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SEVERAL NON-STANDARD PROBLEMS FOR THE
STATIONARY STOKES SYSTEM

DAGMAR MEDKOVÁ

Abstract. This paper studies the Stokes system −∆u +∇ρ = f , ∇ · u = χ

in Ω with three boundary conditions: 1) n · u = n · g, n × (∇ × u) = n × h
on ∂Ω; 2) n · u = n · g, τ · [∂u/∂n− ρn + bu] = h · τ on ∂Ω; 3) n · u = n · g,

[T (u, ρ)n+ bu] ·τ = h ·τ on ∂Ω. Here Ω is a bounded simply connected planar

domain. We find a necessary and sufficient condition for the existence of a
solution in Sobolev spaces W s,q(Ω; R2) ×W s−1,q(Ω) with 1 + 1/q < s < ∞,

in Besov spaces Bq,r
s (Ω; R2) × Bq,r

s−1(Ω) with 1 + 1/q < s < ∞, and classical

solutions in Ck,α(Ω, R2)× Ck−1,α(Ω) with 0 < α < 1, k ∈ N.

1. Introduction

This paper studies the stationary Stokes system

(1) −∆u +∇ρ = f , ∇ · u = χ in Ω

with the boundary condition

(2) un = gn, n× (∇× u) = n× h on ∂Ω

or with the boundary condition

(3) un = gn,

[
∂u
∂n

− ρn + bu
]

τ

= hτ on ∂Ω

or with the boundary condition

(4) un = gn, [T (u, ρ)n + bu]τ = hτ on ∂Ω

on a bounded domain Ω ⊂ R2 with connected Lipschitz boundary. Here

T (u, ρ)n = [2∇̂u− ρI]n, ∇̂u =
1
2
[∇u + (∇u)T ].

We denote by n = nΩ the outward unit normal vector of Ω. If v is a vector, then
vn = (v · n)n is the normal part of v, and vτ = v− vn is the tangential part of v.

These problems are so called problems of Navier’s type. Such problems come
up in many practical applications, e.g. fluid dynamics, electromagnetic field ap-
plications, and decomposition of vector fields. For motivation of the problem (1),
(2) see [32, pp. 87–98], [33, pp. 129–131], [1], [2], [18]. M. Amara, E. Chacón
Vera and D. Trujillo studied this problem on a polygon Ω ⊂ R2 for ρ ∈ L2(Ω) and
u ∈ {v ∈ L2(Ω; R2);∇× v ∈ L2(Ω; R2),∇ · v ∈ L2(Ω)} (see [4]). Under the addi-
tional condition on the domain that {v ∈ L2(Ω; R2);∇× v ≡ 0,∇ · v ≡ 0} = {0},
they proved the solvability of the problem for f ∈ L2(Ω,R2), χ ≡ 0, g ≡ 0 and
h ∈ L2(∂Ω; R2). It is proved that a velocity u is unique. J. M. Bernard treated

2000 Mathematics Subject Classification. 35Q35.
Key words and phrases. Stokes system; vorticity;Hodge boundary conditions.

1



2 DAGMAR MEDKOVÁ

this problem in W 1,2(Ω,R3) × L2(Ω) for simply connected Ω ⊂ R3 with bound-
ary of class C1,1 (see [13]). He proved that there exists a solution of (1), (2)
if f , χ, g and h satisfy some finitely many conditions. Ch. Amrouche and A.
Rejaba studied this problem for Ω ⊂ R3 with boundary of class C1,1 (see [7]).
They proved that for f ∈ [Hp′

0 (div,Ω)]′, χ ∈ Lp(Ω), g ∈ W 1−1/p,p(∂Ω; R3) and
h × n ∈ W−1/p,p(∂Ω; R3) there exists a solution in W 1,p(Ω,R3) × Lp(Ω). Here
H0(div,Ω) = {v ∈ Lp(Ω; R3);∇ · v ∈ Lp(Ω),v · n = 0 on ∂Ω}. A velocity u is
unique and a pressure ρ is unique up to an additive constant. Ch. Amrouche,
P. Penel and N. Seloula proved in [6] that if ∂Ω is of class C2,1, f ∈ Lp(Ω; R3),
χ ∈ W 1,p(Ω), g ∈ W 2−1/p,p(∂Ω; R3) and h × n ∈ W 1−1/p,p(∂Ω; R3), then (u, ρ) ∈
W 2,p(Ω,R3) × W 1,p(Ω). Ch. Amrouche and N. Seloula studied this problem in
W 1,p(Ω,R3) × Lp(Ω) and in Lp(Ω,R3) ×W−1,p(Ω) for Ω ⊂ R3 with boundary of
class C2,1 (see [8] and [9]). They found necessary and sufficient conditions for the
existence of solutions satisfying

∫
C

u · n dσ = 0 for each component C of ∂Ω. J.
H. Bramble and P. Lee supposed in [15] that Ω ⊂ R3 has boundary of class Ck+2.
They proved that for f ∈ Hk−1(Ω; R3), χ ≡ 0, g ∈ Hk−3/2(∂Ω; R3) and h × n ∈
W k+1/2(∂Ω; R3), there exists a unique solution (u, ρ) ∈ Hk+1(Ω,R3) × Hk(Ω) of
(1), (2) such that

∫
Ω
ρ = 0. C. Bardos treated the problem on a bounded planar

domain with boundary of class C2 in [11]. He proved that if f ≡ 0, χ ≡ 0, h ≡ 0
and g · n ∈ L3/2(∂Ω) with

∫
∂Ω

g · n dσ = 0, then there exists a distribution ρ

and a unique u ∈ H2(Ω,R2) such that (u, ρ) is a solution of the problem (1), (2).
Ch. Amrouche and M. Meslameni assumed in [5] that Ω ⊂ R3 is an exterior do-
main with connected boundary of class C1,1. Under some compatibility conditions
they proved the unique solvability of the problem in W 1,2

0 (Ω; R3) × L2(Ω), where
W 1,2

0 (Ω) := {v ∈ L2
loc(Ω); ∂jv ∈ L2(Ω), v(x)/

√
1 + |x|2 ∈ L2(Ω)}. If the boundary

of Ω is of class C2,1 then they proved that the solution is in W 2,2
1 (Ω) ×W 1,2

1 (Ω)
provided f ∈W 0,2

1 (Ω), ξ ∈W 1,2
1 (Ω), g ∈ H3/2(∂Ω), h ∈ H1/2(∂Ω).

Ch. Amrouche and A. Rejaba studied in [7] the problem (1), (3) for Ω ⊂ R3 with
boundary of class C2,1. They proved that for b ≡ 0, f ∈ [Hp′

0 (div,Ω)]′, χ ∈ Lp(Ω),
g ∈W 1−1/p,p(∂Ω; R3), h× n ∈W−1/p,p(∂Ω; R3) satisfying h · n ≡ 0 on ∂Ω,∫

Ω

χ dx =
∫

∂Ω

g · n dσ,

there exists a solution inW 1,p(Ω,R3)×Lp(Ω). A velocity u is unique, a pressure ρ is
unique up to an additive constant. Y. Raudin treated in [49] the problem for b ≡ 0,
f ≡ 0 and χ ≡ 0 in the half-space in weighted spaces W 1,p

l (Rm
+ ,Rm)×W 0,p

l (Rm
+ ).

The problem (1), (4) is an appropriate physical model for flow problems with
free boundaries and for flows past chemically reacting walls. It occurs in such
liquids as lubricants, hydraulic fluids, biological fluids etc. R. Verfürth proved in
[57] the solvability of the problem in the factor space H1(Ω; Rm)/S for a simply
connected bounded domain Ω ⊂ Rm, m = 2, 3, with boundary of class C3. (Here S
is the space of rigid body rotations of Ω.) Ch. Amrouche and A. Rejaba supposed
in [7] that Ω ⊂ R3 has boundary of class C2,1. They proved that for b ≡ 0,
f ∈ [Hp′

0 (div,Ω)]′, χ ∈ Lp(Ω), g ∈ W 1−1/p,p(∂Ω; R3), h × n ∈ W−1/p,p(∂Ω; R3)
satisfying several conditions there exists a solution in W 1,p(Ω,R3) × Lp(Ω). Here
H0(div,Ω) = {v ∈ Lp(Ω); R3;∇·v ∈ Lp(Ω),v·n = 0 on ∂Ω}. A velocity u is unique.
If f ∈ Lp(Ω; R3), χ ∈ W 1,p(Ω), g · n ∈ W 2−1/p,p(∂Ω) and hτ ∈ W 1−1/p,p(∂Ω,R3),
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then u ∈ W 2,p(Ω; R3), ρ ∈ W 1,p(Ω). Ch. Amrouche and A. Rejaba also studied
very weak solutions of the problem in Lp(Ω; R3) ×W−1,p(Ω). T. Z. Boulmezaoud
studied in [14] the problem for b ≡ 0 in the half-space in some weighted Sobolev
spaces. A. Kozhesnikov and O. Lepsky treated in [30] the problem for b ≡ 0 in a
bounded domain Ω ⊂ R3 with boundary of class C∞ in spacesHk(Ω,R3)×Hk−1(Ω).
N. Tanaka studied the problem for b ≡ 0 in the half-space R3

+ in homogeneous
Sobolev spaces Dk,2(R3

+; R3)×Dk−1,2(R3
+). (See [52].)

Since there are almost no results concerning these problems in the plane, this
article is devoted to the study of the problems for planar domains. In the whole
paper we suppose that Ω ⊂ R2 is a bounded domain with connected Lipschitz
boundary. First we study the auxiliary problem

(5) −∆u +∇ρ = 0, ∇ · u = 0 in Ω, u · n = g, ρ = h on ∂Ω.

(This problem is interesting by itself and it was studied from the numerical point of
view in [18].) We reduce this problem to the couple of two Dirichlet problems for the
Laplace equation. It enables us to utilize the whole theory of the Laplace equation.
We restrict our-self to the homogeneous Stokes system because we need only the
problem (5) in the sequel. The results can be extended to a non-homogeneous
Stokes system by a standard way - as for the problem (1), (2).

We prove that if (u, ρ) is a solution of the homogeneous Stokes system then
(∂1u2−∂2u1)+ iρ is a holomorphic functions. This shows the relations between the
problem (1), (2) for f ≡ 0, χ ≡ 0 and the problem (5). The problem (1), (2) leads
to the Dirichlet problem for the Laplace equation with an unknown (∂1u2 − ∂2u1).
After solving this problem we find a function ρ such that (∂1u2 − ∂2u1) + iρ is
a holomorphic functions. Now, it is enough to study the problem (5) instead of
the original problem (1), (2). Then we extend the results for (1), (2) to the non-
homogeneous Stokes system by a standard way.

We show that the problem (1), (3) and the problem (1), (4) are compact pertur-
bations of the problem (1), (2). We find a necessary and sufficient condition for the
existence of a solution in the Sobolev spaces W s,q(Ω; R2)×W s−1,q(Ω) for ∂Ω ∈ Ck,1

and 1 + 1/q < s ≤ k, in the Besov spaces Bq,r
s (Ω; R2)×Bq,r

s−1(Ω) for ∂Ω ∈ Ck,1 and
1+1/q < s < k, and in Ck−1,α(Ω,R2)×Ck−2,α(Ω) for ∂Ω ∈ Ck,α. The problem (1),
(2) is studied in these spaces and also in less regular spaces on domains with less reg-
ular boundaries. We show the existence of a solution (u, ρ) ∈W t,p(Ω; R2)×W s,q(Ω)
with (∂1u2−∂2u1) ∈W s,q(Ω), or (u, ρ) ∈ Bp,β

t (Ω; R2)×Bq,r
s (Ω) with (∂1u2−∂2u1) ∈

Bq,r
s (Ω), or (u, ρ) ∈ Ck,γ(Ω,R2) × Cm,β(Ω) with (∂1u2 − ∂2u1) ∈ Cm,β(Ω). If we

study the problem (1), (2) in the sense of non-tangential limits, we can suppose
only that ∂Ω is Lipschitz.

2. The auxiliary problem (5)

In this section we study the problem (5). In the whole paper we assume
that Ω ⊂ R2 is a bounded domain with connected Lipschitz boundary.
We denote by n = nΩ the outward unit normal vector of Ω, and by τ = τΩ =
(−nΩ

2 , n
Ω
1 ) the unit tangential vector of ∂Ω. If we study the problem in Sobolev

spaces W t,p(Ω,R2) ×W s,q(Ω) or in Besov spaces Bp,β
t (Ω,R2) × Bq,r

s (Ω), then the
boundary conditions are fulfilled in the sense of traces. For the homogeneous Stokes
system and for boundary conditions from Lebesgue spaces we look for solutions that
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satisfy the boundary conditions in the sense of non-tangential limits (i.e. in weaker
sense). Let us introduce necessary notations.

Let k ∈ N0, 1 < p < ∞. We denote the Sobolev space W k,p(Ω) = {u ∈
Lp(Ω); ∂βu ∈ Lp(Ω) ∀|β| ≤ k}. If s = k+ λ with 0 < λ < 1 denote by W s,p(Ω) the
space of all u ∈W k,p(Ω) such that∑

|β|=k

∫
Ω

∫
Ω

|∂βu(x)− ∂βu(y)|p

|x− y|2+pλ
dx dy <∞.

If s ≥ 0 denote by W̊ s,p(Ω) the closure of C∞c (Ω) (the space of infinitely differen-
tiable functions with compact support in Ω) in W s,p(Ω) and by W−s,p(Ω) the dual
space of W̊ s,p/(p−1)(Ω). If t > τ then W t,p(Ω) ⊂W τ,p(Ω).

If s ∈ R1 and 1 < p, q ≤ ∞, denote by Bp,q
s (R2) the Besov space. (For the

definition see for example [56].) If k ∈ N0, s = k + λ with 0 < λ < 1 and p, q <∞
then B∞,∞

s (R2) = Ck,λ(R2) and u ∈ Bp,q
s (R2) if u ∈W k,p(R2) and

∑
|β|=k

∫ ∞

0

(∫
R2

∫
{y∈R3;|x−y|<t}

|∂βu(x)− ∂βu(y)|p

t2
dy dx

)q/p
dt

tλq+1
<∞.

By Bp,q
s (Ω) we denote the space of restrictions of functions from Bp,q

s (R2) onto Ω.
The norm on Bp,q

s (Ω) is defined by

‖u‖Bp,q
s (Ω) = inf{‖f‖Bp,q

s (R2); f = u on Ω}.

If s > t then Bp,q
s (Ω) ⊂ Bp,q

t (Ω). If s is not integer and p < ∞ then Bp,p
s (Ω) =

W s,p(Ω).
If x ∈ ∂Ω, a > 0 denote the non-tangential approach regions of opening a at the

point x by
Γa(x) = {y ∈ Ω; |x− y| < (1 + a) dist(y, ∂Ω)}.

If now v is a vector function defined in Ω, we denote the non-tangential maximal
function of v on ∂Ω by

Ma(v)(x) = MΩ
a (v)(x) := sup{|v(y)|;y ∈ Γa(x)}.

It is well known that there exists c > 0 such that for a, b > c and 1 ≤ q <∞ there
exist C1, C2 > 0 such that

‖Ma(v)‖Lq(∂Ω) ≤ C1‖Mb(v)‖Lq(∂Ω) ≤ C2‖Ma(v)‖Lq(∂Ω)

for any continuous function v in Ω. (See, e.g. [27] and [51, p. 62].) We fix a > c
and write Γ(x) instead of Γa(x). Next, define the non-tangential limit of v at
x ∈ ∂Ω

v(x) := lim
Γ(x)3y→x

v(y)

whenever the limit exists.

Definition 2.1. Let 1 < p, q <∞, g ∈ Lp(∂Ω), h ∈ Lq(∂Ω). We say that (u, ρ) is
an Lp-Lq-solution of the problem

(6a) −∆u +∇ρ = 0, ∇ · u = 0 in Ω,

(6b) u · n = g, ρ = h on ∂Ω,
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if u = (u1, u2) ∈ C2(Ω,R2), ρ ∈ C1(Ω) solve (6a), Ma(u) ∈ Lp(∂Ω), Ma(ρ) ∈
Lq(∂Ω), there exist non-tangential limits of u and ρ at almost all points of ∂Ω, and
these limits satisfy the boundary conditions (6b).

We need the following auxiliary lemma:

Lemma 2.2. Let 1 < p, q < ∞, G ∈ W 1,p(∂Ω) be such that ∂G/∂τ = g̃. Let
ϕ ∈ C∞(Ω), ∆ϕ = 0 in Ω, ϕ = G in the sense of non-tangential limit almost
everywhere on ∂Ω, and Ma(ϕ),Ma(∇ϕ) ∈ Lp(∂Ω). Suppose that there exists non-
tangential limit of ∇ϕ at almost all points of ∂Ω. Define v1 = ∂2ϕ, v2 = −∂1ϕ,
v = (v1, v2), t ≡ 0. Then (v, t) is an Lp-Lq-solution of the problem

(7) −∆v +∇t = 0, ∇ · v = 0 in Ω, v · nΩ = g̃, t = 0 on ∂Ω.

Proof. We have −∆v +∇t = (−∂2∆ϕ, ∂1∆ϕ) = 0, ∇ · v = ∂1∂2ϕ− ∂2∂1ϕ = 0,

g̃ =
∂G

∂τ
= −n2∂1ϕ+ n1∂2ϕ = n · (∂2ϕ,−∂1ϕ) = n · v.

�

Now we are able to study uniqueness of an Lp-Lq solution.

Proposition 2.3. Let 1 < p, q <∞. Suppose that one of the following conditions
is satisfied:

• p ≤ 2 ≤ q,
• ∂Ω is of class C1,
• Ω is convex.

Put G(x) := − 1
2 (x2

1 + x2
2). Then there exists ϕ ∈ C∞(Ω) such that ∆ϕ = 0 in

Ω, ϕ = G in the sense of non-tangential limit almost everywhere on ∂Ω, Ma(ϕ) +
Ma(∇ϕ) ∈ Lp(∂Ω). Define w(x) := (∂2ϕ(x) + x2,−∂1ϕ(x) − x1). Then (w, 0)
is a non-trivial Lp-Lq-solution of the problem (6) with trivial data g ≡ 0, h ≡ 0.
Moreover, (∂1w2 − ∂2w1) ≡ −2. If (u, ρ) is an Lp-Lq-solution of the problem (6)
with g ≡ 0, h ≡ 0, then there is a constant c such that (u, ρ) = c(w, 0). If ∂Ω
is of class Ck,γ with k ∈ N and 0 < γ < 1, then w ∈ Ck−1,γ(Ω,R2). If ∂Ω is
of class Ck,1 with k ∈ N, 1 < p, β < ∞, 1/p < t < k, then w ∈ W k,p(Ω,R2) ⊂
Bp,β

t (Ω,R2) ∩W t,p(Ω,R2).

Proof. Clearly ∂G(x)/∂τ = n2(x)x1 − n1(x)x2. According to [36, Proposition 7.3]
there exists ϕ ∈ C∞(Ω) such that ∆ϕ = 0 in Ω, ϕ = G in the sense of non-tangential
limit almost everywhere on ∂Ω, Ma(ϕ) +Ma(∇ϕ) ∈ Lp(∂Ω). If ∂Ω is of class Ck,γ

with γ ∈ (0, 1) then ϕ ∈ Ck,γ(Ω) by [36, Proposition 7.5]. If ∂Ω is of class Ck,1 then
ϕ ∈W k+1,p(Ω) by Theorem 5.6.

Lemma 2.2 gives that (w, 0) is an Lp-Lq-solution of the problem (6) with g ≡ 0,
h ≡ 0. One has ∂1w2 − ∂2w1 = −2−∆ϕ = −2. Thus w is non-trivial.

Let (u, ρ) be an Lp-Lq-solution of the problem (6) with g ≡ 0, h ≡ 0. Then ρ ≡ 0
by [36, Proposition 4.1]. Since ∆u = 0 one has u ∈ C∞(Ω; R2) by [38, Theorem
2.18.2]. Since Ω is simply connected there exists a sequence of simply connected
domains Ωk with Lipschitz boundary such that Ωk ⊂ Ωk+1 and Ω = ∪kΩk. Fix
z ∈ Ω1. Since ∇ · u ≡ 0 Lemma 5.1 gives∫

∂Ωk

u · n dσ = 0.



6 DAGMAR MEDKOVÁ

According to [20, Theorem 1] there exists a unique ψ ∈ W 1,4(Ωk) ⊂ C(Ωk) such
that u = (∂2ψ,−∂1ψ) in Ωk and ψ(z) = 0. Since Ωk was arbitrary we have
u = (∂2ψ,−∂1ψ) in Ω. Moreover, ψ ∈ C∞(Ω). Since ∆u = 0 one has

∂j∆ψ = ∆∂jψ = ∆(−1)ju3−j = 0.

Therefore there exists a constant d such that ∆ψ ≡ d. Clearly, ∆(ψ + dG/2) = 0.
Since Ma(∇(ψ+dG/2)) ∈ Lp(∂Ω), [38, Theorem 5.6.1] gives that Ma(ψ+dG/2) ∈
Lp(∂Ω) and there exists a non-tangential limit of ψ + dG/2 at almost all points of
∂Ω. Moreover, ψ + dG/2 ∈W 1,p(∂Ω) and

∂(ψ + dG/2)
∂τ

= u · n +
d

2
∂G

∂τ
=
d

2
∂G

∂τ
.

by [37, Lemma 11.2]. Therefore there exists a constant d̃ such that ψ + dG/2 =
dG/2 + d̃ on ∂Ω. So, ∆(ψ + dG/2 − dϕ/2) = 0 in Ω, ψ + dG/2 − dϕ/2 = d̃ on
∂Ω. From the uniqueness of the regular Lp-solution of the Dirichlet problem for
the Laplace equation ([36, Proposition 7.3]) we infer that ψ + dG/2 − dϕ/2 ≡ d̃.
Thus u = (∂2ψ,−∂1ψ) = d

2w. �

Theorem 2.4. Let w be the vector function from Proposition 2.3.

(1) Let 1 < p, q <∞. Suppose that one of the following conditions is satisfied:
• p ≤ 2 ≤ q,
• ∂Ω is of class C1,
• Ω is convex.

If g ∈ Lp(∂Ω), h ∈ Lq(∂Ω), then there exists an Lp-Lq-solution (u, ρ) of
the problem (6) if and only if the condition

(8)
∫

∂Ω

g dσ = 0

holds true. If (u, ρ) is an Lp-Lq-solution of the problem (6) then u ∈
B

p,max(p,2)
1/p (Ω,R2), ρ ∈ B

q,max(q,2)
1/q (Ω), and the general form of an Lp-Lq-

solution of the problem (6) is (u + cw, ρ) where c ∈ R1.
(2) Let k ∈ N, 1 < p, q <∞, ∂Ω be of class Ck,1, 1/q < s ≤ k+1, s−1/q 6∈ N0,

1/p < t ≤ k, t−1/p 6∈ N0, and t ≤ s+1. Suppose that s+1−2/q ≥ t−2/p.
(That is true if p ≤ q or t ≤ s−1.) If g ∈W t−1/p,p(∂Ω), h ∈W s−1/q,q(∂Ω),
then there exists a solution (u, ρ) ∈ W t,p(Ω, R2)×W s,q(Ω) of the problem
(6) if and only if the condition (8) holds. If (u, ρ) ∈W t,p(Ω, R2)×W s,q(Ω)
is a solution of (6) then (u, ρ) is an Lp-Lq solution of (6), and the general
form of a solution of the problem (6) in W t,p(Ω, R2)×W s,q(Ω) is (u+cw, ρ)
where c ∈ R1.

(3) Let k ∈ N, 1 < p, q, r, β < ∞, ∂Ω be of class Ck,1, 1/q < s < k + 1,
1/p < t < k, and t ≤ s + 1, (s + 1) − 2/q ≥ t − 2/p. If t = s + 1
or (s + 1) − 2/q = t − 2/p suppose moreover that p ≤ q and r ≤ β. If
g ∈ Bp,β

t−1/p(∂Ω), h ∈ Bq,r
s−1/q(∂Ω), then there exists a solution (u, ρ) ∈

Bp,β
t (Ω,R2) × Bq,r

s (Ω) of the problem (6) if and only if the condition (8)
holds. If (u, ρ) ∈ Bp,β

t (Ω,R2) × Bq,r
s (Ω) is a solution of (6) then (u, ρ) is

an Lp-Lq solution of (6), and the general form of a solution of the problem
(6) in Bp,β

t (Ω,R2)×Bq,r
s (Ω) is (u + cw, ρ) where c ∈ R1.
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(4) Let k,m, n ∈ N0, 0 < α, β, γ < 1, and m+ β ≤ k + α, n+ γ ≤ m+ 1 + β,
n + 1 + γ ≤ k + α. Suppose that ∂Ω is of class Ck,α. If h ∈ Cm,β(∂Ω),
g ∈ Cn,γ(∂Ω), then there exists a solution (u, ρ) ∈ Cn,γ(Ω,R2)×Cm,β(Ω) of
the problem (6) if and only if the condition (8) holds. The general form of
a solution of the problem (6) in Cn,γ(Ω,R2)×Cm,β(Ω) is (u+ cw, ρ) where
c ∈ R1.

Proof. Suppose first that (u, ρ) is a solution of the problem (6) in the cases (2),
(3). Then Ma(u) ∈ Lp(∂Ω), Ma(ρ) ∈ Lq(∂Ω), and there exist non-tangential limits
of u and ρ at almost all points of ∂Ω by Proposition 5.8. The trace of u is equal
to the non-tangential limit of u, and the trace of ρ is equal to the non-tangential
limit of ρ by [43, Proposition 3.37]. So, (u, ρ) is an Lp-Lq solution of (6).

u ∈ B
p,max(p,2)
1/p (Ω,R2), ρ ∈ B

q,max(q,2)
1/q (Ω) whenever (u, ρ) is an Lp-Lq solution

of (6) by [36, Theorem 4.2].
If (u, ρ) is a solution of (6) (in the case (1), (2), (3) or (4)) then the general form

of a solution of the problem (6) in the same sense is (u+ cw, ρ) where c ∈ R1. (See
Proposition 2.3.)

If (u, ρ) is a solution of (6) (in the case (1), (2), (3) or (4)) then the condition
(8) holds by Lemma 5.1.

We now prove the existence of a solution. Suppose that the condition (8) is
fulfilled. If (u, ρ) is an Lp-Lq solution of the problem (6), then ρ ∈ C∞(Ω), ∆ρ = 0
in Ω by [29, p. 10], ρ = h on ∂Ω in the sense of the non-tangential limit and
Ma(ρ) ∈ Lq(∂Ω), i.e. ρ is an Lq-solution of the Dirichlet problem for the Laplace
equation

(9) ∆ρ = 0 in Ω, ρ = h on ∂Ω.

We solve this problem. In the case (1) there exists an Lq-solution of the problem
(9) by [36, Proposition 7.2]. Moreover, ρ ∈ B

q,max(q,2)
1/q (Ω). In the case (2) there

exists a solution ρ ∈W s,q(Ω) of (9) by Theorem 5.6. In the case (3) there exists a
solution ρ ∈ Bq,r

s (Ω) of (9) by [36, Proposition 7.8]. In the case (4) there exists a
solution ρ ∈ Cm,β(Ω) of (9) by [36, Proposition7.4 and Proposition 7.5].

According to [36, Lemma 3.1] there exists Φ ∈ C(Ω,R2) ∩ C∞(Ω; R2) such that
(Φ, ρ) is a solution of the Stokes system (6a) in Ω, and Φ ∈ Bq,max(2,q)

1/q+1 (Ω,R2) in the
case (1), Φ ∈ W s+1,q(Ω,R2) ↪→ W t,p(Ω,R2) in the case (2), Φ ∈ Bq,r

s+1(Ω,R2) ↪→
Bp,β

t (Ω,R2) in the case (3), Φ ∈ Cm+1,β(Ω,R2) in the case (4). (For the inclusions
of the spaces see [12, Theorem 3.8] and Proposition 5.7.)∫

∂Ω
Φ · nΩ dσ = 0 by Lemma 5.1. Note that (u, ρ) is a solution of the problem

(6) if and only if for v = u−Φ, t ≡ 0 the couple (v, t) is a solution of the problem
(7) with g̃ := g −Φ · nΩ. Notice

∫
∂Ω
g̃ dσ = 0.

We now construct a function G such that ∂G/∂τ = g̃ on ∂Ω. Fix z ∈ ∂Ω. For
x ∈ ∂Ω we denote by L(x) the part of ∂Ω between points z and x. (From the
beginning z we go along ∂Ω in the direction τ .) Define

G(x) :=
∫

L(x)

g̃ dσ.

Since
∫

∂Ω
g̃ dσ = 0, the function G is well defined on ∂Ω. Clearly, ∂G/∂τ =

g̃. Since g̃ ∈ Lp(∂Ω), the function G is bounded (and even continuous). Since
∂G/∂τ = g̃ ∈ Lp(∂Ω), we infer that G ∈ W 1,p(∂Ω). In the case (2) the function
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g̃ ∈W t−1/p,p(∂Ω) by [22, Theorem 1.5.1.2], and therefore G ∈W t+1−1/p,p(∂Ω). In
the case (3) the function g̃ ∈ Bp,β

t−1/p(∂Ω) by [25, Chapter VI, Theorem 1], and thus

G ∈ Bp,β
t+1−1/p(∂Ω). Clearly, G ∈ Cn+1,γ(∂Ω) in the case (4).

According to [36, Proposition 7.3] there exists ϕ ∈ C∞(Ω) such that ∆ϕ =
0 in Ω, ϕ = G in the sense of non-tangential limit almost everywhere on ∂Ω,
Ma(ϕ)+Ma(∇ϕ) ∈ Lp(∂Ω). Moreover, ϕ ∈W t+1,p(Ω) in the case (2), ϕ ∈ Bp,β

t+1(Ω)
in the case (3), ϕ ∈ Cn+1,γ(Ω) in the case (4), and ϕ = G on ∂Ω in the sense of
traces. (See [36, Proposition 7.3, Proposition 7.5, Proposition 7.7 and Proposition
7.8].) [38, Theorem 5.6.1] gives that there exists a non-tangential limit of ∇ϕ at
almost all points of ∂Ω. The non-tangential limit of ∇ϕ is equal to the trace of ∇ϕ
by [43, Proposition 3.37].

Define v1 = ∂2ϕ, v2 = −∂1ϕ, v = (v1, v2), t ≡ 0. Then (v, t) is a solution of
the problem (7) by Lemma 2.2. Put u := v + Φ. Then (u, ρ) is a solution of the
problem (6). �

3. The problem (1), (2)

In this section we study the problem (1), (2) (the problem with so called Hodge
conditions) for planar domains. If u and ρ depend only on x1, x2 in G = Ω×(c1, c2)
with Ω ⊂ R2, and u3 ≡ 0 then ∇ × u = (0, 0, ∂1u2 − ∂2u1). On Ω × {cj} we
have nG × (∇ × u) = (0, 0, 0). On ∂Ω × (c1, c2) we have nG = (nΩ

1 , n
Ω
2 , 0) and

nG× (∇×u) = (∂1u2−∂2u1)(nΩ
2 ,−nΩ

1 , 0). So, the problem (1), (2) can be reduced
to the problem

(10a) −∆u +∇ρ = f , ∇ · u = χ in Ω,

(10b) u · n = g, ∂1u2 − ∂2u1 = b on ∂Ω.

(Compare [46].) If u ∈ W t,p(Ω,R2) ∪ Bp,β
t (Ω,R2) and ∂1u2 − ∂2u1 ∈ W s,q(Ω) ∪

Bq,r
s (Ω) with 1/p < t and 1/q < s then the boundary conditions will be satisfied in

the sense of traces. For the homogeneous system (6a) and g ∈ Lp(∂Ω), b ∈ Lq(∂Ω)
we shall again study solutions satisfying the boundary conditions in the sense of
non-tangential limits.

Definition 3.1. Let 1 < p, q <∞, g ∈ Lp(∂Ω), b ∈ Lq(∂Ω). We say that (u, ρ) is
an Lp-Lq-solution of the problem (6a), (10b) if u = (u1, u2) ∈ C2(Ω,R2), ρ ∈ C1(Ω)
solve (6a), Ma(u) ∈ Lp(∂Ω), Ma(∂1u2−∂2u1) ∈ Lq(∂Ω), there exist non-tangential
limits of u and ∂1u2 − ∂2u1 at almost all points of ∂Ω, and these limits satisfy the
boundary conditions (10b).

First we find relations between the problems (6a), (10b) and (6).

Lemma 3.2. Let (u, ρ) be a solution of the Stokes system (6a) in an open set
G ⊂ R2. Then (∂1u2 − ∂2u1) + iρ is a holomorphic function in G.

Proof. u ∈ C∞(G,R2), p ∈ C∞(G) by [48, §1.2]. Since ∂1u1 = −∂2u2, we have

∂1(∂1u2 − ∂2u1) = ∂2
1u2 − ∂2∂1u1 = ∂2

1u2 + ∂2
2u2 = ∆u2 = ∂2ρ,

∂2(∂1u2 − ∂2u1) = ∂1∂2u2 − ∂2
2u1 = −∂2

1u1 − ∂2
2u1 = −∆u1 = −∂1ρ.

[10, Proposition 3.2] gives that (∂1u2 − ∂2u1) + iρ is holomorphic in G. �

Theorem 3.3. Let 1 < p, q < ∞. Suppose that one of the following conditions is
satisfied:
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• p ≤ 2 ≤ q,
• ∂Ω is of class C1,
• Ω is convex.

If g ∈ Lp(∂Ω), b ∈ Lq(∂Ω), then there exists an Lp-Lq-solution (u, ρ) of the prob-
lem (6a), (10b) if and only if the condition (8) holds true. If (u, ρ) is an Lp-Lq-
solution of the problem (6a), (10b), then the general form of an Lp-Lq-solution of
the problem is (u, ρ+ c), where c is a constant. Moreover, u ∈ Bp,max(p,2)

1/p (Ω,R2),

(∂1u2 − ∂2u1) ∈ Bq,max(q,2)
1/q (Ω), ρ ∈ Bq,max(q,2)

1/q (Ω), Ma(ρ) ∈ Lq(∂Ω) and there ex-
ists a non-tangential limit of ρ at almost all points of ∂Ω. Let 0 < α < 1. If α ≤ 1/2
or ∂Ω is of class C1 or Ω is convex, and b ∈ C0,α(∂Ω) then (∂1u2−∂2u1) ∈ C0,α(Ω)
and ρ ∈ C0,α(Ω). If ∂Ω is of class Ck,α and b ∈ Ck,α(∂Ω) with k ∈ N then
(∂1u2 − ∂2u1) ∈ Ck,α(Ω) and ρ ∈ Ck,α(Ω). If q = 2 or ∂Ω is of class C1 or Ω
is convex, and 1/q < s < 1+1/q, b ∈W s−1/q,q(∂Ω) then (∂1u2−∂2u1) ∈W s,q(Ω),
ρ ∈ W s,q(Ω). If ∂Ω is of class Ck,1, 1/q < s ≤ k + 1 with k ∈ N, s− 1/q 6∈ N and
b ∈ W s−1/q,q(∂Ω), then (∂1u2 − ∂2u1) ∈ W s,q(Ω), ρ ∈ W s,q(Ω). If q = 2 or ∂Ω is
of class C1 or Ω is convex, and 1/q < s < 1+1/q, 1 < r <∞, b ∈ Bq,r

s−1/q(∂Ω) then
(∂1u2 − ∂2u1) ∈ Bq,r

s (Ω), ρ ∈ Bq,r
s (Ω). If ∂Ω is of class Ck,1, 1/q < s < k + 1 with

k ∈ N, 1 < r <∞ and b ∈ Bq,r
s−1/q(∂Ω), then (∂1u2−∂2u1) ∈ Bq,r

s (Ω), ρ ∈ Bq,r
s (Ω).

Proof. Suppose first that (u, ρ) is an Lp-Lq-solution of the problem (6a), (10b).
Then (∂1u2−∂2u1)+iρ is a holomorphic function by Lemma 3.2. So, (∂1u2−∂2u1) ∈
B

q,max(q,2)
1/q (Ω) by [42, Corollary 4.4]. Lemma 5.5 gives that Ma(ρ) ∈ Lq(∂Ω) and

there exists a non-tangential limit of ρ at almost all points of ∂Ω. So, (u, ρ) is an
Lp-Lq-solution of the problem (6) for some h. Theorem 2.4 gives that (8) holds,
u ∈ Bp,max(p,2)

1/p (Ω,R2) and ρ ∈ Bq,max(q,2)
1/q (Ω).

Let now g ≡ 0, b ≡ 0. If c is a constant then (0, c) is an Lp-Lq-solution of
the problem (6a), (10b). Let now (u, ρ) be an Lp-Lq-solution of the problem (6a),
(10b). Then (∂1u2 − ∂2u1) + iρ is a holomorphic function by Lemma 3.2. So,
ω := (∂1u2 − ∂2u1) is an Lq-solution of the Dirichlet problem

(11) ∆ω = 0 in Ω, ω = b on ∂Ω.

Since b ≡ 0, [36, Proposition 7.2] gives that ω ≡ 0. Since iρ is a holomorphic
function, there exists a constant c such that ρ ≡ c. Therefore, (u, ρ − c) is an Lp-
Lq-solution of the problem (6) with h ≡ 0. According to Proposition 2.3 there exists
a constant β such that u = βw. So, 0 = (∂1u2 − ∂2u1) = β(∂1w2 − ∂2w1) = −2β.
Thus β = 0 and u ≡ 0.

Let now (8) holds. According to [36, Proposition 7.2] there is a unique Lq-
solution ω of the Dirichlet problem for the Laplace equation (11). Moreover, ω ∈
B

q,max(q,2)
1/q (Ω). According to [10, Theorem 16.3] there exists a real function ρ̃

such that ω + iρ̃ is holomorphic. Lemma 5.5 gives that Ma(ρ̃) ∈ Lq(∂Ω) and
there exists a non-tangential limit h of ρ̃ at almost all points of ∂Ω. According to
Theorem 2.4 there exists an Lp-Lq-solution (v, ρ) of the problem (6). The function
(∂1v2 − ∂2v1) + iρ is holomorphic by Lemma 3.2. Since ρ and ρ̃ are Lq-solutions of
the Dirichlet problem ∆ρ = 0 in Ω, ρ = h on ∂Ω, [36, Proposition 7.2] gives that
ρ̃ = ρ. Since [(∂1v2 − ∂2v1) + iρ] − (ω + iρ̃) = (∂1v2 − ∂2v1) − ω is a holomorphic
function, there exists a constant c such that (∂1v2 − ∂2v1) − ω = c. (See [10,
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Proposition 3.6].) Thus (v, ρ) is an Lp-Lq-solution of the Hodge problem (6a),

(12) v · n = g, ∂1v2 − ∂2v1 = b+ c on ∂Ω.

Let w be the vector function from Proposition 2.3. Then (w, 0) is an Lp-Lq-solution
of the Hodge problem (6a),

(13) w · n = 0, ∂1w2 − ∂2w1 = −2 on ∂Ω.

Define u := v + (c/2)w. Then (u, ρ) is an Lp-Lq-solution of the problem (6a),
(10b).

Suppose that α ≤ 1/2 or ∂Ω is of class C1 or Ω is convex, and b ∈ C0,α(∂Ω). Then
(∂1u2 − ∂2u1) = ω ∈ C0,α(Ω) by [36, Proposition 7.4]. Since (∂1u2 − ∂2u1) + iρ
is holomorphic, Lemma 5.2 gives that ρ ∈ C0,α(Ω). If ∂Ω is of class Ck,α and
b ∈ Ck,α(∂Ω) then (∂1u2 − ∂2u1) ∈ Ck,α(Ω) by [36, Proposition 7.5]. Lemma 5.2
gives that ρ ∈ Ck,α(Ω).

Suppose that q = 2 or ∂Ω is of class C1 or Ω is convex, and 1/q < s < 1 + 1/q,
b ∈ W s−1/q,q(∂Ω). Then (∂1u2 − ∂2u1) = ω ∈ W s,q(Ω) by [36, Proposition 7.6].
Since (∂1u2 − ∂2u1) + iρ is holomorphic, Lemma 5.3 gives that ρ ∈W s,q(Ω). If ∂Ω
is of class Ck,1, 1/q < s ≤ k + 1, s − 1/q 6∈ N and b ∈ W s−1/q,q(∂Ω) with k ∈ N,
then (∂1u2−∂2u1) ∈W s,q(Ω) by Theorem 5.6. Lemma 5.3 gives that ρ ∈W s,q(Ω).

Suppose that q = 2 or ∂Ω is of class C1 or Ω is convex, and 1/q < s < 1 + 1/q,
1 < r <∞, b ∈ Bq,r

s−1/q(∂Ω). Then (∂1u2−∂2u1) = ω ∈ Bq,r
s (Ω) by [36, Proposition

7.6]. Since (∂1u2 − ∂2u1) + iρ is holomorphic, Lemma 5.4 gives that ρ ∈ Bq,r
s (Ω).

If ∂Ω is of class Ck,1, 1/q < s < k + 1, and b ∈ Bq,r
s−1/q(∂Ω) with k ∈ N, then

(∂1u2 − ∂2u1) ∈ Bq,r
s (Ω) by Theorem 5.6. Lemma 5.4 gives ρ ∈ Bq,r

s (Ω). �

Theorem 3.4. Let 1 < p, q < ∞. Suppose that one of the following conditions is
satisfied:

• p, q ≤ 2,
• ∂Ω is of class C1,
• Ω is convex.

If g ∈ Lp(∂Ω), b ∈ W 1,q(∂Ω), then there exists an Lp-Lq-solution (u, ρ) of the
problem (6a), (10b),

(14) Ma(∇(∂1u2 − ∂2u1)) ∈ Lq(∂Ω)

if and only if the condition (8) holds true. If (u, ρ) is a solution of the problem
(6a), (10b) in this sense, then the general form of a solution of the problem in
this sense is (u, ρ + c), where c is a constant. Moreover, u ∈ B

p,max(p,2)
1/p (Ω,R2),

(∂1u2 − ∂2u1) ∈ B
q,max(q,2)
1+1/q (Ω) ↪→ C(Ω), ρ ∈ B

q,max(q,2)
1+1/q (Ω) ↪→ C(Ω), Ma(∇ρ) ∈

Lq(∂Ω).

Proof. Let (u, ρ) be an Lp-Lq-solution of the problem (6a), (10b), (14). Put ω =
(∂1u2 − ∂2u1). Then ω + iρ is a holomorphic function by Lemma 3.2. Lemma 5.5
gives that Ma(ρ),Ma(∇ρ) ∈ Lq(∂Ω) and there exists a non-tangential limit of ρ at
almost all points of ∂Ω. Since ω and ρ are harmonic functions, [42, Corollary 4.4]
gives that ω, ρ ∈ Bq,max(q,2)

1+1/q (Ω). One has Bq,max(q,2)
1+1/q (Ω) ↪→ C(Ω) by [56, Proposition

4.6]. So, (u, ρ+ c), where c is a constant, is the general form of an Lp-Lq-solution
of the problem (6a), (10b), (14). (See Theorem 3.3.) Moreover, (8) holds.

Suppose that (8) holds true. Sobolev’s embedding theorem gives that b ∈ C(∂Ω).
Put r = max(2, q). According to Theorem 3.3 there exists an Lp-Lr solution (u, ρ)
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of the problem (6a), (10b). Since q ≤ r, (u, ρ) is an Lp-Lq solution of the problem
(6a), (10b). Put ω = (∂1u2 − ∂2u1). Then ω + iρ is a holomorphic function
by Lemma 3.2. In particular, ω is an Lr-solution of the Dirichlet problem for
the Laplace equation (11). Since b ∈ W 1,q(∂Ω), [36, Proposition 7.3] gives that
Ma(ω),Ma(∇ω) ∈ Lq(∂Ω). �

Before we shall study the non-homogeneous problem (10), we prove the following
auxiliary lemma. We denote B(x; r) = {y ∈ R2; |x− y| < r}.

Lemma 3.5. Let 1 < q, r <∞, 1/q < s <∞, m ∈ N0, 0 < α < 1.
(a) If f ∈ Bq,r

s−1(Ω,R2), χ ∈ Bq,r
s (Ω) then there exists a solution (u, ρ) ∈

Bq,r
s+1(Ω,R2)×Bq,r

s (Ω) of (10a).
(b) If f ∈ W s−1,q(Ω,R2), χ ∈ W s,q(Ω) then there exists a solution (u, ρ) ∈

W s+1,q(Ω,R2)×W s,q(Ω) of (10a).
(c) Let χ ∈ Cm,α(Ω), f ∈ C(Ω,R2). If m ≥ 1 suppose that f ∈ Cm−1,α(Ω,R2).

Then there exists a solution (u, ρ) ∈ Cm+1,α(Ω,R2)× Cm,α(Ω) of (10a).
(d) If f ∈ Bq,r

s−1(Ω,R2), χ ∈ Bq,r
s (Ω) and (u, ρ) is a solution of (10a) in the

sense of distributions, then (∂1u2 − ∂2u1) ∈ Bq,r
s (Ω) if and only if ρ ∈

Bq,r
s (Ω).

(e) If f ∈ W s−1,q(Ω,R2), χ ∈ W s,q(Ω) and (u, ρ) is a solution of (10a) in
the sense of distributions, then (∂1u2 − ∂2u1) ∈ W s,q(Ω) if and only if
ρ ∈W s,q(Ω).

(f) Let χ ∈ Cm,α(Ω), f ∈ C(Ω,R2). If m ≥ 1 suppose that f ∈ Cm−1,α(Ω,R2).
If (u, ρ) is a solution of (10a) in the sense of distributions, then (∂1u2 −
∂2u1) ∈ Cm,α(Ω) if and only if ρ ∈ Cm,α(Ω).

Proof. (a) Choose r ∈ (0,∞) such that Ω ⊂ B(0; r). We can suppose that f ∈
Bq,r

s−1(B(0; r),R2), χ ∈ Bq,r
s (B(0; r)). According to [36, Theorem 5.4] there exists

a solution (u, ρ) ∈ Bq,r
s+1(B(0; r),R2)×Bq,r

s (B(0; r)) of (10a) in B(0; r).
(b) If s 6∈ N then (b) is a consequence of (a). Let now s ∈ N. We can suppose that

f ∈W s−1,q(B(0; r),R2), χ ∈W s,q(B(0; r)) by [3, Theorem 5.24]. According to [36,
Theorem 5.5] there exists a solution (u, ρ) ∈ W s+1,q(B(0; r),R2) ×W s,q(B(0; r))
of (10a) in B(0; r).

(c) Choose r ∈ (0,∞) such that Ω ⊂ B(0; r). Since Cm,α(Ω) = B∞,∞
α (Ω) by

[56, Theorem 1.122], we can suppose that χ ∈ B∞,∞
α (B(0; r)) = Cm,α(B(0; r)). If

m ≥ 1 we can suppose that f ∈ Cm−1,α(B(0; r),R2). If m = 0 we can suppose
that f ∈ L∞(B(0; r),R2). According to [21, Theorem 8.34, Theorem 6.14 and
Theorem 6.19] there exists v ∈ Cm+1,α(B(0; r); R2) such that −∆v = f in B(0; r).
Put ρ = (χ−∇ · v). Then ρ ∈ Cm,α(B(0; r)). According to [21, Theorem 6.14 and
Theorem 6.19] there exists ϕ ∈ Cm+2,α(B(0; r)) such that ∆ϕ = ρ. Put u := v+∇ϕ.
Then

∇ · u = ∇ · v + ∆ϕ = χ,

−∆u +∇ρ = −∆v −∇∆ϕ+∇ρ = f .
So (u, ρ) ∈ Cm+1,α(Ω,R2)× Cm,α(Ω) is a solution of (10a).

(d), (e), (f): Put X = Bq,r
s+1(Ω,R2) and Y = Bq,r

s (Ω) in the case (d), X =
W s+1,q(Ω,R2) and Y = W s,q(Ω) in the case (e), X = Cm+1,α(Ω,R2) and Y =
Cm,α(Ω) in the case (f). We have proved that there exists a solution (v, τ) ∈ X×Y
of (10a). Put U := u − v, P := ρ − τ . Clearly, (∂1u2 − ∂2u1) ∈ Y if and only
if (∂1U2 − ∂2U1) ∈ Y . Similarly, ρ ∈ Y if and only if P ∈ Y . Since (U, P ) is
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a solution of (6a), Lemma 3.2, Lemma 5.4, Lemma 5.3 and Lemma 5.2 give that
(∂1U2 − ∂2U1) ∈ Y if and only if P ∈ Y . �

Theorem 3.6. Let k ∈ N0, 1 < p, q, r, β <∞, ∂Ω be of class Ck,α, 0 < α ≤ 1.
(1) Let k ∈ N, α = 1, 1/q < s ≤ k+1, s−1/q 6∈ N0, 1/p < t ≤ k, t−1/p 6∈ N0,

and t ≤ s + 1. Suppose that s − 2/q ≥ t − 2/p. (That is true if p ≤ q or
t ≤ s − 1.) Let g ∈ W t−1/p,p(∂Ω), b ∈ W s−1/q,q(∂Ω), f ∈ W s−1,q(Ω,R2),
χ ∈W s,q(Ω).
(a) Let u ∈W t,p(Ω,R2), (∂1u2 − ∂2u1) ∈W s,q(Ω) and ρ be a distribution

in Ω. Suppose that (u, ρ) is a solution of the problem (10). Then

(15)
∫

∂Ω

g dσ =
∫

Ω

χ dx

and ρ ∈ W s,q(Ω). If f ≡ 0, χ ≡ 0, then (u, ρ) is an Lp-Lq-solution
of the problem (10). If b ≡ 0, g ≡ 0, χ ≡ 0, f ≡ 0 then u ≡ 0, ρ is
constant.

(b) Suppose (15). Then there exists (u, ρ) ∈ W t,p(Ω,R2) ×W s,q(Ω) with
(∂1u2 − ∂2u1) ∈ W s,q(Ω) such that (u, ρ) is a solution of the prob-
lem (10). In particular, if 1/q < s ≤ k − 1, s − 1/q 6∈ N0, g ∈
W s+1−1/q,q(∂Ω), b ∈W s−1/q,q(∂Ω), f ∈W s−1,q(Ω,R2), χ ∈W s,q(Ω),
then there exists a solution (u, ρ) ∈ W s+1,q(Ω,R2) ×W s,q(Ω) of the
problem (10).

(2) Let k ∈ N, α = 1, 1/q < s < k + 1, 1/p < t < k, and t ≤ s + 1,
(s + 1) − 2/q ≥ t − 2/p. If t = s + 1 or (s + 1) − 2/q = t − 2/p suppose
moreover that p ≤ q and r ≤ β. Let g ∈ Bp,β

t−1/p(∂Ω), b ∈ Bq,r
s−1/q(∂Ω),

f ∈ Bq,r
s−1(Ω,R2), χ ∈ Bq,r

s (Ω).
(a) Let u ∈ Bp,β

t (Ω,R2) with (∂1u2 − ∂2u1) ∈ Bq,r
s (Ω) and ρ be a dis-

tribution in Ω. Suppose that (u, ρ) is a solution of the problem (10).
Then (15) holds and ρ ∈ Bq,r

s (Ω). If f ≡ 0, χ ≡ 0, then (u, ρ) is an
Lp-Lq-solution of the problem (10). If b ≡ 0, g ≡ 0, χ ≡ 0, f ≡ 0 then
u ≡ 0, ρ is constant.

(b) Suppose (15). Then there exists (u, ρ) ∈ Bp,β
t (Ω,R2) × Bq,r

s (Ω) with
(∂1u2 − ∂2u1) ∈ Bq,r

s (Ω) such that (u, ρ) is a solution of the problem
(10). In particular, if 1/q < s < k − 1, g ∈ Bq,r

s+1−1/q(∂Ω), b ∈
Bq,r

s−1/q(∂Ω), f ∈ Bq,r
s−1(Ω,R2), χ ∈ Bq,r

s (Ω), then there is a solution
(u, ρ) ∈ Bq,r

s+1(Ω,R2)×Bq,r
s (Ω) of the problem (10).

(3) Let m,n ∈ N0, 0 < α, β, γ < 1, and m + β ≤ k + α, n + γ ≤ m + 1 + β,
n + 1 + γ ≤ k + α. Let b ∈ Cm,β(∂Ω), g ∈ Cn,γ(∂Ω), χ ∈ Cm,β(Ω),
f ∈ C(Ω,R2). If m ≥ 1 suppose f ∈ Cm−1,β(Ω,R2).
(a) Let u ∈ Cn,γ(Ω,R2), (∂1u2 − ∂2u1) ∈ Cm,β(Ω) and ρ be a distribution

in Ω. Let (u, ρ) be a solution of the problem (10). Then ρ ∈ Cm,β(Ω)
and (15) holds. If b ≡ 0, g ≡ 0, χ ≡ 0, f ≡ 0 then u ≡ 0, ρ is constant.

(b) If (15) holds, then there exists (u, ρ) ∈ Cn,γ(Ω,R2) × Cm,β(Ω) with
(∂1u2 − ∂2u1) ∈ Cm,β(Ω) such that (u, ρ) is a solution of the problem
(10). In particular, if ∂Ω ∈ Cm+2,α, g ∈ Cm+1,α(∂Ω), b ∈ Cm,α(∂Ω),
χ ∈ Cm,α(Ω), f ∈ C(Ω,R2) for m = 0 and f ∈ Cm−1,α(Ω,R2) for
m ∈ N, then there exists a solution (u, ρ) ∈ Cm+1,α(Ω,R2)× Cm,α(Ω)
of the problem (10).
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Proof. Let u ∈ W t,p(Ω,R2) with the vorticity (∂1u2 − ∂2u1) ∈ W s,q(Ω) and a
distribution ρ in Ω be such that (u, ρ) is a solution of the problem (10). Then
ρ ∈ W s,q(Ω) by Lemma 3.5. According to Lemma 3.5 there exists (v, τ) ∈
W s+1,q(Ω,R2) ×W s,q(Ω) such that −∆v + ∇τ = f , ∇ · v = χ. The Divergence
theorem gives

(16)
∫

∂Ω

nΩ · v dσ =
∫

Ω

χ dx.

According to [12, Theorem 3.8] one hasW s+1,q(Ω) ↪→W t,p(Ω). Thus (u−v, ρ−τ) ∈
W t,p(Ω,R2)×W s,q(Ω), ∆(u− v) = ∇(ρ− τ), ∇ · (u− v) = 0 in Ω. Theorem 2.4
gives ∫

∂Ω

nΩ · (u− v) dσ = 0.

From this and (16) we obtain (15). Let now f ≡ 0, χ ≡ 0. Put h := ρ on
∂Ω. Theorem 2.4 gives that (u, ρ) is an Lp-Lq-solution of the problem (6). In
particular, Ma(u) ∈ Lp(∂Ω), Ma(ρ) ∈ Lq(∂Ω) and there exist non-tangential limits
of u and ρ at almost all points of ∂Ω. Lemma 3.2 gives that (∂1u2− ∂2u1) + iρ is a
holomorphic function in Ω. According to Lemma 5.5 there exists a non-tangential
limit of (∂1u2 − ∂2u1) at almost all points of ∂Ω and Ma(∂1u2 − ∂2u1) ∈ Lq(∂Ω).
So, (u, ρ) is an Lp-Lq-solution of the problem (10). If b ≡ 0, g ≡ 0, χ ≡ 0, f ≡ 0
then u ≡ 0, ρ is constant by Theorem 3.3.

Let u ∈ Bp,β
t (Ω,R2) with the vorticity (∂1u2−∂2u1) ∈ Bq,r

s (Ω) and a distribution
ρ in Ω be such that (u, ρ) is a solution of the problem (10). Then ρ ∈ Bq,r

s (Ω) by
Lemma 3.5. Since Bp,β

t (Ω,R2) ↪→ W t−ε,p(Ω,R2), Bq,r
s (Ω) ↪→ W s−ε,q(Ω) for ε > 0

by [54, §4.6.1, Theorem], (1a) forces (2a).
Let u ∈ Cn,γ(Ω,R2), (∂1u2 − ∂2u1) ∈ Cm,β(Ω) and ρ be a distribution in Ω. Let

(u, ρ) be a solution of the problem (10). Then ρ ∈ Cm,β(Ω) by Lemma 3.5. Choose
p, q ∈ (1,∞) such that 1/p < γ, 1/q < β. Choose t ∈ (1/p, γ), s ∈ (1/q, β). Then
Cn,γ(Ω,R2) ↪→W t,p(Ω,R2), Cm,β(Ω) ↪→W s,q(Ω) by [31, Remark 6.8.3]. So, (3a) is
a consequence of (1a).

We now construct a solution of the problem (10). Assume (15). Suppose first
that f ≡ 0, χ ≡ 0. According to Theorem 3.3 there exists an Lp-Lq-solution (u, ρ)
of the problem (10). Moreover Ma(ρ) ∈ Lq(∂Ω) and there exists a non-tangential
limit of ρ at almost all points of ∂Ω. Further, (∂1u2 − ∂2u1) ∈ W s,q(Ω) and
ρ ∈ W s,q(Ω) in the case (1), (∂1u2 − ∂2u1) ∈ Bq,r

s (Ω) and ρ ∈ Bq,r
s (Ω) in the case

(2), (∂1u2−∂2u1) ∈ Cm,β(Ω) and ρ ∈ Cm,β(Ω) in the case (3). Denote by h the trace
of ρ. Then (u, ρ) is an Lp-Lq-solution of the problem (6). Theorem 2.4 gives that
u ∈ W t,p(Ω,R2) in the case (1), u ∈ Bp,β

t (Ω,R2) in the case (2), u ∈ Cn,γ(Ω,R2)
in the case (3).

Let now (15) hold and f and χ be arbitrary. According to Lemma 3.5 there
exists a solution (v, τ) of −∆v + ∇τ = f , ∇ · v = χ in Ω. Moreover, (v, τ) ∈
W s+1,q(Ω,R2) × W s,q(Ω) ↪→ W t,p(Ω,R2) × W s,q(Ω) in the case (1), (v, τ) ∈
Bq,r

s+1(Ω,R2) × Bq,r
s (Ω) ↪→ Bp,β

t (Ω,R2) × Bq,r
s (Ω) in the case (2), and (v, τ) ∈

Cm+1,β(Ω,R2) × Cm,β(Ω) ↪→ Cn,γ(Ω,R2) × Cm,β(Ω) in the case (3). Put G = g −
nΩ ·v, B = b−(∂1v2−∂2v1) on ∂Ω. Then G ∈W t−1/p,p(∂Ω) and B ∈W s−1/q,q(∂Ω)
in the case (1) by [22, Theorem 1.5.1.2], G ∈ Bp,β

t−1/p(∂Ω) and B ∈ Bq,r
s−1/q(∂Ω) in
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the case (2) by [25, Chapter VIII, Theorem 2]. Since∫
∂Ω

nΩ · v dσ =
∫

Ω

χ dx

we deduce that ∫
∂Ω

G dσ = 0.

We have proved that there exists a solution (V, T ) of the problem

∆V = ∇T, ∇ ·V = 0 in Ω,

V · nΩ = G, (∂1V2 − ∂2V1) = B on ∂Ω

such that (V, T ) ∈ W t,p(Ω,R2) ×W s,q(Ω) with (∂1V2 − ∂2V1) ∈ W s,q(Ω) in the
case (1), (V, T ) ∈ Bp,β

t (Ω,R2)×Bq,r
s (Ω) with (∂1V2 − ∂2V1) ∈ Bq,r

s (Ω) in the case
(2), (V, T ) ∈ Cn,γ(Ω,R2)× Cm,β(Ω) with (∂1V2 − ∂2V1) ∈ Cm,β(Ω) in the case (3).
Put u = v + V, ρ = τ + T . Then (u, ρ) is a solution of (10). �

4. The other problems

Theorem 4.1. Let k ∈ N, k ≥ 2, 1 < q, r < ∞, ∂Ω be of class Ck,α, 0 < α ≤ 1,
b ∈ Ck−2,α(∂Ω), b ≥ 0.

(1) Let α = 1, 1/q + 1 < s ≤ k, s − 1/q 6∈ N, g ∈ W s−1/q,q(∂Ω; R2), h ∈
W s−1−1/q,q(∂Ω; R2), f ∈W s−2,q(Ω,R2), χ ∈W s−1,q(Ω).
(a) Then there exists a solution (u, ρ) ∈ W s,q(Ω,R2) ×W s−1,q(Ω) of the

problem (1), (3) if and only if (15) holds. The general form of a
solution of the problem (1), (3) in W s,q(Ω,R2)×W s−1,q(Ω) is (u, ρ+c)
where c is a constant.

(b) Suppose

(17)
∫

∂Ω

b dσ > 0.

Then there exists a solution (u, ρ) ∈ W s,q(Ω,R2) ×W s−1,q(Ω) of the
problem (1), (4) if and only if (15) holds. The general form of a
solution of the problem (1), (4) in W s,q(Ω,R2)×W s−1,q(Ω) is (u, ρ+c)
where c is a constant.

(2) Let α = 1, 1/q + 1 < s < k, g ∈ Bq,r
s−1/q(∂Ω; R2), h ∈ Bq,r

s−1−1/q(∂Ω; R2),
f ∈ Bq,r

s−2(Ω,R2), χ ∈ Bq,r
s−1(Ω).

(a) Then there exists a solution (u, ρ) ∈ Bq,r
s (Ω,R2) × Bq,r

s−1(Ω) of the
problem (1), (3) if and only if (15) holds. The general form of a
solution of the problem (1), (3) in Bq,r

s (Ω,R2)×Bq,r
s−1(Ω) is (u, ρ+ c)

where c is a constant.
(b) Suppose (17). Then there exists a solution (u, ρ) ∈ Bq,r

s (Ω,R2) ×
Bq,r

s−1(Ω) of the problem (1), (4) if and only if (15) holds. The general
form of a solution of the problem (1), (4) in Bq,r

s (Ω,R2)×Bq,r
s−1(Ω) is

(u, ρ+ c) where c is a constant.
(3) Let k > 2, 0 < α < 1, g ∈ Ck−1,α(∂Ω; R2), h ∈ Ck−2,α(∂Ω; R2), f ∈

Ck−3,α(Ω,R2), χ ∈ Ck−2,α(Ω).
(a) Then there exists a solution (u, ρ) ∈ Ck−1,α(Ω,R2) × Ck−2,α(Ω) of

the problem (1), (3) if and only if (15) holds. The general form of a
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solution of the problem (1), (3) in Ck−1,α(Ω,R2)×Ck−2,α(Ω) is (u, ρ+
c) where c is a constant.

(b) Suppose (17). Then there exists a solution (u, ρ) ∈ Ck−1,α(Ω,R2) ×
Ck−2,α(Ω) of the problem (1), (4) if and only if (15) holds. The general
form of a solution of the problem (1), (4) in Ck−1,α(Ω,R2)×Ck−2,α(Ω)
is (u, ρ+ c) where c is a constant.

Proof. Clearly, if u ≡ 0 and ρ is constant then (u, ρ) is a solution of the problem
(1), (3) and the problem (1), (4) with f ≡ 0, χ ≡ 0, g ≡ 0, h ≡ 0.

If (u, ρ) is a solution of the problem (1), (3) or the problem (1), (4), then (u, ρ)
is a solution of some problem of the type (10). So, (15) holds by Theorem 3.6.

Let us denote X = W s,q(Ω,R2), Y = W s−1,q(Ω), A = W s−1/q,q(∂Ω), B =
W s−1−1/q,q(∂Ω), D = W s−2,q(Ω,R2) in the case (1); X = Bq,r

s (Ω,R2), Y =
Bq,r

s−1(Ω), A = Bq,r
s−1/q(∂Ω), B = Bq,r

s−1−1/q(∂Ω), D = Bq,r
s−2(Ω,R2) in the case

(2); X = Ck−1,α(Ω,R2), Y = Ck−2,α(Ω), A = Ck−1,α(∂Ω), B = Ck−2,α(∂Ω),
D = Ck−3,α(Ω,R2) in the case (3); Xτ := {u ∈ X;un = 0}, Y0 = {ρ ∈ Y ;

∫
Ω
ρ dx =

0}, X̂τ := {u ∈ W 2,2(Ω,R2);un = 0}, Ŷ0 = {ρ ∈ W 1,2(Ω);
∫
Ω
ρ dx = 0},

B̂ = W 1/2,2(∂Ω), D̂ = L2(Ω,R2). For λ > 0 define

Vλ(u, ρ) := [−∆u +∇ρ,∇ · u, λ(∂1u2 − ∂2u1)].

Then Vλ : Xτ × Y0 → D × Y0 × B, Vλ : X̂τ × Ŷ0 → D̂ × Ŷ0 × B̂ are isomorphisms
by Theorem 3.6.

Denote by κ := ∇ · nΩ the curvature of ∂Ω. Remember that κ := ∇ · n where n
is the unit exterior normal of Ω. Since ∂Ω is of class Ck,α, one has κ ∈ Ck−2,α. If
u ∈ X̂τ then

(18) τ · [∂u/∂n] = (∂1u2 − ∂2u1)− κτ · u
by [26, Lemma 4.1], and

(19) τ · [(∇̂u)nΩ] =
1
2
(∂1u2 − ∂2u1)− κτ · u

by [16, Lemma 2.1]. We now show (18) and (19) for u ∈ Xτ . Denote [f , χ, h] =
V1(u, 0) ∈ D × Y0 × B. We can choose fk ∈ D ∩ D̂, χk ∈ Y0 ∩ Ŷ0 and hk ∈ B ∩ B̂
such that [fk, χk, hk] → [f , χ, h] as k → ∞ in D × Y0 × B. Denote [uk, ρk] =
V −1

1 [fk, χk, hk]. Then [uk, ρk] ∈ [Xτ × Y0] ∩ [X̂τ × Ŷ0] and [uk, ρk] → [u, ρ] as
k →∞ in Xτ ×Y0. Using (18) and (19) for uk and continuity of the trace of v and
∇v for v ∈ X, we deduce (18) and (19).

Define
Wa(u, ρ) := [−∆u +∇ρ,∇ · u, τ · (∂u/∂n+ bu)],
Wb(u, ρ) := [−∆u +∇ρ,∇ · u, τ · [T (u, ρ)nΩ + bu]].

Then Wa : Xτ × Y0 → D × Y0 × B, Wb : Xτ × Y0 → D × Y0 × B by (15). If
(u, ρ) ∈ Xτ × Y0 then

(20) Wa(u, ρ)− V1(u, ρ) = Wb(u, ρ)− V1/2(u, ρ) = [0, 0, (b− κ)τ · u]

by (18) and (19). Note that (b−κ)τ ∈ Ck−2(∂Ω; R2). (See for example [38, Lemma
1.16.8].) The trace is a compact operator from X to B × B. If ψ ∈ Ck−2(∂Ω)
then v 7→ ψv is a bounded operator on B. (For the case (1) see [45, Chap. 2,
§5.4, Lemma 5.5]. For the case (3) see [38, Lemma 1.16.8]. For the case (2) we
use [55, §3.3.2, Theorem] and the fact that for small ε > 0 one has Ck−2,1(∂Ω) ↪→
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Ck−2,1−ε(∂Ω) = B∞,∞
k−1−ε(∂Ω) by [50, Chapter V, §5, Proposition 8’].) This and (20)

give that Wa−V1 and Wb−V1/2 are compact operators from Xτ ×Y0 to D×Y0×B.
Since Vλ : Xτ × Y0 → D × Y0 ×B is an isomorphism, we infer that

Wa : Xτ × Y0 → D × Y0 ×B, Wb : Xτ × Y0 → D × Y0 ×B

are Fredholm operators with index 0. In particular, for s = q = r = 2 in the case
(1),

Wa : X̂τ × Ŷ0 → D̂ × Ŷ0 × B̂, Wb : X̂τ × Ŷ0 → D̂ × Ŷ0 × B̂

are Fredholm operators with index 0.
Let now (u, ρ) ∈ Xτ × Y0, Wa(u, ρ) = 0. Since Wa : Xτ × Y0 → D × Y0 × B,

Wa : X̂τ × Ŷ0 → D̂× Ŷ0× B̂ are Fredholm operators with index 0, (u, ρ) ∈ X̂τ × Ŷ0

by [44, Lemma 11.9.21]. According to Green’s formula

0 =
∫

∂Ω

u · [∂u/∂n− ρn + bu] dσ =
∫

Ω

|∇u|2 dx +
∫

∂Ω

b|u|2 dσ.

Since b ≥ 0 we infer that ∇u ≡ 0. Therefore there exists a vector c ∈ R2 such that
u ≡ c. Since c · n = 0 on ∂Ω we deduce that c = 0. Thus ∇ρ = ∆u = 0 and ρ is
constant. Since

(21)
∫

Ω

ρ dx = 0,

we infer ρ ≡ 0. Since Wa : Xτ × Y0 → D × Y0 × B is a Fredholm operator with
index 0 and trivial kernel, it is an isomorphism.

Suppose now that (u, ρ) ∈ Xτ × Y0, Wb(u, ρ) = 0. Since Wb : Xτ × Y0 →
D×Y0×B, Wb : X̂τ × Ŷ0 → D̂× Ŷ0× B̂ are Fredholm operators with index 0, [44,
Lemma 11.9.21] gives (u, ρ) ∈ X̂τ × Ŷ0. According to Green’s formula

0 =
∫

∂Ω

u · [T (u, ρ)n + bu] dσ =
∫

Ω

2|∇̂u|2 dx +
∫

∂Ω

b|u|2 dσ.

b ≥ 0 forces that ∇̂u = 0 in Ω, bu = 0 on ∂Ω. Since ∇̂u ≡ 0, [34, Lemma 3.1]
gives that u = Ax+ c where c ∈ R2 and A = (aij) is a skew symmetric matrix, i.e.
aij = −aji. Since the surface measure of {x ∈ ∂Ω;u(x) = 0} is positive by (17),
[35, Lemma 5.1] gives u ≡ 0. Thus ∇ρ = ∆u = 0 and ρ is constant. (21) forces
that ρ ≡ 0. Since Wb : Xτ × Y0 → D × Y0 × B is a Fredholm operator with index
0 and trivial kernel, it is an isomorphism.

Let (u, ρ) ∈ X × Y be a solution of (1), (3) (or (1), (4)) with f ≡ 0, χ ≡ 0,
g ≡ 0, h ≡ 0. Then u ∈ Xτ and there exists c ∈ R1 such that ρ− c ∈ Y0. Clearly,
(u, ρ−c) solves again (1), (3) (or (1), (4)), respectively. We have proved that u ≡ 0,
ρ− c ≡ 0.

We now show the existence of a solution. Assume (15). According to Theorem
3.6 there exists (v, p) ∈ X × Y such that

−∆v +∇p = f , ∇ · v = χ in Ω, un = gn on ∂Ω.

Clearly, (v, p) +W−1
a (0, 0, τ · (h− ∂v/∂n− bv)) ∈ X × Y is a solution of (1), (3),

and (v, p)+W−1
b (0, 0, τ · (h−T (v, p)n− bv)) ∈ X ×Y is a solution of (1), (4). �

Theorem 4.2. Let k ∈ N, k ≥ 2, 1 < q, r < ∞, ∂Ω be of class Ck,α, 0 < α ≤ 1,
b ≡ 0.

(1) Let α = 1, 1/q + 1 < s ≤ k, s − 1/q 6∈ N, g ∈ W s−1/q,q(∂Ω; R2), h ∈
W s−1−1/q,q(∂Ω; R2), f ∈W s−2,q(Ω,R2), χ ∈W s−1,q(Ω).
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(a) If Ω is not a circle then there exists a solution (u, ρ) ∈W s,q(Ω,R2)×
W s−1,q(Ω) of the problem (1), (4) if and only if (15) holds. The
general form of a solution of the problem (1), (4) in W s,q(Ω,R2) ×
W s−1,q(Ω) is (u, ρ+ c) where c is a constant.

(b) Suppose that Ω = B(z; t) for some z ∈ R2 and t ∈ (0,∞). Let s ≥ 2.
Define v(x) := (x2− z2, z1−x1). Then there exists a solution (u, ρ) ∈
W s,q(Ω,R2) ×W s−1,q(Ω) of the problem (1), (4) if and only if (15)
and

(22)
∫

Ω

f · v dx +
∫

∂Ω

h · v dσ +
∫

Ω

v · ∇χ dx = 0.

hold, and (u + c1v, ρ + c2) with c1, c2 ∈ R1 is a general form of a
solution of the problem (1), (4) in W s,q(Ω,R2)×W s−1,q(Ω).

(2) Let α = 1, 1/q + 1 < s < k, g ∈ Bq,r
s−1/q(∂Ω; R2), h ∈ Bq,r

s−1−1/q(∂Ω; R2),
f ∈ Bq,r

s−2(Ω,R2), χ ∈ Bq,r
s−1(Ω).

(a) If Ω is not a circle then there exists a solution (u, ρ) ∈ Bq,r
s (Ω,R2)×

Bq,r
s−1(Ω) of the problem (1), (4) if and only if (15) holds. The general

form of a solution of the problem (1), (4) in Bq,r
s (Ω,R2)×Bq,r

s−1(Ω) is
(u, ρ+ c) where c is a constant.

(b) Suppose that Ω = B(z; t) for some z ∈ R2 and t ∈ (0,∞). Let s ≥ 2.
Define v(x) := (x2− z2, z1−x1). Then there exists a solution (u, ρ) ∈
Bq,r

s (Ω,R2)×Bq,r
s−1(Ω) of the problem (1), (4) if and only if (15) and

(22) hold. The general form of a solution of the problem (1), (4) in
Bq,r

s (Ω,R2)×Bq,r
s−1(Ω) is (u + c1v, ρ+ c2) where c1, c2 are constants.

(3) Let k > 2, 0 < α < 1, g ∈ Ck−1,α(∂Ω; R2), h ∈ Ck−2,α(∂Ω; R2), f ∈
Ck−3,α(Ω,R2), χ ∈ Ck−2,α(Ω).
(a) If Ω is not a circle then there exists a solution (u, ρ) ∈ Ck−1,α(Ω,R2)×

Ck−2,α(Ω) of the problem (1), (4) if and only if (15) holds. The general
form of a solution of the problem (1), (4) in Ck−1,α(Ω,R2)×Ck−2,α(Ω)
is (u, ρ+ c) where c is a constant.

(b) Suppose that Ω = B(z; t) for some z ∈ R2 and t ∈ (0,∞). Define
v(x) := (x2 − z2, z1 − x1). Then there exists a solution (u, ρ) ∈
Ck−1,α(Ω,R2) × Ck−2,α(Ω) of the problem (1), (4) if and only if (15)
and (22) hold. The general form of a solution of the problem (1), (4)
in Ck−1,α(Ω,R2)× Ck−2,α(Ω) is (u + c1v, ρ+ c2) with c1, c2 ∈ R1.

Proof. Clearly, if u ≡ 0 and ρ is constant then (u, ρ) is a solution of the problem
(1), (4) with f ≡ 0, χ ≡ 0, g ≡ 0, h ≡ 0.

If (u, ρ) is a solution of (1), (4), then (u, ρ) is a solution of (1),

un = gn, [T (u, ρ)n + u]τ = [h + u]τ on ∂Ω.

Therefore (15) holds by Theorem 4.1.
Let us denote X = W s,q(Ω,R2), Y = W s−1,q(Ω), A = W s−1/q,q(∂Ω), B =

W s−1−1/q,q(∂Ω), D = W s−2,q(Ω,R2) in the case (1); X = Bq,r
s (Ω,R2), Y =

Bq,r
s−1(Ω), A = Bq,r

s−1/q(∂Ω), B = Bq,r
s−1−1/q(∂Ω), D = Bq,r

s−2(Ω,R2) in the case
(2); X = Ck−1,α(Ω,R2), Y = Ck−2,α(Ω), A = Ck−1,α(∂Ω), B = Ck−2,α(∂Ω), D =
Ck−3,α(Ω,R2) in the case (3); X̂ = W 2,2(Ω,R2), Ŷ = W 1,2(Ω), Â = W 3/2,2(∂Ω),
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B̂ = W 1/2,2(∂Ω), D̂ = L2(Ω,R2). For λ ≥ 0 define

Wλ(u, ρ) := [−∆u +∇ρ,∇ · u,n · u, τ · [T (u, ρ)nΩ + λu]].

Then W1 : X×Y → D×Y ×A×B is a Fredholm operator with index 0 by Theorem
4.1. If (u, ρ) ∈ X × Y then W1(u, ρ) −W0(u, ρ) = [0, 0, 0, τ · u]. Since W1 −W0 :
X × Y → D× Y ×A×B is compact, the operator W0 : X × Y → D× Y ×A×B
is a Fredholm operator with index 0. In particular, for s = q = 2 in the case (1) we
obtain that W0 : X̂ × Ŷ → D̂ × Ŷ × Â× B̂ is a Fredholm operator with index 0.

Let now (u, ρ) ∈ X × Y , W0(u, ρ) = 0. Since W0 : X × Y → D × Y × A × B,
W0 : X̂τ × Ŷ → D̂ × Ŷ × Â× B̂ are Fredholm operators with index 0, [44, Lemma
11.9.21] gives (u, ρ) ∈ X̂ × Ŷ . According to Green’s formula

0 =
∫

∂Ω

u · T (u, ρ)n dσ =
∫

Ω

2|∇̂u|2 dx.

Since ∇̂u ≡ 0, [34, Lemma 3.1] gives that u(x) = (c1 + ax2, c2 − ax1) where
a, c1, c2 ∈ R1. Thus ∇ρ = ∆u = 0 and ρ is constant. Suppose first that a = 0.
Then 0 = n · u = n · (c1, c2) on ∂Ω. This forces c1 = c2 = 0 and thus u ≡ 0. Let
now a 6= 0. Denote z := [c2/a,−c1/a]. Then u(x) = a(x2 − z2,−(x1 − z1)). Define
ϕ(x) := (x1 − z1)2 + (x2 − z2)2. Then we have on ∂Ω

∂ϕ(x)
∂τ

= 2(x1 − z1, x2 − z2) · τ =
2
a

(n · u) = 0.

So, ϕ is locally constant on ∂Ω. Since ∂Ω is connected, there exists t > 0 such that
∂Ω = ∂B(z; t) and therefore Ω = B(z; t).

So, if Ω is not a circle then W0(u, ρ) = 0 if and only if u ≡ 0 and ρ is constant.
Since W0 : X × Y → D × Y × A× B is a Fredholm operator with index 0, (15) is
a necessary and sufficient condition for the existence of a solution (u, ρ) ∈ X × Y
of (1), (4).

Suppose Ω = B(z; t). If c1, c2 ∈ R1 then easy calculation yields W0(c1v, c2) = 0.
So, W0(u, ρ) = 0 if and only if (u, ρ) = (c1v, c2) for some c1, c2 ∈ R1. If (u, ρ) ∈
X × Y is a solution of (1), (4), then the Green formula yields∫

Ω

f · vdx +
∫

∂Ω

h · v dσ =
∫

Ω

2∑
i=1

[
− ρ∂ivi + vi∂iχ+

2∑
j=1

∂iuj(∂ivj + ∂jvi)
]

dσ

= −
∫

Ω

v · ∇χ dx.

Since W0 : X × Y → D × Y × A × B is a Fredholm operator with index 0, there
exists a solution (u, ρ) ∈ X × Y of (1), (4) if and only if (15) and (22) hold. �

5. Appendix

5.1. Non-tangential limit.

Lemma 5.1. Let G ⊂ Rm be a bounded domain with Lipschitz boundary. Let
u ∈ L1

loc(G,Rm) with ∇ · u ∈ L1(G). Suppose that Ma(u) ∈ L1(∂G) and there
exists a non-tangential limit of u at almost all points of ∂G. Then∫

∂G

u · nG dσ =
∫

G

∇ · u dx.

(See [43, Proposition 2.4 ].)
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5.2. Holomorphic functions.

Lemma 5.2. Let ξ+iη be a holomorphic function in Ω. If η ∈ Ck,α(Ω) with k ∈ N0

and 0 < α < 1, then ξ ∈ Ck,α(Ω).

Proof. Suppose first that k = 0. The domain with Lipschitz boundary satisfies the
property Pα by [40, p. 394]. Therefore ξ ∈ C0,α(Ω) by [40, Corollary 3.7].

If k 6= 0 we use that fact that ∂βξ+ i∂βη is a holomorphic function for arbitrary
multiindex β. �

Lemma 5.3. Let ξ + iη be a holomorphic function in Ω, 1 < q < ∞, 0 < s < ∞.
If η ∈W s,q(Ω) then ξ ∈W s,q(Ω).

Proof. For s 6∈ N see [40, Proposition 9.2]. Let now s ∈ N. Since W s,q(Ω) ⊂
W 1/2,q(Ω) one has ξ ∈ W 1/2,q(Ω) ⊂ Lq(Ω). The rest is a consequence of the fact
that ∂1ξ = ∂2η, ∂2ξ = −∂1η. �

Lemma 5.4. Let ξ + iη be a holomorphic function in Ω. If η ∈ Bq,r
s (Ω) with

1 < q, r <∞, 0 < s <∞, then ξ ∈ Bq,r
s (Ω).

Proof. We can suppose that η ∈ Bq,r
s (R2). Then ∂jη ∈ Bq,r

s−1(R2) by [47, Chapter
3, Theorem 9]. Thus ∂1ξ = ∂2η ∈ Bq,r

s−1(R2), ∂2ξ = −∂1η ∈ Bq,r
s−1(R2). [41,

Proposition 7.6] gives ξ ∈ Bq,r
s (Ω). �

Lemma 5.5. Let ξ + iη be a holomorphic function in Ω and 1 < q < ∞. If
Ma(η) ∈ Lq(∂Ω) then Ma(ξ) ∈ Lq(∂Ω) and there exist non-tangential limits of ξ
and η at almost all points of ∂Ω.

Proof. If u is a harmonic function in Ω then Ma(u) ∈ Lq(∂Ω) if and only if Aa(u) ∈
Lq(∂Ω), where

Aa(u)(x) =

[∫
Γa(x)

|∇u(y)|2 dx

]1/2

.

(See [17, Theorem] or [28, Theorem 1.5.10].) Since ∂1ξ = ∂2η, ∂2ξ = −∂1η and
therefore Aa(ξ) = Aa(η), we infer Ma(ξ) ∈ Lq(∂Ω). Since Ma(ξ),Ma(η) ∈ Lq(∂Ω),
there exist non-tangential limits of ξ and η at almost all points of ∂Ω by [23] and
[24, Theorem 1]. �

5.3. The Dirichlet problem for the Laplace equation.

Theorem 5.6. Let ∂Ω be of class Ck,1 with k ∈ N, and 1 < p, q < ∞, 1/p < s ≤
k + 1.

(a) If f ∈ W s−2,p(Ω), g ∈ W s−1/p,p(∂Ω) and s − 1/p 6∈ N, then there exists a
unique solution u ∈W s,p(Ω) of the Dirichlet problem

(23) ∆u = f in Ω, u = g on ∂Ω.

(b) If f ∈ Bp,q
s−2(Ω), g ∈ Bp,q

s−1/p(∂Ω) and s < k + 1, then there exists a unique
solution u ∈ Bp,q

s (Ω) of the Dirichlet problem (23).

Proof. If s < 1 + 1/p then (a) is a consequence of [39, Corollary 4.2]. If s ∈ N,
s > 1, then (a) follows from [22, Theorem 2.4.2.5 and Theorem 2.5.1.1]. The rest
we obtain by the real interpolation. (See [53, Lemma 22.3], [56, Corollary 1.111,
Theorem 1.122] and [19], Theorem 6.7.) �
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5.4. Besov spaces.

Proposition 5.7. Let −∞ < t ≤ τ <∞ and 1 < p, q, r, β <∞. Suppose that one
from the following conditions holds:

(a) τ > t, τ − 2/q > t− 2/p.
(b) τ > t, τ − 2/q = t− 2/p, r ≤ β.
(c) τ = t, p ≤ q, r ≤ β.

Then Bq,r
τ (Ω) ↪→ Bp,β

t (Ω).

Proof. If the condition (a) holds then Bq,r
τ (Ω) ↪→ Bp,β

t (Ω) by [56, Theorem 1.97].
If the condition (b) holds then Bq,r

τ (Ω) ↪→ Bp,β
t (Ω) by [56, pp. 78–79]. If the

condition (c) holds then Bq,r
τ (Ω) ↪→ Bp,r

t (Ω) ↪→ Bp,β
t (Ω) by [55, §3.3.1, Theorem]

and [54, §4.6.1, Theorem]. �

5.5. Stokes system with prescribed pressure.

Proposition 5.8. Let k ∈ N, 1 < p, q <∞, ∂Ω be of class Ck,1, 1/q < s ≤ k + 1,
s− 1/q 6∈ N0, 1/p < t ≤ k, t− 1/p 6∈ N0, and t ≤ s+ 1. Suppose that s+ 1− 2/q ≥
t − 2/p. Let g ∈ W t−1/p,p(∂Ω), h ∈ W s−1/q,q(∂Ω). Then there exists a unique
solution (u, ρ) ∈W t,p(Ω,R2)×W s,q(Ω) of the problem

(24) −∆u +∇ρ = 0, ∇ · u = 0 in Ω, u · τΩ = g, ρ = h on ∂Ω,

where τΩ = (nΩ
2 ,−nΩ

1 ) is the tangential vector on ∂Ω. Moreover, Ma(u) ∈ Lp(∂Ω),
Ma(ρ) ∈ Lq(∂Ω), and there exist non-tangential limits of u and ρ at almost all
points of ∂Ω.

Proof. The proof is the same like the proof of [36, Theorem 5.2] but we use the new
embedding result W s+1,q(Ω) ↪→W t,p(Ω) (see [12, Theorem 3.8]). �
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[16] T. Clopeau, A. Mikelić, R. Robert: On the vanishing viscosity limit for the 2D incompressible

Navier-Stokes equations with the friction type boundary conditions. Nonlinearity 11 (1998),
1625–1636.

[17] Dahlberg, B. E. J., Jerison, D. S., Kenig, C. E.: Area integral estimates for elliptic differential

operators with non-smooth coefficients. Arkiv Mat. 22, 97–108 (1984)
[18] Delcourte, S., Omnes, P.: A discrete duality finite volume discretization of the vorticity-

velocity-pressure Stokes problem on almost arbitrary two-dimensional grids. Num. Meth.
Part. Diff. Equ. 31, 1–30 (2015)

[19] Devore, R. A., Sharpley, R. C.: Besov spaces on domains in Rd. Trans. Math. Soc. 335,

843–864 (1993)
[20] G. Durán, A. Muschietti: On the traces of W 2,p(Ω) for a Lipschitz domain. Revista
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[36] Medková, D.: One problem of the Navier type for the Stokes system in planar domains. J.

Diff. Equ. 261, 5670–5689 (2016)
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[56] Triebel, H.: Theory of function spaces III. Birkhäuser, Basel (2006)
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