INSTITUTE OF MATHEMATICS

A note on universal operators between separable Banach spaces

Joanna Garbulińska-Wegrzyn
Wiesław Kubiś

๖ ACADEMY
 I U N

THE

Preprint No. 1-2020
PRAHA 2020

A note on universal operators between separable Banach spaces

Joanna Garbulińska-Wȩgrzyn
Institute of Mathematics, Jan Kochanowski University, Poland
Wiestaw Kubiś
Institute of Mathematics, Czech Academy of Sciences, Czech Republic
Department of Mathematics, Cardinal Stefan Wyszyński University in Warsaw

December 31, 2019

Abstract

We compare two types of universal operators constructed relatively recently by Cabello Sánchez, and the authors. The first operator $\boldsymbol{\Omega}$ acts on the Gurariĭ space, while the second one $\mathbf{P}_{\mathbb{S}}$ has values in a fixed separable Banach space \mathbb{S}. We show that if \mathbb{S} is the Gurariĭ space, then both operators are isometric. We also prove that, for a fixed space \mathbb{S}, the operator $\mathbf{P}_{\mathbb{S}}$ is isometrically unique. Finally, we show that $\boldsymbol{\Omega}$ is generic in the sense of a natural infinite game.

MSC (2010): 47A05, 47A65, 46B04.
Keywords: Isometrically universal operator, Gurariĭ space, Gurariĭ property, almost homogeneity.

Contents

1 Universal operators 2
2 Properties of Ω and $\mathrm{P}_{\mathbb{S}}$ 5
3 Uniqueness of $\mathbf{P}_{\mathbb{S}}$ 8
4 Generic operators 10

1 Universal operators

The purpose of this note is to discuss two constructions of universal operators between separable Banach spaces. We are interested in isometric universality. Namely, an operator U is universal if its restrictions to closed subspaces are, up to linear isometries, all linear operators of norm not exceeding $\|U\|$. To be more precise, a bounded linear operator $U: V \rightarrow W$ acting between separable Banach spaces is universal if for every linear operator $T: X \rightarrow Y$ with X, Y separable and $\|T\| \leq\|U\|$, there exist linear isometric embeddings $i: X \rightarrow V, j: Y \rightarrow W$ such that the diagram

is commutative, that is, $U \circ i=j \circ T$. Such an operator has been relatively recently constructed by the authors [5]. Another recent work [2], due to Cabello Sánchez and the present authors, contains in particular a construction of a linear operator that is universal in a different sense. Namely, let us say that a bounded linear operator $U: V \rightarrow W$ is left-universal (for operators into W) if for every linear operator $T: X \rightarrow W$ with X separable and $\|T\| \leq\|U\|$ there exists a linear isometric embedding $i: X \rightarrow V$ for which the diagram

is commutative, that is, $U \circ i=T$. Clearly, if W is isometrically universal in the class of all separable Banach spaces then a left-universal operator with values into W is universal. The left-universal operator U constructed in [2] had been later essentially used (with a suitable space W) for finding an isometrically universal graded Fréchet space [1]. There exist other concepts of universality in operator theory, see the introduction of [5] for more details and references.

Let us note the following simple facts related to universal operators.
Proposition 1.1. Let $U: V \rightarrow W$ be a bounded linear operator acting between separable Banach spaces.
(1) If U is universal then both V and W are isometrically universal among the class of separable Banach spaces.
(2) Assume U is left-universal. Then $\operatorname{ker} U$ is isometrically universal among the class of separable Banach spaces. Furthermore, U is right-invertible, that is, there exists an isometric embedding $e: W \rightarrow V$ such that $U \circ e=\mathrm{i}_{W}$.
(3) Assume U is (left-)universal. Then λU is (left-)universal for every $\lambda>0$.

Proof. (1) Fix a separable Banach space X. Taking the zero operator $T: X \rightarrow 0$, we see that V contains an isometric copy of X. Taking the identity id ${ }_{X}$, we see that W contains an isometric copy of X.
(2) The same argument as above, using the zero operators, shows that $\operatorname{ker} U$ is isometrically universal. Taking the identity id_{W}, we obtain the required isometric embedding $e: W \rightarrow V$.
(3) Assume U is universal, fix $\lambda>0$ and fix $T: X \rightarrow Y$ with $\|T\| \leq \lambda\|U\|$. Then $\left\|\lambda^{-1} T\right\| \leq\|U\|$, therefore there are isometric embeddings $i: X \rightarrow V, j: Y \rightarrow W$ such that $U \circ i=j \circ\left(\lambda^{-1} T\right)$. Finally, $(\lambda U) \circ i=j \circ T$. If U is left-universal, the argument is the same, the only difference is that $j=\mathrm{id}_{W}$.

By (3) above, we may restrict attention to non-expansive operators. It turns out that there is an easy way of constructing left-universal operators, once we have in hand an isometrically universal space. The argument below was pointed out to us by Przemysław Wojtaszczyk.

Example 1.2. Let V be an isometrically universal Banach space and let W be an arbitrary Banach space. Consider $V \oplus W$ with the maximum norm and let

$$
\pi: V \oplus W \rightarrow W
$$

be the canonical projection. Given a non-expansive operator $T: X \rightarrow W$ with X separable, choose an isometric embedding $e: X \rightarrow V$ and define $j: X \rightarrow V \oplus W$ by $j(x)=(e(x), T(x))$. Then j is an isometric embedding and $\pi \circ j=T$, showing that π is left-universal. Of course, if additionally W is isometrically universal, then π is a universal operator.

Perhaps the most well known universal Banach space is $\mathscr{C}([0,1])$, the space of all continuous (real or complex) valued functions on the unit interval, endowed with the maximum norm. In view of the example above, there exists a universal operator from $\mathscr{C}([0,1]) \oplus \mathscr{C}([0,1])$ onto $\mathscr{C}([0,1])$. This leads to (at least potentially) many other universal operators, namely:

Proposition 1.3. Let V, W be isometrically universal separable Banach spaces. Then there exists a universal operator from V into W.

Proof. Fix a universal operator $\pi: E \rightarrow F$ (for instance, $E=\mathscr{C}([0,1]) \oplus \mathscr{C}([0,1])$ and $F=\mathscr{C}([0,1]))$ and fix a linear isometric embedding $e: E \rightarrow V$. Using the amalgamation property for linear operators, we find a separable Banach space V^{\prime}, a linear isometric embedding $e^{\prime}: F \rightarrow V^{\prime}$, and a non-expansive linear operator $\Omega: V \rightarrow$ V^{\prime} for which the diagram

is commutative. As W is isometrically universal, we may additionally assume that $V^{\prime}=W$, replacing Ω by $i \circ \Omega$ and e^{\prime} by $i \circ e^{\prime}$, where i is a fixed isometric embedding of V^{\prime} into W. It is evident that now Ω is a universal operator, because of the universality of π.

As a consequence, there exists a universal operator on $\mathscr{C}([0,1])$. We do not know whether there exists a left-universal operator on $\mathscr{C}([0,1])$. The situation changes when replacing $[0,1]$ with the Cantor set $2^{\mathbb{N}}$. The space $\mathscr{C}\left(2^{\mathbb{N}}\right)$ is linearly isomorphic (but not isometric) to $\mathscr{C}([0,1])$ and it is isometrically universal, too. Furthermore, $\mathscr{C}\left(2^{\mathbb{N}}\right) \oplus \mathscr{C}\left(2^{\mathbb{N}}\right)$ with the maximum norm is linearly isometric to $\mathscr{C}\left(2^{\mathbb{N}}\right)$, because the disjoint sum of two copies of the Cantor set is homeomorphic to the Cantor set. Thus, Example 1.2 provides a left-universal operator on $\mathscr{C}\left(2^{\mathbb{N}}\right)$.

Another, not so well known, universal Banach space is the Gurariu space. This is the unique, up to a linear isometry, separable Banach space \mathbb{G} satisfying the following condition:
(G) For every $\varepsilon>0$, for every finite-dimensional spaces $X_{0} \subseteq X$, for every linear isometric embedding $f_{0}: X_{0} \rightarrow \mathbb{G}$ there exists a linear ε-isometric embedding $f: X \rightarrow \mathbb{G}$ such that $f \upharpoonright X_{0}=f_{0}$.

By an ε-isometric embedding (briefly: ε-embedding) we mean a linear operator f satisfying

$$
(1-\varepsilon)\|x\| \leq\|f(x)\| \leq(1+\varepsilon)\|x\|
$$

for every x in the domain of f. The space \mathbb{G} was constructed by Gurariĭ [6]; its uniqueness was proved by Lusky [9].

The universal operator constructed in [5] has a special property that actually makes it unique, up to linear isometries. Below we quote the precise result.

Theorem 1.4 ([5]). There exists a non-expansive linear operator $\boldsymbol{\Omega}: \mathbb{G} \rightarrow \mathbb{G}$ with the following property:
(G) Given $\varepsilon>0$, given a non-expansive operator $T: X \rightarrow Y$ between finitedimensional spaces, given $X_{0} \subseteq X, Y_{0} \subseteq Y$ and isometric embeddings $i: X_{0} \rightarrow$ $U, j: Y_{0} \rightarrow V$ such that $\Omega \circ i=j \circ\left(T \upharpoonright X_{0}\right)$, there exist ε-embeddings $i^{\prime}: X \rightarrow U, j^{\prime}: Y \rightarrow V$ satisfying

$$
\left\|i^{\prime} \upharpoonright X_{0}-i\right\| \leq \varepsilon, \quad\left\|j^{\prime} \upharpoonright Y_{0}-j\right\| \leq \varepsilon, \quad \text { and } \quad\left\|\boldsymbol{\Omega} \circ i^{\prime}-j^{\prime} \circ T\right\| \leq \varepsilon
$$

Furthermore, $\boldsymbol{\Omega}$ is a universal operator and property (G) specifies it uniquely, up to a linear isometry.

According to [5], we shall call condition (G) the Gurari乞 property. What makes this operator of particular interest is perhaps its almost homogeneity:

Theorem 1.5 ([5]). Given finite-dimensional subspaces $X_{0}, X_{1}, Y_{0}, Y_{1}$ of \mathbb{G}, given linear isometries $i: X_{0} \rightarrow X_{1}, j: Y_{0} \rightarrow Y_{1}$ such that $\boldsymbol{\Omega} \circ i=j \circ \boldsymbol{\Omega}$, for every $\varepsilon>0$ there exist bijective linear isometries $I: \mathbb{G} \rightarrow \mathbb{G}, J: \mathbb{G} \rightarrow \mathbb{G}$ satisfying $\boldsymbol{\Omega} \circ I=J \circ \boldsymbol{\Omega}$ and $\left\|I \upharpoonright X_{0}-i\right\|<\varepsilon,\left\|J \upharpoonright Y_{0}-j\right\|<\varepsilon$.

We now describe the left-universal operators constructed in [2]. Fix a separable Banach space \mathbb{S}.

Theorem $1.6([2$, Section 6$])$. There exists a non-expansive linear operator $\mathbf{P}_{\mathbb{S}}$: $V_{\mathbb{S}} \rightarrow$ \mathbb{S} with $V_{\mathbb{S}}$ a separable Banach space, satisfying the following condition:
(\ddagger) For every finite-dimensional spaces $X_{0} \subseteq X$, for every non-expansive linear operator $T: X \rightarrow \mathbb{S}$, for every linear isometric embedding $e: X_{0} \rightarrow V_{\mathbb{S}}$ such that $\mathbf{P}_{\mathbb{S}} \circ e=T \upharpoonright X_{0}$, for every $\varepsilon>0$ there exists an ε-embedding $f: X \rightarrow V_{\mathbb{S}}$ satisfying

$$
\left\|f \upharpoonright X_{0}-e\right\| \leq \varepsilon \quad \text { and } \quad\left\|\mathbf{P}_{\mathbb{S}} \circ f-T\right\| \leq \varepsilon
$$

Furthermore, $\mathbf{P}_{\mathbb{S}}$ is left-universal for operators into \mathbb{S}.
We shall say that an operator P has the left-Gurarǐ̆ property if it satisfies (\ddagger) in place of $\mathbf{P}_{\mathbb{S}}$. Of course, unlike the Gurarii property, the left-Gurariu property involves a parameter \mathbb{S}, namely, the common range of the operators.

Actually, the projection $\mathbf{P}_{\mathbb{S}}$ was constructed in [2] in case where \mathbb{S} had some additional property, needed only for determining the domain of $\mathbf{P}_{\mathbb{S}}$. Moreover, [2] deals with p-Banach spaces, where $p \in(0,1]$, however $p=1$ gives exactly the result stated above. Operators $\mathbf{P}_{\mathbb{S}}$ have the following property which can be called almost left-homogeneity.

Theorem 1.7. Given finite-dimensional subspaces X_{0}, X_{1} of $V_{\mathbb{S}}$, a linear isometry $h: X_{0} \rightarrow X_{1}$ such that $\mathbf{P}_{\mathbb{S}} \circ h=\mathbf{P}_{\mathbb{S}} \upharpoonright X_{0}$, for every $\varepsilon>0$ there exists a bijective linear isometry $H: V_{\mathbb{S}} \rightarrow \mathbb{S}$ satisfying $\mathbf{P}_{\mathbb{S}} \circ H=\mathbf{P}_{\mathbb{S}}$ and $\left\|H \upharpoonright X_{0}-h\right\|<\varepsilon$.

In this note we present a proof that condition (\ddagger) determines $\mathbf{P}_{\mathbb{S}}$ uniquely, up to linear isometries. The arguments will also provide a proof of Theorem 1.7. Furthermore, we show that $\boldsymbol{\Omega}=\mathbf{P}_{\mathbb{G}}$ and that $\boldsymbol{\Omega}$ is a generic operator in the space of all non-expansive operators on the Gurariĭ space into itself, in the sense of a natural variant of the Banach-Mazur game.

2 Properties of Ω and $\mathbf{P}_{\mathbb{S}}$

Let us recall the following easy fact concerning finite-dimensional normed spaces (cf. [4, Thm. 2.7] or [1, Claim 2.3]). It actually says that the strong operator topology is equivalent to the norm topology in the space of linear operators with a fixed finitedimensional domain.

Lemma 2.1. Let A be a vector basis of a finite-dimensional normed space E. For every $\varepsilon>0$ there exists $\delta>0$ such that for every Banach space X, for every linear operator $f: E \rightarrow X$ the following implication holds:

$$
\max _{a \in A}\|f(a)\| \leq \delta \Longrightarrow\|f\| \leq \varepsilon
$$

Proof. Fix $M>0$ satisfying the following condition:
(*) $\max _{a \in A}\left|\lambda_{a}\right| \leq M$ whenever $x=\sum_{a \in A} \lambda_{a} a$ and $\|x\| \leq 1$.
Such M clearly exists, because of compactness of the unit ball of E. Now, given $\varepsilon>0$, let $\delta=\varepsilon /(M \cdot|A|)$. Suppose $\max _{a \in A}\|f(a)\| \leq \delta$. Then, given $x=\sum_{a \in A} \lambda_{a} a$ with $\|x\| \leq 1$, we have

$$
\|f(x)\| \leq \sum_{a \in A}\left|\lambda_{a}\right| \cdot\|f(a)\| \leq|A| \cdot M \cdot \delta=\varepsilon
$$

We conclude that $\|f\| \leq \varepsilon$.
The following result, in case $\mathbb{S}=\mathbb{G}$ can be found in [1].
Theorem 2.2. Let $P: V \rightarrow \mathbb{S}$ be a linear operator. The following conditions are equivalent.
(a) P has the left-Gurarǐ property (\ddagger).
(b) For every finite-dimensional spaces $X_{0} \subseteq X$, for every non-expansive linear operator $T: X \rightarrow \mathbb{S}$, for every linear isometric embedding $e: X_{0} \rightarrow V$ such that $P \circ e=T \upharpoonright X_{0}$, for every $\varepsilon>0$ there exists an ε-embedding $f: X \rightarrow V$ satisfying

$$
f \upharpoonright X_{0}=e \quad \text { and } \quad P \circ f=T .
$$

Proof. Obviously, (b) is stronger than (\ddagger).
Fix $\varepsilon>0$ and fix a vector basis A of X such that $A_{0}=X_{0} \cap A$ is a basis of X_{0}. We may assume that $\|a\|=1$ for every $a \in A$. Fix $\delta>0$ and apply the left-Gurariĭ property for δ instead of ε. We obtain a δ-embedding $f: X \rightarrow V$ such that $\left\|f \upharpoonright X_{0}-e\right\| \leq \delta$ and $\|P \circ f-T\| \leq \delta$. Define $f^{\prime}: X \rightarrow V$ by the conditions $f^{\prime}(a)=e(a)$ for $a \in A_{0}$ and $f^{\prime}(a)=f(a)$ for $a \in A \backslash A_{0}$. Note that $\left\|f^{\prime}(a)-f(a)\right\| \leq \delta$ for every $a \in A$. Thus, if δ is small enough, then by Lemma 2.1, we can obtain that f^{\prime} is an ε-embedding. Furthermore, $\left\|P \circ f^{\prime}-P \circ f\right\| \leq \varepsilon$ (recall that δ depends on ε and the norm of X only), therefore $\left\|P \circ f^{\prime}-T\right\| \leq \varepsilon+\delta$.

The arguments above show that for every $\varepsilon>0$ there exists an ε-embedding $f^{\prime}: X \rightarrow V$ extending e and satisfying $\left\|P \circ f^{\prime}-T\right\| \leq \varepsilon$.

Let us apply this property for δ instead of ε, where δ is taken from Lemma 2.1. We obtain a δ-embedding $f: X \rightarrow V$ extending e and satisfying $\|P \circ f-T\| \leq \delta$.

Given $a \in A \backslash A_{0}$, the vector

$$
w_{a}=P(f(a))-T(a)
$$

has norm $\leq \delta$. Define $f^{\prime}: X \rightarrow V$ by the conditions $f^{\prime} \upharpoonright X_{0}=e$ and

$$
f^{\prime}(a)=f(a)-w_{a}
$$

for $a \in A \backslash A_{0}$. Lemma 2.1 implies that f^{\prime} is an ε-embedding, because $\left\|f^{\prime}(a)-f(a)\right\|=$ $\left\|w_{a}\right\| \leq \delta$ for $a \in A \backslash A_{0}$. Finally, given $a \in A \backslash A_{0}$, we have

$$
P f^{\prime}(a)=P f(a)-w_{a}=T(a)
$$

and the same obviously holds for $a \in A_{0}$. Thus $P \circ f^{\prime}=T$.
The proof of the next result is just a suitable adaptation of the arguments above, therefore we skip it.

Proposition 2.3. Let $\Omega: V \rightarrow W$ be a linear operator. The following conditions are equivalent.
(a) Ω has the Gurariu property (G).
(b) Given $\varepsilon>0$, given a non-expansive operator $T: X \rightarrow Y$ between finitedimensional spaces, given $X_{0} \subseteq X, Y_{0} \subseteq Y$ and isometric embeddings $i_{0}: X_{0} \rightarrow$ $V, j_{0}: Y_{0} \rightarrow W$ such that $\Omega \circ i_{0}=j_{0} \circ\left(T \upharpoonright X_{0}\right)$, there exist ε-embeddings $i: X \rightarrow V, j: Y \rightarrow W$ satisfying

$$
i \upharpoonright X_{0}=i_{0}, \quad j \upharpoonright Y_{0}=j_{0}, \quad \text { and } \quad \Omega \circ i=j \circ T .
$$

The last result of this section is the key step towards identifying $\boldsymbol{\Omega}$ with \mathbf{P}_{G}.
Theorem 2.4. The operator $\boldsymbol{\Omega}$ has the left-Gurariu property (i.e., it satisfies condition (\ddagger) of Theorem 1.6 with $\mathbb{S}=\mathbb{G})$. In particular, it is left-universal.

Proof. Fix a non-expansive linear operator $T: X \rightarrow \mathbb{G}$ with X finite-dimensional, and fix an isometric embedding $e: X_{0} \rightarrow \mathbb{G}$, where X_{0} is a linear subspace of X and $T \upharpoonright X_{0}=\Omega \circ e$. Let $Y_{0}=Y=T[X] \subseteq \mathbb{G}$ and consider T as an operator from X to Y. Applying the Gurariĭ property with $i=e$ and j the inclusion $Y_{0} \subseteq \mathbb{G}$, we obtain an ε-embedding $e^{\prime}: X \rightarrow \mathbb{G}$ which is ε-close to e and satisfies $\left\|\boldsymbol{\Omega} \circ e^{\prime}-T\right\| \leq \varepsilon$. This is precisely condition (\ddagger) from Theorem 1.6.

In order to conclude that $\boldsymbol{\Omega}=\mathbf{P}_{\mathbb{G}}$, it remains to show that (\ddagger) determines the operator uniquely. This is done in the next section.

3 Uniqueness of $\mathbf{P}_{\mathbb{S}}$

Before proving that the left-Gurariu property determines the operator uniquely, we quote the following crucial lemma from [3].

Lemma 3.1. Let $\varepsilon>0$ and let $f: E \rightarrow F$ be an ε-embedding, where E, F are Banach spaces. Let $\pi: E \rightarrow \mathbb{S}, \varrho: F \rightarrow \mathbb{S}$ be non-expansive linear operators such that $\|\varrho \circ f-\pi\| \leq \varepsilon$. Then there exists a norm on $Z=X \oplus Y$ such that the canonical embeddings $i: X \rightarrow Z, j: Y \rightarrow Z$ are isometric, $\|j \circ f-i\| \leq \varepsilon$ and the operator $t: Z \rightarrow \mathbb{S}$ defined by $t(x, y)=\pi(x)+\varrho(y)$ is non-expansive.

Note that the operator t satisfies $t \circ i=\pi$ and $t \circ j=\varrho$. Actually, the norm mentioned in the lemma above does not depend on the operators π, ϱ. It is defined by the following formula:

$$
\begin{equation*}
\|(x, y)\|=\inf \left\{\|x-w\|_{X}+\|y-f(w)\|_{Y}+\varepsilon\|w\|_{X}: w \in X\right\} \tag{*}
\end{equation*}
$$

where $\|\cdot\|_{X},\|\cdot\|_{Y}$ denote the norm of X and Y, respectively. An easy exercise shows that $(*)$ is the required norm, proving Lemma 3.1.

Theorem 3.2. Let \mathbb{S} be a separable Banach space and let $\pi: E \rightarrow \mathbb{S}, \pi^{\prime}: E^{\prime} \rightarrow \mathbb{S}$ be non-expansive linear operators, both with the left-Gurarǐ property. If E, E^{\prime} are separable Banach spaces, then there exists a linear isometry $i: E \rightarrow E^{\prime}$ such that $\pi=\pi^{\prime} \circ i$. In particular, π and π^{\prime} are linearly isometric to $\mathbf{P}_{\mathbb{S}}$.

Proof. It suffices to prove the following
Claim 3.3. Let $E_{0} \subseteq E$ be a finite-dimensional space, $0<\varepsilon<1$, let $i_{0}: E_{0} \rightarrow E^{\prime}$ be an ε-embedding such that $\pi^{\prime} \circ i_{0}=\pi \upharpoonright E_{0}$. Then for every $v \in E$, $v^{\prime} \in E^{\prime}$, for every $\eta>0$ there exists an η-embedding $i_{1}: E_{1} \rightarrow E^{\prime}$ with E_{1} finite-dimensional and the following conditions are satisfied:
(1) $v \in E_{1}$ and $\operatorname{dist}\left(v^{\prime}, i_{1}\left[E_{1}\right]\right)<\eta$;
(2) $\left\|i_{0}-i_{1} \upharpoonright E_{0}\right\|<\varepsilon+\eta$ and $\pi^{\prime} \circ i_{1}=\pi$.

Using Claim 3.3 together with the separability of E and E^{\prime}, we can construct a sequence $i_{n}: E_{n} \rightarrow E^{\prime}$ of linear operators such that i_{n} is a 2^{-n}-embedding, $\bigcup_{n \in \omega} E_{n}$ is dense in E and $\bigcup_{n \in \omega} i_{n}\left[E_{n}\right]$ is dense in E^{\prime} and

$$
\left\|i_{n}-i_{n+1} \upharpoonright E_{n}\right\| \leq 2^{-n}+2^{-n-1} \quad \text { and } \quad \pi^{\prime} \circ i_{n+1}=\pi
$$

for every $n \in \omega$. It is evident that $\left\{i_{n}\right\}_{n \in \omega}$ converges pointwise to a linear isometry whose completion i is the required bijection from E onto E^{\prime} satisfying $\pi^{\prime} \circ i=\pi$. Thus, it remains to prove Claim 3.3.

This will be carried out by making two applications of Lemma 3.1.

Fix $0<\delta<1$, more precise estimations for δ will be given later. Let $E_{0}^{\prime} \subseteq E^{\prime}$ be a finite-dimensional space containing v^{\prime} and such that $i_{0}\left[E_{0}\right] \subseteq E_{0}^{\prime}$. Applying Lemma 3.1, we obtain linear isometric embeddings $e_{1}: E_{0} \rightarrow W_{0}, f_{1}: E_{0}^{\prime} \rightarrow W_{0}$ and a non-expansive operator $t_{0}: W_{0} \rightarrow \mathbb{S}$ such that $t_{0} \circ e_{1}=\pi \upharpoonright E_{0}, t_{0} \circ f_{1}=\pi^{\prime} \upharpoonright E_{0}^{\prime}$, and $\left\|e_{1}-f_{1} \circ i_{0}\right\| \leq \varepsilon$. Knowing that π has the left-Gurariĭ property, by Theorem 2.2 applied to the isometric embedding e_{1}, we obtain a δ-embedding $g_{1}: W_{0} \rightarrow E$ such that $g_{1} \circ e_{1}$ is identity on E_{0} and $\pi \circ g_{1}=t_{0}$.

Now note that $g_{1} \circ f_{1}$ is a δ-embedding of E_{0}^{\prime} into a finite-dimensional subspace E_{1} of E. Without loss of generality, we may assume that $v \in E_{1}$. Applying Lemma 3.1 again to $g_{1} \circ f_{1}$, we obtain linear isometric embeddings $e_{2}: E_{1} \rightarrow W_{1}, f_{2}: E_{0}^{\prime} \rightarrow W_{1}$ and a non-expansive linear operator $t_{1}: W_{1} \rightarrow \mathbb{S}$ such that $t_{1} \circ e_{2}=\pi \upharpoonright E_{1}, t_{1} \circ f_{2}=$ $\pi^{\prime} \upharpoonright E_{0}^{\prime}$, and $\left\|e_{2} \circ g_{1} \circ f_{1}-f_{2}\right\| \leq \delta$. Knowing that π^{\prime} has the left-Gurariĭ property and using Theorem 1.6 for the isometric embedding f_{2}, we obtain a δ-embedding $g_{2}: W_{1} \rightarrow E^{\prime}$ such that $g_{2} \circ f_{2}$ is identity on E_{0}^{\prime} and $\pi^{\prime} \circ g_{2}=t_{1}$. The configuration is described in the following diagram, where the horizontal arrows are inclusions, the triangle $E_{0} E_{0}^{\prime} W_{0}$ is ε-commutative, and the triangle $E_{0}^{\prime} E_{1} W_{1}$ is δ-commutative.

It remains to check that $i_{1}:=g_{2} \circ e_{2}$ is the required δ-embedding.
First, recall that $v \in E_{1}, v^{\prime} \in E_{0}^{\prime}$ and $v^{\prime}=g_{2}\left(f_{2}\left(v^{\prime}\right)\right)$. Thus, using the fact that $\left\|g_{2}\right\| \leq 1+\delta$, we get

$$
\begin{aligned}
\left\|i_{1} g_{1} f_{1}\left(v^{\prime}\right)-v^{\prime}\right\| & =\left\|g_{2} e_{2} g_{1} f_{1}\left(v^{\prime}\right)-g_{2} f_{2}\left(v^{\prime}\right)\right\| \\
& \leq(1+\delta)\left\|e_{2} g_{1} f_{1}\left(v^{\prime}\right)-f_{2}\left(v^{\prime}\right)\right\| \\
& \leq(1+\delta) \delta\left\|v^{\prime}\right\|
\end{aligned}
$$

Now if $(1+\delta) \delta\left\|v^{\prime}\right\|<\eta$, then we conclude that $\operatorname{dist}\left(v^{\prime}, i_{1}\left[E_{1}\right]\right)<\eta$, therefore condition (1) is satisfied.

Given $x \in E_{1}$, note that

$$
\pi^{\prime} i_{1}(x)=\pi^{\prime} g_{2} e_{2}(x)=t_{1} e_{2}(x)=\pi(x)
$$

Here we have used the fact that $\pi^{\prime} \circ g_{2}=t_{1}$ and $t_{\circ} e_{2}=\pi \upharpoonright E_{1}$.
Furthermore, given $x \in E_{0}$, we have

$$
\begin{aligned}
\left\|i_{1}(x)-i_{0}(x)\right\| & =\left\|g_{2} e_{2}(x)-i_{0}(x)\right\|=\left\|g_{2} e_{2} g_{1} e_{1}(x)-g_{2} f_{2} i_{0}(x)\right\| \\
& \leq(1+\delta)\left\|e_{2} g_{1} e_{1}(x)-f_{2} i_{0}(x)\right\|
\end{aligned}
$$

because $\left\|g_{2}\right\| \leq 1+\delta$. On the other hand,

$$
\begin{aligned}
\left\|e_{2} g_{1} e_{1}(x)-f_{2} i_{0}(x)\right\| & \leq\left\|e_{2} g_{1} e_{1}(x)-e_{2} g_{1} f_{1} i_{0}(x)\right\|+\left\|e_{2} g_{1} f_{1} i_{0}(x)-f_{2} i_{0}(x)\right\| \\
& =\left\|g_{1} e_{1}(x)-g_{1} f_{1} i_{0}(x)\right\|+\left\|e_{2} g_{1} f_{1} i_{0}(x)-f_{2} i_{0}(x)\right\| \\
& \leq(1+\delta)\left\|e_{1}(x)-f_{1} i_{0}(x)\right\|+\delta\left\|i_{0}(x)\right\| \\
& \leq(1+\delta) \varepsilon\|x\|+\delta(1+\varepsilon)\|x\| \leq(\varepsilon+3 \delta)\|x\| .
\end{aligned}
$$

Here we have used the following facts: e_{2} is an isometric embedding, g_{1} is a δ embedding, i_{0} is an ε-embedding, $\left\|e_{2} g_{1} f_{1}-f_{2}\right\| \leq \delta,\left\|e_{1}-f_{1} i_{0}\right\| \leq \varepsilon$ and $\varepsilon<1$.

Finally, $\left\|i_{1}(x)-i_{0}(x)\right\| \leq(1+\delta)(\varepsilon+3 \delta)\|x\| \leq(\varepsilon+7 \delta)\|x\|$. Summarizing, if $(1+\delta) \delta\left\|v^{\prime}\right\|<\eta$ and $7 \delta<\eta$ then conditions (1), (2) are satisfied. This completes the proof.

Note that if \mathbb{S} is the trivial space, the proof above reduces to the well known uniqueness of the Gurariĭ space, shown by this way in [8]. Furthermore, the arguments above can be applied to $\pi=\pi^{\prime}=\mathbf{P}_{\mathbb{S}}$ and $i_{0}=h$, thus proving Theorem 1.7. Theorems 2.4 and 3.2 yield the following result, announced before.
Corollary 3.4. $\Omega=\mathbf{P}_{\mathbb{G}}$.
In particular, $V_{\mathbb{G}}=\mathbb{G}$. It has been shown in [2] that $V_{\mathbb{S}}=\mathbb{G}$ as long as \mathbb{S} is a (separable) Lindenstrauss space, namely, an isometric L_{1} predual or (equivalently) a locally almost 1-injective space. Instead of going into details, let us just say that Lindenstrauss spaces are those (separable) Banach spaces that are linearly isometric to a 1-complemented subspace of the Gurariĭ space. The non-trivial direction was proved by Wojtaszczyk [10]. Thus, since $\mathbf{P}_{\mathbb{S}}$ is a projection, if $V_{\mathbb{S}}$ is linearly isometric to \mathbb{G} then \mathbb{S} is necessarily a Lindenstrauss space.

4 Generic operators

Inspired by the result of [7], let us consider the following infinite game for two players Eve and Adam. Namely, Eve starts by choosing a non-expansive linear operator $T_{0}: E_{0} \rightarrow F_{0}$, where E_{0}, F_{0} are finite-dimensional normed spaces. Adam responds by a non-expansive linear operator $T_{1}: E_{1} \rightarrow F_{1}$, such that $E_{1} \supseteq E_{0}, F_{1} \supseteq F_{0}$ are again finite-dimensional and T_{1} extends T_{0}. Eve responds by a further nonexpansive linear extension $T_{2}: E_{2} \rightarrow F_{2}$, and so on. So at each stage of the game we have a linear operator between finite-dimensional normed spaces. After infinitely many steps we obtain a chain of non-expansive operators $\left\{T_{n}: E_{n} \rightarrow F_{n}\right\}_{n \in \omega}$. Let $T_{\infty}: E_{\infty} \rightarrow F_{\infty}$ denote the completion of its union, namely, E_{∞} is the completion of $\left\{E_{n}\right\}_{n \in \omega}, F_{\infty}$ is the completion of $\left\{F_{n}\right\}_{n \in \omega}$ and $T_{\infty} \upharpoonright E_{n}=T_{n}$ for every $n \in \omega$. So far, we cannot say who wins the game.

Let us say that a (necessarily non-expansive) linear operator $U: X \rightarrow Y$ is generic if Adam has a strategy making the operator T_{∞} isometric to U. Recall that operators U, V are isometric if there are bijective linear isometries i, j such that $U \circ j=i \circ V$.

Theorem 4.1. The operator $\boldsymbol{\Omega}$ is generic.
Proof. Let us fix a non-expansive linear operator $U: \mathbb{G} \rightarrow \mathbb{G}$ between separable Banach spaces satisfying (G). Adam's strategy can be described as follows.

Fix a countable set $\left\{v_{n}: a_{n} \rightarrow b_{n}\right\}_{n \in \mathbb{N}}$ linearly dense in $U: \mathbb{G} \rightarrow \mathbb{G}$. Let $T_{0}: E_{0} \rightarrow F_{0}$ be the first move of Eve. Adam finds isometric embeddings $i_{0}: E_{0} \rightarrow$ $\mathbb{G}, j_{0}: F_{0} \rightarrow \mathbb{G}$ and finite-dimensional spaces $E_{0} \subset E_{1}, F_{0} \subset F_{1}$ together with isometric embeddings $i_{1}: E_{1} \rightarrow \mathbb{G}, j_{1}: F_{1} \rightarrow \mathbb{G}$ and non-expansive linear operators $T_{1}: E_{1} \rightarrow F_{1}$ such that T_{1} extends $T_{0}, a_{0} \in i_{1}\left[E_{1}\right], b_{0} \in j_{1}\left[F_{1}\right]$.

Suppose now that $n=2 k>0$ and $T_{n}: E_{n} \rightarrow F_{n}$ was the last move of Eve. We assume that linear isometric embeddings $i_{n-1}: E_{n-1} \rightarrow \mathbb{G}, j_{n-1}: F_{n-1} \rightarrow \mathbb{G}$ have already been fixed. Using (G) from Theorem 1.4 we choose linear isometric embeddings $i_{n}: E_{n} \rightarrow \mathbb{G}, j_{n}: F_{n} \rightarrow \mathbb{G}$ such that $i_{n} \upharpoonright E_{n-1}$ is 2^{-k}-close to i_{n-1}, $j_{n} \upharpoonright F_{n-1}$ is 2^{-k}-close to j_{n-1} and $U \circ i_{n}$ is 2^{-k}-close to $j_{n} \circ T_{n}$.

Let $\left\{T_{n}: E_{n} \rightarrow F_{n}\right\}_{n \in \mathbb{N}}$ be the chain of non-expansive operators between finitedimensional normed spaces resulting from a fixed play, when Adam was using his strategy. In particular, Adam has recorded sequences $\left\{T_{n}: E_{n} \rightarrow F_{n}\right\}_{n \in \mathbb{N}},\left\{i_{n}: E_{n} \rightarrow\right.$ $\mathbb{G}\}_{n \in \mathbb{N}},\left\{j_{n}: F_{n} \rightarrow \mathbb{G}\right\}_{n \in \mathbb{N}}$ of linear isometric embeddings such that $i_{2 n+1} \upharpoonright E_{2 n-1}$ is 2^{-n}-close to $i_{2 n-1}$ and $j_{2 n+1} \upharpoonright F_{2 n-1}$ is 2^{-n}-close to $j_{2 n-1}$ for each $n \in \mathbb{N}$.

Let $T_{\infty}: E_{\infty} \rightarrow F_{\infty}$ denote the completion of those unions, namely, E_{∞} is the completion of $\left\{E_{n}\right\}_{n \in \omega}, F_{\infty}$ is the completion of $\left\{F_{n}\right\}_{n \in \omega}$ and $T_{\infty} \upharpoonright E_{n}=T_{n}$ for every $n \in \omega$. The assumptions that $i_{2 n+1}\left[E_{2 n+1}\right]$ contains all the vectors a_{0}, \ldots, a_{n} and $j_{2 n+1}\left[F_{2 n+1}\right]$ contains all the vectors b_{0}, \ldots, b_{n} ensures that both $i_{\infty}\left[E_{\infty}\right], j_{\infty}\left[F_{\infty}\right]$ are dense in \mathbb{G}, where $i_{\infty}: E_{\infty} \rightarrow \mathbb{G}, j_{\infty}: F_{\infty} \rightarrow \mathbb{G}$ are pointwise limits of $\left\{i_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{j_{n}\right\}_{n \in \mathbb{N}}$, respectively. More precisely, $i_{\infty} \upharpoonright E_{k}$ is the pointwise limit of $\left\{i_{n} \upharpoonright E_{k}\right\}_{n \geq k}$ and $j_{\infty} \upharpoonright F_{k}$ is the pointwise limit of $\left\{j_{n} \upharpoonright F_{k}\right\}_{n \geq k}$ for every $k \in n \in \mathbb{N}$. In particular, both i_{∞} and j_{∞} are surjective linear isometries.

Finally, $U \circ i_{\infty}=j_{\infty} \circ T_{\infty}$, because $U \circ i_{2 k}$ is 2^{-k}-close to $j_{2 k} \circ T_{2 k}$ for every $k \in \mathbb{N}$. This completes the proof.

Question 4.2. Is $\boldsymbol{\Omega}$ generic in the space of all non-expansive operators on the Gurariĭ space? Being "generic" means of course that the set

$$
\{i \circ \Omega \circ j: i, j \text { bijective linear isometries of } \mathbb{G}\}
$$

is residual in the space of all non-expansive operators on \mathbb{G}. Here, it is natural to consider the pointwise convergence (i.e., strong operator) topology.

One could also consider a "parametrized" variant of the game above, where the two players build a chain of non-expansive operators from finite-dimensional normed spaces into a fixed Banach space \mathbb{S}. If \mathbb{S} is separable then similar arguments as in the proof of Theorem 4.1 show that the second player has a strategy leading to $\mathbf{P}_{\mathbb{S}}$. Thus, a variant of Question 4.2 makes sense: Is it true that isometric copies of $\mathbf{P}_{\mathbb{S}}$ form a residual set in a suitable space of operators?

After concluding that $\boldsymbol{\Omega}=\mathbf{P}_{\mathbb{G}}$, it seems that the "parametrized" construction of universal projections is better in the sense that it "captures" both the Gurariĭ space \mathbb{G} (when the range is the trivial space $\{0\}$) and the universal operator $\boldsymbol{\Omega}$ (when the range equals \mathbb{G}), but also other examples, including projections from the Gurariĭ space onto any separable Lindenstrauss space (see [10] and [2]).

Acknowledgments. The authors would like to thank Przemysław Wojtaszczyk for pointing out Example 1.2.

References

[1] C. Bargetz, J. Kąkol, W. Kubiś, A separable Fréchet space of almost universal disposition, Journal of Functional Analysis 272 (2017) 1876-1891. 1, 2, 2
[2] F. Cabello Sánchez, J. Garbulińska-Wȩgrzyn, W. Kubiś, Quasi-Banach spaces of almost universal disposition, Journal of Functional Analysis 267 (2014) 744-771. $1,1,1.6,1,3,4$
[3] J. Garbulińska-Wȩgrzyn, Isometric uniqueness of a complementably universal Banach space for Schauder decompositions, Banach J. Math. Anal. 8 (2014) 211-220. 3
[4] J. Garbulińska, W. Kubiś, Remarks on Gurariŭ spaces, Extracta Math. 26 (2011) 235-269. 2
[5] J. Garbulińska-Wȩgrzyn, W. Kubiś, A universal operator on the Gurarii space, Journal of Operator Theory 73 (2015) 143-158. 1, 1, 1.4, 1, 1.5
[6] V. I. Gurariǐ, Space of universal disposition, isotropic spaces and the Mazur problem on rotations of Banach spaces, Siberian Math. J. 7 (1966), 799-807. 1
[7] W. Kubiś, Game-theoretic characterization of the Gurarii space, Archiv der Mathematik 110 (2018) 53-59. 4
[8] W. Kubiś, S. Solecki, A proof of uniqueness of the Gurariŭ space, Israel J. Math. 195 (2013) 449-456. 3
[9] W. Lusky, The Gurarij spaces are unique, Arch. Math. (Basel) 27 (1976) 627635. 1
[10] P. Wojtaszczyk, Some remarks on the Gurarij space, Studia Math. 41 (1972) 207-210 3, 4

