

INSTITUTE OF MATHEMATICS

THE CZECH ACADEMY OF SCIENCES

Backward orbits of operators

Vladimír Müller

Preprint No. 63-2019 PRAHA 2019

BACKWARD ORBITS OF OPERATORS

VLADIMIR MÜLLER

ABSTRACT. Let T be a Banach space operator with dense non-closed range. Then T has backward orbits which grow arbitrarily fast.

1. INTRODUCTION

Let X be a Banach space. As usual, we denote by B(X) the set of all bounded linear operators acting on X. For $T \in B(X)$ let R(T) denote the range, R(T) = TX, and N(T) the kernel, $N(T) = \{x \in X : Tx = 0\}$. Denote by $R^{\infty}(T)$ the infinite range of T, $R^{\infty}(T) = \bigcap_{n \in \mathbb{N}} R(T^n)$.

Let $T \in B(X)$ and $x_0 \in X$. A backward orbit of x_0 is any sequence $(x_n)_{n \in \mathbb{N}}$ of vectors in X satisfying $Tx_n = x_{n-1}$ $(n \in \mathbb{N})$. The set of all vectors x_0 having a backward orbit is called the algebraic core of T and denoted by co(T). The notion was introduced in [11] and has applications in the local spectral theory, see e.g. [3], [4], [5], [7], [10].

Equivalently, co(T) is the largest linear manifold $L \subset X$ such that TL = L.

It is easy to see that $co(T) \subset R^{\infty}(T)$ but the equality is not true in general.

It is well known that if $T \in B(X)$ has dense range then $R^{\infty}(T)$ is also dense, see [2], p. 45. In fact, in this case co(T) is also dense.

Proposition 1.1. Let $T \in B(X)$ be an operator with dense range. Then $\overline{\operatorname{co}(T)} = X$.

Proof. Since co(tT) = co(T) for all $t \neq 0$, without loss of generality we may assume that ||T|| = 1.

Let $V_0 \subset X$ be a non-empty open subset. We show that $V_0 \cap \operatorname{co}(T) \neq \emptyset$. Since $\overline{R(T)} = X$, there exists $u_1 \in X$ with $Tu_1 \in V_0$. There exists an open neighbourhood V_1 of u_1 such that diam $V_1 \leq 1/2$ and $T\overline{V_1} \subset V_0$.

Similarly, there exists $u_2 \in X$ with $Tu_2 \in V_1$, and an open neighbourhood V_2 of u_2 such that diam $V_2 \leq \frac{1}{4}$ and $T\overline{V_2} \subset V_1$.

By induction, we construct non-empty open subsets $V_k \subset X$ $(k \in \mathbb{N})$ such that diam $V_k \leq 2^{-k}$ and $T\overline{V_k} \subset V_{k-1}$ $(k \in \mathbb{N})$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A05; Secondary 47A16.

Key words and phrases. backward orbit, algebraic core, hypercyclicity.

This work was supported by the grant No. 17-00941S of GA CR and RVO:67985840.

For each $k \in \mathbb{N}$ we have $T^k \overline{V_k} \subset T^{k-1} \overline{V_{k-1}} \subset \cdots \subset T \overline{V_1} \subset V_0$ and diam $T^k \overline{V_k} \leq 2^{-k}$. Hence $\bigcap_{k \in \mathbb{N}} T^k \overline{V_k}$ is non-empty and contains a single point x_0 .

Similarly, for j = 1, 2, ... and $k \ge j$ we have $T^{k-j}\overline{V_k} \subset T^{k-j-1}\overline{V_{k-1}} \subset \cdots \subset T\overline{V_{j+1}} \subset \overline{V_j}$ and diam $T^{k-j}\overline{V_k} \le 2^{-k}$. Let $\bigcap_{k\ge j} T^{k-j}\overline{V_k} = \{x_j\}$. Then $Tx_j \in \bigcap_{k\in\mathbb{N}} T^{k+1-j}\overline{V_k} = \{x_{j-1}\}$ for all $j\in\mathbb{N}$. Hence $x_0\in V_0\cap \operatorname{co}(T)$. \Box Remark 1.2. It is worth noting that a similarly defined analytic core (the set of all vectors $x_0 \in X$ such that there exists a sequence $(x_j)_{j\in\mathbb{N}} \subset X$ with $Tx_j = x_{j-1}$ $(j\in\mathbb{N})$ and $\sup_j ||x_j||^{1/j} < \infty$) is not necessarily dense if T has dense range. Example: let H be the Hilbert space with an orthonormal

basis e_n $(n \in \mathbb{Z})$ and let $T \in B(H)$ be the weighted bilateral shift defined by $Te_{-n} = n^{-1}e_{-n+1}$ $(n \in \mathbb{N})$ and $Te_n = e_{n+1}$ $(n \ge 0)$. Then T has dense range but the analytic core of T contains only the zero vector.

In general, a backward orbit of a vector x_0 is not unique. It is easy to see that backward orbits are unique if T is injective. Moreover, for injective operators there is a simple description of the algebraic core co(T).

Proposition 1.3. Let $T \in B(X)$ be an injective operator. Then $co(T) = R^{\infty}(T)$.

Proof. The inclusion $co(T) \subset R^{\infty}(T)$ is true in general.

Let $x_0 \in R^{\infty}(T) = \bigcap_{j=0}^{\infty} R(T^j)$. For each $j \ge 0$ let $x_j \in X$ satisfy $T^j x_j = x_0$. Then $T^j(Tx_{j+1} - x_j) = x_0 - x_0 = 0$. Since T is injective, $Tx_{j+1} = x_j$ for all $j \ge 0$ and $x_0 \in \operatorname{co}(T)$.

2. Large backward orbits

If $T \in B(X)$ and $x_0 \in X$ then its (forward) orbit $(T^n x_0)$ may grow only exponentially, $||T^n x_0|| \leq ||T||^n \cdot ||x_0||$ $(n \in \mathbb{N})$. The same is true for backward orbits if T is invertible: then $||T^{-n} x_0|| \leq ||T^{-1}||^n \cdot ||x_0||$ $(n \in \mathbb{N})$.

However, if T is not invertible, then backward orbits may grow arbitrarily fast. The following theorem is the main result of this paper.

Theorem 2.1. Let $T \in B(X)$ satisfy $\overline{R(T)} = X \neq R(T)$. Let $(b_j)_{j=0}^{\infty}$ be a sequence of positive numbers, $y \in X$ and $\varepsilon > 0$. Then there exist vectors $x_j \in X$ $(j \ge 0)$ such that $||x_0 - y|| < \varepsilon$, $Tx_{j+1} = x_j$ and

$$||x_{j+1}|| \ge b_j ||x_j||$$

for all $j \geq 0$.

Before proving Theorem 2.1 we need two simple lemmas.

Lemma 2.2. (see [8], Lemma 1) Let X be an infinite-dimensional Banach space, let $F \subset X$ be a finite-dimensional subspace and $\varepsilon > 0$. Then there exists a subspace $M \subset X$ with codim $M < \infty$ such that

$$\|f+m\| \ge (1-\varepsilon) \max\left\{\|f\|, \frac{\|m\|}{2}\right\}$$

 $\mathbf{2}$

for all $f \in F$ and $m \in M$.

If X is a Hilbert space then one can take $M = F^{\perp}$. So M in Lemma 2.2 may be viewed as a Banach space version of the orthogonal complement.

Lemma 2.3. Let $T \in B(X)$ be an operator with dense range and $M \subset X$ a subspace of finite codimension. Then $co(T) \cap M$ is dense in M.

Proof. Let $n = \operatorname{codim} M$. If $x_1, \ldots, x_{n+1} \in \operatorname{co}(T)$, then there exists a nontrivial linear combination $x := \sum_{i=1}^{n+1} \alpha_i x_i \in M$. So $x \in \operatorname{co}(T) \cap M$ and $\dim \operatorname{co}(T)/(\operatorname{co}(T) \cap M) \leq n$. Let $F \subset \operatorname{co}(T)$ be a subspace with $\dim F \leq n$ such that $\operatorname{co}(T) = (\operatorname{co}(T) \cap M) + F$. Then

$$X = \overline{\operatorname{co}\left(T\right)} = \overline{\operatorname{co}\left(T\right) \cap M} + F$$

and $\operatorname{codim} \overline{\operatorname{co}(T) \cap M} \leq \dim F \leq n$. Since $\overline{\operatorname{co}(T) \cap M} \subset M$ and $\operatorname{codim} M = n$, we have $\overline{\operatorname{co}(T) \cap M} = M$.

Proof of Theorem 2.1.

Without loss of generality we may assume that $0 < \varepsilon < 1$.

Find $x_{0,0} \in \operatorname{co}(T)$ with $||x_{0,0} - y|| < \varepsilon/2$. Find vectors $x_{0,j} \in X$ such that $Tx_{0,j} = x_{0,j-1}$ $(j \in \mathbb{N})$.

We construct inductively vectors $x_{k,j} \in co(T), k, j \ge 0$ such that

(2.1)
$$Tx_{k,j+1} = x_{k,j} \quad (k,j \ge 0)$$

(2.2)
$$||x_{k+1,j} - x_{k,j}|| < \frac{\varepsilon}{2^{k+2}} \quad (0 \le j \le k)$$

and

(2.3)
$$||x_{k,j+1}|| \ge b_j(1+2^{-k})||x_{k,j}|| \qquad (0 \le j \le k-1).$$

Let $k \ge 0$ and suppose that the vectors $x_{0,j}, x_{1,j}, \ldots, x_{k,j}$ $(j \ge 0)$ satisfying (2.1), (2.2) and (2.3) have already been constructed.

Choose $\varepsilon' > 0$ such that

$$\varepsilon' < \frac{\varepsilon \min\{1, \|x_{k,j}\| : 0 \le j \le k\}}{2^{k+5}b_k \cdot \max\{1, \|T\|^k\} \cdot \|x_{k,k}\|}.$$

Let $F = \bigvee_{j=0}^{k+1} x_{k,j}$. Then dim $F < \infty$. Let $M' \subset X$ be a subspace of finite codimension satisfying

$$||f+m|| \ge (1-2^{-k-4}) \max\{||f||, ||m||/2\} \qquad (f \in F, m \in M'), \quad (1)$$

which exists by Lemma 2.2. Then $\operatorname{codim} T^{-j}M' < \infty$ for all j. Let $M = \bigcap_{i=0}^{k} T^{-j}M'$. Then $\operatorname{codim} M < \infty$.

Since TM is not closed, the restriction T|M is not bounded below. Moreover, $\operatorname{co}(T) \cap M$ is dense in M by Lemma 2.3. So there exists $u_{k+1} \in \operatorname{co}(T) \cap M$ such that $||u_{k+1}|| = 1$ and

$$||Tu_{k+1}|| < \varepsilon'.$$

For j = 0, ..., k + 1 set

$$x_{k+1,j} = x_{k,j} + 4b_k \|x_{k,k}\| T^{k+1-j} u_{k+1}.$$
(2)

Clearly $x_{k+1,j} \in co(T)$ (j = 0, ..., k + 1).

For j > k+1 choose vectors $x_{k+1,j} \in \text{co}(T)$ satisfying $Tx_{k+1,j} = x_{k+1,j-1}$. Clearly vectors $x_{k+1,j}$ satisfy (2.1).

For j = 0, 1, ..., k we have by (2),

$$\begin{aligned} \|x_{k+1,j} - x_{k,j}\| &= 4b_k \|x_{k,k}\| \cdot \|T^{k-j+1}u_{k+1}\| \\ \leq 4b_k \|x_{k,k}\| \cdot \|T^{k-j}\| \cdot \|Tu_{k+1}\| &\leq 4b_k \|x_{k,k}\| \cdot \|T^{k-j}\| \cdot \varepsilon' < \frac{\varepsilon}{2^{k+2}} \end{aligned}$$

Hence the vectors $x_{k+1,j}$ satisfy (2.2).

For $j = 0, \ldots, k - 1$ we have

$$\|x_{k+1,j+1}\| = \left\|x_{k,j+1} + 4b_k\|x_{k,k}\| \cdot T^{k-j}u_{k+1}\right\|$$

where $x_{k,j+1} \in F$ and $T^{k-j}u_{k+1} \in M'$. So

$$||x_{k+1,j+1}|| \ge (1 - 2^{-k-4}) ||x_{k,j+1}|| \ge (1 - 2^{-k-4})(1 + 2^{-k})b_j ||x_{k,j}||$$

by (1) and the induction assumption. On the other hand,

$$||x_{k+1,j}|| \le ||x_{k,j}|| + 4b_k ||x_{k,k}|| \cdot ||T^{k-j+1}u_{k+1}||$$

$$\le ||x_{k,j}|| + 4b_k ||x_{k,k}|| \cdot ||T^{k-j}|| \varepsilon' \le ||x_{k,j}|| (1 + 2^{-k-3})$$

 So

$$\|x_{k+1,j+1}\| \ge \frac{b_j(1-2^{-k-4})(1+2^{-k})\|x_{k+1,j}\|}{1+2^{-k-3}} \ge b_j(1+2^{-k-1})\|x_{k+1,j}\|$$

since $(1 - 2^{-k-4})(1 + 2^{-k}) \ge (1 + 2^{-k-3})(1 + 2^{-k-1})$. For j = k we have by (1),

$$\|x_{k+1,k+1}\| = \left\|x_{k,k+1} + 4b_k\|x_{k,k}\| \cdot u_{k+1}\right\|$$

$$\geq \frac{1 - 2^{-k-4}}{2} \cdot 4b_k\|x_{k,k}\| = 2(1 - 2^{-k-4})b_k\|x_{k,k}\|$$

and

$$||x_{k+1,k}|| \le ||x_{k,k}|| + 4b_k ||x_{k,k}|| \cdot ||Tu_{k+1}||$$

$$\le ||x_{k,k}|| (1 + 4b_k \varepsilon') \le ||x_{k,k}|| (1 + 2^{-k-3}).$$

Thus

$$||x_{k+1,k+1}|| \ge \frac{2b_k(1-2^{-k-4})||x_{k+1,k}||}{1+2^{-k-3}} \ge b_k(1+2^{-k-1})||x_{k+1,k}||.$$

Hence $x_{k+1,j}$ satisfy (2.3).

Suppose that the vectors $x_{k,j} \in co(T), k, j = 0, 1, \ldots$ satisfying (2.1), (2.2) and (2.3) have been constructed. Clearly $(x_{k,j})_k$ is a Cauchy sequence for each j. Let $x_j = \lim_{k\to\infty} x_{k,j}$. We have

$$||y - x_0|| \le ||y - x_{0,0}|| + ||x_{0,0} - x_{1,0}|| + ||x_{2,0} - x_{1,0}|| + \dots < \frac{\varepsilon}{2} + \sum_{j=0}^{\infty} \frac{\varepsilon}{2^{j+2}} = \varepsilon.$$

Moreover, for each $j \ge 1$ we have

$$Tx_j = \lim_{k \to \infty} Tx_{k,j} = \lim_{k \to \infty} x_{k,j-1} = x_{j-1}.$$

Finally, for each $j \ge 0$ we have

$$\|x_{j+1}\| = \lim_{k \to \infty} \|x_{k,j+1}\| \ge \lim_{k \to \infty} b_j (1+2^{-k}) \|x_{k,j}\| = b_j \|x_j\|.$$

So $||x_{j+1}|| \ge b_j ||x_j||$ for all $j \ge 0$.

Corollary 2.4. (cf. [9], Theorem 3) Let $T \in B(X)$ be an operator with $\overline{R(T)} = X \neq R(T)$. Let $\varepsilon > 0$ and $n \in \mathbb{N}$. Then there exists a unit vector $u \in X$ such that

$$||T^{j+1}u|| \le \varepsilon ||T^{j}u||$$
 $(j = 0, 1, ..., n).$

Corollary 2.5. Let $T \in B(X)$ be an operator such that $\overline{R(T)} = X \neq R(T)$. Let $(a_j)_{j=0}^{\infty}$ be a sequence of positive numbers, $y \in X$, $||y|| > a_0$ and $\varepsilon > 0$. Then there exist vectors $x_j \in \operatorname{co}(T)$ $(j \ge 0)$ such that $||x_0 - y|| < \varepsilon$, $Tx_{j+1} = x_j$ and

$$\|x_j\| \ge a_j$$

for all $j \geq 0$.

Proof. Set $b_j = \frac{a_{j+1}}{a_j}$ $(j \ge 0)$. By Theorem 2.1, there exist vectors $x_j \in co(T)$ (j = 0, 1, ...) such that $||x_0 - y|| < min\{\varepsilon, ||y|| - a_0\}$, $Tx_{j+1} = x_j$ and $||x_{j+1}|| \ge b_j ||x_j||$ for all $j \ge 0$. We have $||x_0|| \ge ||y|| - (||y|| - a_0) = a_0$ and, by induction,

$$||x_j|| \ge b_{j-1} ||x_{j-1}|| \ge b_{j-1} a_{j-1} = a_j$$

for all $j \ge 0$.

If T is injective then the backward orbit is unique and exists for each vector $x_0 \in R^{\infty}(T) = co(T)$. So Theorem 2.1 and Corollary 2.5 become simpler.

Theorem 2.6. Let $T \in B(X)$ be an injective operator such that $R(T) = X \neq R(T)$. Let $(b_j)_{j\geq 0}$ be a sequence of positive numbers, $y \in X$ and $\varepsilon > 0$. Then there exists $x \in R^{\infty}(T)$ such that $||x - y|| < \varepsilon$ and

$$|T^{-j-1}x|| \ge b_j ||T^{-j}x||$$

for all $j \geq 0$.

Corollary 2.7. Let $T \in B(X)$ be an injective operator such that $R(T) = X \neq R(T)$. Let $(a_j)_{j=0}^{\infty}$ be a sequence of positive numbers. Let $y \in X$ satisfy $||y|| > a_0$ and let $\varepsilon > 0$. Then there exists $x \in R^{\infty}(T)$ such that $||x - y|| < \varepsilon$ and

 $||T^{-j}x|| \ge a_j$

for all $j \geq 0$.

An analogous result can be formulated also for strongly continuous semigroups of operators.

VLADIMIR MÜLLER

Corollary 2.8. Let $T(t)_{t\geq 0}$ be a strongly continuous semigroup of operators acting on X. Suppose that T(1) is injective and $\overline{R(T(1))} = X \neq R(T(1))$ (and hence T(t) is injective, non-surjective with dense range for each t >0). Let $f : [0, \infty) \to [0, \infty)$ be a continuous function. Then there exists $x \in \bigcap_{t\geq 0} R(T(t))$ such that $||T(t)^{-1}x|| > f(t)$ for all $t \geq 0$.

Proof. Let $K = \max\{||T(t)|| : 0 \le t \le 1\}$. By Corollary 2.5, there exists $x \in \bigcap_{t>0} R(T(t)) = \bigcap_{n \in \mathbb{N}} R(T(n))$ such that

$$||T(n)^{-1}x|| \ge K \max\{f(t) : n \le t \le n+1\}$$

for all integers $n \ge 0$.

For
$$n \le t \le n+1$$
 we have $T(t-n)T(t)^{-1}x = T(n)^{-1}x$. So
 $||T(t)^{-1}x|| \ge K^{-1}||T(n)^{-1}x|| \ge \max\{f(t): n \le t \le n+1\} \ge f(t).$

3. BACKWARD ORBITS AND HYPERCYCLICITY

Let $T \in B(X)$. A vector $x \in X$ is called hypercyclic for T if its (forward) orbit $\{T^n x : n \in \mathbb{N}\}$ is dense in X. An operator $T \in B(X)$ is called hypercyclic if there exists a vector that is hypercyclic for T. It is well known that any hypercyclic operator has a dense residual set of hypercyclic vectors.

The following classical result gives a characterization of hypercyclic operators, see e.g. [1], p. 2.

Theorem 3.1. (Birkhoff) Let X be a separable Banach space and $T \in B(X)$. The following statements are equivalent:

- (i) T is hypercyclic;
- (ii) for each pair of non-empty open subsets $U, V \subset X$ there exists $n \in \mathbb{N}$ such that $T^n U \cap V \neq \emptyset$.

An easy consequence of the Birkhoff theorem is that an invertible operator $T \in B(X)$ is hypercyclic if and only if its inverse $T^{-1} \in B(X)$ is hypercyclic, see [1], p. 3.

It is interesting to note that this equivalence remains true even if T is only injective (not necessarily invertible). As the Birkhoff theorem, the next result is true in a more general setting, see [6]. We include the proof for the sake of convenience.

Theorem 3.2. Let $T \in B(X)$ be an injective operator. The following conditions are equivalent:

- (i) T is hypercyclic;
- (ii) the set of all vectors $x \in R^{\infty}(T)$ with the property that $\{T^{-j}x : j = 0, 1, ...\}^{-} = X$ is dense in X.

Proof. Note that each of the conditions implies that X is separable and T has dense range. So $R^{\infty}(T)$ is dense.

Let $U, V \subset X$ be non-empty open subsets. By (ii), there exists $x \in U \cap R^{\infty}(T)$ such that $\{T^{-j}x : j = 0, 1, ...\}^{-} = X$. In particular, there exists $k \geq 0$ such that $T^{-k}x \in V$. So $x \in T^kV$ and $T^kV \cap U \neq \emptyset$. By the Birkhoff theorem, T is hypercyclic.

 $(i) \Rightarrow (ii):$

Let $V \subset X$ be a nonempty open subset. We show that there exists a vector $x \in V$ whose backward orbit $\{T^{-n}x : n \in \mathbb{N}\}$ is dense in X.

Let $(U_n)_{n \in \mathbb{N}}$ be a countable base of open sets in X.

By the Birkhoff theorem, there exist $u \in U_1$ and $n_1 \in \mathbb{N}$ such that $T^{n_1}u \in V$. There exists an open neighbourhood V_1 of u such that diam $V_1 \leq \frac{1}{2\max\{1, ||T||^{n_1}\}}, \overline{V_1} \subset U_1$ and $T^{n_1}\overline{V_1} \subset V$. Similarly, there exists an non-empty open set V_2 and $n_2 \in \mathbb{N}$ such that

Similarly, there exists an non-empty open set V_2 and $n_2 \in \mathbb{N}$ such that $\overline{V_2} \subset U_2$, diam $V_2 \leq \frac{1}{4\max\{1, \|T\|^{n_2+n_1}\}}$ and $T^{n_2}\overline{V_2} \subset V_1$. Inductively, there exist non-empty open sets V_3, V_4, \ldots and positive integers n_3, n_4, \ldots such that $\overline{V_k} \subset U_k$, diam $V_k \leq \frac{1}{2^k \max\{1, \|T\|^{n_k+\dots+n_1}\}}$ and $T^{n_k}\overline{V_k} \subset V_{k-1}$ $(k = 2, 3, \ldots)$.

Then

$$T^{n_1+n_2+\cdots+n_k}\overline{V_k} \subset T^{n_1+n_2+\cdots+n_{k-1}}\overline{V_{k-1}} \subset \cdots \subset T^{n_1}\overline{V_1} \subset V.$$

Moreover, diam $T^{n_1+\dots+n_k}\overline{V_k} \leq 2^{-k}$. Hence $\bigcap_{k\in\mathbb{N}}T^{n_1+n_2+\dots+n_k}\overline{V_k}\neq \emptyset$. Let $x\in\bigcap_{k\in\mathbb{N}}T^{n_1+n_2+\dots+n_k}\overline{V_k}$. Clearly $x\in R^{\infty}(T)$. We have $x\in V$ and

$$T^{-n_1-\cdots-n_k}x\in\overline{V_k}\subset U_k$$

for all $k \in \mathbb{N}$. Hence the backward orbit $\{T^{-n}x : n \in \mathbb{N}\}$ is dense in X.

References

- F. Bayart, E. Matheron, *Dynamics of Linear Operators*, Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge, 2009.
- [2] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North Holland, Amsterdam-New York-Oxford-Tokyo, 1988.
- [3] M. Chø, R. Harte, V. Müller, Transfinite ranges and the local spectrum, J. Math. Anal. Appl. 398 (2013), 403-408.
- K.B. Laursen, Algebraic spectral subspaces and automatic continuity, Czechoslovak Math. J. 38 (1988), 157–172.
- [5] K.B. Laursen, P. Vrbova, Some remarks on the surjectivity spectrum of linear operators, Czechoslovak Math. J. 39 (1989), 730–739.
- [6] P. Malicky, Backward orbits and transitive maps, J. Difference Equ. Appl. 18 (2012), 1193–2003.
- [7] T.L. Miller, V.G. Miller, M.M. Neumann, Spectral subspaces of subscalar and related operators, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1483–1493.
- [8] V. Müller, Local behaviour of the polynomial calculus of operators, J. reine angew. Math. 430 (1992), 61–68.
- [9] V. Müller, On the essential approximate point spectrum of operators, Integral Equations Operator Theory 15 (1992), 1033–1041.

VLADIMIR MÜLLER

- [10] V. Ptak, P. Vrbova, Algebraic spectral subspaces, Czechoslovak Math. J. 38 (1988), 342–350.
- [11] P. Saphar: Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France **92** (1964), 363–384

Institute of Mathematics, Czech Academy of Sciences, ul. Žitna 25, Prague, Czech Republic

E-mail address: muller@math.cas.cz