = max
v̂∈Ê
‖v̂‖V =1

(Π̂v, v̂)V = ‖Π̂v‖V .

Consequently,

1− min
v∈E
‖v‖V =1

max
v̂∈Ê
‖v̂‖V =1

|(v, v̂)V |2 = 1− min
v∈E
‖v‖V =1

‖Π̂v‖2V = max
v∈E
‖v‖V =1

‖v−Π̂v‖2V = δ2(E, Ê),

where we used the fact that ‖Π̂v‖2V + ‖v − Π̂v‖2V = ‖v‖2V for all v ∈ E and
identity (2.3).

The directed distance of one dimensional subspaces equals to the sine
of the angle between them. Indeed, if E = span{u}, Ê = span{û}, and α
denotes the angle between u and û then identity (2.4) immediately gives

δ2(E, Ê) = 1− |(u, û)V |2

‖u‖2V ‖û‖2V
= 1− cos2 α = sin2 α.

Consequently, if (u, û)V ≥ 0 then the distance between u and û can be
expressed as

‖u− û‖2V = ‖u‖2V + ‖û‖2V − 2‖u‖V ‖û‖V
√

1− δ2(E, Ê). (2.5)
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Moreover, if u and û are normalized such that ‖u‖V = ‖û‖V = 1 then

‖u− û‖2V = 2

(
1−

√
1− δ2(E, Ê)

)
= δ2(E, Ê) +O

(
δ4(E, Ê)

)
,

where the Taylor series
√

1− x2 = 1 − x2/2 + O(x4) is used. In this sense,
the directed distance of subspaces generalizes the usual distance induced by
the norm.

3 Laplace eigenvalue problem

Let Ω ⊂ Rd be a Lipschitz domain and H1
0 (Ω) be the usual Sobolev space

of square integrable functions with the square integrable gradients and with
zero traces on the boundary ∂Ω. The weak formulation of eigenvalue problem
(1.1) then reads: find λi ∈ R and ui ∈ H1

0 (Ω) \ {0} such that

(∇ui,∇v) = λi(ui, v) ∀v ∈ H1
0 (Ω), (3.1)

where (·, ·) stands for the L2(Ω) inner product.
This problem is well studied in [2, 5]. There exists a countable sequence

of eigenvalues
0 < λ1 ≤ λ2 ≤ · · · ,

where we repeat each eigenvalue according to its multiplicity. The corre-
sponding eigenfunctions ui ∈ H1

0 (Ω) are assumed to be normalized such that

(ui, uj) = δij, i, j = 1, 2, . . . .

From the spectral theory of compact selfadjoint operators, these eigenfunc-
tions form an orthonormal and complete sequence in both L2(Ω) and H1

0 (Ω).
Therefore, the L2(Ω) norm ‖v‖ satisfies Parseval identity

‖v‖2 =
∞∑
i=1

|(v, ui)|2 ∀v ∈ L2(Ω) (3.2)

and a similar expression for the energy norm

‖∇v‖2 =
∞∑
i=1

λi|(v, ui)|2 ∀v ∈ H1
0 (Ω). (3.3)
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In order to formulate the bound on eigenfunctions, a notation for clusters
of eigenvalues has to be introduced. Let us focus on the leading K clusters.
Let nk and Nk stand for indices of the first and the last eigenvalue in the k-th
cluster, k = 1, 2, . . . , K, respectively. In particular, n1 = 1, nk+1 = Nk + 1,
and the k-th cluster is formed of Nk − nk + 1 eigenvalues λnk

, λnk+1, . . . ,
λNk

; see Figure 1. Notice that the eigenvalues in a cluster do not necessarily
equal to each other. To simplify the notation, we set n = nK and N = NK .

Each cluster is associated with the space Ek = span{unk
, unk+1, . . . , uNk

}
of exact eigenfunctions. Similarly, arbitrary approximations ûi ∈ H1

0 (Ω) of
exact eigenfunctions ui, i = 1, 2, . . . , NK , form the corresponding approxi-
mate spaces Êk = span{ûnk

, ûnk+1, . . . , ûNk
}. Spaces Êk, k = 1, 2, . . . , K, of

approximate eigenfunctions need not be orthogonal to each other.

0

λn1 λN1 λn2 λN2
λnK

λn

λNK

λN

Figure 1: Clusters of eigenvalues on the real axis.

4 A posteriori error bound for eigenfunctions

The goal of this section is to derive an estimate of the directed distance
between spaces EK and ÊK of exact and approximate eigenfunctions for the
K-th cluster. This directed distance is measured in the energy norm and it
is given by (2.1) with V = H1

0 (Ω) and ‖v‖V = ‖∇v‖ as

∆(EK , ÊK) = max
v∈EK
‖∇v‖=1

min
v̂∈ÊK

‖∇v −∇v̂‖. (4.1)

In order to formulate the main result of this section (see Theorem 4.3
below), we introduce an energy measure of the non-orthogonality between

spaces Êk and Êk′ for k, k′ = 1, 2, . . . , K as

ζ̂(Êk, Êk′) = max
v∈Êk
‖∇v‖=1

max
w∈Êk′
‖∇w‖=1

〈v, w〉, (4.2)
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where the energy inner product is denoted by

〈v, w〉 = (∇v,∇w) ∀v, w ∈ H1
0 (Ω).

The measure of non-orthogonality ζ̂(Êk, ÊK) can be easily computed or

estimated by using the following lemma with E = Êk, E ′ = ÊK , V = H1
0 (Ω),

and (·, ·)V = 〈·, ·〉.

Lemma 4.1. Let v1, v2, . . . , vm and v′1, v
′
2, . . . , v

′
m′ form bases of finite dimen-

sional subspaces E and E ′ of a Hilbert space V , respectively. Let

ε̂2(E,E ′) = max
v∈E
‖v‖V =1

max
v′∈E′

‖v′‖V =1

(v, v′)V . (4.3)

Define matrices F , G, H as follows,

F =
(
(vi, v

′
j)V
)
m×m′ , G = ((vi, vj)V )m×m , H =

(
(v′i, v

′
j)V
)
m′×m′ .

Then, we have

ε̂2(E,E ′) = λmax(F TG−1F,H) = λmax(FH−1F T , G) ,

where λmax(A,B) denotes the maximum eigenvalue of the generalized eigen-
value problem Ax = λBx.

Further, suppose ‖F TF‖2 ≤ ηF , ‖I − G‖2 ≤ ηG, ‖I − H‖2 ≤ ηH . If
ηG, ηH < 1, then

ε̂2(E,E ′) ≤ ηF
(1− ηG)(1− ηH)

.

Proof. Expand v ∈ E and v′ ∈ E ′ as v =
∑m

i=1 civi and v′ =
∑m′

j=1 c
′
jv
′
j. Then

(v, v′)V = cTFc′, ‖v‖2V = cTGc, and ‖v′‖2V = (c′)THc′,

where vectors c ∈ Rm and c′ ∈ Rm′
consist of coefficients ci and c′j, respec-

tively. Thus, definition (4.3) gives

ε̂(E,E ′) = max
cTGc=1

max
(c′)THc′=1

cTFc′ = max
cTGc=1

max
|c̃′|=1

cTFL−T c̃′ = max
cTGc=1

|cTFL−T |,

where c̃′ = LTc′, H = LLT is the Cholesky decomposition of matrix H, and
| · | stands for the Euclidean norm. Consequently,

ε̂2(E,E ′) = max
06=c∈Rm

cTFL−TL−1F Tc

cTGc
= λmax(FH−1F T , G).
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Expression ε̂2(E,E ′) = λmax(F TG−1F,H) can be proved analogously.
To prove the upper bound on ε̂, we use decomposition G = QQT . Noticing

that ‖A‖2 = ‖AT‖2 =
√
‖ATA‖2 holds for a general matrix A, we have

λmax(FH−1F T , G) = ‖Q−1FH−1F TQ−T‖2 ≤ ‖G−1‖2‖H−1‖2‖F TF‖2.

Finally, we estimate ‖G−1‖2 and ‖H−1‖2. If ηG < 1, then

‖G−1‖2 =
1

λmin(G)
=

1

1− λmax(I −G)
≤ 1

1− ‖I −G‖2
≤ 1

1− ηG
.

With the same argument for H−1, we easily draw the conclusion.

Remark 4.2. Matrices F , G, and H are available in practical computations
and λmax(F TG−1F,H) as well as λmax(FH−1F T , G) can be computed. Al-
ternatively, guaranteed estimates ηF , ηH , and ηG can be obtained by the
Gershgorin circle theorem. These estimates are expected to be good for
ε̂(Êk, Êk′) with k 6= k′, because if the approximate eigenfunctions in Êk and

the ones in Êk′ are appropriately orthonormalized, then F TF ≈ 0, G ≈ Im,
and H ≈ Im′ .

The following theorem provides the desired estimate of the directed dis-
tance ∆(EK , ÊK) defined in (4.1).

Theorem 4.3. Let the above specified partition of the spectrum into K clus-
ters be arbitrary. Let ûi ∈ H1

0 (Ω), i = 1, 2, . . . , N , be such that dim Êk =
Nk − nk + 1 for all k = 1, 2, . . . , K. Let λn < ρ ≤ λN+1. Then

∆2(EK , ÊK) ≤ ρ(λ̂
(K)
N − λn) + λnλ̂

(K)
N ϑ(K)

λ̂
(K)
N (ρ− λn)

(4.4)

where

λ̂
(K)
N = max

v̂∈ÊK

‖∇v̂‖2

‖v̂‖2
and ϑ(K) =

K−1∑
k=1

(
ρ

λnk

− 1

)[
ζ̂(Êk, ÊK) + ∆(Ek, Êk)

]2
.

Proof. Let û ∈ ÊK , ‖∇û‖ = 1, be arbitrary and fixed. The proof is based
on estimates of ‖∇Pkû‖ for all k = 1, 2, . . . , K, where energy projectors
Pk : H1

0 (Ω)→ Ek are defined by

〈û− Pkû, v〉 = 0 ∀v ∈ Ek.
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Using eigenfunctions wi = ui/‖∇ui‖ normalized in the energy norm, these
energy projections clearly satisfy identities

Pkû =

Nk∑
i=nk

〈û, wi〉wi, ‖∇Pkû‖2 =

Nk∑
i=nk

〈û, wi〉2, ‖Pkû‖2 =

Nk∑
i=nk

1

λi
〈û, wi〉2.

(4.5)
The first step is to bound ‖∇Pkû‖ for k = 1, 2, . . . , K − 1. Introduce

zk = Pkû/‖∇Pkû‖ ∈ Ek and the energy projector P̂k : H1
0 (Ω) → Êk that

maps zk to P̂kzk ∈ Êk. Since Pkû = 〈û, zk〉zk and ‖∇P̂kzk‖ ≤ ‖∇zk‖ = 1,
definition (4.2) and relation (2.3) imply

|〈û, P̂kzk〉| ≤ ζ̂(Êk, ÊK) and ‖∇(zk − P̂kzk)‖ ≤ ∆(Ek, Êk).

These estimates then provide the bound

‖∇Pkû‖ = |〈û, zk〉| ≤ |〈û, P̂kzk〉|+ |〈û, zk − P̂kzk〉| ≤ ζ̂(Êk, ÊK) + ∆(Ek, Êk).
(4.6)

The second step is to estimate ‖∇PK û‖ from below. Using (û, ui)
2 =

〈û, wi〉2/λi in (3.2) and (3.3), we derive identity

ρ‖û‖2 − ‖∇û‖2 =
∞∑
i=1

( ρ
λi
− 1
)
〈û, wi〉2 = ϑ(û) +

∞∑
i=n

( ρ
λi
− 1
)
〈û, wi〉2, (4.7)

where

ϑ(û) =
n−1∑
i=1

( ρ
λi
− 1
)
〈û, wi〉2 =

K−1∑
k=1

Nk∑
i=nk

( ρ
λi
− 1
)
〈û, wi〉2. (4.8)

Since λn ≤ λi for i = n, . . . , N and ρ ≤ λi for i = N + 1, N + 2, . . . , identity
(4.7) yields estimate

ρ‖û‖2 − ‖∇û‖2 − ϑ(û) =
∞∑
i=n

(
ρ

λi
− 1

)
〈û, wi〉2

≤
(
ρ

λn
− 1

) N∑
i=n

〈û, wi〉2 =

(
ρ

λn
− 1

)
‖∇PK û‖2. (4.9)
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It remains to bound ϑ(û) from above. Using definition (4.8), the fact that
λnk
≤ λi for i = nk, . . . , Nk, and the second identity in (4.5), we obtain

ϑ(û) ≤
K−1∑
k=1

(
ρ

λnk

− 1

) Nk∑
i=nk

〈û, wi〉2 =
K−1∑
k=1

(
ρ

λnk

− 1

)
‖∇Pkû‖2.

Estimate (4.6) then yields

ϑ(û) ≤
K−1∑
k=1

(
ρ

λnk

− 1

)[
ζ̂(Êk, ÊK) + ∆(Ek, Êk)

]2
= ϑ(K). (4.10)

The desired estimate of ‖∇PK û‖ from below then follows from (4.9) and
(4.10):

‖∇PK û‖2 ≥ λn
ρ‖û‖2 − ‖∇û‖2 − ϑ(K)

ρ− λn
. (4.11)

The final step is to express the directed distance ∆2(ÊK , EK) using (2.4)
as follows

∆2(ÊK , EK) = 1− min
û∈ÊK
‖∇û‖=1

max
u∈EK
‖∇u‖=1

〈û, u〉2 = 1− min
û∈ÊK
‖∇û‖=1

‖∇PK û‖2. (4.12)

Estimate (4.11) and the definition of λ̂
(K)
N then provide the statement (4.4).

Note that ∆(EK , ÊK) = ∆(ÊK , EK), because dimEK = dim ÊK = N − n+
1.

The quality of bound (4.4) depends on λ̂
(K)
N − λn, ρ − λn, and ϑ(K).

Quantity λ̂
(K)
N −λn corresponds to the width of the last cluster, the difference

ρ − λn is determined by the spectral gap between the last cluster and the
following eigenvalues, and the value of ϑ(K) measures errors in all previous
clusters. Notice that quantity ϑ(K) depends on ∆(Ek, Êk), i.e., on errors

in spaces of eigenfunctions for previous clusters, and on ζ̂(Êk, ÊK) which
accounts for possible non-orthogonality of approximate eigenfunctions.

Approximations ûi ∈ H1
0 (Ω) of eigenfunctions can be arbitrary. The only

assumption is that the dimension of Êk equals to the number of approximate
eigenfunctions forming this space, i.e., that eigenfunctions forming Êk are
linearly independent. Consequently, the approximate eigenfunctions in The-
orem 4.3 can be computed by arbitrary conforming numerical method. On
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top of that result (4.4) estimates the total error, meaning that approximate
eigenfunctions can be polluted by iteration, quadrature, round-off, and any
other errors and the statement of Theorem 4.3 still applies as long as the ap-
proximate eigenfunctions are conforming in H1

0 (Ω) and linearly independent
within each cluster.

Bound (4.4) is naturally computed iteratively starting from the first clus-
ter. Accuracy of this procedure is illustrated on numerical examples below
in Section 8.

5 Analogous estimate in the L2 norm

While the previous section presents error bounds in the energy norm, this
section derives analogous bounds in the L2(Ω) norm. The directed distance

between subspaces E and Ê measured in the L2(Ω) norm is given by (2.1)
with V = L2(Ω) and ‖v‖V = ‖v‖. Hence, with a slight abuse of notation, we
set

δ(E, Ê) = max
v∈E
‖v‖=1

min
v̂∈Ê
‖v − v̂‖.

Analogously to (4.2), the non-orthogonality of subspaces Êk and ÊK is mea-
sured in the L2(Ω) inner product by the quantity

ε̂(Êk, ÊK) = max
v∈Êk
‖v‖=1

max
w∈ÊK
‖w‖=1

(v, w).

This quantity can be computed or bounded by using Lemma 4.1 with E = Êk,
E ′ = ÊK , V = L2(Ω), and (·, ·)V = (·, ·). Similarly to Theorem 4.3 we

formulate a bound on δ(EK , ÊK).

Theorem 5.1. Consider an arbitrary partition of the spectrum into K clus-
ters as in Theorem 4.3. Let ûi ∈ H1

0 (Ω), i = 1, 2, . . . , N , be such that

dim Êk = Nk − nk + 1 for all k = 1, 2, . . . , K. Let λn < ρ ≤ λN+1. Then

δ2(EK , ÊK) ≤ λ̂
(K)
N − λn + θ(K)

ρ− λn
, (5.1)

where

λ̂
(K)
N = max

v̂∈ÊK

‖∇v̂‖2

‖v̂‖2
and θ(K) =

K−1∑
k=1

(ρ− λnk
)
[
ε̂(Êk, ÊK) + δ(Ek, Êk)

]2
.
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Proof. The proof is analogous to the proof of Theorem 4.3. Therefore, we
only sketch the main steps. Consider û ∈ ÊK , ‖û‖ = 1, and the L2(Ω)
orthogonal projector Πk : H1

0 (Ω)→ Ek. Similar to (4.5), we have

Πkû =

Nk∑
i=nk

(û, ui)ui, ‖Πkû‖2 =

Nk∑
i=nk

(û, ui)
2, ‖∇(Πkû)‖2 =

Nk∑
i=nk

λi(û, ui)
2.

Analogous argument as for (4.6) yields

‖Πkû‖ ≤ ε̂(Êk, ÊK) + δ(Ek, Êk).

Identities (3.2) and (3.3) imply

ρ‖û‖2 − ‖∇û‖2 =
∞∑
i=1

(ρ− λi)(û, ui)2 = θ(û) +
∞∑
i=n

(ρ− λi)(û, ui)2, (5.2)

where, cf. (4.7) and (4.8),

θ(û) =
K−1∑
k=1

Nk∑
i=nk

(ρ− λi)(û, ui)2 .

Expressing θ(û) as in (4.8), we obtain a bound similar to (4.10):

θ(û) ≤
K−1∑
k=1

(ρ− λnk
) ‖Πkû‖2 ≤ θ(K). (5.3)

Since ρ ≤ λN+1, we have

∞∑
i=n

(ρ− λi)(û, ui)2 ≤
N∑
i=n

(ρ− λi)(û, ui)2 ≤ (ρ− λn) ‖ΠK û‖2. (5.4)

Finally, a combination of (5.2), (5.3) and (5.4) provides the lower bound

‖ΠK û‖2 ≥
ρ‖û‖2 − ‖∇û‖2 − θ(K)

ρ− λn
≥ ρ‖û‖2 − λ̂KN − θ(K)

ρ− λn
. (5.5)

The directed distance δ(ÊK , EK) can be expressed analogously to (4.12) as

δ2(ÊK , EK) = 1− min
û∈ÊK
‖û‖=1

max
u∈EK
‖u‖=1

(û, u)2 = 1− min
û∈ÊK
‖û‖=1

‖ΠK û‖2

and the proof is finished by applying (5.5).
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Remark 5.2. Bound (5.1) is a direct and nontrivial generalization of [4, Corol-
lary 1]. Indeed, if all eigenvalues are simple and well separated (forming
clusters of size one) and the corresponding approximate eigenfunctions {ûi}
are mutually orthogonal, then the bound (5.1) coincides with the estimate

(λi+1 − λi)σ2
i ≤ (µi − λi) +

i−1∑
j=1

[λi+1 − λj]σ2
j for i = 1, 2, 3, . . . ,

where σi =
√

1− (ui, ûi)2, µi = ‖∇ûi‖2/‖ûi‖2, and ρ was chosen as λi+1.
This is exactly the statement of [4, Corollary 1].

However, bound (5.1) has a smaller rate of convergence than δ(ÊK , EK)
for approximate eigenfunctions obtained by the finite element method; see
examples in Section 8 for an illustration. Therefore, the following section
derives optimal order estimates for the special case of finite element ap-
proximations. Note that in case λN > λn bounds (4.4) and (5.1) do not

converge to zero due to the difference λ̂
(K)
N − λn. However, such clusters can

be (theoretically) split into smaller clusters consisting of a single or a mul-
tiple eigenvalue and for these clusters bounds (4.4) and (5.1) do converge.
Therefore, the notion of convergence is understood in this sense throughout
the paper.

6 Optimal order estimate in L2 norm for fi-

nite element eigenfunctions

Error estimates in the L2 norm with the optimal speed of convergence can be
achieved in the context of the finite element method by using Aubin–Nitsche
technique, an idea from [5], and the explicitly known value of the constant
in the a priori error estimate for the energy projection [26].

For simplicity, assume Ω to be a polytope. Consider the usual conforming
simplicial mesh Th in Ω and define the finite element space Vh of piece-wise
polynomial and continuous functions over the mesh Th satisfying the Dirichlet
boundary conditions as

Vh = {vh ∈ H1
0 (Ω) : vh|K ∈ Pp(K) for all K ∈ Th},

where Pp(K) stands for the space of polynomials of degree at most p defined
in K.
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The finite element eigenvalue problem reads: find λh,i ∈ R and uh,i ∈
Vh \ {0} such that

(∇uh,i,∇vh) = λh,i(uh,i, vh) ∀vh ∈ Vh, (6.1)

where i = 1, 2, . . . , dimVh. Discrete eigenfunctions are assumed to be nor-
malized such that (uh,i, uh,j) = δij and (∇uh,i,∇uh,j) = λh,iδij.

Remark 6.1. Generally uh,i is not available in practical computation, because
it is a result of a generalized matrix eigenvalue solver polluted typically by
rounding errors and truncation errors of iterative algorithms. In principle,
we can consider a general approximation ûi instead of uh,i in what follows
and then estimate the difference ûi − uh,i by applying results of Section 5.
Such argument would make the paper lengthy and not easy to read. There-
fore, the estimates in this sub-section remain as a theoretical analysis of the
discretization error uh,i − ui.

We first recall several results about the a priori error estimates for finite
element solutions of the Poisson equation. These a priori error estimates
will play an important role in subsequent error bounds for eigenfunctions.

Given f ∈ L2(Ω), let u ∈ H1
0 (Ω) be the weak solution of the Poisson

problem satisfying

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω).

The corresponding Galerkin approximation uh ∈ Vh is determined by the
identity

(∇uh,∇vh) = (f, vh) ∀vh ∈ Vh.
The energy projector Ph : H1

0 (Ω)→ Vh is defined by equality (∇u−∇Phu,∇vh) =
0 for all vh ∈ Vh. Clearly, uh = Phu.

In [26], Liu and Oishi proposed the following constructive a priori error
estimate with a computable constant Ch:

‖∇(u− Phu)‖ ≤ Ch‖f‖, ‖u− Phu‖ ≤ Ch‖∇(u− Phu)‖ ≤ C2
h‖f‖. (6.2)

In case of non-convex domains, the value of Ch can be computed by solving a
dual saddle-point problem based on the hypercircle method; see [26, Sections
3.2–3.3]. In case of convex domains, the value of Ch can be easily computed by
considering the Lagrange interpolation error constant; see [26, Theorem 3.1].
The specific value of Ch is provided below in Section 8 for the considered
examples.
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Let C(k) = {nk, nk + 1, . . . , Nk} denote the set of indices of eigenvalues
in the kth cluster and C = {1, 2, . . . , dimVh} the set of all indices. The
number of indices in C(k) is denoted by |C(k)| = Nk − nk + 1. The space
of finite element eigenfunctions corresponding to the kth clusters is Eh,k =
span{uh,nk

, uh,nk+1, . . . , uh,Nk
}. The L2(Ω) orthogonal projector from L2(Ω)

to Eh,k is denoted by Πh,k.
The quantity

τk = max
j∈C(k)

max
i∈C\C(k)

λj
|λh,i − λj|

to appear in Lemma 6.2 extends the one in [5, pages 53, 57] and has its
origin in [31]. The following result bounds the error of the L2(Ω) orthogonal
projection Πh,k : H1

0 (Ω) → Eh,k by the error of the energy projection Ph :
H1

0 (Ω)→ Vh.

Lemma 6.2. Consider an arbitrary partition of the spectrum into K clusters
as described above. Then the estimate

max
u∈Ek
‖u‖=1

‖u− Πh,ku‖ ≤
(

1 + τk
√
|C(k)|

)
max
u∈Ek
‖u‖=1

‖u− Phu‖ (6.3)

holds for all clusters k = 1, 2, . . . , K.

Proof. Since the orthogonal projection Πh,ku is the closest element in Eh,k to
u and due to the triangle inequality, we have

‖u− Πh,ku‖ ≤ ‖u− Πh,kPhu‖ ≤ ‖u− Phu‖+ ‖Phu− Πh,kPhu‖. (6.4)

First, let us consider a single eigenfunction uj ∈ Ek. Notice that the
equality

Phuj − Πh,kPhuj =
∑

i∈C\C(k)

(Phuj, uh,i)uh,i ∈ Vh,

leads to
‖(I − Πh,k)Phuj‖2 =

∑
i∈C\C(k)

(Phuj, uh,i)
2 . (6.5)

In equality

λh,i(Phuj, uh,i) = (∇Phuj,∇uh,i) = (∇uj,∇uh,i) = λj(uj, uh,i),
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we subtract λj(Phuj, uh,i) on both sides and obtain

(Phuj, uh,i) =
λj

(λh,i − λj)
(uj − Phuj, uh,i).

Summation over i 6∈ C(k) gives∑
i∈C\C(k)

(Phuj, uh,i)
2 ≤ τ 2k

∑
i∈C\C(k)

(uj − Phuj, uh,i)
2 ≤ τ 2k‖uj − Phuj‖2,

where the last inequality follows form the identity
∑

i∈C(uj − Phuj, uh,i)
2 =

‖πh(uj − Phuj)‖2 with πh : H1
0 (Ω) → Vh denoting the L2(Ω) orthogonal

projector. Using this in (6.5), we finally derive

‖(I − Πh,k)Phuj‖ ≤ τk‖(I − Ph)uj‖. (6.6)

Second, let us consider a general u =
∑

j∈C(k) cjuj ∈ Ek with ‖u‖ = 1.

Clearly,
∑

j∈C(k) c
2
j = 1. Denoting the linear operator (I −Πh,k)Ph by L, the

estimate (6.6) leads to

‖Lu‖2 =

∥∥∥∥∥∥
∑

j∈C(k)

cjLuj

∥∥∥∥∥∥
2

≤
∑

j∈C(k)

‖Luj‖2 ≤ τ 2k
∑

j∈C(k)

‖(I − Ph)uj‖2.

Thus, we can estimate ‖(I − Πh,k)Phu‖ as

‖(I − Πh,k)Phu‖ ≤ τk
√
|C(k)| max

u∈Ek
‖u‖=1

‖u− Phu‖. (6.7)

Statement (6.3) then easily follows from (6.4) and (6.7).

Now, we formulate and prove the main result of this section.

Theorem 6.3. The following estimate

δ(Ek, Eh,k) ≤
√
λNk

Ch

(
1 + τk

√
|C(k)|

)
∆(Ek, Eh,k) (6.8)

holds for all k = 1, 2, . . . , K.
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Proof. Consider the energy orthogonal projector Ph,k : H1
0 (Ω) → Eh,k. For

u ∈ Ek, ‖∇u‖ = 1, expression (2.3) implies

‖∇(u− Ph,ku)‖ ≤ ∆(Ek, Eh,k).

The a priori error estimate (6.2) and the fact that Phu is the closest element
to u in Vh yield

‖u− Phu‖ ≤ Ch‖∇(u− Phu)‖ ≤ Ch‖∇(u− Ph,ku)‖ ≤ Ch∆(Ek, Eh,k). (6.9)

Identity (2.3) and bound (6.3) give

δ(Ek, Eh,k) = max
u∈Ek
‖u‖=1

‖u− Πh,ku‖ ≤ (1 + τk
√
|C(k)|) max

u∈Ek
‖u‖=1

‖u− Phu‖. (6.10)

Since inequality ‖∇u‖/‖u‖ ≤
√
λNk

holds for all u ∈ Ek, we easily obtain
bound

max
u∈Ek
‖u‖=1

‖u− Phu‖ = max
u∈Ek
‖∇u‖=1

1

‖u‖
‖u− Phu‖ ≤

√
λNk

max
u∈Ek
‖∇u‖=1

‖u− Phu‖. (6.11)

Combination of (6.10), (6.11), and (6.9) finishes the proof.

7 Sharp energy norm estimates based on L2

bounds

This section provides an estimate of the energy distance ∆ by utilizing the
L2 distance δ. The idea is motivated by the following well known formula
(see e.g. [5, page 55])

‖∇(ui − uh,i)‖2 = λi‖ui − uh,i‖2 − (λi − λh,i).

This identity essentially tells that the error ‖∇(ui − uh,i)‖ is dominated by
the error of the approximate eigenvalue itself, because the term ‖ui − uh,i‖
has a higher order of convergence.

The following estimate is theoretically independent of the partition of
eigenvalues into clusters, but its natural usage is to bound ∆(Ek, Êk) by

δ(Ek, Êk), where k is the index of a cluster as it is introduced at the end of
Section 3.
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Theorem 7.1. Let un, . . . , uN be the exact eigenfunctions of (3.1) and 0 <
n ≤ N the corresponding indices. Let ûn, . . . , ûN ∈ H1

0 (Ω) be linearly inde-

pendent. Let E = span{un, . . . , uN} and Ê = span{ûn, . . . , ûN}. Then

∆2(E, Ê) ≤ 2− 2λn

(
1− δ2(E, Ê)

λN λ̂N

)1/2

(7.1)

where λn and λN are exact eigenfunctions corresponding to un and uN and

λ̂N = max
v̂∈Ê

‖∇v̂‖2

‖v̂‖2
.

Proof. Consider the linear mapping τ : E → E defined by

τ(u) =
N∑
i=n

ciλiui, where u =
N∑
i=n

ciui.

Since λi > 0 for all i = n, . . . , N , τ is a bijection. Given arbitrary u ∈ E and
û ∈ Ê, we clearly have

(∇u,∇û) =
N∑
i=n

ci(∇ui,∇û) =
N∑
i=n

ciλi(ui, û) = (τ(u), û).

This enables us to estimate the distance between E and Ê as follows

∆2(E, Ê) = max
u∈E
‖∇u‖=1

min
û∈Ê
‖∇u−∇û‖2 ≤ max

u∈E
‖∇u‖=1

min
û∈Ê
‖∇û‖=1

‖∇u−∇û‖2

= max
u∈E
‖∇u‖=1

min
û∈Ê
‖∇û‖=1

[2− 2 (τ(u), û)] ≤ 2− 2λn min
u∈E
‖∇u‖=1

max
û∈Ê
‖∇û‖=1

(
τ(u)

‖∇τ(u)‖
, û

)
,

(7.2)

where the last inequality follows from the fact that

‖∇τ(u)‖2 =
N∑
i=n

λ3i c
2
i ≥ λ2n

N∑
i=n

λic
2
i = λ2n‖∇u‖2 = λ2n ∀u ∈ E, ‖∇u‖ = 1.

Since τ is a bijection, it is easy to show that{
τ(u)

‖∇τ(u)‖
: u ∈ E, ‖∇u‖ = 1

}
= {u ∈ E : ‖∇u‖ = 1} .
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This equality together with bounds ‖∇u‖2 ≤ λN‖u‖2 for all u ∈ E and

‖∇û‖2 ≤ λ̂N‖û‖2 for all û ∈ Ê imply

min
u∈E
‖∇u‖=1

max
û∈Ê
‖∇û‖=1

(
τ(u)

‖∇τ(u)‖
, û

)
= min

u∈E
‖∇u‖=1

max
û∈Ê
‖∇û‖=1

(u, û)

= min
u∈E
u6=0

max
û∈Ê
û6=0

(
u

‖∇u‖
,

û

‖∇û‖

)
= min

u∈E
‖u‖=1

max
û∈Ê
‖û‖=1

(
u

‖∇u‖
,

û

‖∇û‖

)

≥ 1(
λN λ̂N

)1/2 min
u∈E
‖u‖=1

max
û∈Ê
‖û‖=1

(u, û) =

(
1− δ2(E, Ê)

λN λ̂N

)1/2

, (7.3)

where we note that maxû∈Ê, ‖û‖=1(u, û) is non-negative and the last equality

follows from (2.4). The proof is finished by substituting (7.3) to (7.2).

Let us mention that in the context of the finite element method, the
directed distance δ(E, Ê) measured in the L2(Ω) sense is of higher order than

the directed distance ∆(E, Ê) measured in the energy sense. Therefore, the

influence of δ(E, Ê) is negligible for sufficiently fine meshes and the accuracy
of the bound (7.1) is then dominated by the width of the cluster, i.e. λ̂N−λn,
and by the error of the approximate eigenvalue, i.e. λ̂N−λN . For this reason
the bound (7.1) has the potential to be of high accuracy.

In numerical examples below, we first compute the bound (4.4) on ∆(EK , ÊK)

and use it in (6.8) to estimate δ(EK , ÊK). This estimate is then substituted

to (7.1) to obtain a new bound on ∆(EK , ÊK). As soon as the new bound
improves the original one, estimates (6.8) and (7.1) can be iterated. The
accuracy of this approach is illustrated on numerical examples in Section 8.

Remark 7.2. A similar bound as (7.1) can be obtained for the quantity

∆̃(E, Ê) = max
u∈E
‖u‖=1

min
û∈Ê
‖∇(u− û)‖2.

Note that this quantity is not the directed distance (2.1), because the distance
between u and û is measured by the energy norm, while functions u are
normalized in the L2(Ω) norm. Under the assumptions of Theorem 7.1 and
using the same steps as in its proof, we can derive bound

∆̃(E, Ê) ≤ λN + λ̂N − 2λn

√
1− δ2(E, Ê).
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Figure 2: The uniform mesh in the unit square with mesh size h = 1/4.

Cluster Eigenvalues
1 λ1 = 2π2

2 λ2 = λ3 = 5π2

3 λ4 = 8π2

4 λ5 = λ6 = 10π2

Table 1: The four leading clusters for the square.

Remark 7.3. Theorem 8.1 of [5] proves the estimate

∆(ÊK , EK) ≤ C(K) sup
v∈E1∪···∪EK ,‖v‖=1

‖∇(v − Phv)‖,

where we use the notation of the current paper. Although the explicit bound
on ∆(ÊK , EK) is not given in [5], we believe that using the constant Ch from
(6.2), we can provide an explicit bound on C(K) and ‖∇(v − Phv)‖ and,

thus, an estimate for ∆(ÊK , EK). In our future work, we will derive this
estimate and compare it with bounds derived in the current paper.

8 Numerical examples

This section numerically illustrates the accuracy of proposed bounds on the
directed distances of spaces of exact and approximate eigenfunctions. The
first example is the Laplace eigenvalue problem (1.1) in a square, where the
exact solution is known. The second example is the same problem considered
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in a dumbbell shaped domain. This domain is not convex, eigenfunctions
have singularities, and eigenvalues form tight clusters.

Both examples are computed in the floating point arithmetic and the
influence of rounding errors is not taken into account. However, if needed,
mathematically rigorous estimates could be obtained by employing the in-
terval arithmetic [30].
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Figure 3: Bounds on the error of spaces of eigenfunctions in the energy
norm for the square domain and the first four clusters. The exact value of
∆(EK , ÊK) for K = 1, 2, 3, 4 is plotted by the dotted line.
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Figure 4: Bounds on the error of spaces of eigenfunctions in the L2 norm for
the square domain and the first four clusters. The exact value of δ(EK , ÊK)
for K = 1, 2, 3, 4 is plotted by the dotted line.

8.1 The unit square domain

Consider the Laplace eigenvalue problem (1.1) in the unit square Ω = (0, 1)2.
The exact eigenpairs are known analytically to be

λij = (i2 + j2)π2, uij = sin(iπx) sin(jπy), i, j = 1, 2, 3, . . . .

These eigenvalues are either simple or double and we clustered them accord-
ing to the multiplicity. The first four clusters are listed in Table 1. Since
the exact eigenvalues are known, we do not need to compute their two-sided
bounds and evaluate error bounds (4.4), (5.1), (6.8), and (7.1) using the
analytically known eigenvalues.
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This problem is solved by the finite element method (6.1) of the first order
(p = 1). The finite element mesh Th is chosen as the uniform triangulation
consisting of isosceles right triangles; see Figure 2. For this mesh, the explicit
value of Ch in the a priori error estimates (6.2) is known to be Ch = 0.493h
for conforming piece-wise linear finite elements [20, 25]. Here, h denotes the
length of the leg of right triangles in the mesh Th. Note that explicit values
of Ch are also available for non-uniform triangulations of general convex
domains [20, 25] and for quadratic finite elements [27].

The quantity ρ needed to evaluate bounds (4.4) and (5.1) is chosen as
ρ = λN+1, where we take advantage of the knowledge of exact eigenvalues.
If the exact eigenvalues are not known, their two-sided bounds have to be
employed as we show in the subsequent example.

In general, the computed eigenfunctions ûi differ from the exact Galerkin
approximations uh,i given by (6.1) due to rounding errors and errors in the
solver of the generalized matrix eigenvalue problem. However, for the purpose
of this numerical illustration, we ignore this difference and evaluate bounds
(6.8) and consequently (7.1) as if ûi = uh,i.

For each cluster K = 1, 2, 3, 4, we compute the following estimates:

(i) bound (4.4) on ∆(EK , ÊK);

(ii) the analogous bound (5.1) on δ(EK , ÊK);

(iii) the optimal order bound (6.8) on δ(EK , ÊK) using ∆(EK , ÊK);

(iv) the sharp bound (7.1) on ∆(EK , ÊK) using the smallest available value

of δ(EK , ÊK);

(v) the improved bounds by repeating steps (iii) and (iv) five times using

the best bounds on ∆(EK , ÊK) and δ(EK , ÊK) available.

Figure 3 presents the results for the directed distance measured in the
energy norm. It compares bounds (i), (iv), and (v) with the exact directed

distance ∆(EK , ÊK) for the first four clusters on a sequence of uniformly
refined meshes. The results confirm the optimal convergence rate of the
bound (4.4) and show high accuracy of the iteratively improved bounds on
sufficiently fine meshes. Figure 4 presents similar results for the L2 norm,
in particular bounds (ii), (iii), and (v). The suboptimal convergence rate of
(5.1) and the optimal rate of (6.8) and the iteratively improved bound are
observed.
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Figure 5: Dumbbell-shaped domain and the initial mesh

Cluster lower and upper bounds

1 λ1 = 19.736729
634, λ2 = 19.736729

635

2 λ3 = 49.33809
761, λ4 = 49.33809

761, λ5 = 49.3480208
5, λ6 = 49.3480208

5

3 λ7 = 78.9568301
290, λ8 = 78.9568301

290

4 λ9 = 98.671154
69041, λ10 = 98.671154

69041, λ11 = 98.6960441
39, λ12 = 98.6960441

39

Table 2: Lower and upper bounds of eigenvalues for the dumbbell shaped
domain. Two times refined initial mesh and third order finite element spaces
were used.

8.2 The 2D dumbbell shaped domain

In this example, we again consider the Laplace eigenvalue problem (1.1), but
now in a dumbbell shaped domain consisting of two unit squares connected
by a bar of width 0.02 and length 0.1, see Figure 5, where also the initial
mesh is depicted.

The exact solution of this eigenvalue problem is not known, but the eigen-
values are expected to be close to eigenvalues for a union of two squares, i.e.,
two eigenvalues close to 2π2 ≈ 19.739, four eigenvalues close to 5π2 ≈ 49.348,
etc. In order to compute high precision two-sided bounds for these eigen-
values, we combine the Crouzeix–Raviart nonconforming finite elements and
the Lehmann–Goerisch method as proposed in [24]. The resulting two-sided
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bounds obtained on a fine mesh and finite element spaces of the third order
are presented in Table 2.

Table 2 also shows the chosen division of the first twelve eigenvalues into
four clusters. Note that eigenvalues λ3 and λ4 are strictly separated from λ5
and λ6. Therefore, they could be considered as two separate clusters, but
then the spectral gap between them would be small and the factor ρ − λn
in (4.4) and (5.1) would yield large overestimation. For this reason, all four
eigenvalues λ3, . . . , λ6 are considered in one cluster.

The value of Ch in (6.2) is computed for the mesh depicted in Figure 5
and for its five successive uniform refinements by using the method from [26].
The obtained values are presented in Table 3.

Refinement times 0 1 2 3 4 5
Ch 0.0419 0.0233 0.0118 0.00588 0.00290 0.00155

Table 3: Values of Ch for the dumbbell shaped domain and linear conform-
ing finite elements. The first row indicates the number of uniform mesh
refinements of the initial mesh shown in Figure 5.

We compute the bounds on ∆(EK , ÊK) and δ(EK , ÊK) for the four clus-
ters K = 1, 2, 3, 4 as we did for the square domain. Figure 6 presents the
bound (4.4), (7.1), and the iteratively improved bound for the energy norm.
The first and the third cluster are very tight and we observe the first order
convergence. However, the convergence curves for the second and the fourth
cluster bend due to the larger width of these clusters. Figure 7 shows the
bound (5.1), (6.8), and its iterative improvement for the L2 norm. The sec-
ond order convergence of bound (6.8) and the first order convergence of (5.1)
and of the iteratively improved bound are observed.

9 Conclusions

The derived a posteriori error estimates provide guaranteed upper bounds
on the directed distance between spaces of exact and approximate eigenfunc-
tions in both energy and L2(Ω) sense. The approximate eigenfunctions can
be arbitrary and estimates of their total error are easily computed by using
solely the two-sided bounds on exact eigenvalues and the approximate eigen-
functions themselves. Numerical examples confirm that the estimate of the
energy distance ∆ converges with the optimal rate. The analogous estimate
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Figure 6: Bounds on the error of spaces of eigenfunctions in the energy norm
for the dumbbell shaped domain.

of the L2(Ω) distance δ converges with the same rate as ∆, which is subopti-
mal. For exact finite element eigenfunctions, an optimal order bound on the
L2(Ω) distance δ is derived by employing the Aubin–Nitsche technique and
the explicitly known value of the constant in the a priori error estimate for
the energy projection.

Further, the bound on the L2(Ω) distance δ can be used to improve the
bound on the energy distance ∆. The improved ∆ can be used to compute
improved δ leading to a simple iterative process. This process proved to be
efficient in the considered numerical examples, where highly accurate bounds
were computed for considered clusters on sufficiently fine meshes.

In the case of eigenfunctions corresponding to simple eigenvalues, there
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Figure 7: Bounds on the error of spaces of eigenfunctions in the L2 norm for
the dumbbell shaped domain.

is an easy formula (2.5) that links the directed distance of spaces and the
usual distance induced by the standard energy or L2(Ω) norm. Therefore,
the derived estimates of the directed distance of eigenspaces can also easily
bound the usual energy and L2(Ω) norms of the error.

To simplify the exposition, the a posteriori error bounds were derived for
the Dirichlet Laplacian. However, the idea and the bounds in this paper can
be easily generalized to a wider class of linear symmetric elliptic operators.
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[34] Tomáš Vejchodský, Flux reconstructions in the Lehmann-Goerisch
method for lower bounds on eigenvalues, J. Comput. Appl. Math. 340
(2018), 676–690. MR 3807831

[35] Manting Xie, Hehu Xie, and Xuefeng Liu, Explicit lower bounds for
Stokes eigenvalue problems by using nonconforming finite elements, Jpn.
J. Ind. Appl. Math. 35 (2018), no. 1, 335–354.

[36] YiDu Yang, ZhiMin Zhang, and FuBiao Lin, Eigenvalue approximation
from below using non-conforming finite elements, Science in China Series
A: Mathematics 53 (2010), no. 1, 137–150.

[37] Chun’guang You, Hehu Xie, and Xuefeng Liu, Guaranteed eigenvalue
bounds for the Steklov eigenvalue problem, to appear in SIAM J. Numer.
Anal. (2019).

32

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

