
INSTITUTE OF MATHEMATICS
TH

E
CZ
EC
H
AC

AD
EM

Y
O
F
SC
IE
NC

ES A note on universal operators between
separable Banach spaces

JoannaGarbulińska-Węgrzyn

WiesławKubiś

Preprint No. 1-2020

PRAHA 2020





A note on universal operators between separable
Banach spaces

Joanna Garbulińska-Wȩgrzyn
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Abstract

We compare two types of universal operators constructed relatively re-
cently by Cabello Sánchez, and the authors. The first operator Ω acts on the
Gurarĭı space, while the second one PS has values in a fixed separable Banach
space S. We show that if S is the Gurarĭı space, then both operators are iso-
metric. We also prove that, for a fixed space S, the operator PS is isometrically
unique. Finally, we show that Ω is generic in the sense of a natural infinite
game.
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1 Universal operators

The purpose of this note is to discuss two constructions of universal operators be-
tween separable Banach spaces. We are interested in isometric universality. Namely,
an operator U is universal if its restrictions to closed subspaces are, up to linear
isometries, all linear operators of norm not exceeding ‖U‖. To be more precise, a
bounded linear operator U : V → W acting between separable Banach spaces is uni-
versal if for every linear operator T : X → Y with X, Y separable and ‖T‖ ≤ ‖U‖,
there exist linear isometric embeddings i : X → V , j : Y → W such that the diagram

V W

X Y

U

T

i j

is commutative, that is, U ◦ i = j ◦ T . Such an operator has been relatively recently
constructed by the authors [5]. Another recent work [2], due to Cabello Sánchez
and the present authors, contains in particular a construction of a linear operator
that is universal in a different sense. Namely, let us say that a bounded linear
operator U : V → W is left-universal (for operators into W ) if for every linear
operator T : X → W with X separable and ‖T‖ ≤ ‖U‖ there exists a linear isometric
embedding i : X → V for which the diagram

V W

X

U

T
i

is commutative, that is, U ◦i = T . Clearly, if W is isometrically universal in the class
of all separable Banach spaces then a left-universal operator with values into W is
universal. The left-universal operator U constructed in [2] had been later essentially
used (with a suitable space W ) for finding an isometrically universal graded Fréchet
space [1]. There exist other concepts of universality in operator theory, see the
introduction of [5] for more details and references.

Let us note the following simple facts related to universal operators.

Proposition 1.1. Let U : V → W be a bounded linear operator acting between
separable Banach spaces.

(1) If U is universal then both V and W are isometrically universal among the
class of separable Banach spaces.

(2) Assume U is left-universal. Then kerU is isometrically universal among the
class of separable Banach spaces. Furthermore, U is right-invertible, that is,
there exists an isometric embedding e : W → V such that U ◦ e = idW .
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(3) Assume U is (left-)universal. Then λU is (left-)universal for every λ > 0.

Proof. (1) Fix a separable Banach space X. Taking the zero operator T : X → 0,
we see that V contains an isometric copy of X. Taking the identity idX , we see that
W contains an isometric copy of X.

(2) The same argument as above, using the zero operators, shows that kerU is
isometrically universal. Taking the identity idW , we obtain the required isometric
embedding e : W → V .

(3) Assume U is universal, fix λ > 0 and fix T : X → Y with ‖T‖ ≤ λ‖U‖. Then
‖λ−1T‖ ≤ ‖U‖, therefore there are isometric embeddings i : X → V , j : Y → W
such that U ◦ i = j ◦ (λ−1T ). Finally, (λU) ◦ i = j ◦ T . If U is left-universal, the
argument is the same, the only difference is that j = idW .

By (3) above, we may restrict attention to non-expansive operators. It turns out
that there is an easy way of constructing left-universal operators, once we have in
hand an isometrically universal space. The argument below was pointed out to us
by Przemys law Wojtaszczyk.

Example 1.2. Let V be an isometrically universal Banach space and let W be an
arbitrary Banach space. Consider V ⊕W with the maximum norm and let

π : V ⊕W → W

be the canonical projection. Given a non-expansive operator T : X → W with X
separable, choose an isometric embedding e : X → V and define j : X → V ⊕W by
j(x) = (e(x), T (x)). Then j is an isometric embedding and π ◦ j = T , showing that
π is left-universal. Of course, if additionally W is isometrically universal, then π is
a universal operator.

Perhaps the most well known universal Banach space is C ([0, 1]), the space of
all continuous (real or complex) valued functions on the unit interval, endowed with
the maximum norm. In view of the example above, there exists a universal operator
from C ([0, 1]) ⊕ C ([0, 1]) onto C ([0, 1]). This leads to (at least potentially) many
other universal operators, namely:

Proposition 1.3. Let V,W be isometrically universal separable Banach spaces.
Then there exists a universal operator from V into W .

Proof. Fix a universal operator π : E → F (for instance, E = C ([0, 1]) ⊕ C ([0, 1])
and F = C ([0, 1])) and fix a linear isometric embedding e : E → V . Using the
amalgamation property for linear operators, we find a separable Banach space V ′, a
linear isometric embedding e′ : F → V ′, and a non-expansive linear operator Ω: V →
V ′ for which the diagram

V V ′

E F

Ω

π

e e′
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is commutative. As W is isometrically universal, we may additionally assume that
V ′ = W , replacing Ω by i◦Ω and e′ by i◦e′, where i is a fixed isometric embedding of
V ′ intoW . It is evident that now Ω is a universal operator, because of the universality
of π.

As a consequence, there exists a universal operator on C ([0, 1]). We do not know
whether there exists a left-universal operator on C ([0, 1]). The situation changes
when replacing [0, 1] with the Cantor set 2N. The space C (2N) is linearly isomorphic
(but not isometric) to C ([0, 1]) and it is isometrically universal, too. Furthermore,
C (2N)⊕C (2N) with the maximum norm is linearly isometric to C (2N), because the
disjoint sum of two copies of the Cantor set is homeomorphic to the Cantor set.
Thus, Example 1.2 provides a left-universal operator on C (2N).

Another, not so well known, universal Banach space is the Gurarĭı space. This
is the unique, up to a linear isometry, separable Banach space G satisfying the
following condition:

(G) For every ε > 0, for every finite-dimensional spaces X0 ⊆ X, for every linear
isometric embedding f0 : X0 → G there exists a linear ε-isometric embedding
f : X → G such that f � X0 = f0.

By an ε-isometric embedding (briefly: ε-embedding) we mean a linear operator f
satisfying

(1− ε)‖x‖ ≤ ‖f(x)‖ ≤ (1 + ε)‖x‖

for every x in the domain of f . The space G was constructed by Gurarĭı [6]; its
uniqueness was proved by Lusky [9].

The universal operator constructed in [5] has a special property that actually
makes it unique, up to linear isometries. Below we quote the precise result.

Theorem 1.4 ([5]). There exists a non-expansive linear operator Ω : G → G with
the following property:

(G) Given ε > 0, given a non-expansive operator T : X → Y between finite-
dimensional spaces, given X0 ⊆ X, Y0 ⊆ Y and isometric embeddings i : X0 →
U , j : Y0 → V such that Ω ◦ i = j ◦ (T � X0), there exist ε-embeddings
i′ : X → U , j′ : Y → V satisfying

‖i′ � X0 − i‖ ≤ ε, ‖j′ � Y0 − j‖ ≤ ε, and ‖Ω ◦ i′ − j′ ◦ T‖ ≤ ε.

Furthermore, Ω is a universal operator and property (G) specifies it uniquely, up to
a linear isometry.

According to [5], we shall call condition (G) the Gurarĭı property. What makes
this operator of particular interest is perhaps its almost homogeneity :
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Theorem 1.5 ([5]). Given finite-dimensional subspaces X0, X1, Y0, Y1 of G, given
linear isometries i : X0 → X1, j : Y0 → Y1 such that Ω ◦ i = j ◦Ω, for every ε > 0
there exist bijective linear isometries I : G→ G, J : G→ G satisfying Ω ◦ I = J ◦Ω
and ‖I � X0 − i‖ < ε, ‖J � Y0 − j‖ < ε.

We now describe the left-universal operators constructed in [2]. Fix a separable
Banach space S.

Theorem 1.6 ([2, Section 6]). There exists a non-expansive linear operator PS : VS →
S with VS a separable Banach space, satisfying the following condition:

(‡) For every finite-dimensional spaces X0 ⊆ X, for every non-expansive linear
operator T : X → S, for every linear isometric embedding e : X0 → VS such
that PS ◦ e = T � X0, for every ε > 0 there exists an ε-embedding f : X → VS
satisfying

‖f � X0 − e‖ ≤ ε and ‖PS ◦ f − T‖ ≤ ε.

Furthermore, PS is left-universal for operators into S.

We shall say that an operator P has the left-Gurarĭı property if it satisfies (‡) in
place of PS. Of course, unlike the Gurarĭı property, the left-Gurarĭı property involves
a parameter S, namely, the common range of the operators.

Actually, the projection PS was constructed in [2] in case where S had some
additional property, needed only for determining the domain of PS. Moreover, [2]
deals with p-Banach spaces, where p ∈ (0, 1], however p = 1 gives exactly the result
stated above. Operators PS have the following property which can be called almost
left-homogeneity.

Theorem 1.7. Given finite-dimensional subspaces X0, X1 of VS, a linear isometry
h : X0 → X1 such that PS ◦ h = PS � X0, for every ε > 0 there exists a bijective
linear isometry H : VS → S satisfying PS ◦H = PS and ‖H � X0 − h‖ < ε.

In this note we present a proof that condition (‡) determines PS uniquely, up to
linear isometries. The arguments will also provide a proof of Theorem 1.7. Further-
more, we show that Ω = PG and that Ω is a generic operator in the space of all
non-expansive operators on the Gurarĭı space into itself, in the sense of a natural
variant of the Banach-Mazur game.

2 Properties of Ω and PS

Let us recall the following easy fact concerning finite-dimensional normed spaces
(cf. [4, Thm. 2.7] or [1, Claim 2.3]). It actually says that the strong operator topology
is equivalent to the norm topology in the space of linear operators with a fixed finite-
dimensional domain.
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Lemma 2.1. Let A be a vector basis of a finite-dimensional normed space E. For
every ε > 0 there exists δ > 0 such that for every Banach space X, for every linear
operator f : E → X the following implication holds:

max
a∈A
‖f(a)‖ ≤ δ =⇒ ‖f‖ ≤ ε.

Proof. Fix M > 0 satisfying the following condition:

(*) maxa∈A |λa| ≤M whenever x =
∑

a∈A λaa and ‖x‖ ≤ 1.

Such M clearly exists, because of compactness of the unit ball of E. Now, given
ε > 0, let δ = ε/(M · |A|). Suppose maxa∈A ‖f(a)‖ ≤ δ. Then, given x =

∑
a∈A λaa

with ‖x‖ ≤ 1, we have

‖f(x)‖ ≤
∑
a∈A

|λa| · ‖f(a)‖ ≤ |A| ·M · δ = ε.

We conclude that ‖f‖ ≤ ε.

The following result, in case S = G can be found in [1].

Theorem 2.2. Let P : V → S be a linear operator. The following conditions are
equivalent.

(a) P has the left-Gurarĭı property (‡).

(b) For every finite-dimensional spaces X0 ⊆ X, for every non-expansive linear
operator T : X → S, for every linear isometric embedding e : X0 → V such
that P ◦ e = T � X0, for every ε > 0 there exists an ε-embedding f : X → V
satisfying

f � X0 = e and P ◦ f = T .

Proof. Obviously, (b) is stronger than (‡).
Fix ε > 0 and fix a vector basis A of X such that A0 = X0 ∩ A is a basis

of X0. We may assume that ‖a‖ = 1 for every a ∈ A. Fix δ > 0 and apply the
left-Gurarĭı property for δ instead of ε. We obtain a δ-embedding f : X → V such
that ‖f � X0 − e‖ ≤ δ and ‖P ◦ f − T‖ ≤ δ. Define f ′ : X → V by the conditions
f ′(a) = e(a) for a ∈ A0 and f ′(a) = f(a) for a ∈ A\A0. Note that ‖f ′(a)−f(a)‖ ≤ δ
for every a ∈ A. Thus, if δ is small enough, then by Lemma 2.1, we can obtain that
f ′ is an ε-embedding. Furthermore, ‖P ◦ f ′ − P ◦ f‖ ≤ ε (recall that δ depends on
ε and the norm of X only), therefore ‖P ◦ f ′ − T‖ ≤ ε+ δ.

The arguments above show that for every ε > 0 there exists an ε-embedding
f ′ : X → V extending e and satisfying ‖P ◦ f ′ − T‖ ≤ ε.

Let us apply this property for δ instead of ε, where δ is taken from Lemma 2.1.
We obtain a δ-embedding f : X → V extending e and satisfying ‖P ◦ f − T‖ ≤ δ.

6



Given a ∈ A \ A0, the vector

wa = P (f(a))− T (a)

has norm ≤ δ. Define f ′ : X → V by the conditions f ′ � X0 = e and

f ′(a) = f(a)− wa

for a ∈ A\A0. Lemma 2.1 implies that f ′ is an ε-embedding, because ‖f ′(a)−f(a)‖ =
‖wa‖ ≤ δ for a ∈ A \ A0. Finally, given a ∈ A \ A0, we have

Pf ′(a) = Pf(a)− wa = T (a)

and the same obviously holds for a ∈ A0. Thus P ◦ f ′ = T .

The proof of the next result is just a suitable adaptation of the arguments above,
therefore we skip it.

Proposition 2.3. Let Ω: V → W be a linear operator. The following conditions
are equivalent.

(a) Ω has the Gurarĭı property (G).

(b) Given ε > 0, given a non-expansive operator T : X → Y between finite-
dimensional spaces, given X0 ⊆ X, Y0 ⊆ Y and isometric embeddings i0 : X0 →
V , j0 : Y0 → W such that Ω ◦ i0 = j0 ◦ (T � X0), there exist ε-embeddings
i : X → V , j : Y → W satisfying

i � X0 = i0, j � Y0 = j0, and Ω ◦ i = j ◦ T.

The last result of this section is the key step towards identifying Ω with PG.

Theorem 2.4. The operator Ω has the left-Gurarĭı property (i.e., it satisfies con-
dition (‡) of Theorem 1.6 with S = G). In particular, it is left-universal.

Proof. Fix a non-expansive linear operator T : X → G with X finite-dimensional,
and fix an isometric embedding e : X0 → G, where X0 is a linear subspace of X and
T � X0 = Ω ◦ e. Let Y0 = Y = T [X] ⊆ G and consider T as an operator from X to
Y . Applying the Gurarĭı property with i = e and j the inclusion Y0 ⊆ G, we obtain
an ε-embedding e′ : X → G which is ε-close to e and satisfies ‖Ω ◦ e′−T‖ ≤ ε. This
is precisely condition (‡) from Theorem 1.6.

In order to conclude that Ω = PG, it remains to show that (‡) determines the
operator uniquely. This is done in the next section.
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3 Uniqueness of PS

Before proving that the left-Gurarĭı property determines the operator uniquely, we
quote the following crucial lemma from [3].

Lemma 3.1. Let ε > 0 and let f : E → F be an ε-embedding, where E, F are
Banach spaces. Let π : E → S, % : F → S be non-expansive linear operators such
that ‖% ◦ f − π‖ ≤ ε. Then there exists a norm on Z = X ⊕ Y such that the
canonical embeddings i : X → Z, j : Y → Z are isometric, ‖j ◦ f − i‖ ≤ ε and the
operator t : Z → S defined by t(x, y) = π(x) + %(y) is non-expansive.

Note that the operator t satisfies t ◦ i = π and t ◦ j = %. Actually, the norm
mentioned in the lemma above does not depend on the operators π, %. It is defined
by the following formula:

(∗) ‖(x, y)‖ = inf
{
‖x− w‖X + ‖y − f(w)‖Y + ε‖w‖X : w ∈ X

}
,

where ‖·‖X , ‖·‖Y denote the norm of X and Y , respectively. An easy exercise shows
that (∗) is the required norm, proving Lemma 3.1.

Theorem 3.2. Let S be a separable Banach space and let π : E → S, π′ : E ′ → S
be non-expansive linear operators, both with the left-Gurarĭı property. If E, E ′ are
separable Banach spaces, then there exists a linear isometry i : E → E ′ such that
π = π′ ◦ i. In particular, π and π′ are linearly isometric to PS.

Proof. It suffices to prove the following

Claim 3.3. Let E0 ⊆ E be a finite-dimensional space, 0 < ε < 1, let i0 : E0 → E ′ be
an ε-embedding such that π′ ◦ i0 = π � E0. Then for every v ∈ E, v′ ∈ E ′, for every
η > 0 there exists an η-embedding i1 : E1 → E ′ with E1 finite-dimensional and the
following conditions are satisfied:

(1) v ∈ E1 and dist(v′, i1[E1]) < η;

(2) ‖i0 − i1 � E0‖ < ε+ η and π′ ◦ i1 = π.

Using Claim 3.3 together with the separability of E and E ′, we can construct a
sequence in : En → E ′ of linear operators such that in is a 2−n-embedding,

⋃
n∈ω En

is dense in E and
⋃
n∈ω in[En] is dense in E ′ and

‖in − in+1 � En‖ ≤ 2−n + 2−n−1 and π′ ◦ in+1 = π

for every n ∈ ω. It is evident that {in}n∈ω converges pointwise to a linear isometry
whose completion i is the required bijection from E onto E ′ satisfying π′ ◦ i = π.
Thus, it remains to prove Claim 3.3.

This will be carried out by making two applications of Lemma 3.1.
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Fix 0 < δ < 1, more precise estimations for δ will be given later. Let E ′0 ⊆ E ′

be a finite-dimensional space containing v′ and such that i0[E0] ⊆ E ′0. Applying
Lemma 3.1, we obtain linear isometric embeddings e1 : E0 → W0, f1 : E ′0 → W0 and
a non-expansive operator t0 : W0 → S such that t0 ◦ e1 = π � E0, t0 ◦ f1 = π′ � E ′0,
and ‖e1−f1 ◦ i0‖ ≤ ε. Knowing that π has the left-Gurarĭı property, by Theorem 2.2
applied to the isometric embedding e1, we obtain a δ-embedding g1 : W0 → E such
that g1 ◦ e1 is identity on E0 and π ◦ g1 = t0.

Now note that g1◦f1 is a δ-embedding of E ′0 into a finite-dimensional subspace E1

of E. Without loss of generality, we may assume that v ∈ E1. Applying Lemma 3.1
again to g1 ◦ f1, we obtain linear isometric embeddings e2 : E1 → W1, f2 : E ′0 → W1

and a non-expansive linear operator t1 : W1 → S such that t1 ◦ e2 = π � E1, t1 ◦ f2 =
π′ � E ′0, and ‖e2 ◦ g1 ◦ f1 − f2‖ ≤ δ. Knowing that π′ has the left-Gurarĭı property
and using Theorem 1.6 for the isometric embedding f2, we obtain a δ-embedding
g2 : W1 → E ′ such that g2 ◦f2 is identity on E ′0 and π′ ◦ g2 = t1. The configuration is
described in the following diagram, where the horizontal arrows are inclusions, the
triangle E0E

′
0W0 is ε-commutative, and the triangle E ′0E1W1 is δ-commutative.

E0 E1 E

W0 W1

E ′0 E ′

i0

e1 e2
g1

g2f1 f2

It remains to check that i1 := g2 ◦ e2 is the required δ-embedding.
First, recall that v ∈ E1, v′ ∈ E ′0 and v′ = g2(f2(v′)). Thus, using the fact that

‖g2‖ ≤ 1 + δ, we get

‖i1g1f1(v′)− v′‖ = ‖g2e2g1f1(v′)− g2f2(v′)‖
≤ (1 + δ)‖e2g1f1(v′)− f2(v′)‖
≤ (1 + δ)δ‖v′‖.

Now if (1+δ)δ‖v′‖ < η, then we conclude that dist(v′, i1[E1]) < η, therefore condition
(1) is satisfied.

Given x ∈ E1, note that

π′i1(x) = π′g2e2(x) = t1e2(x) = π(x).

Here we have used the fact that π′ ◦ g2 = t1 and t◦e2 = π � E1.
Furthermore, given x ∈ E0, we have

‖i1(x)− i0(x)‖ = ‖g2e2(x)− i0(x)‖ = ‖g2e2g1e1(x)− g2f2i0(x)‖
≤ (1 + δ)‖e2g1e1(x)− f2i0(x)‖,
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because ‖g2‖ ≤ 1 + δ. On the other hand,

‖e2g1e1(x)− f2i0(x)‖ ≤ ‖e2g1e1(x)− e2g1f1i0(x)‖+ ‖e2g1f1i0(x)− f2i0(x)‖
= ‖g1e1(x)− g1f1i0(x)‖+ ‖e2g1f1i0(x)− f2i0(x)‖
≤ (1 + δ)‖e1(x)− f1i0(x)‖+ δ‖i0(x)‖
≤ (1 + δ)ε‖x‖+ δ(1 + ε)‖x‖ ≤ (ε+ 3δ)‖x‖.

Here we have used the following facts: e2 is an isometric embedding, g1 is a δ-
embedding, i0 is an ε-embedding, ‖e2g1f1 − f2‖ ≤ δ, ‖e1 − f1i0‖ ≤ ε and ε < 1.

Finally, ‖i1(x) − i0(x)‖ ≤ (1 + δ)(ε + 3δ)‖x‖ ≤ (ε + 7δ)‖x‖. Summarizing, if
(1 + δ)δ‖v′‖ < η and 7δ < η then conditions (1), (2) are satisfied. This completes
the proof.

Note that if S is the trivial space, the proof above reduces to the well known
uniqueness of the Gurarĭı space, shown by this way in [8]. Furthermore, the argu-
ments above can be applied to π = π′ = PS and i0 = h, thus proving Theorem 1.7.
Theorems 2.4 and 3.2 yield the following result, announced before.

Corollary 3.4. Ω = PG.

In particular, VG = G. It has been shown in [2] that VS = G as long as S is a
(separable) Lindenstrauss space, namely, an isometric L1 predual or (equivalently)
a locally almost 1-injective space. Instead of going into details, let us just say that
Lindenstrauss spaces are those (separable) Banach spaces that are linearly isometric
to a 1-complemented subspace of the Gurarĭı space. The non-trivial direction was
proved by Wojtaszczyk [10]. Thus, since PS is a projection, if VS is linearly isometric
to G then S is necessarily a Lindenstrauss space.

4 Generic operators

Inspired by the result of [7], let us consider the following infinite game for two players
Eve and Adam. Namely, Eve starts by choosing a non-expansive linear operator
T0 : E0 → F0, where E0, F0 are finite-dimensional normed spaces. Adam responds
by a non-expansive linear operator T1 : E1 → F1, such that E1 ⊇ E0, F1 ⊇ F0

are again finite-dimensional and T1 extends T0. Eve responds by a further non-
expansive linear extension T2 : E2 → F2, and so on. So at each stage of the game
we have a linear operator between finite-dimensional normed spaces. After infinitely
many steps we obtain a chain of non-expansive operators {Tn : En → Fn}n∈ω. Let
T∞ : E∞ → F∞ denote the completion of its union, namely, E∞ is the completion
of {En}n∈ω, F∞ is the completion of {Fn}n∈ω and T∞ � En = Tn for every n ∈ ω. So
far, we cannot say who wins the game.

Let us say that a (necessarily non-expansive) linear operator U : X → Y is
generic if Adam has a strategy making the operator T∞ isometric to U . Recall that
operators U, V are isometric if there are bijective linear isometries i, j such that
U ◦ j = i ◦ V .
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Theorem 4.1. The operator Ω is generic.

Proof. Let us fix a non-expansive linear operator U : G → G between separable
Banach spaces satisfying (G). Adam’s strategy can be described as follows.

Fix a countable set {vn : an → bn}n∈N linearly dense in U : G → G. Let
T0 : E0 → F0 be the first move of Eve. Adam finds isometric embeddings i0 : E0 →
G, j0 : F0 → G and finite-dimensional spaces E0 ⊂ E1, F0 ⊂ F1 together with
isometric embeddings i1 : E1 → G , j1 : F1 → G and non-expansive linear operators
T1 : E1 → F1 such that T1 extends T0, a0 ∈ i1[E1], b0 ∈ j1[F1].

Suppose now that n = 2k > 0 and Tn : En → Fn was the last move of Eve.
We assume that linear isometric embeddings in−1 : En−1 → G, jn−1 : Fn−1 → G
have already been fixed. Using (G) from Theorem 1.4 we choose linear isometric
embeddings in : En → G, jn : Fn → G such that in � En−1 is 2−k-close to in−1,
jn � Fn−1 is 2−k-close to jn−1 and U ◦ in is 2−k-close to jn ◦ Tn.

Let {Tn : En → Fn}n∈N be the chain of non-expansive operators between finite-
dimensional normed spaces resulting from a fixed play, when Adam was using his
strategy. In particular, Adam has recorded sequences {Tn : En → Fn}n∈N, {in : En →
G}n∈N, {jn : Fn → G}n∈N of linear isometric embeddings such that i2n+1 � E2n−1 is
2−n-close to i2n−1 and j2n+1 � F2n−1 is 2−n-close to j2n−1 for each n ∈ N.

Let T∞ : E∞ → F∞ denote the completion of those unions, namely, E∞ is the
completion of {En}n∈ω, F∞ is the completion of {Fn}n∈ω and T∞ � En = Tn for
every n ∈ ω. The assumptions that i2n+1[E2n+1] contains all the vectors a0, . . . , an
and j2n+1[F2n+1] contains all the vectors b0, . . . , bn ensures that both i∞[E∞], j∞[F∞]
are dense in G, where i∞ : E∞ → G, j∞ : F∞ → G are pointwise limits of {in}n∈N and
{jn}n∈N, respectively. More precisely, i∞ � Ek is the pointwise limit of {in � Ek}n≥k
and j∞ � Fk is the pointwise limit of {jn � Fk}n≥k for every k ∈ n ∈ N. In particular,
both i∞ and j∞ are surjective linear isometries.

Finally, U ◦ i∞ = j∞ ◦T∞, because U ◦ i2k is 2−k-close to j2k ◦T2k for every k ∈ N.
This completes the proof.

Question 4.2. Is Ω generic in the space of all non-expansive operators on the
Gurarĭı space? Being “generic” means of course that the set

{i ◦Ω ◦ j : i, j bijective linear isometries of G}

is residual in the space of all non-expansive operators on G. Here, it is natural to
consider the pointwise convergence (i.e., strong operator) topology.

One could also consider a “parametrized” variant of the game above, where the
two players build a chain of non-expansive operators from finite-dimensional normed
spaces into a fixed Banach space S. If S is separable then similar arguments as in
the proof of Theorem 4.1 show that the second player has a strategy leading to PS.
Thus, a variant of Question 4.2 makes sense: Is it true that isometric copies of PS
form a residual set in a suitable space of operators?
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After concluding that Ω = PG, it seems that the “parametrized” construction of
universal projections is better in the sense that it “captures” both the Gurarĭı space
G (when the range is the trivial space {0}) and the universal operator Ω (when the
range equals G), but also other examples, including projections from the Gurarĭı
space onto any separable Lindenstrauss space (see [10] and [2]).

***
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[5] J. Garbulińska-Wȩgrzyn, W. Kubís, A universal operator on the Gurarii space,
Journal of Operator Theory 73 (2015) 143–158. 1, 1, 1.4, 1, 1.5

[6] V. I. Gurarĭı, Space of universal disposition, isotropic spaces and the Mazur
problem on rotations of Banach spaces, Siberian Math. J. 7 (1966), 799–807. 1

[7] W. Kubís, Game-theoretic characterization of the Gurarii space, Archiv der
Mathematik 110 (2018) 53–59. 4

[8] W. Kubís, S. Solecki, A proof of uniqueness of the Gurarĭı space, Israel J. Math.
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