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Abstract

We show that(x0, t0) ∈ Ω× (0, T ) is a regular point of a suitable weak solution(u,b, p) of
the MHD equations inΩ× (0, T ) (whereΩ is a domain inR3 andT > 0) if the limit inferior (for
t → t0−) of the sum of theL3–norms ofu andb over an arbitrarily small ballBρ(x0) is less
than infinity.
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1 Introduction

1.1 The system of MHD equations, a weak and a suitable weak solution

The motion of a viscous incompressible electrically conducting fluid in domainΩ ⊂ R3 in the time

interval(0, T ) (whereT > 0), in the absence of an acting external body force and magnetic or electric

field, is described by the system of magneto-hydro-dynamical equations (which is abbreviated to

MHD equations)

∂tu + u · ∇u− b · ∇b = −∇p+ ν∆u, (1.1)

∂tb + u · ∇b− b · ∇u = ξ∆b. (1.2)

div u = div b = 0 (1.3)

in QT := Ω × (0, T ). The unknowns are the velocityu of the fluid, the magnetic fieldb and

the pressurep. The coefficientsν and ξ (which are supposed to be positive constants) represent

the kinematic viscosity and the magnetic diffusivity, respectively. In order to formulate a consistent

initial–boundary value problem, we complete equations (1.1)–(1.3) by the initial conditions

u( . , 0) = u0, b( . , 0) = b0 (1.4)

and by appropriate boundary conditions. Usually considered boundary conditions are the so called

Navier-type conditions

a) b · n = 0, b) curl b× n = 0 on∂Ω× (0, T ) (1.5)
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(wheren denotesthe outer normal vector field on∂Ω) for the magnetic field and either the no-slip

condition

u = 0 on∂Ω× (0, T ) (1.6)

or the Navier-type conditions

a) u · n = 0, b) curl u× n = 0 on∂Ω× (0, T ) (1.7)

for the velocity. (See e.g. [18], [19], [21], [37], [38] and [39].)

Independent of the boundary conditions, we call the pair(u,b) ∈
[
L∞(0, T ; L2(Ω)) ∩ L2(0, T ;

W1,2(Ω))
]2

a weak solutionto the system (1.1)–(1.3), with the initial conditions (1.4)), ifu andb

are divergence-free (in the sense of distributions) inQT and the integral identities∫ T

0

∫
Ω

[
−u · ∂tφ+ u · ∇u · φ− b · ∇b · φ+ ν∇u : ∇φ

]
dx dt =

∫
Ω

u0 · φ( . , 0) dx, (1.8)∫ T

0

∫
Ω

[
−b · ∂tφ+ u · ∇b · φ− u · ∇u · φ+ ξ∇b : ∇φ

]
dx dt =

∫
Ω

b0 · φ( . , 0) dx, (1.9)

hold for all infinitely differentiable divergence-free vector functionsφ inQT , with a compact support

in Ω × [0, T ). A distributionp in QT is said to be anassociate pressureif u, b andp satisfy the

equations (1.1)–(1.3) in the sense of distributions inQT . If (u,b) is a weak solution and the pressure

p is a locally integrable function inQT , such that the productpu is integrable inQT , andu, b, p

satisfy the so calledthe localized energy inequality∫
QT

2
(
ν |∇u|2 + ξ |∇b|2

)
ψ dx dt

≤
∫
QT

[
|u|2 (∂tψ + ν∆ψ) + |b|2 (∂tψ + ξ∆ψ)

+
(
|u|2 + |b|2 + 2p

)
(u · ∇ψ)− 2(u · b) (b · ∇ψ)

]
dx dt.

(1.10)

for every non-negative infinitely differentiable scalar functionψ in QT , compactly supported inQT ,

then we call(u,b, p) asuitable weak solutionto the system (1.1)–(1.3).

A sketch of the construction of a suitable weak solution (which is analogous to the Navier–Stokes

equations)can be found in the paper [11] by Ch. He and Z. Xin. Note that while the existence of a

weak solution is guaranteed in any domainΩ ⊂ R3 (which can be proven by the same method as for

the Navier–Stokes equations), the existence of a suitable weak solution is a subtler problem, because,

as it has already been said above, it requires the existence of the associated pressure as in function

in QT with an appropriate rate of integrability. For the Navier–Stokes equations, the existence of

such a pressure is known ifΩ is a “smooth” bounded or exterior domain inR3, or a half-space or the

wholeR3, see e.g. H. Sohr and W. von Wahl [36]. The situation in the theory of the MHD equations
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is similar: although one can define the notion of a suitable weak solution regardless the shape and

smoothnessof Ω, the existence of the suitable weak solution is known only if domainΩ is “smooth”

and of one of the aforementioned types.

1.2 Previous results on regularity of weak solutions to the MHD equations

Recall that the point(x0, t0) ∈ QT is said to be aregular pointof the a solution(u.b) if there exists

a neighbourhoodU ⊂ QT of this point such that bothu andb are essentially bounded inU . Other

points ofQT are calledsingular pointsof solution(u,b).

By analogy with the Navier–Stokes equations, the question of regularity of weak (and particularly

also suitable weak) solutions to the MHD equations (1.1)–(1.3) (i.e. the question whether singular

points can develop in a weak solution if all the given data are sufficiently smooth and integrable) is

generally open.

Ch. He and Z. Xin [11] (2005) derived a series of local regularity criteria (i.e. criteria for the

regularity at a point(x0, t0) ∈ QT ) for a suitable weak solution in terms of the quantities

sup
t0−ρ2≤t<t0

1
ρ

∫
Br(x0)

|u|2 dx,
1

ρ5−a

∫ t0

t0−ρ2

∫
Bρ(x0)

|u|a dx dt,

1
ρ

∫ t0

t0−ρ2

∫
Bρ(x0)

|∇u|2 dx dt,
1
ρ

∫ t0

t0−ρ2

∫
Bρ(x0)

|curl u|2 dx dt

for the velocity fieldu and the analogous quantities for the magnetic fieldb or the pressurep. Some

generalizations or slight improvements can be found in the papers [17] (2009) by K. Kang, J. Lee

and [41] (2013) by W. Wang, Z. Zhang. Note that one can deduce from some criteria that the1-

dimensional Hausdorff measure of the set of hypothetic singular points of the suitable weak solution

in QT is zero.

It follows from paper [24] (2007) by A. Mahalov, B. Nicolaenko and T. Shilkin that if(u,b) is

a weak solution, the velocityu satisfies Serrin’s condition (the authors call it the Ladyzhenskaya–

Prodi–Serrin condition)u ∈ Lr(t0 − ρ2, t0; Ls(Bρ(x0))) (whereρ > 0, s > 3 and2/r + 3/s =

1) thenu andb, together with all their spatial derivatives (of all orders) are Hölder–continuous in

Bρ/2(x0) × (t0 − 1
4ρ

2, t0). The authors also consider the critical caser = ∞, s = 3, but here, they

need bothu andb to be inL∞(t0 − ρ2, t0; L3(Bρ(x0))).

In paper [24], the authors have also excluded the possibility of existence of a collapsing self-

similar weak solution with the generating profile inL3(R3). (The same result for the Navier–Stokes

equations was already known before, see [25].)

J. Wu [42] (2004) considered a weak solution(u,b) in R3 × (0, T ) and showed that if both the

velocity u and the magnetic fieldb lie in the spaceLr(0, T ; Ls(R3)) for some exponentsr > 3,

s ≥ 2 such that2/r + 3/s = 1, then in factu andb belong toL∞(0, T ; Ls(R3)), whereas∇u
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and∇b belongtoL∞(0, T ; L2(R3)3×3). The authors have also proved some finer results for axially

symmetric solutions.

Ch. He and Z. Xin [10] (2005) proved that ifΩ = R
3, (u,b) is a weak solution and the velocity

u satisfiesu ∈ Lr(0, T ; Ls(R3)) with 2/r + 3/s ≤ 1; s > 3, or u ∈ C([0, T ]; L3(R3)), or∇u ∈
Lr(0, T ; Ls(R3)3×3) with 2/r+3/s = 2, 1 < r ≤ 2 then(u,b) is smooth inR3×(0, T ). Analogous

results can also be found in paper [47] (2005) by Y. Zhou. It is remarkable that no conditions are

imposed on the magnetic fieldb. Some refinements of these results are proven in the papers [4]

(2008, by Q. Chen, C. Miao and Z. Zhang, sufficient conditions for regularity formulated by means of

norms of Besov spaces) and [50] (2010, by Y. Zhou and S. Gala, sufficient conditions for regularity

formulated in a certain multiplier space). By analogy with the result of P. Constantin and C. Fefferman

[5], concerning the Navier–Stokes equations, it is also shown in [10] that(u,b) is smooth ifcurl u

does not change the direction “too quickly”.

The regularity of the weak solution(u,b) in the limiting case, when bothu andb are supposed

to be inL∞(0, T ; L3(R3)), was proven in paper [40] (2012) by W. Wang and Z. Zhang. The proof is

based on the blow-up analysis using the backward uniqueness and unique continuation theorems for

parabolic equations, developed by L. Escauriaza, G. Seregin and V.Šveŕak in [6] (2003).

Some logarithmically improved regularity criteria for the MHD equations can be found in the

papers [7] (2011, by J. Fan, S. Jiang, G. Nakamura and Y. Zhou) and [49] (2012, by Y. Zhou and

J. Fan).

Regularity of the weak solution(u,b) in dependence of conditions imposed only on some com-

ponents ofu, b, or∇u and∇b, was studied by E. Ji, J. Lee in [12] (2010), by C. Cao, J. Wu in [3]

(2010; importance of the directional derivative ofu), X. Jia and Y. Zhou in [13] (2012), [14] (2014),

[15] (2015) and [16] (2016), by L. Ni, Z. Guo and Y. Zhou in [32] (2012), by H. Lin, L. Du in [22]

(2013), by K. Yamazaki in [43] (2014) and [44] (2014), by Z. Zhang in [45] (2015) and [46] (2015)

and by Ch. Qian in [33] (2018).

The regularity of a suitable weak solution(u,b, p) under some conditions imposed on the pressure

is proven in the papers [48] (2006, by Y. Zhou), [17] (2009, by K. Kang and J. Lee), [3] (2010, by

C. Cao and J. Wu), [49] (2012, by Y. Zhou and J. Fan), [22] (2013, by H. Lin and L. Du) and [14]

(2014, by X. Jia and Y. Zhou).

The regularity of solution(u,b) up to the boundary was studied by K. Kang, J.-M. Kim in [18]

and [19], by J.-M. Kim in [21] (2017), by V. Vyalov and T. Shilkin in [37] (2011), by V. Vyalov in

[38] (2012) and [39] (2014).
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1.3 The result of this paper

We assume thatΩ is either the whole spaceR3, or a bounded or exterior domain inR3 with the

boundary of classC2+(h) for someh > 0, or a half-space inR3 and (u,b, p) is a suitable weak

solution to the system (1.1)–(1.3), such thatu satisfies either the no-slip boundary condition (1.6) (if

Ω 6= R
3) or the Navier-type boundary conditions (1.7) or Navier’s boundary conditions

a) u · n = 0, b)
[
Td(u) · n

]
τ

+ γu = 0 on∂Ω× (0, T )) (1.11)

(for Ω bounded). In (1.11),Td(u) := 2ν (∇u)sym denotes the dynamic stress tensor induced by the

velocity fieldu, subscriptτ denotes the tangential component andγ (a non-negative constant) denotes

the coefficient of friction between the fluid and the boundary ofΩ. As to the magnetic fieldb, we

only assume that it satisfies the boundary condition (1.5) a).

The reason, why we do not need any other assumption regarding the boundary condition (or con-

ditions) satisfied by theb, is that we shall apply certain results on the local interior regularity of

pressure from [31] in the next section and the pressure appears only in the momentum equation (1.1),

which is an evolution equation for velocityu. Thus,p is a global quantity, whose local properties in

the neighbourhood of any pointx0 ∈ Ω are more influenced by the boundary conditions satisfied by

u than by the conditions satisfied byb on∂Ω× (0, T ).

The main results are formulated in the next theorems:

Theorem 1. LetΩ bea domain inR3, satisfying the aforementioned assumptions, and(u,b, p) be a

suitable weak solution to the system(1.1)–(1.3)inQT with the boundary conditions satisfied byu and

b in relation with the type ofΩ, as is specified above. There existsε > 0 such that if(x0, t0) ∈ QT
and the condition

lim inf
t→t0−

(
‖u( . , t)‖3;Bρ(x0) + ‖b( . , t)‖3;Bρ(x0)

)
< ∞, (1.12)

holds for someρ > 0, then(x0, t0) is a regular point of the solution(u,b, p).

(Here,‖ . ‖3;Bρ(x0) denotes theL3–norm over the ballBρ(x0).)

The theorem generalizes the result from [24], where the authors required

ess sup
t0−ρ2<t<t0

(
‖u( . , t)‖3;Bρ(x0) + ‖b( . , t)‖3;Bρ(x0)

)
< ∞

instead of our condition (1.12).

Note that the theorem is also valid in the special caseb ≡ 0, and it states that the necessary

condition for the development of a singularity in a suitable weak solution(u, p) to the Navier–Stokes

equations at the point(x0, t0) ∈ QT is that the limit (fort→ t0−) of ‖u( . , t)‖3;Bρ(x0) (for all ρ > 0
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arbitrarily small) is equal to infinity. This statement generalizes the result of G. Seregin from paper

[34], where the author consideredΩ = R
3 and the main theorem says thatt0 is the so called epoch of

irregularity only if

lim
t→t0−

‖u( . , t)‖3;R3 = ∞.

(Recall thatt0 is called anepoch of irregularityof solutionu if u is smooth on the interval(t0−δ, t0)

for someδ > 0 and it has a singular point on the time levelt = t0, which means that it “blows up”

for t→ t0−.)

2 Proof of Theorem 1 – part I

Notation. We use the notationA . B if there exists a generic positive constantC such that|A| ≤
C |B|. In order to stress the dependence of constantC on parameterM , we writeA .M B.

2.1 Localization to the neighbourhood ofx0 and the definition of the functionsû, b̂, p̂

There exist positive numbersρ1 andρ2 such that0 < ρ1 < ρ2 andAρ1,ρ2(x0) × (0, T ) contains no

singular points, where we denote the annulus inR
3 by

Aρ1,ρ2(x0) := {x ∈ R3; ρ1 < |x− x0| < ρ2}.

This follows from the fact that the1–dimensional Hausdorff measure of singular points of a solution

(u,b, p) is zero, using the same arguments as in [26] or [27]. Without loss of generality, we can

chooseρ2 so small thatρ2 ≤ ρ. Thus,u areb are essentially bounded inAρ1,ρ2(x0)× (δ, T − δ) for

eachδ > 0. (We assume thatδ is so small that3δ < t0 < T − 3δ.)

Applying the results of [24], one can deduce thatu, b, and all their spatial derivatives (of all

orders), are Ḧolder–continuous inAρ3,ρ4(x0) × (2δ, T − 2δ) for all ρ3 andρ4 such thatρ1 < ρ3 <

ρ4 < ρ2. As ∂tb is expressed by equation (1.2)u, b and their spatial derivatives, we observe that

∂tb, together with all its spatial derivatives, is Hölder–continuous inAρ3,ρ4(x0)× (2δ, T − 2δ), too.

An information on the regularity of the functionsp and∂tu inAρ3,ρ4(x0)×(2δ, T −2δ) follows from

[31]. Functionb is only supposed to satisfy the boundary condition (1.5) a) in [31]. Asp is a “global

quantity” and∇p appears only in the balance of momentum equation (1.1), the interior regularity ofp

mainly depends on boundary conditions, satisfies by functionu on∂Ω× (0, T ). (See also paragraph

1.3.) Concretely, it follows from [31] that

(a) if Ω = R
3 andρ3 < ρ5 < ρ6 < ρ4 then∂tu,∇p and all their spatial derivatives (of all orders)

are in are essentially bounded inAρ5,ρ6(x0)× (3δ, T − 3δ),
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(b) if Ω is a bounded or exterior domain inR3 with the boundary at least of the classC2+(h) for

someh > 0 or a half-space inR3 andu satisfies the boundary condition (1.6) then∂tu, ∇p
and all their spatial derivatives (of all orders) are inLµ(3δ, T − 3δ; L∞(Aρ5,ρ6(x0))) for any

µ ∈ (1, 2),

(c) if Ω is a bounded domain inR3 with the boundary at least of the classC2+(h) for someh > 0

andu satisfies the boundary conditions (1.7) then one can make the same conclusion on∂tu,

∇p as in item (a),

(d) if Ω is a bounded domain inR3 with the boundary at least of the classC2+(h) for someh > 0

andu satisfies the boundary conditions (1.11) then∂tu,∇p and all their spatial derivatives (of

all orders) are inL4(3δ, T − 3δ; L∞(Aρ5,ρ6(x0))).

Analogous results for the Navier–Stokes equations can be found in [30], [28], [29] and [35].

Let ρ7 and ρ8 be positive numbers, satisfyingρ5 < ρ7 < ρ8 < ρ6. Let η be an infinitely

differentiable cut–off function in[0,∞) such that

η(σ)


= 1 for 0 ≤ σ ≤ ρ7,

∈ (0, 1) for ρ5 < σ < ρ8,

= 0 for ρ8 ≤ σ.

In order to obtain functions supported only in the closure ofBρ4(x0) × (0, T ), we multiply u and

b by η. Obviously,div (ηu) = ∇η · u anddiv (ηb) = ∇η · b. In order to obtain divergence-free

functions, we put

û := ηu− ucorr and b̂ := ηb− bcorr,

where the correcting termsucorr and bcorr satisfy div ucorr = ∇η · u and div bcorr = ∇η · b.

The existence of appropriate functionsucorr andbcorr follows e.g. from [8, Theorem III.3.2] or [1,

Theorem 2.4]. Due to these theorems, there exists a linear mapping

B : Wm,2
0 (Aρ5,ρ6(x0))→Wm+1,2

0 (Aρ5,ρ6(x0))

for all m ∈ {0} ∪ N such that for allf ∈Wm,2
0 (Aρ5,ρ6(x0)), satisfying

∫
Aρ5,ρ6 (x0) f dx = 0,

1. div Bf = f a.e.in Aρ5,ρ6(x0),

2. ‖∇m+1Bf‖2;Aρ5,ρ6 (x0) . ‖∇mf‖2;Aρ5,ρ6 (x0).

MappingB is often called the Bogovskij operator. Let us denote bySρ(x0) the sphere with the center

at pointx0 and radiusρ. Then∂Aρ5,ρ6(x0) = Sρ5(x0)∪Sρ6(x0). Sinceη = 1 onSρ5(x0), η = 0 on

Sρ6(x0) anddiv u = 0 in Aρ5,ρ6(x0), we have∫
Aρ5,ρ6 (x0)

∇η · u dx =
∫
Sρ5 (x0)

η u · n dS +
∫
Sρ6 (x0)

η u · n dS −
∫
Aρ5,ρ6 (x0)

η div u dx
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=
∫
Sρ5

u · n dS = −
∫
Bρ5 (x0)

div u dx = 0,

we may put

ucorr( . , t) := B
[
∇η · u( . , t)

]
and bcorr( . , t) := B

[
∇η · b( . , t)

]
.

As∇η · u( . , t) ∈Wm,2
0 (Aρ5,ρ6(x0)) for anym ∈ {0} ∪ N, we obtainucorr( . , t) ∈

Wm,2
0 (Aρ5,ρ6(x0)) for anym ∈ {0} ∪ N. Since all spatial derivatives of∇η · u are essentially

bounded inAρ5,ρ6(x0)× (3δ, T − 3δ), we deduce that for anym ∈ {0} ∪ N,

ucorr ∈ L∞(3δ, T − 3δ; Wm,2
0 (Aρ5,ρ6(x0))).

The functionbcorr satisfies the same inclusion.

Extendingucorr and bcorr by zero outsideAρ5,ρ6(x0), and extending alsoηu and ηb by zero

outsideΩ, we observe that the functionŝu := ηu−ucorr andb̂ := ηb−bcorr are divergence-free in

R
3 × (3δ, T − 3δ), they coincide withu andb, respectively, inBρ7(x0)× (δ, T − δ), they are equal

to zero in(R3
r Bρ8(x0) × (3δ, T − 3δ) and all their spatial derivatives are essentially bounded in

Aρ5,ρ6(x0)× (3δ, T − 3δ).

One can deduce that̂u, b̂ andp̂ := ηp is a suitable weak solution to the MHD equations

∂tû + û · ∇û− b̂ · ∇b̂ = −∇p̂+ ν∆û + f , (2.1)

∂tb̂ + û · ∇b̂− b̂ · ∇û = ξ∆b̂ + g, (2.2)

div û = div b̂ = 0 (2.3)

in R3 × (3δ, T − 3δ), where

f = − ∂tucorr − η(1− η) u · ∇u + η(1− η) b · ∇b + η (u · ∇η) u− η (b · ∇η) b

− ucorr · ∇(ηu)− ηu · ∇ucorr + ucorr · ∇ucorr + bcorr · ∇(ηb) + ηb · ∇bcorr

− bcorr · ∇bcorr + p∇η − 2ν∇η · ∇u− ν (∆η) u,

g = − ∂tbcorr − η(1− η) u · ∇b + η(1− η) b · ∇u + η (u · ∇η) b− η (b · ∇η) u

− ucorr · ∇(ηb)− ηu · ∇bcorr + ucorr · ∇bcorr + bcorr · ∇(ηu) + ηb · ∇ucorr

− bcorr · ∇ucorr − 2ξ∇η · ∇b− ξ (∆η) b.

Obviously,f andg are supported inAρ5,ρ6(x0)× [3δ, T − 3δ] andf , g ∈ Lα(3δ, T − 3δ; L∞(R3))

for anyα ∈ (1, 2) in case b) andα = ∞ in cases a) and c). The same statements also hold on all

spatial derivatives off andg.
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2.2 Rescaling of̂u, b̂ and p̂ and the definition of the functions û(k), b̂(k) and p̂ (k)

It follows from (1.11) that there exists an increasing sequence of time instants{tk} in (0, t0) such

thattk ↗ t0 and

‖u( . , tk)‖3;Bρ(x0) + ‖b( . , tk)‖3;Bρ(x0) ≤ C < ∞ for all k ∈ N.

Hence there existsM > 0 such that the localized functionŝu andb̂ satisfy

‖û( . , tk)‖3;R3 + ‖b̂( . , tk)‖3;R3 ≤ M for all k ∈ N. (2.4)

We can rescalêu, b̂ and the associated pressurep̂ according to the formulas

x = x0 + λky, t = t0 + λ2
ks, λk =

√
t0 − tk
S

, (2.5)

û(k)(y, s) = λk û(x, t), b̂(k)(y, s) = λk b̂(x, t), p̂ (k)(y, s) = λ2
k p̂(x, t). (2.6)

Here,S is a positive number which will be specified later. We also define

f (k)(y, s) := λ3
k f(x, t), and g(k)(y, s) := λ3

k g(x, t). (2.7)

The rescaled functionŝu(k), b̂(k) andp̂(k) satisfy the equations

∂sû(k) + û(k) · ∇û(k) − b̂(k) · ∇b̂(k) = −∇p̂ (k) + ν∆û(k) + f (k), (2.8)

∂sb̂(k) + û(k) · ∇b̂(k) − b̂(k) · ∇û(k) = ξ∆b̂(k) + g(k), (2.9)

div û(k) = div b̂(k) = 0 (2.10)

in R3 × (−S, 0), where the operators∇, div and∆ now act on the spatial variabley. Moreover, the

functionsû(k) andb̂(k) satisfy the initial conditions

û(k)(y,−S) = λk û(λky, tk) and b̂(k)(y,−S) = λk b̂(λky, tk). (2.11)

Since the rescaling (2.5), (2.6) preserves theL3–norm, we have

‖û(k)( . ,−S)‖3;R3 + ‖b̂(k)( . ,−S)‖3;R3 ≤ M for all k ∈ N. (2.12)

Note that although we treat (2.8)–(2.11) as an initial value problem inR
3 × (−S, 0), all the func-

tions û(k), b̂(k), p̂ (k), f (k) andg(k) are in fact supported only in the closure ofAρ5/λk,ρ6/λk(0) ×
(−S, 0).
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2.3 Splitting of û(k) and b̂(k) and the definition of the functions ũ(k), b̃(k), w
(k)
u , w

(k)
b

Functionŝu(k) andb̂(k) can be expressed as the sums

û(k) = ũ(k) + w(k)
u , and b̂(k) = b̃(k) + w(k)

b ,

whereũ(k), b̃(k), w(k)
u andw(k)

b satisfy the equations

∂sũ(k) + (ũ(k) + w(k)
u ) · ∇(ũ(k) + w(k)

u )−(b̃(k) + w(k)
b ) · ∇(b̃(k) + w(k)

b )

= −∇p̂ (k) + ν∆ũ(k) + f (k), (2.13)

∂sb̃(k) + (ũ(k) + w(k)
u ) · ∇(b̃(k) + w(k)

b )− (b̃(k) + w(k)
b ) · ∇(ũ(k) + w(k)

b )

= ξ∆b̃(k) + g(k), (2.14)

∂sw
(k)
u = ν∆w(k)

u , (2.15)

∂sw
(k)
b = ξ∆w(k)

b , (2.16)

div ũ(k) = div w(k)
u = div b̃(k) = div w(k)

b = 0 (2.17)

in R3 × (−S, 0) and the initial conditions

ũ(k)( . ,−S) = b̃(k)( . ,−S) = 0, (2.18)

w(k)
u ( . ,−S) = û(k)( . ,−S), (2.19)

w(k)
b ( . ,−S) = b̂(k)( . ,−S). (2.20)

Note that the functionsw(k)
u andw(k)

b automatically satisfy the conditionsdiv w(k)
u = div w(k)

b =

0 in R3 × (−S, 0), because their initial valuesw(k)
u ( . ,−S) andw(k)

b ( . ,−S) are divergence-free.

Applying inequality (A) on p. 190 and the lemma on p. 196 in [9], we obtain the estimates∫ 0

−S
‖w(k)

u ( . , s)‖55 ds+ ess sup
−S<s<0

‖w(k)
u ( . , s)‖3 ≤ c1, (2.21)∫ 0

−S
‖w(k)

b ( . , s)‖55 ds+ ess sup
−S<s<0

‖w(k)
b ( . , s)‖3 ≤ c2, (2.22)

wherec1 andc2 depend onM , but they are independent ofS andk.

2.4 Decomposition of the pressure

In this subsection, we decompose the pressure in Lemma 1 by an analogous way in [20] and estimate

each term consisting the pressure in Lemma 2. The detailed proofs of these lemmas are elaborated in

Appendix.
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Lemma 1. LetK bethe second order tensor with the entrieskij given by

kij(z− y) =
∂2

∂zi ∂zj

1
|z− y|

.

For x ∈ R3 (which has nothing to do withx from (2.5)) andy ∈ B3/2(x), we have

p̂ (k)(y, s) = p̂
1(k)
x (y, s) + p̂

2(k)
x (y, s) + c

(k)
x (s) + d(k)(s), (2.23)

where

p̂
1(k)
x (y, s) =

1
4π

∫
B2(x)

K(z− y) : M̂(k)(z, s) dz− 1
3
(
|û(k)(y, s)|2 − |b̂(k)(y, s)|2

)
,

p̂
2(k)
x (y, s) =

1
4π

∫
R3rB2(x)

[
K(z− y)−K(z− x)

]
: M̂(k)(z, s) dz,

c
(k)
x (s) =

1
4π

∫
R3rB2(x)

K(z− x) : M̂(k)(z, s) dz,

d(k)(s) = − 1
4π

∫
R3

1
|z− y|

div f (k)(z, s) dz,

and

M̂(k)(z, s) = û(k)(z, s)⊗ û(k)(z, s)− b̂(k)(z, s)⊗ b̂(k)(z, s)

Note that a direct computation shows

kij(z− y) =
∂2

∂zi ∂zj

1
|z− y|

= − ∂

∂zi

zj − yj
|z− y|3

= 3
(zi − yi)(zj − yj)
|z− y|5

− δij
|z− y|3

.

Lemma 2. Let1 < q <∞ and

‖f‖q; unif := sup
x∈R3

‖f‖q;B1(x).

We have the following estimates for each parts of pressure.

‖p̂ 1(k)
x ( . , s)‖3/2;B3/2(x) .M ‖ũ(k)( . , s)‖23;B2(x) + ‖b̃(k)( . , s)‖23;B2(x) + 1, (2.24)

sup
y∈B3/2(x)

|p̂ 2(k)
x (y, s)| .M ‖ũ(k)( . , s)‖22; unif + ‖b̃(k)( . , s)‖22; unif + 1, (2.25)

|c(k)
x (s)| .M 1, (2.26)∣∣d (k)(s)

∣∣ . λ2
k ‖div f( . , t0 + λ2

ks)‖∞;R3 (ρ2
6 − ρ2

5). (2.27)

Moreover,d (k) ∈ Lµ(−S, 0) for anyµ ∈ (1, 2).
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2.5 An estimate, following from the localized energy inequality

In this subsection, we apply the localized energy inequality and derive an important estimate, see

Lemma 4. In order to express the estimate neatly, we at first define a few functionals and give their

estimates in Lemma 3. The detailed proofs of these lemmas are elaborated in Appendix.

Definition 1 (Functionals). For −S ≤ s0 ≤ s < 0, we denote

αk(s) := ‖ũ(k)( . , s)‖22; unif + ‖b̃(k)( . , s)‖22; unif ,

βk(s0, s) := sup
x∈R3

∫ s

s0

(
‖∇ũ(k)( . , τ)‖22;B1(x) + ‖∇b̃(k)( . , τ)‖22;B1(x)

)
dτ,

γk(s0, s) := sup
x∈R3

∫ s

s0

(
‖ũ(k)( . , τ)‖33;B1(x) + ‖b̃(k)( . , τ)‖33;B1(x)

)
dτ,

δk(s0, s) := sup
x∈R3

∫ s

s0

(
‖p̂ 1(k)

x ( . , τ)‖3/23/2;B1(x) + ‖p̂ 2(k)
x ( . , τ)‖3/23/2;B1(x)

)
dτ.

Lemma 3. For a.a.s ∈ (−S, 0),

αk(s) . λ−1
k (2.28)

andfor all s ∈ (−S, 0)

γk(s0, s) .
∫ s

s0

α
3/2
k (τ) dτ +

(∫ s

s0

α3
k(τ) dτ

)1/4

β
3/4
k (s0, s), (2.29)

δk(s0, s) . γk(s0, s) +
∫ s

s0

α
3/2
k (τ) dτ + (s− s0). (2.30)

Lemma 4. There exist positive constantsA,B,CM such that for a.as0 ∈ [−S, 0) and alls ∈ (s0, 0),

αk(s) + βk(s0, s)

≤ Aαk(s0) +BF (k)(s0, s)

+ CM

(∫ s

s0

(αk(τ) + α3
k(τ)) dτ + (s− s0)1/2 +

∫ s

s0

αk(τ) ‖w(k)
u ‖55;B3/2(x) dτ

)
,

(2.31)

where

F (k)(s0, s) :=
∫ s

s0

(
d

(k)
x

3/2
(τ) + ‖f (k)( . , τ)‖3/2∞ + ‖g(k)( . , τ)‖3/2∞

)
dτ.

(The subscriptM in CM indicates the dependence on numberM from inequality (2.4).)

Note thatF (k)(s0, s) → 0 uniformly with respect tos0 ∈ [−S, 0) ands ∈ (s0, 0) ask → ∞.

Indeed, it follows from (2.7), (2.27) and the definition ofF (k)(s) that

F (k)(s0, s) . λ3
k

∫ 0

−S

(
‖f( . , t0 + λ2

kτ)‖3/2
1,∞;R3 + ‖g( . , t0 + λ2

kτ)‖3/2∞;R3

)
dτ

= λk

∫ t0

tk

(
‖f( . , t)‖3/2

1,∞;R3 + ‖g( . , t0 + λ2
kτ)‖3/2∞;R3

)
dt

. λk.

(2.32)
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2.6 Another estimate ofαk(s) and the choice ofS

Recall that due to (2.18),αk(−S) = 0. Moreover, applying (2.28) and choosings0 = −S, we obtain

from (2.31): for alls ∈ (−S, 0),

αk(s) ≤ BF (k)(−S, s) + CM

(
λ−3
k (s+ S) + (s+ S)1/2 + λ−1

k

∫ s

−S
‖w(k)

u ( . , τ)‖55; unif dτ
)
.

(2.33)

Since the right side goes to 0 ass → −S, αk(s) ≤ 1/10 for s in some right neighbourhood of−S.

We will further prove that ifS < 1 is small enough andk is sufficiently large thenαk(s) satisfies the

same estimate fors on the whole interval(−S, 0). Let

s1 := sup{σ ∈ [−S, 0] : αk(s) ≤ 1/10 for s ∈ [−S, σ)}.

It follows from (2.33) that−S < s1 ≤ 0. Suppose thats1 < 0 and−S < s < s1. By analogy with

(2.33), we obtain from (2.31):

αk(s) .M
∫ s

−S
‖w(k)

u ( . , τ)‖55; unif αk(τ) dτ + [(s+ S)1/2 + λk].

By the generalized Gronwall inequality we have

αk(s) .M
∫ s

−S
‖w(k)

u ( . , τ)‖55; unif [(τ + S)1/2 + λk] eH(s)−H(τ) dτ + [(s+ S)1/2 + λk],

whereH(s) =
∫ s
−S ‖w

(k)
u ( . , τ)‖55; unif dτ . Estimating the norm ofw(k)

u by means of (2.21)), we

obtain

αk(s) .M
∫ s

−S
‖w(k)

u ( . , τ)‖55; unif [(τ + S)1/2 + λk] dτ + [(s+ S)1/2 + λk]

.M [(s+ S)1/2 + λk]
(∫ s

−S
‖w(k)

u ( . , τ)‖55; unif dτ + 1
)

.M [S1/2 + λk]

(2.34)

for s ∈ (−S, s1). Suppose from now on thatS is so small andk is so large (i.e.λk is so small) that

αk(s) ≤ 1
20(1+A) . Inequality (2.31), considered withs < s0 < s1 ands > s1, yields

αk(s) ≤
A

20(1 +A)
+B F (k)(s0, s)

+ CM

(
λ−3
k (s− s0) + (s− s0)1/2 +

∫ s

s0

‖w(k)
u ( . , τ)‖55; unif dτ

)
As the right hand side depends continuously ons0, the same inequality also holds ifs0 is replaced by

s1. Then, as the right hand side is less than1
10 for s in some right neighbourhood ofs1, we obtain the

contradiction with the assumption thats1 < 0. Hence we may assume that

αk(s) ≤
1
10

(2.35)
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for all s ∈ [−S, 0) andfor all k. The importance of this inequality lies in the fact that, in contrast to

(2.28), it provides an estimate ofαk(s) independent ofk. Inequalities (2.31) and (2.35) imply that

the estimate

αk(s) + βk(−S, s) ≤ B F (k)(−S, s) + CM

(
(s+ S)1/2 +

∫ s

−S
‖w(k)

u ( . , τ)‖55; unif dτ
)

(2.36)

holds for alls ∈ [−S, 0).

3 The limit transition for k →∞

3.1 The limit transition in the sequences{w(k)
u } and {w(k)

b }

There exist functionŝu0, b̂0 ∈ L3(R3) and subsequences of{û(k)( . ,−S)} and {b̂(k)( . ,−S)}
(which we denote in the same way) such thatû(k)( . ,−S) ⇀ û0 andb̂(k)( . ,−S) ⇀ b̂0 in L3(R3).

By analogy with [34], one can deduce that since

sup
−S<s<0

‖w(k)
u ( . , s)‖22; unif + sup

x∈R3

∫ 0

−S
‖∇w(k)

u ( . , s)‖22;B1(x0) ds ≤ C(M) < ∞,

sup
−S<s<0

‖w(k)
b ( . , s)‖22; unif + sup

x∈R3

∫ 0

−S
‖∇w(k)

b ( . , s)‖22;B1(x0) ds ≤ C(M) < ∞,
(3.1)

there exist limit functionswu andwb such thatw(k)
u → wu andw(k)

b → wb (together with all

derivatives) uniformly on all sets of the typeBR(0) × (s, 0] for anyR > 0 ands ∈ (−S, 0). The

limit functions are divergence-free and represent strong solutions of equations (2.15) and (2.16) on

the time interval(−S, 0), satisfying the initial conditionswu( . ,−S) = û0 andwb( . ,−S) = b̂0.

They also satisfy the same estimates as (3.1), i.e.

sup
−S<s<0

‖wu( . , s)‖22; unif + sup
x∈R3

∫ 0

−S
‖∇wu( . , s)‖22;B1(x0) ds ≤ C(M) < ∞,

sup
−S<s<0

‖wb( . , s)‖22; unif + sup
x∈R3

∫ 0

−S
‖∇wb( . , s)‖22;B1(x0) ds ≤ C(M) < ∞.

(3.2)

Moreover, both the functionswu andwb are inC
(
[−S, 0]; L3(R3)

)
∩L5

(
R

3×(−S, 0)
)
, see e.g. [9].

3.2 Weak limits of the sequences{ũ(k)}, {b̃(k)} and {p̂ (k)}

From (2.26), (2.29) and (2.36), we deduce that there exist subsequences of{ũ(k)}, {b̃(k)} and{p̂ (k)},
which we again denote by{ũ(k)}, {b̃(k)} and{p̂ (k)}, and limit functions̃u, b̃ andp̂ so that

ũ(k) −→ ũ, b̃(k) −→ b̃ weakly–∗in L∞(−S, 0; L2(Ba(0)), (3.3)

∇ũ(k) −→ ∇ũ, ∇b̃(k) −→ ∇b̃ weakly inL2
(
Ba(0)× (−S, 0)

)3×3
, (3.4)

p̂ (k) −→ p̂ weakly inL3/2
(
Ba(0)× (−S, 0)

)
(3.5)
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for k →∞ and for anya > 0. Using (2.29), we can also deduce that the subsequences can be chosen

so that

ũ(k) −→ ũ, b̃(k) −→ b̃ weakly inL3
(
Ba(0)× (−S, 0)

)
. (3.6)

3.3 A strong convergence of the sequences{ũ(k)} and {b̃(k)}

In order to show that the convergence of{ũ(k)} and {b̃(k)} is strong in an appropriate function

space, we need an information on the time derivatives∂sũ(k) and∂sb̃(k). Consider a test function

φ ∈ C∞0
(
Ba(0))× (−S, 0)

)
, multiply equation (2.13) byφ and integrate overBa(0)× (−S, 0). We

obtain∫ 0

−S

∫
Ba(0)

[
∂sũ(k) · φ− (ũ(k) + w(k)

u ) · ∇φ · (ũ(k) + w(k)
u ) + (b̃(k) + w(k)

b ) · ∇φ · (b̃(k) + w(k)
b )

+ p(k) divφ− ν∇ũ(k) : ∇φ
]

dy ds =
∫ 0

−S

∫
Ba(0)

f (k) · φ dy ds

and ∣∣∣∣∫ 0

−S

∫
Ba(0)

∂sũ(k) · φ dy ds
∣∣∣∣

≤
∫ 0

−S
(‖ũ(k) + w(k)

u ‖23;Ba(0) + ‖b̃(k) + w(k)
b ‖

2
3;Ba(0)) ‖∇φ‖3;Ba(0) ds

+
∫ 0

−S
‖p(k)‖3/2;Ba(0) ‖divφ‖3;Ba(0) ds+ ν

∫ 0

−S
‖∇ũ(k)‖2;Ba(0) ‖∇φ‖2;Ba(0) ds

+
∫ 0

−S
‖f (k)‖2;Ba(0) ‖φ‖2;Ba(0) ds.

Applying (2.26), (2.36), (2.29) and the continuous imbeddingW1,2(Ba(0)) ↪→ L3(Ba(0)), we

obtain ∣∣∣∣∫ 0

−S
∂sũ(k) · φ dy ds

∣∣∣∣ .a (∫ 0

−S
‖∇φ‖33;Ba(0)) ds

)1/3

.

Consequently,{∂sũ(k)} is uniformly bounded in the dual space toL3(−S, 0;W1,3
0 (Ba(0)), which is

L3/2(−S, 0; W−1,3/2
0 (Ba(0))). (Here,W−1,3/2

0 (Ba(0)) denotes the dual space toW1,3
0 (Ba(0)).)

Applying the version of the Lions–Aubin theorem (see [23, Théor̀eme 5.1.]), and applying the same

arguments also to the sequence{b̃(k)}, one can deduce that

ũ(k) −→ ũ, b̃(k) −→ b̃ strongly inL3
(
Ba(0)× (−S, 0)

)
. (3.7)

It also follows from the aforementioned results that the sequence{ũ(k)} is uniformly bounded in

W 1,3/2(−S, 0; W−1,3/2
0 (Ba(0)). SinceW−1,3/2

0 (Ba(0)) ↪→↪→ W−1−γ
0 (Ba(0)) (for anyγ > 0),
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we also haveW 1,3/2(−S, 0; W−1,3/2
0 (Ba(0)) ↪→↪→ C

(
(−S, 0]; W−1−γ

0 (Ba(0)
)
. Consequently, as

the same conclusions also hold for functionsb̃(k), we also get

ũ(k) −→ ũ, b̃(k) −→ b̃ strongly inC
(
(−S, 0]; W−1−γ

0 (Ba(0)
)

for anyγ > 0. (3.8)

3.4 The limits of ũ( . , s) and b̃( . , s) for s→ −S+

Note that as (3.3)–(3.7) hold for alla > 0, the limit functionsũ, b̃ andq are in fact defined a.e. in

R
3 × (−S, 0). Thus, due to (3.5), one hasq ∈ L3/2(−S, 0; L3/2

loc (R3)). Moreover, one can easily

derive from (2.32), (2.36), (3.2), (3.3) and (3.4) that for anys ∈ (−S, 0),

ess sup
−S<τ<s

(
‖ũ( . , τ)‖22; unif + ‖b̃( . , τ)‖22; unif

)
+ sup

x∈R3

∫ s

−S

(
‖∇ũ( . , τ)‖22;B1(x) + ‖∇b̃( . , τ)‖22;B1(x)

)
dτ

.M (s+ S)1/2 +
∫ s

−S
‖wu( . , τ)‖55; unif dτ.

(3.9)

This implies that

‖ũ( . , s)‖2; unif + ‖b̃( . , s)‖2; unif −→ 0 for s→ −S + . (3.10)

3.5 A weak continuity of ũ( . , s) and b̃( . , s) in dependence ons

Recall that

‖∂sũ(k)‖Ha + ‖∂sb̃(k)‖Ha ≤ C(a)

for anya > 0, where we have used the abbreviated notation

Ha := L3/2(−S, 0; W−1,3/2
0 (Ba(0))).

The same inequality is also preserved in the limit fork →∞, which means that

‖∂sũ‖Ha + ‖∂sb̃‖Ha ≤ C(a). (3.11)

Henceũ andb̃ are continuous functions from[−S, 0] to W−1,3/2
0 (Ba(0)). From this and (3.9), one

can easily deduce that given a functionϕ ∈W1,3
0 (Ba(0)), the mappings 7→

∫
Ba(0) ũ(y, s)·ϕ(y) dy

is a continuous function in[−S, 0] and the same statement also holds onb̃. It means, due to the density

of W1,3
0 (Ba(0)) in L2(Ba(0)) and the possibility to choosea > 0 arbitrarily large, that∫

R3

ũ(y, . ) ·ϕ(y) dy ∈ C
(
[−S, 0]

)
∫
R3

b̃(y, . ) ·ϕ(y) dy ∈ C
(
[−S, 0]

) (3.12)

for anyϕ ∈ L2(R3) with a compact support inR3.
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3.6 The functionsU and B

Put

U := ũ + wu and B := b̃ + wb. (3.13)

Dueto the properties of the functionswu andwb, listed at the beginning of this section, and (3.9)–

(3.12), the functionsU andB satisfy

ess sup
−S<τ<0

(
‖U( . , τ)‖22; unif + ‖B( . , τ)‖22; unif

)
+ sup

x∈R3

∫ 0

−S

(
‖∇U( . , τ)‖22;B1(x) + ‖∇B( . , τ)‖22;B1(x)

)
dτ

≤ C(M),

(3.14)

and

U( . , s)→ wu( . ,−S) and B( . , s)→ wb( . ,−S) (3.15)

in L2
loc(R

3) ass→ −S+ and ∫
R3

U(y, . ) ·ϕ(y) dy ∈ C
(
[−S, 0]

)
,∫

R3

B(y, . ) ·ϕ(y) dy ∈ C
(
[−S, 0]

) (3.16)

for anyϕ ∈ L2(R3) with a compact support inR3.

3.7 Non-triviality of the function |U|+ |B|

Suppose, for a while, that(x0, t0) is a singular point of the solutionu, b to the equations (1.1)–(1.3).

(I.e. the solutions blows up in the neighborhood of the pointx0 for t → t0.) Then there existε > 0

andδ∗ > 0 such that

1
δ2

∫ t0

t0−δ2

∫
Bδ(x0)

(
|u|3 + |b|3

)
dx dt > ε

for all δ ∈ (0, δ∗), see [41]. Sinceu andb coincide withû andb̂ resprectively inBρ7(x0)× (3δ, t0),

the functionŝu andb̂ satisfy the same inequality

1
δ2

∫ t0

t0−δ2

∫
Bδ(x0)

(
|û|3 + |b̂|3

)
dx dt > ε (3.17)
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for all δ > 0 sufficiently small. One can calculate from the transformation formulas (2.5), (2.6) and

the inequality (3.17) that∫ 0

−S/2

∫
Ba(0)

(
|û(k)|3 + |b̂(k)|3

)
dy ds

=
1
λ2
k

∫ T

T−λ2
k(S/2)

∫
Baλk (0)

(
|û|3 + |b̂|3

)
dx dt

≥ S/2
λ2
k(S/2)

∫ T

T−λ2
k(S/2)

∫
B
λk

√
S/2

(0)

(
|û|3 + |b̂|3

)
dx dt >

S

2
ε

(3.18)

if a ≥
√
S/2 andλk is so small (i.e.k is so large) thatλk

√
S/2 < δ∗. Due to (3.7) and the uniform

convergence of the sequence{w(k)
u } to wu onBa(0)×(−S/2, 0), the left hand side of (3.18) satisfies

lim
k→∞

∫ 0

−S/2

∫
Ba(0)

(
|u(k)|3 + |b̂(k)|3

)
dy ds

=
∫ 0

−S/2

∫
Ba(0)

(
|ũ + wu|3 + |b̃ + wb|3

)
dy ds

=
∫ 0

−S/2

∫
Ba(0)

(
|U|3 + |B|3

)
dy ds.

Combining this with (3.18) we obtain the inequality∫ 0

−S/2

∫
Ba(0)

(
|U|3 + |B|3

)
dy ds ≥ S

2
ε, (3.19)

whichshows that the sum|U|+ |B| is a non-trivial function.

4 Proof of Theorem 1 – completion

4.1 The finiteness of the norms‖û( . , t0)‖3 and ‖b̂( . , t0)‖3

One can derive from (2.4) that the functionsû andb̂ satisfy

‖û( . , t0)‖3 + ‖b̂( . , t0)‖3 ≤ M. (4.1)

Indeed, since the sequences{û( . , tk)} and{b̂( . , tk)} are bounded, there exist subsequences, weakly

convergent to some functionŝu∗ andb̂∗ in L3(R3). Due to (1.5), the norms of the limit functions

satisfy

‖û∗‖3 + ‖b̂∗‖3 ≤ M. (4.2)

However, as the functionŝu andb̂ are weakly continuous from(0, T ] to L2(R3), we have

û∗ = û( . , t0) and b̂∗ = b̂( . , t0).

This and (4.2) yield (4.1).
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4.2 More on the functionsU and B

Letφ bean infinitely differentiable divergence-free vector function with a compact support inR
3 ×

(−S, 0). Then∣∣∣∣∫ 0

−S

∫
R3

f (k)(y, s) · φ(y, s) dy dt
∣∣∣∣

≤
∫ 0

−S

∥∥f (k)( . , s)
∥∥
∞;R3

∫
R3

|φ(y, s)| dy ds

≤
(∫ 0

−S

∥∥f (k)( . , s)
∥∥3/2

∞;R3 ds
)2/3 [ ∫ 0

−S

(∫
R3

|φ(y, s)| dy
)3

ds
]1/3

.

(∫ 0

−S

∥∥f (k)( . , s)
∥∥3/2

∞;R3 ds
)2/3

=
(∫ t0

tk

λ
9/2
k ‖f( . , t)‖3/2∞;R3

dt
λ2
k

)2/3

(4.3)

andthe last integral goes to zero ask → ∞. Applying (3.3)–(3.8), (3.10), (3.15) and (4.3) (and the

same estimates satisfied by functionsg(k)), we deduce that(U,B, p̂) is a suitable weak solution to

the system (2.1)–(2.3) (withf = 0 andg = 0) in R3 × (−S, 0), satisfying the initial conditions

U( . ,−S) = û( . ,−S) and B( . ,−S) = b̂( . ,−S).

If we denote the duality between the elements ofW
−1−γ,3/2
0 (Ba(0)) and W1+γ,3

0 (Ba(0)) by

〈 . , . 〉Ba(0), then it follows from (3.8) that for eachϕ ∈W1+γ
0 (Ba(0)), we have∣∣〈U( . , 0),ϕ

〉
Ba(0)

∣∣ =
∣∣ lim
k→∞

〈
û(k)( . , 0),ϕ

〉
Ba(0)

∣∣
=
∣∣∣∣ lim
k→∞

∫
Ba(0)

û(k)(y, 0) ·ϕ(y) dy
∣∣∣∣

≤ lim
k→∞

(∫
Ba(0)

|û(k)(y, 0)|3 dy
)1/3(∫

Ba(0)
|ϕ(y)|3/2 dy

)2/3

= lim
k→∞

(∫
Bλka(0)

|û(x, 0)|3 dx
)1/3(∫

Ba(0)
|ϕ(y)|3/2 dy

)2/3

.

Sinceλka→ 0 ask →∞, the last limit equals zero and hence〈
U( . , 0),ϕ

〉
Ba(0)

= 0.

This holds for all functionsϕ ∈ W1+γ
0 (Ba(0)) and as the same arguments can also be applied to

functionB, we obtain the equalities

U( . , 0) = B( . , 0) = 0. (4.4)

These equalities hold in the wholeR3, becausea can be taken arbitrarily large.
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Since the vorticitiescurl U( . , 0) andcurl B( . , 0) also vanish, one can apply the same arguments

as in [6], based on the backward uniqueness, to the equations forcurl U andcurl B and deduce that

curl U = curl B = 0 in R3 × (−S, 0). This, together with the conditionsdiv U = div B = 0,

implies thatU( . , s) and B( . , s) are for all s ∈ (−S, 0) gradients of harmonic functions inR3.

However, since

ess sup
−S<τ<s

(
‖U( . , τ)‖22; unif + ‖B( . , τ)‖22; unif

)
< ∞

(which follows from (3.2) and (3.9)), the only possibility isU = B = 0 in R3 × (−S, 0). This is,

however, in contradiction with the conclusions of paragraph 3.7. Consequently,(x0, t0) cannot be a

singular point of the solution(u,b, p). The proof of Theorem 1, under condition (i), is completed.
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Appendix

In this appendix, we gather the proofs of technical lemmas, Lemma 1, 2, 3 and 4.

Proof of Lemma 1

Taking the divergence to (2.8), we obtain

−∆p̂ (k) = ∂i∂j
(
û

(k)
i û

(k)
j

)
− ∂i∂j

(
b̂
(k)
i b̂

(k)
j

)
− div f (k),

whereû(k)
i andb̂(k)

i (i = 1, 2, 3) are the components of̂u(k) andb̂(k), respectively. Then we have

p̂ (k)(y, s) = I1 − I2 − I3

where

I1 =
1

4π

∫
R3

1
|z− y|

∂i∂j
(
û

(k)
i (z, s)û(k)

j (z, s)
)

dz,

I2 =
1

4π

∫
R3

1
|z− y|

∂i∂j
(
b̂
(k)
i (z, s)b̂(k)

j (z, s)
)

dz,

I3 =
1

4π

∫
R3

1
|z− y|

div f (k)(z, s) dz.

We shall show that

I1 =
1

4π

∫
R3

K(z− y) :
[
û(k)(z, s)⊗ û(k)(z, s)

]
dz− 1

3
|u(k)(y, s)|2. (4.5)
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Integrating by parts, we rewriteI1 as

I1 = − 1
4π

∫
R3

( ∂

∂zj

1
|z− y|

) [
û

(k)
i (z, s) ∂iû

(k)
j (z, s)

]
dz

= lim
ε→0+

1
4π

∫
R3rBε(y)

zj − yj
|z− y|3

[
û

(k)
i (z, s) ∂iû

(k)
j (z, s)

]
dz

= lim
ε→0+

1
4π

∫
R3rBε(y)

kij(z− y)
[
u

(k)
i (z, s)u(k)

j (z, s)
]

dz

+ lim
ε→0+

1
4π

∫
|z−y|=ε

zj − yj
|z− y|3

[
û

(k)
i (z, s) û(k)

j (z, s)
] yi − zi
|z− y|

dzS.

Thelast term becomes

1
4π

∫
|z−y|=ε

zj − yj
|z− y|3

[
û

(k)
i (z, s) û(k)

j (z, s)
] yi − zi
|z− y|

dzS

= − 1
4π

∫
|z−y|=ε

(zi − yi)(zj − yj)
|z− y|4

u
(k)
i (z, s)u(k)

j (z, s) dzS

= − 1
4π

∫
|z−y|=ε

(zi − yi)(zj − yj)
|z− y|4

[
u

(k)
i (z, s)u(k)

j (z, s)− u(k)
i (y, s)u(k)

j (y, s)
]

dzS

− 1
4π

∫
|z−y|=ε

(zi − yi)(zj − yj)
|z− y|4

u
(k)
i (y, s)u(k)

j (y, s) dzS

= − 1
4π

∫
|z−y|=ε

(zi − yi)(zj − yj)
|z− y|4

u
(k)
i (y, s)u(k)

j (y, s) dzS + o(ε)

since

sup
|z−y|=ε

∣∣u(k)
i (z, s)u(k)

j (z, s)− u(k)
i (y, s)u(k)

j (y, s)
∣∣ = o(ε).

Using the spatial continuity of̂u(k)
i û

(k)
j at the point(y, s), we rewrite the last integral as

− 1
4π
|u(k)(y, s)|2

∫
|z−y|=ε

(zi − yi)(zj − yj)
|z− y|4

u
(k)
i (y, s)
|u(k)(y, s)|

u
(k)
j (y, s)

|u(k)(y, s)|
dzS.

To obtain (4.5), it suffices to show that∫
|z−y|=ε

(zi − yi)(zj − yj)
|z− y|4

u
(k)
i (y, s)
|u(k)(y, s)|

u
(k)
j (y, s)

|u(k)(y, s)|
dzS =

4π
3
.

We may assume thatu(k)(y, s)/|u(k)(y, s)| = (1, 0, 0) and then use the transformationx = z−y to

compute the last integral as follows:∫
|x|=ε

x2
1

|x|4
dxS =

1
ε4

∫
|x|=ε

x2
1 dxS

=
1
ε4

∫ 2π

0

∫ π/2

−π/2
ε2 cos2 ϕ cos2 ϑ ε2 cosϑ dϑdϕ
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= 2
∫ π/2

0
cos3 ϑ dϑ

∫ 2π

0
cos2 ϕ dϕ

= 2× 2
3
× π =

4π
3
.

By the same way, we can calculateI2. Thus,

p̂ (k)(y, s) =
1

4π

∫
R3

K(z− y) : M̂(k)(z, s) dz− 1
3
(
|û(k)(y, s)|2 − |b̂(k)(y, s)|2

)
− 1

4π

∫
R3

1
|z− y|

div f (k)(z, s) dz
(4.6)

where

M̂(k)(z, s) = û(k)(z, s)⊗ û(k)(z, s)− b̂(k)(z, s)⊗ b̂(k)(z, s)

Finally, we get the decomposition of pressure (2.23) by splitting the first integral as follows:

1
4π

∫
R3

K(z− y) : M̂(k)(z, s) dz

=
1

4π

∫
B2(x)

K(z− y) : M̂(k)(z, s) dz

+
1

4π

∫
R3rB2(x)

[
K(z− y)−K(z− x)

]
: M̂(k)(z, s) dz

+
1

4π

∫
R3rB2(x)

K(z− x) : M̂(k)(z, s) dz.

This completes the proof of Lemma 1.

Proof of Lemma 2

Applying the Calderon–Zygmund theorem and the cut-off function procedure (with a cut–off function

equal to1 in B3/2(x) and supported inB2(x)), we obtain∥∥∥∥∫
B2(x)

K(z− y) :
[
û(k)(z, s)⊗ û(k)(z, s)

]
dz
∥∥∥∥

3/2;B3/2(x)

. ‖û(k)( . , s)‖23;B2(x)

. ‖ũ(k)( . , s)‖23;B2(x) + ‖w(k)
u ( . , s)‖23;B2(x)

.M ‖ũ(k)( . , s)‖23;B2(x) + 1.

Since the part of the integral, containinĝb(k)(z, s) ⊗ b̂(k)(z, s), can be estimated similarly, we get

the estimate (2.24)

To get (2.25) we shall show the following estimate

|K(z− y)−K(z− x)| . |y − x|
|z− x|4

. (4.7)
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Let |y − x| < 3/2 and|z− x| > 2. An elementary computation shows

K(z− y)−K(z− x) = ∇2
z

( 1
|z− y|

− 1
|z− x|

)
= ∇2

z

∫ 1

0

∂

∂ζ

1
|(z− x) + ζ(x− y)|

dζ

=
∫ 1

0
∇2

z

(z− x) + ζ(x− y)
|(z− x) + ζ(x− y)|3

· (x− y) dζ.

Since|y − x| < 3/2 and|z− x| > 2, we have for all0 ≤ ζ ≤ 1,

|(z− x) + ζ(x− y)| ≥ |z− x| − |x− y| ≥ |z− x| − 3
2
≥ 1

4
|z− x|.

Therefore,

|K(z− y)−K(z− x)| ≤ sup
0≤ζ≤1

∣∣∣∣∇2
z

(z− x) + ζ(x− y)
|(z− x) + ζ(x− y)|3

∣∣∣∣ |x− y| . |x− y|
|z− x|4

.

Now, using (4.7), we obtain (2.25) from the computation

|p̂ 2(k)
x (y, s)| .

∫
R3rB2(x)

|y − x|
|z− x|4

(
|û(k)(z, s)|2 + |b̂(k)(z, s)|2

)
dz

=
∞∑
i=0

∫
2i+1<|z−x|<2i+2

|y − x|
|z− x|4

(
|û(k)(z, s)|2 + |b̂(k)(z, s)|2

)
dz

.
∞∑
i=0

2−4i

∫
2i+1<|z−x|<2i+2

(
|û(k)(z, s)|2 + |b̂(k)(z, s)|2

)
dz

.
∞∑
i=0

2−4i 23i
(
‖û(k)( . , s)‖22; unif + ‖b̂(k)( . , s)‖22; unif

)
. ‖û(k)( . , s)‖22; unif + ‖b̂(k)( . , s)‖22; unif .

The estimate (2.26) is obvious.

Finally, (2.27) follows from the computation∣∣d (k)(s)
∣∣ . ∫

ρ5<|x0+λkz|<ρ6

1
|z− y|

λ3
k

∣∣divz f
(
x0 + λkz, t0 + λ2

ks
)∣∣ dz

=
∫
ρ5<|x0+λkz|<ρ6

1
|z− y|

λ4
k

∣∣[div f ]
(
x0 + λkz, t0 + λ2

ks
)∣∣ dz

≤ λ4
k ‖div f( . , t0 + λ2

ks)‖∞;R3

∫
ρ5<|x0+λkz|<ρ6

dz
|z− y|

. λ2
k ‖div f( . , t0 + λ2

ks)‖∞;R3 (ρ2
6 − ρ2

5)

since
∫
ρ5<|x0+λkz|<ρ6

dz
|z−y| ≤

2π
λ2
k

(ρ2
6 − ρ2

5). The right hand side is integrable with respect tos in

(−S, 0) with the power at leastµ for anyµ ∈ (1, 2). (See paragraph 2.1, item (b), for the explanation

whereµ comes from.) Hence we haved (k) ∈ Lµ(−S, 0) for anyµ ∈ (1, 2). This completes the proof

of Lemma 2.
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Proof of Lemma 3

We note the inequality‖w(k)
u ( . , s)‖2;R3 . ‖w(k)

u ( . ,−S)‖2;R3 , which follows from inequality (A)

in [9, p. 190]. For a.a.s ∈ (−S, 0), we have

‖ũ(k)( . , s)‖22; unif . ‖û(k)( . , s)‖22;R3 + ‖w(k)
u ( . , s)‖22;R3

. ‖û(k)( . , s)‖22;R3 + ‖w(k)
u ( . ,−S)‖22;R3

= ‖û(k)( . , s)‖22;Bρ6/λk (0) + ‖û(k)( . ,−S)‖22;Bρ6/λk (0)

. λ−1
k

(
‖u( . , t)‖22;Bρ6 (x0) + ‖û(k)( . ,−S)‖23;Bρ6/λk (0)

)
. λ−1

k

where we used the inequality‖w(k)
u ( . , s)‖2;R3 . ‖w(k)

u ( . ,−S)‖2;R3 in [9, p. 190]. By the same

way we also have‖b̃(k)( . , s)‖22; unif . λ−1
k . Hence we obtain (2.28)

For a.a.s ∈ (−S, 0), we have, by the Sobolev and Hölder inequality,

sup
x∈R3

∫ s

s0

‖ũ(k)( . , τ)‖33;B1(x) dτ

≤ sup
x∈R3

∫ s

s0

‖ũ(k)( . , τ)‖3/22;B1(x) ‖ũ
(k)( . , τ)‖3/26;B1(x) dτ

. sup
x∈R3

∫ s

s0

‖ũ(k)( . , τ)‖3/22;B1(x)

(
‖ũ(k)( . , τ)‖22;B1(x) + ‖∇ũ(k)( . , τ)‖22;B1(x)

)3/4 dτ

.
∫ s

s0

α
3/2
k (τ) dτ + sup

x∈R3

∫ s

s0

α
3/4
k (τ)‖∇ũ(k)( . , τ)‖3/22;B1(x) dτ

.
∫ s

s0

α
3/2
k (τ) dτ +

(∫ s

s0

α3
k(τ) dτ

)1/4

β
3/4
k (s0, s).

Since we can get the same estimate forb̃(k)( . , τ), we obtain (2.29).

Using the estimates in Lemma 2, we obtain (2.30)

δk(s0, s) .M sup
x∈R3

∫ s

s0

(
‖ũ(k)( . , τ)‖33;B2(x) + ‖b̃(k)( . , τ)‖33;B2(x) + 1

)
dτ

+
∫ s

s0

(
‖ũ(k)( . , τ)‖32; unif + ‖b̃(k)( . , τ)‖32; unif + 1

)
dτ

. γk(s0, s) +
∫ s

s0

α
3/2
k (τ) dτ + (s− s0).

This completes the proof of Lemma 3.

Proof of Lemma 4

Let φ be an infinitely differentiable function inR3 with values in[0, 1], supported inB3/2(0) and

equal to1 in B1(0). For x ∈ R3, we denoteφx(y) := φ(y − x). Recall that(u,b, p) has been
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supposed to be a suitable weak solution to the system (1.1)–(1.3),(ũ(k), b̃(k), p̂ (k)) is a suitable

weak solution to the system (2.13), (2.14), completed by the equationsdiv ũ(k) = div b̃(k) = 0

in R3 × (−S, 0), with the initial conditions (2.18). Thus it satisfies a localized energy inequality,

analogous to (1.10). Considering the test function in such an inequality in the form of a product of

φx with a function ofs, and applying a standard limit procedure to the function ofs, one can deduce

that the functions̃u(k), b̃(k), p̂ (k), w(k)
u andw(k)

b satisfy the inequality for a.a.s0 ∈ [−S, 0) and all

s ∈ (s0, 0),∫
R3

φx (|ũ(k)(y, s)|2 + |b̃(k)(y, s)|2) dy + 2
∫ s

s0

∫
R3

φx

(
ν |∇ũ(k)|2 + ξ |∇b̃(k)|2

)
dy

≤
∫
R3

φx (|ũ(k)(y, s0)|2 + |b̃(k)(y, s0)|2) dy +
∫ s

s0

∫
R3

I
(k)
1 + I

(k)
2 + I

(k)
3 + I

(k)
4 dy dτ,

(4.8)

where

I
(k)
1 = (ν |ũ(k)|2 + ξ |b̃(k)|2)∆φx +

(
|ũ(k)|2 + |b̃(k)|2 + 2p̂ (k)

)
ũ(k) · ∇φx,

I
(k)
2 = 2[(ũ(k) + w(k)

u ) · ∇φx] [ũ(k) ·w(k)
u + b̃(k) ·w(k)

b ]

− 2[(b̃(k) + w(k)
b ) · ∇φx] [(b̃(k) + w(k)

b ) · ũ(k) + (ũ(k) + w(k)
u ) · b̃(k)]

+ (b̃(k) · ∇φx) (ũ(k) · b̃(k)) + (|ũ(k)|2 + |b̃(k)|2) (w(k)
u · ∇φx),

I
(k)
3 = 2ũ(k) · [∇ũ(k) ·w(k)

u +∇b̃(k) ·w(k)
b ]φx

− 2[b̃(k) · ∇ũ(k) ·w(k)
b + b̃(k) · ∇b̃(k) ·w(k)

u ]φx

− 2w(k)
b · [∇ũ(k) · b̃(k) +∇b̃(k) · ũ(k)]φx,

I
(k)
4 = 2w(k)

u · [∇ũ(k) ·w(k)
u +∇b̃(k) ·w(k)

b ]φx

− 2w(k)
b · [∇ũ(k) ·w(k)

b +∇b̃(k) ·w(k)
u ]φx,

I
(k)
5 = 2φx ũ(k) · f (k) + 2φx b̃(k) · g(k).

Note that one can also formally derive (4.8) in this way: multiplying equation (2.13) by2φx ũ(k),

integrating onR3 × (s0, s) (where−S ≤ s0 < s < 0) and then integrating by parts, one obtains∫
R3

φx |ũ(k)(y, s)|2 dy −
∫
R3

φx |ũ(k)(y, s0)|2 dy + 2ν
∫ s

s0

∫
R3

φx |∇ũ(k)|2 dy dτ

=
∫ s

s0

∫
R3

J
(k)
1 dy dτ.

(4.9)

where

J
(k)
1 := ν |ũ(k)|2∆φx + 2p̂ (k) ũ(k) · ∇φx + |ũ(k)|2 (ũ(k) + w(k)

u ) · ∇φx

+ 2[(ũ(k) + w(k)
u ) · ∇φx] (ũ(k) ·w(k)

u ) + 2(ũ(k) + w(k)
u ) · ∇ũ(k) ·w(k)

u φx

− 2(b̃(k) + w(k)
b ) · ∇ũ(k) · (b̃(k) + w(k)

b )φx
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− 2[(b̃(k) + w(k)
b ) · ∇φx] [(b̃(k) + w(k)

b ) · ũ(k)] + 2φx ũ(k) · f (k).

Similarly, testing equation (2.14) by2φx b̃(k), one gets∫
R3

φx |b̃(k)(y, s)|2 dy −
∫
R3

φx |b̃(k)(y, s0)|2 dy + 2ξ
∫ s

s0

∫
R3

φx |∇b̃(k)|2 dy dτ

=
∫ s

s0

∫
R3

J
(k)
2 dy dτ.

(4.10)

where

J
(k)
2 := ξ |b̃(k)|2∆φx + |b̃(k)|2 (ũ(k) + w(k)

u ) · ∇φx

+ 2[(ũ(k) + w(k)
u ) · ∇φx] (b̃(k) ·w(k)

b ) + 2(ũ(k) + w(k)
u ) · ∇b̃(k) ·w(k)

b φx

− 2(b̃(k) + w(k)
b ) · ∇b̃(k) · (ũ(k) + w(k)

u )φx

− 2[(b̃(k) + w(k)
b ) · ∇φx] [(ũ(k) + w(k)

u ) · b̃(k)] + 2φx b̃(k) · g(k).

Summing (4.9) and (4.10) and integrating by parts, we obtain (4.8).

We have from the definition∫
R3

φx (|ũ(k)(y, s0)|2 + |b̃(k)(y, s0)|2) dy . α(s0). (4.11)

Let χ := χB3/2(x) (the characteristic function ofB3/2(x)). We have by Young’s inequality

|I(k)
1 | . (|ũ(k)|2 + |b̃(k)|2 + |ũ(k)|3 + |b̃(k)|2|ũ(k)|+ |p̂ (k)||ũ(k)|)χ

. (|ũ(k)|2 + |b̃(k)|2 + |ũ(k)|3 + |b̃(k)|3 + |p̂ (k)|3/2)χ

and hence∫ s

s0

∫
R3

|I(k)
1 | dy dτ .

∫ s

s0

αk(τ) dτ + γk(s0, s) + δk(s0, s) + F (k)(s0, s). (4.12)

Using the inequality,abc ≤ a3 + b3 + c3, we have

|I(k)
2 | .

{
(|ũ(k)|+ |w(k)

u |)(|ũ(k)||w(k)
u |+ |b̃(k)||w(k)

b |)

+ (|b̃(k)|+ |w(k)
b |)[(|b̃

(k)|+ |w(k)
b |)|ũ

(k)|+ (|ũ(k)|+ |w(k)
u |)|b̃(k)|]

+ |b̃(k)||ũ(k)||b̃(k)|+ (|ũ(k)|2 + |b̃(k)|2)|w(k)
u |
}
χ

. (|ũ(k)|3 + |b̃(k)|3 + |w(k)
u |3 + |w(k)

b |
3)χ

and hence by means of (2.21) and (2.22)∫ s

s0

∫
R3

|I(k)
2 | dy dτ .M γk(s0, s) + (s− s0). (4.13)
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We have

|I(k)
3 | .

{
|ũ(k)||∇ũ(k)||w(k)

u |+ |ũ(k)||∇b̃(k)||w(k)
b |

+ |b̃(k)||∇ũ(k)||w(k)
b |+ |b̃

(k)||∇b̃(k)||w(k)
u |
}
χ

We use the Ḧolder inequality and the Sobolev inequality to obtain that∫ s

s0

∫
B3/2(x)

|ũ(k)| |∇ũ(k)| |w(k)
u | dy dτ

.
∫ s

s0

‖ũ(k)‖2/52;B3/2(x) ‖ũ
(k)‖3/56;B3/2(x) ‖∇ũ(k)‖2;B3/2(x) ‖w

(k)
u ‖5;B3/2(x) dτ

.
∫ s

s0

‖ũ(k)‖2/52;B3/2(x)

(
‖ũ(k)‖2;B3/2(x) + ‖∇ũ(k)‖2;B3/2(x)

)8/5 ‖w(k)
u ‖5;B3/2(x) dτ

.
∫ s

s0

αk(τ)1/5
(
αk(τ) + ‖∇ũ(k)‖22;B3/2(x)

)4/5 ‖w(k)
u ‖5;B3/2(x) dτ

.

(∫ s

s0

(
αk(τ) + ‖∇ũ(k)‖22;B3/2(x)

)
dτ
)4/5(∫ s

s0

αk(τ) ‖w(k)
u ‖55;B3/2(x) dτ

)1/5

.

(∫ s

s0

αk(τ) dτ + βk(s0, s)
)4/5(∫ s

s0

αk(τ) ‖w(k)
u ‖55;B3/2(x) dτ

)1/5

.

Since the integral of other three terms can be estimated in the same way, we obtain∫ s

s0

∫
R3

|I(k)
3 | dy dτ

.M

(∫ s

s0

αk(τ) dτ + βk(s0, s)
)4/5(∫ s

s0

αk(τ) ‖w(k)
u ‖55;B3/2(x) dτ

)1/5

.

(4.14)

We have

|I(k)
4 | .

{
|w(k)

u ||∇ũ(k)||w(k)
u |+ |w(k)

u ||∇b̃(k)||w(k)
b |+ |w

(k)
b ||∇ũ(k)||w(k)

b |
}
χ.

We use the Ḧolder inequality to obtain that∫ s

s0

∫
B3/2(x)

|w(k)
u ||∇ũ(k)||w(k)

u | dy dτ

.
∫ s

s0

‖w(k)
u ‖4;B3/2(x) ‖∇ũ(k)‖2;B3/2(x) ‖w

(k)
u ‖4;B3/2(x) dτ

.

(∫ s

s0

‖∇ũ(k)‖22;B3/2(x) dτ
)1/2(∫ s

s0

‖w(k)
u ‖44;B3/2(x) dτ

)1/2

.M β
1/2
k (s0, s) (s− s0)1/4

since ∫ s

s0

‖w(k)
u ‖44;B3/2(x) dτ ≤

∫ s

s0

‖w(k)
u ‖3/23;B3/2(x)‖w

(k)
u ‖5/25;B3/2(x) dτ
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.M

∫ s

s0

‖w(k)
u ‖5/25;B3/2(x) dτ ≤ (s− s0)1/2

(∫ s

s0

‖w(k)
u ‖55;B3/2(x) dτ

)1/2

.M (s− s0)1/2.

Sincethe integral of other two terms can be estimated in the same way, we obtain∫ s

s0

∫
R3

|I(k)
4 | dy dτ .M β

1/2
k (s0, s) (s− s0)1/4. (4.15)

By the Cauchy’s inequality we have

|I(k)
5 | . (|ũ(k)||f (k)|+ |b̃(k)||g(k)|)χ

≤
(
|f (k)|2 + |g(k)|2

)1/2(|ũ(k)|2 + |b̃(k)|2
)1/2

χ.

Hence ∫ s

s0

∫
R3

|I(k)
5 | dy dτ .

∫ s

s0

(
‖f (k)( . , τ)‖∞ + ‖g(k)( . , τ)‖∞

)
α

1/2
k (τ) dτ. (4.16)

Estimating now the right hand side of (4.8) by means of (4.11)–(4.16), considering the supremum

of the left hand side overx ∈ R3, we obtain that for a.as0 ∈ [−S, 0) and alls ∈ (s0, 0),

αk(s) + βk(s0, s)

. αk(s0) +
∫ s

s0

αk(τ) dτ + γk(s0, s) + δk(s0, s) + (s− s0)

+
(∫ s

s0

αk(τ) dτ + βk(s0, s)
)4/5(∫ s

s0

αk(τ) ‖w(k)
u ‖55;B3/2(x) dτ

)1/5

+ β
1/2
k (s0, s) (s− s0)1/4 + F (k)(s0, s).

Using (2.29) and (2.30) we have

αk(s) + βk(s0, s)

. αk(s0) +
∫ s

s0

(αk(τ) + α
3/2
k (τ)) dτ +

(∫ s

s0

α3
k(τ) dτ

)1/4

β
3/4
k (s0, s) + (s− s0)

+
(∫ s

s0

αk(τ) dτ + βk(s0, s)
)4/5(∫ s

s0

αk(τ) ‖w(k)
u ‖55;B3/2(x) dτ

)1/5

+ β
1/2
k (s0, s) (s− s0)1/4 + F (k)(s0, s).

(4.17)

Finally, we note that for anyε > 0 and0 < θ < 1 there isCε,θ such that

aθb1−θ ≤ εa+ Cε,θb.

We apply this estimate to the terms havingβk(s0, s) so that (4.17) becomes

αk(s) + βk(s0, s) . αk(s0) + εβk(s0, s) +
∫ s

s0

(αk(τ) + α3
k(τ)) dτ + (s− s0)1/2

+
∫ s

s0

αk(τ) ‖w(k)
u ‖55;B3/2(x) dτ + F (k)(s0, s).
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Now, we fixε > 0 so small that the termεβk(s0, s) is absorbed by the left hand side. The constants

A,B,CM can be determined by means of all constants, used in (4.11)–(4.17). This completes the

proof of Lemma 4.
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