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Mathematics Subject Classification (2010) MSC 47A10 · MSC 47A35

The first author was supported by MINECO and FEDER, Project MTM2016-75963-P and
PID2019-105011GB-I00. The second author was supported by grant no. 17-27844S of GA
CR and RVO:67985840.

A. Bonilla
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1 Introduction

Throughout this paper X stands for a complex Banach space, the symbol
B(X) denotes the space of all bounded linear operators acting on X, and X∗

is the dual of X.

Definition 1 For an operator T ∈ B(X) we have three notions of Kreiss
boundedness, ordered by strength:

1. T is strong Kreiss bounded if there exists C > 0 such that

‖(λI − T )−k‖ ≤ C

(|λ| − 1)k
for all k ∈ N and |λ| > 1;

2. T is uniformly Kreiss bounded if there exists C > 0 such that∥∥∥∥∥
n∑
k=0

λ−k−1T k

∥∥∥∥∥ ≤ C

|λ| − 1
for all n ∈ N and |λ| > 1;

3. T is Kreiss bounded if there exists C > 0 such that

‖(λI − T )−1‖ ≤ C

|λ| − 1
for all |λ| > 1.

Given T ∈ B(X) and n ≥ 0, we denote the Cesàro mean by

Mn(T ) :=
1

n+ 1

n∑
k=0

T k.

We recall some definitions concerning the behavior of the sequence of
Cesàro means (Mn(T )).

Definition 2 A linear operator T on a Banach space X is called

1. mean ergodic if Mn(T ) converges in the strong operator topology of X;
2. Cesàro bounded if the sequence (Mn(T ))n∈N is bounded;
3. absolutely Cesàro bounded if there exists a constant C > 0 such that

1

N + 1

N∑
j=0

‖T jx‖ ≤ C‖x‖ ,

for all x ∈ X and N ∈ N.

An operator T is said to be power bounded if there is a C > 0 such that
‖Tn‖ < C for all n.

The first example of a mean ergodic operator which is not power-bounded
was given by Hille ([8], where ‖Tn‖ ∼ n1/4). An example of a mean ergodic
operator T on L1(Z) with lim supn ‖Tn‖/n > 0 was obtained in [10] (certainly,
‖Tnx‖/n→ 0 for every x ∈ L1(Z)).
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Remark 1 1. In [15, Corollary 3.2], it is proved that an operator T is uniformly
Kreiss bounded if and only if there is a constant C such that

‖Mn(λT )‖ ≤ C for all n ∈ N and |λ| = 1. (1)

2. In [6], it was shown that every strong Kreiss bounded operator is uniformly
Kreiss bounded. The converse is not true, see [15, Section 5]. Moreover,
McCarthy (see [14], [18]) proved that if T is strong Kreiss bounded then
‖Tn‖ ≤ Cn1/2 (see also [12, Theorem 2.1]) and gave also an example of a
strong Kreiss bounded operator which is not power bounded.

3. Denote by

M (2)
n (T ) :=

2

(n+ 1)(n+ 2)

n∑
j=0

(j + 1)Mj(T )

the second Cesàro mean. It is easy to see that

M (2)
n (T ) =

2

(n+ 1)(n+ 2)

n∑
j=0

(n+ 1− j)T j .

In [20], it was proved that T is Kreiss bounded if and only if there is a
constant C such that

‖M (2)
n (λT )‖ ≤ C for all n ∈ N and |λ| = 1. (2)

There exist Kreiss bounded operators which are not Cesàro bounded, and
conversely [22].

4. An operator T is called Möbius bounded if its spectrum is contained in
the closed unit disc and ϕ(T ) is uniformly bounded on the set of the auto-
morphism of the unit disc. By [18], T is a Möbius bounded operator if and
only if it is Kreiss bounded.

5. On finite-dimensional spaces, the classes of Kreiss bounded operators and
power bounded operators coincide.

6. By (1), any absolutely Cesàro bounded operator is uniformly Kreiss bounded.

Let X be the space of all bounded analytic functions f on the unit disc in
the complex plane such that the derivative f ′ belongs to the Hardy space H1,
endowed with the norm

‖f‖ := ‖f‖∞ + ‖f ′‖H1 .

Then the multiplication operator Mz acting on X is Kreiss bounded but it
fails to be power bounded. Moreover, this operator is not uniformly Kreiss
bounded (see [20]).

Let V be the Volterra operator acting on Lp[0, 1], 1 ≤ p ≤ ∞ defined by

(V f)(t) =

∫ t

0

f(s)ds (f ∈ Lp(0, 1)).

Then I − V is uniformly Kreiss bounded. For p = 2 it is even power bounded
(see [15]).
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It is immediate that any power bounded operator is absolutely Cesàro
bounded. In general, the converse is not true.

Let 1 ≤ p < ∞ and let en, n ∈ N be the standard basis in `p(N). The
following theorem yields examples of absolutely Cesàro bounded operators
with different behavior on `p(N).

Theorem 1 [3, Theorem 2.1] Let T be the weighted backward shift on `p(N)
with 1 ≤ p < ∞ defined by Te1 := 0 and Tek := wkek−1 for k > 1. If

wk :=

(
k

k − 1

)α
with 0 < α < 1

p , then T is absolutely Cesàro bounded on

`p(N) and is not power bounded.

For p = 2, the adjoint of the operator in Theorem 1 is uniformly Kreiss
bounded, mean ergodic but not absolutely Cesàro bounded.

In [9], Kornfeld and Kosek constructed for every δ ∈ (0, 1) a positive mean
ergodic operator T on L1 with ‖Tn‖ ∼ n1−δ. By positivity, T is absolutely
Cesàro bounded.

Since
Tn = (n+ 1)Mn(T )− nMn−1(T ), (3)

any Cesàro bounded operator satisfies that ‖Tn‖ = O(n).
In the following picture we summarize the implications among the above

definitions.

Power bounded

Strong Kreiss bounded Absolutely Cesàro bounded

Uniformly Kreiss bounded

Kreiss bounded Cesàro bounded

‖Tn‖ = O(n)

Fig. 1 Implications among different definitions related with Kreiss bounded and Cesàro
bounded operators on Banach spaces.

2 About the Shields conjecture on Hilbert spaces

If T is a Kreiss bounded operator in a Banach space, then ‖Tn‖ ≤ Cn [12,
(2.4)]. By Nevanlinna [16, Theorem 6], there are Kreiss bounded operators T
on Banach spaces with ‖Tn‖ ≥ C ′n for some C ′ > 0.
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In [18], Shields conjectured that any Kreiss bounded Hilbert space operator
T satisfies ‖Tn‖ = O(

√
n). A negative answer to this conjecture was given in

[19] where it was shown that for every ε > 0 there exists a Kreiss bounded
Hilbert space operator T such that the norms of its powers ‖Tn‖ grow as fast
as n1−ε.

In this section we improve this result and construct an operator with similar
properties, which is even uniformly Kreiss bounded.

In the same paper [18] Shields mentioned without proof that if T is a Kreiss
bounded Hilbert space operator such that the sequence of norms (‖Tn‖) is
increasing and there is a unit vector x such that ‖Tnx|| ≥ ‖Tn‖/2 for all n
then ‖Tn‖ = O(

√
n) (such properties would satisfy the first natural attempt

to disprove the Shields conjecture). For the sake of completeness we give a
proof of this result. We need to prove the following lemma.

Lemma 1 Let (ak)∞k=0 be an increasing sequence of non-negative numbers,

B > 0, and let
∞∑
n=0

a2kr
2k ≤ B/(1− r)2 for 0 ≤ r < 1. Then an = O(

√
n).

Proof Since
∞∑
n=0

a2kr
2k ≤ B

(1− r)2
, multiplying both sides by 1 − r2, we see

that

a20 +
∞∑
k=1

(a2k − a2k−1)r2k ≤ 2B

1− r
.

Now since {ak}k∈N is increasing, we have

r2n
(
a20 +

n∑
k=1

(a2k − a2k−1)
)
≤ a20 +

n∑
k=1

(a2k − a2k−1)r2k ≤ 2B

1− r
.

Set r = e−1/n. We conclude that

a2n = a20 +
n∑
k=1

(a2k − a2k−1) ≤ B′n

for some constant B′. Thus
an = O(

√
n).

Theorem 2 Let T be a Kreiss bounded operator on a Hilbert space such that
{‖Tn‖}∞n=0 is increasing and suppose that there exist a unit vector x and a
constant A such that ‖Tn‖ ≤ A‖Tnx‖ for all n. Then ‖Tn‖ = O(

√
n).

Proof Let f(z) =
∞∑
k=0

T kzk. Since T is Kreiss bounded we have ‖f(z)‖ ≤ C
1−|z|

for all |z| < 1. If y ∈ H with ‖y‖ = 1 then

∞∑
k=0

r2n‖Tny‖2 =
1

2π

∫ 2π

0

‖f(reiθ)y‖2dθ ≤ C2

(1− r)2
.
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Since there exists a unit vector x and a constant A such that ‖Tn‖ ≤ A‖Tnx‖
for all n, we have

∞∑
k=0

r2n‖Tn‖2 ≤ A2
∞∑
k=0

r2n‖Tnx‖2 ≤ A2C2

(1− r)2
.

Now by Lemma 1, we obtain ‖Tn‖ = O(
√
n).

The Shields conjecture ‖Tn‖ = O(n1/2) is true for some subclasses of Kreiss
bounded operators:

1. If T is a strong Kreiss bounded operator on a Banach space, then ‖Tn‖ =
O(n1/2), see [14].

2. If T is an absolutely Cesàro bounded operator on a Hilbert space, then
‖Tn‖ = o(n1/2) and moreover for all ε there exist absolutely Cesàro bounded
operators on `2(N) such that ‖Tn‖ = O(n1/2−ε) [3].

3. See [5] for other classes of Kreiss bounded operators where the Shields
conjecture is true.

Now we construct a uniformly Kreiss bounded operator which disproves
the Shields conjecture.

Theorem 3 Let 0 < η < 1/2. Then there exists a constant c > 0 with the
following property: for each N ∈ N there exists an operator TN acting on a
2N -dimensional Hilbert space HN such that

‖T 2N−1
N ‖ = N2η,

TN is a weighted shift satisfying ‖TN‖ = 2η,

‖Mn(TN )‖ ≤ c for every n ∈ N.

Proof Let HN be the Hilbert space with an orthonormal basis e1, . . . , e2N . Let

wj = jη (j = 1, . . . , N)

and

wj =
N2η

(2N − j + 1)η
(j = N + 1, . . . , 2N).

Consider the weighted shift TN on HN defined by

TNej =
wj+1

wj
ej+1 (j = 1, . . . , 2N − 1)

and TNe2N = 0.
Note that w1 = 1, wN = wN+1 = Nη and w2N = N2η. Then ‖T 2N−1‖ =

‖T 2N−1e1‖ = w2N = N2η.
Clearly ‖TN‖ = max

{wj+1

wj
: 1 ≤ j ≤ 2N − 1

}
= 2η.

Let n ∈ N. We have

‖Mn(TN )‖ = sup
{∣∣〈Mn(TN )x, y〉

∣∣ : x, y ∈ HN , ‖x‖ = ‖y‖ = 1
}
.
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Let x =
∑2N
j=1 αjej , y =

∑2N
j=1 βjej , ‖x‖2 =

∑2N
j=1 |αj |2 = 1 and ‖y‖2 =∑2N

j=1 |βj |2 = 1. Let x = x1+x2 where x1 =
∑N
n=1 αjej and x2 =

∑2N
j=N+1 αjej .

Similarly, y = y1 + y2, where y1 =
∑N
j=1 βjej and y2 =

∑2N
j=N+1 βjej .

We have

|〈Mn(TN )x, y〉| ≤ A+B + C (1)

where

A = |〈Mn(TN )x1, y1〉|,

B = |〈Mn(TN )x2, y2〉|

and

C = |〈Mn(TN )x1, y2〉|.

To estimate A,B and C we need two simple lemmas.

Claim 1. There exists a constant c1 such that

1

n+ 1

∞∑
j=1

∑
j≤j′≤j+n

γjδj′
j′η

jη
≤ c1

for all n, γj , δj′ ≥ 0 (j, j′ ∈ N) with
∑
j γ

2
j =

∑
j′ δ

2
j′ = 1.

Proof. Let H be the Hilbert space with an orthonormal basis fj (j ∈ N).

Consider the weighted shift V ∈ B(H) defined by V fj =
(
j+1
j

)η
fj+1. Let

u =
∑∞
j=1 γjfj and v =

∑∞
j=1 δj′fj′ with ‖u‖ = ‖v‖ = 1. By [3, Corollary 2.4],

V is uniformly Kreiss bounded. So there exists a constant c1 such that

c1 ≥ ‖Mn(V )‖ ≥
∣∣〈Mn(V )u, v〉

∣∣ =
1

n+ 1

∞∑
j=1

∑
j≤j′≤j+n

γjδj′
j′η

jη
.

Claim 2. There exists a constant c2 > 0 such that

M∑
j=1

j−2η ≤ c2M1−2η

for all M .

Proof. We have

M∑
j=1

j−2η ≤ 1 +

∫ M

1

t−2ηdt = 1 +
[ t1−2η

1− 2η

]M
1
≤ c2M1−2η

for some constant c2 > 0 independent of M .

Continuation of the proof of Theorem 3:
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We have

A =
1

n+ 1

∑
j≤j′≤j+n

j′≤N

αj β̄j′
wj′

wj
≤ 1

n+ 1

∑
j≤j′≤j+n

j′≤N

|αj | · |βj′ |
j′η

jη
≤ c1 (2)

by Claim 1.

Similarly,

B =
1

n+ 1

∑
N<j≤j′≤j+n,

j′≤2N

αj β̄j′
wj′

wj
≤ 1

n+ 1

∑
N<j≤j′≤j+n,

j′≤2N

|αj | · |βj′ |
( 2N − j + 1

2N − j′ + 1

)η
≤ 1

n+ 1

∑
1≤s′≤s≤min{s′+n,N}

|α2N−s+1| · |β2N−s′+1|
( s
s′

)η
.

Setting γs = |α2N−s+1|, δs′ = |β2N−s′+1| in Claim 1, we get

B ≤ c1‖x2‖ · ‖y2‖ ≤ c1. (3)

To estimate C, we distinguish two cases:

Let n+ 1 ≥ N
2 . Then

C =
1

n+ 1

∑
j≤j′≤j+n

j≤N<j′

αj β̄j′
wj′

wj
≤ 2

N

( N∑
j=1

|αj |
wj

)
·
(∑
j′>N

|βj′ |wj′
)

≤ 2

N

( N∑
j=1

|αj |2
)1/2 · ( N∑

j=1

w−2j
)1/2 · (∑

j′>N

|βj′ |2
)1/2

·
(∑
j′>N

w2
j′

)1/2
≤ 2

N
‖x1‖ ·

( N∑
j=1

j−2η
)1/2

· ‖y2‖ ·N2η ·
( N∑
s=1

s−2η
)1/2

≤ 2c2
N
N2ηN1−2η = 2c2.

(4)

Let n+ 1 < N
2 . Then

C =
1

n+ 1

∑
j≤j′≤j+n

j≤N<j′

αj β̄j′
wj′

wj
≤ 2

n+ 1

( N∑
j=N−n+1

|αj |
)
·
( N+n∑
j′=N+1

|βj′ |
)

since

max
{wj′
wj

: j ≤ j′ ≤ j + n, j ≤ N < j′
}

=
wN+n

wN−n+1
=

N2η

(N − n+ 1)η(N − n+ 1)η
≤ N2η

(N/2)2η
= 22η ≤ 2.
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So

C ≤ 2

n+ 1
‖x1‖ ·

√
n · ‖y2‖ ·

√
n ≤ 2. (5)

Hence by (1), (2), (3),(4) and (5) we have ‖Mn(TN )‖ ≤ c for all n, where
c = 2c1 + max{2, 2c2}.

Theorem 4 Let ε > 0. Then there exists a uniformly Kreiss bounded operator
T on a Hilbert space such that ‖T k‖ ≥ 1

3 (k + 1)1−ε for all k ∈ N.

Proof Choose η ∈
(

1−ε
2 , 12

)
. Let

T =
∞⊕
N=1

TN ,

where TN (N ∈ N) are the operators constructed in Theorem 3.
Clearly T is a bounded linear operator, ‖T‖ = 2η <

√
2.

For each n ∈ N we have

‖Mn(T )‖ = sup
N
‖Mn(TN )‖ ≤ c.

Since T is a weighted shift, λT is unitarily equivalent to T for each λ ∈ C,
|λ| = 1 [17, Corollary 2]. Hence T is uniformly Kreiss bounded.

For each N ∈ N we have

‖T 2N−1‖ ≥ ‖T 2N−1
N ‖ = N2η > N1−ε ≥ 1

3
(2N)1−ε

and

‖T 2N‖ ≥ ‖T 2N
N+1‖ ≥

‖T 2N+1
N+1 ‖
‖TN+1‖

≥ (N + 1)2η

2η
>

(N + 1)1−ε√
2

>
1

3
(2N + 1)1−ε.

Hence ‖T k‖ ≥ 1
3 (k + 1)1−ε for all k ∈ N.

On the other hand, we prove a small improvement of the general estimate
of norms of powers of Kreiss bounded operators on Hilbert spaces. The proof
follows the argument of [3, Theorem 2.3] for uniformly Kreiss bounded opera-
tors with some necessary modifications.

Theorem 5 Let T be a Kreiss bounded operator in a Hilbert space. Then

‖Tn‖ = O
( n√

log n

)
.

Proof In [20] it was proved that T is Kreiss bounded if and only if there is a
constant C ′ > 0 such that

‖M (2)
n (λT )‖ ≤ C ′ for n = 0, 1, 2, · · · and |λ| = 1.
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Thus there exists a constant C > 0 such that∥∥∥N−1∑
j=0

(N − j)(λT )j
∥∥∥ ≤ CN2

for all λ, |λ| = 1 and N ≥ 1.
We need several claims.

Claim Let x ∈ H, ‖x‖ = 1. Then

N−1∑
j=0

‖T jx‖2 ≤ 16C2N2

for all N ≥ 1.

Proof Consider the normalized Lebesgue measure on the unit circle. We have

N2
N−1∑
j=0

‖T jx‖2 ≤
2N−1∑
j=0

(2N − j)2‖T jx‖2

=

∫
|λ|=1

∥∥∥2N−1∑
j=0

(2N − j)(λT )jx
∥∥∥2dλ ≤ 16C2N4.

So
∑N−1
j=0 ‖T jx‖2 ≤ 16C2N2.

Claim Let 0 < M < N and x ∈ H, ‖x‖ = 1, TNx 6= 0. Then

M−1∑
j=0

‖TNx‖2

‖TN−jx‖2
≤ 16C2M2.

Proof Set y = TNx. Since T ∗ is also Kreiss bounded with the same constant,
we have

16C2M2‖y‖2 ≥
M−1∑
j=0

‖T ∗jy‖2 ≥
M−1∑
j=0

∣∣∣〈T ∗jy, TN−jx

‖TN−jx‖

〉∣∣∣2
=
M−1∑
j=0

∣∣∣〈y, TNx

‖TN−jx‖

〉∣∣∣2 = ‖y‖2
M−1∑
j=0

‖TNx‖2

‖TN−jx‖2
.

Hence
M−1∑
j=0

‖TNx‖2

‖TN−jx‖2
≤ 16C2M2.

Claim Let N ∈ N, x ∈ H, ‖x‖ = 1 and TNx 6= 0. Then

N−1∑
j=0

1

‖T jx‖
≥
√
N

4C
.
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Proof We have

N−1∑
j=1

‖T jx‖ ≤
(N−1∑
j=0

‖T jx‖2
)1/2

·
√
N ≤ 4CN3/2.

Thus

N =
N−1∑
j=0

√
‖T jx‖√
‖T jx‖

≤
(N−1∑
j=0

‖T jx‖
)1/2

·
(N−1∑
j=0

1

‖T jx‖

)1/2
and

N−1∑
j=0

1

‖T jx‖
≥ N2∑N−1

j=0 ‖T jx‖
≥ N2

4CN3/2
=

√
N

4C
.

Claim Let 0 < M1 < M2 < N , ‖x‖ = 1 and TNx 6= 0. Then

M2−1∑
j=M1

‖TN−jx‖2

‖TNx‖2
≥ (M2 −M1)2

16C2M2
2

.

Proof Let aj = ‖TN−jx‖2
‖TNx‖2 . By Claim 2,

M2−1∑
j=M1

1

aj
≤
M2−1∑
j=0

1

aj
≤ 16C2M2

2 .

We have

M2 −M1 =

M2−1∑
j=M1

√
aj
√
aj
≤
(N−1∑
j=0

aj

)1/2
·
(N−1∑
j=0

1

aj

)1/2
and

M2−1∑
j=M1

aj ≥ (M2 −M1)2 ·
(N−1∑
j=0

1

aj

)−1
≥ (M2 −M1)2

16C2M2
2

.

Continuation of the proof of Theorem 5.
Let K ∈ N and 2K+1 < N ≤ 2K+2. Let x ∈ H, ‖x‖ = 1 and TNx 6= 0.

For |λ| = 1 let yλ =
∑2N−1
j=0

(λT )jx
‖T jx‖ . Then∫

|λ|=1

‖yλ‖2dλ = 2N

and∫
|λ|=1

∥∥∥2N−1∑
j=0

(2N − j)(λT )jyλ

∥∥∥2dλ ≤ 16C2N4

∫
|λ|=1

‖yλ‖2dλ ≤ 32C2N5.
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On the other hand,∫
|λ|=1

∥∥∥2N−1∑
j=0

(2N − j)(λT )jyλ

∥∥∥2dλ =

∫
|λ|=1

∥∥∥2N−1∑
j=0

(2N − j)(λT )j
2N−1∑
r=0

(λT )rx

‖T rx‖

∥∥∥2dλ

=

∫
|λ|=1

∥∥∥4N−2∑
j=0

(λT )jx

min{j,2N−1}∑
r=0

2N − j + r

‖T rx‖

∥∥∥2dλ

=
4N−2∑
j=0

‖T jx‖2
(min{j,2N−1}∑

r=0

2N − j + r

‖T rx‖

)2
≥

N−1∑
j=N−2K

‖T jx‖2
( j∑
r=0

N

‖T rx‖

)2
≥N2

N−1∑
j=N−2K

‖T jx‖2
(√N − 2K

4C

)2
≥ N3

32C2

N−1∑
j=N−2K

‖T jx‖2

≥ N3

32C2
‖TNx‖2

K−1∑
k=0

N−2k−1∑
j=N−2k+1

‖T jx‖2

‖TNx‖2
=

N3

32C2
‖TNx‖2

K−1∑
k=0

2k+1∑
j=2k+1

‖TN−jx‖2

‖TNx‖2

≥ N3

32C2
‖TNx‖2

K−1∑
k=0

22k

16C2 · 22k+2
=

N3

211C4
‖TNx‖2K.

Thus we have

‖TNx‖2 ≤ 216C6N2

K
≤ 216C6N2

log2N − 2
.

Hence ‖TN‖ = O( N√
logN

).

In the next diagram we show graphically the implications among various
definitions related with Kreiss boundedness on Hilbert spaces and correspond-
ing known estimates for the growth of ‖Tn‖.

Strong Kreiss bounded (‖Tn‖ = O(n1/2)) Abs. Cesàro bounded (‖Tn‖ = o(n1/2))

Uniformly Kreiss bounded

Kreiss bounded Mean ergodic

‖Tn‖ = o(n) ‖Tnx‖ = o(n), ∀x

Fig. 2 Implications among different definitions related with Kreiss bounded on Hilbert
spaces.
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Example 1 Derriennic [4] gave an example of a mean ergodic operator T on
a real Hilbert space for which n−1‖Tn‖ does not converge to zero, and such
that T ∗ is not mean ergodic, only weakly mean ergodic (i.e., the Cesàro means
converge weakly). In [23, Example 3.1] it was shown that the operator

T :=

(
B B − I
0 B

)
acting on the Hilbert spaces l2(N) ⊕ l2(N), where B is the backward shift in
l2(N), is mean ergodic and n−1‖Tn‖ ≥ 2. As a consequence of Theorem 5, T
is an example of a mean ergodic operator acting on a Hilbert spaces, which is
not Kreiss bounded.

By [1, Remark 3.1], in Banach spaces there exists a Kreiss bounded ope-
rator such that

lim
n→∞

‖Mn+1(T )−Mn(T )‖ 6= 0.

However, in Hilbert spaces this is not possible.

Theorem 6 If T is a Kreiss bounded operator on a Hilbert space then

lim
n→∞

‖Mn+1(T )−Mn(T )‖ = 0.

Proof We have

n+ 2

n+ 1
Mn+1(T )−Mn(T ) =

1

n+ 1
Tn+1.

So

Mn+1(T )−Mn(T ) =
1

n+ 1
Tn+1 − 1

n+ 1
Mn+1(T ).

Now if T is a Kreiss bounded operator on a Hilbert space, then we have
‖Tn‖ = o(n) by Theorem 5 and ‖Mn(T )‖ = O(log(n+ 2)) (see, [20, Theorem
6.1, 6.2]). Thus

lim
n→∞

‖Mn+1(T )−Mn(T )‖ = 0.

3 On residual spectrum of Kreiss bounded operators

The following characterization of ergodic operators was proved in [11].

Theorem 7 [11, Theorem 2.1.3, page 73] An operator T in a Banach space
X is mean ergodic if and only if it is Cesàro bounded, ‖Tnx‖ = o(n) for all
x ∈ X and

X = N(I − T )⊕R(I − T )

Recall that the residual spectrum σR(T ) of an operator T ∈ B(X) is the
set of all λ ∈ C such that T − λ is injective and R(T − λ) 6= X.
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Corollary 1 If T is mean ergodic in a Banach space, then 1 /∈ σR(T )

Corollary 2 [3, Corollary 2.5], [3, Corollary 2.7] Let T be a bounded operator
on a Banach space X. If

1. either T is a uniformly Kreiss bounded operator on a Hilbert space,
2. or T is an absolutely Cesàro bounded operator on a reflexive Banach space,

then λT is mean ergodic for all λ, |λ| = 1. Consequently, σR(T ) ⊂ D.

The next result generalizes the above observation as well as the results of
[13], [6] for power bounded operators.

Theorem 8 If T is a Kreiss bounded operator on a reflexive Banach space
then σR(T ) ⊂ D.

Proof If T is a Kreiss bounded operator on a Banach spaceX, then ‖M (2)
n (λT )‖

are uniformly bounded and ‖Mn(λT )‖ = O(log(n+ 2)) for all λ ∈ T (see, [20,
Theorem 6.1, 6.2]).

Now, since X is a reflexive Banach space, M
(2)
n (λT ) converge strogly in

X = N(I − λT )⊕R(I − λT ) (see, [21, Theorem 2.1]).

So for all λ ∈ T, we have X = N(λI−T )⊕R(λI − T ). Hence if λ /∈ σp(T ),

then X = R(λI − T ) and λ /∈ σR(T ).
Thus σR(T ) ⊂ D.

The condition on the residual spectrum is optimal. The forward shift in
l2(N) is a power bounded operator with residual spectrum equal to the open
unit disc.

Example 2 There exists a power bounded operator T on c0(N) such that 1 ∈
σR(T ).

Proof The operator T : c0(N)→ c0(N) defined by

T (a1, a2, a3, · · · ) = (a1, a1, a2, a3, · · · )

is power-bounded and 1 ∈ σR(T ).

Example 3 There exists a Kreiss bounded operator T on a non-reflexive Ba-
nach space, which is not power bounded and 1 ∈ σR(T ).

Proof Let X denote the Banach space of analytic functions f in the open unit
disc and continuous on the boundary, such that f ′ belongs to the Hardy space
H1, equipped with the norm

‖f‖ := ‖f‖∞ + ‖f ′‖1

If Mz denotes the multiplication operator and T = 1
2 (I + Mz), then T is a

Kreiss bounded operator, see [16, Example 4].
Moreover, N(I−T ) = {0} and R(I−T ) is not dense because every function

in this closure necessarily verifies that f(1) = 0. Thus 1 ∈ σR(T ).



Kreiss bounded and uniformly Kreiss bounded operators 15

Proposition 1 There exists a Cesàro bounded operator T on a Hilbert space
which is mean ergodic, N(T + I) 6= {0} and N(T ∗ + I) = {0}.
Proof LetH be the Hilbert space with an orthonormal basis ej (j = 0, 1, . . . ).
Let εj = 2−j , cj = 1− ε2j (j ≥ 1). Let

T = −


1 ε1 ε2 ε3 · · ·
0 c1 0 0 · · ·
0 0 c2 0 · · ·
0 0 0 c3 · · ·

· · ·


Clearly Te0 = −e0, so N(T + I) 6= {0}. We have (T + I)ej = (1− cj)ej −

εje0 = ε2jej − εje0. So (T + I)(−ε−1j ej) = e0− εjej → e0. Thus e0 ∈ R(T + I)

and it is easy to see that R(T + I) = H. Hence N(I + T ∗) = {0}.
For n ≥ 1 we have

((T )n)j,j = (−cj)n (j ≥ 0),

((T )n)0,j = (−1)nεj(1 + cj + c2j + cn−1j ) = (−1)nεj
1− cnj
1− cj

(j ≥ 1)

and ((T )n)i,j = 0 otherwise.
So

Tn = (−1)n


1 ε1(1 + c1 + · · ·+ cn−11 ) ε2(1 + · · ·+ cn−12 ) · · ·
0 cn1 0 · · ·
0 0 cn2 · · ·

· · · · · ·


We show that n−1‖Tn‖ → 0. Let δ > 0. Find j0 such that εj0 < δ and n0
satisfying cn0δ

j0
< δ and 2n−10 < δ.

Let n ≥ n0. Clearly |(Tn)j,j | ≤ 1 for all j ≥ 0.
If j ≥ j0 then

|(Tn)0,j | = εj(1 + cj + · · ·+ cn−1j ) ≤ εjn = 2−jn <
δn

2j−j0
.

If 1 ≤ j < j0 then

|(Tn)0,j | = εj(1+cj+· · ·+cn−1j ) = εj
∑

0≤i<nδ

cij+εj
∑

nδ≤i≤n−1

cij ≤ εj(nδ+1)+εjnδ.

Hence

‖Tn‖ ≤ sup
j
|(Tn)j,j |+

∞∑
j=1

|(Tn)0,j |

≤ 1 + δn
∞∑
j=j0

2−j+j0 +

j0−1∑
j=1

(
εj(nδ + 1) + εjnδ

)
≤ 1 + 2δn+

j0−1∑
j=1

2−j(2nδ + 1) ≤ 5δn.
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Hence n−1‖Tn‖ → 0.
We show that T is Cesàro bounded.
Let M2k(T ) = (2k + 1)−1(I + T + T 2 + · · ·+ T 2k). It is easy to see that

|(M2k(T ))j,j | ≤ 1.

For each k ≥ 1 we have∣∣(M2k(T ))0,j
∣∣= εj

(2k + 1)(1− cj)

∣∣∣−(1− cj) + (1− c2j )− · · ·+ (1− c2kj )
∣∣∣

=
εj

(2k + 1)(1− cj)
∣∣cj − c2j + · · · − c2kj

∣∣ =
εj

2k + 1

(
cj + c3j + · · ·+ c2k−1j

)
≤ εj

2
.

So

‖M2k(T )‖ ≤ 1 +
∞∑
j=1

εj
2

=
3

2
.

Since

M2k+1(T ) =
2k + 1

2k + 2
M2k(T ) +

T 2k+1

2k + 2
,

T is Cesàro bounded. Moreover, as n−1‖Tn‖ → 0, T is mean ergodic.

Corollary 3 There exists a mean ergodic operator T on a Hilbert space such
that σR(T ) ∩ ∂D 6= ∅.

Example 4 By Theorem 8, the operator of Corollary 3 is another example of
a mean ergodic operator on a Hilbert space, which is not Kreiss bounded.

4 Questions

As consequence of results of this paper we gave two examples in Hilbert spaces
of mean ergodic operators which are not Kreiss bounded. By [3, Corollary 2.5],
all uniformly Kreiss bounded operators on Hilbert spaces are mean ergodic.
However, the following problem is open:

Question 1 Does there exist a Kreiss bounded operator on a Hilbert space
which is not mean ergodic?

Observe that by Theorem 5, the above problem is equivalent to the question
whether there exists a Kreiss bounded Hilbert space operator which is not
Cesàro bounded.

If the answer of the above question is positive then such an operator is not
uniformly Kreiss bounded. If the answer is negative then it is natural to ask

Question 2 Does there exist a Kreiss bounded Hilbert space operator which
is not uniformly Kreiss bounded?

Another open question is whether it is possible to generalize the Jacobs-de
Leeuw-Glicksberg theorem for uniformly Kreiss bounded operators.



Kreiss bounded and uniformly Kreiss bounded operators 17

Question 3 Let X be a reflexive Banach space and T ∈ B(X) a uniformly
Kreiss bounded operator such that n−1Tnx→ 0 for all x ∈ X. Is it true that
X can be decomposed as

X =
∨
|λ|=1

N(T − λ)⊕
⋂
|λ|=1

R(T − λ) ?

Clearly for Hilbert space operators the condition n−1Tnx → 0 is satisfied
automatically.

It is an open question due to Aleman and Suciu [2], p.279 whether each uni-
formly Kreiss bounded operator T on a Banach space X satisfies the condition
‖n−1Tn‖ → 0.
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