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SPLITTING CHAINS, TUNNELS AND TWISTED SUMS

F�ELIX CABELLO S�ANCHEZ, ANTONIO AVIL�ES, PIOTR BORODULIN-NADZIEJA, DAVID CHODOUNSK�Y,

AND OSVALDO GUZM�AN

Abstract. We study splitting chains in P(ω), that is, families of subsets of ω which are linearly

ordered by ⊆∗ and which are splitting. We prove that their existence is independent of axioms of

ZFC. We show that they can be used to construct certain peculiar Banach spaces: twisted sums of

C(ω∗) = `∞/c0 and c0(c). Also, we consider splitting chains in a topological setting, where they

give rise to the so called tunnels.

1. Introduction

We say that a compact space K has a tunnel, if there is a continuous mapping f : K −→ L,

where L is a linearly ordered topological space, such that f−1(x) is nowhere dense in K for each

x ∈ L. This notion was introduced by Nyikos in [Nyi88] (under the name of a complete tunnel).

Although it may seem like the spaces with tunnels should resemble in a sense linearly ordered

topological spaces, in fact the property of possessing a tunnel is quite widespread among compact

spaces without isolated points. Actually, it is not easy to �nd a compact space without isolated

points which does not have a tunnel.

In this article we are going to study the notion of tunnel and some of its variations in the

context of in�nitary combinatorics, topology and homological Banach space theory.

We will be mostly interested in the question if ω∗ (that is βω \ ω, the remainder of the �Cech-

Stone compacti�cation of ω) has a tunnel. This question is interesting in all the settings mentioned

above. In particular, it is connected to the existence of certain peculiar family of subsets of ω. A

family S of subsets of the set ω of natural numbers is called splitting if for every in�nite set A ⊆ ω
there exists S ∈ S such that both A ∩ S and A \ S are in�nite. Splitting families are well studied

objects in set theory, specially in connection with the important cardinal s, the least cardinality of

such a family. In this paper we are interested in splitting families which are moreover chains in the

almost inclusion order, that is, with the extra property that if A,B ∈ S , then either A\B or B \A
is �nite. Nyikos proved several results about existence of splitting chains in various models of set

theory: he showed e.g. that PFA implies that there are no splitting chains whereas. In this article

we partially follow Nyikos' path (although most of the results we proved before we have discovered

Nyikos' work), reproving some of his theorems and proving that splitting chains do exist in the

standard Cohen model (Nyikos announced that the proof of that result would appear in a later

Date : July 21, 2019.

2010 Mathematics Subject Classi�cation. 03E17,03E75,46B25,46E15,54A35.
Key words and phrases. twisted sums of Banach spaces, short exact sequences of Banach spaces, splitting families,

tight gaps, complete tunnels, Aronszajn trees, Cohen forcing.
AA was supported by projects MTM2017-86182-P (AEI, Government of Spain and ERDF, EU) and 20797/PI/18

by Fundaci�on S�eneca, ACyT Regi�on de Murcia. PBN was supported by National Science Center grant no

2018/29/B/ST1/00223. He is also indebted to Universidad de Murcia for �nancing his stay in Murcia, during which

AA introduced him to the concept of splitting chains. FCS was supported in part by DGICYT project MTM2016-

76958-C2-1-P (Spain) and Junta de Extremadura program IB-16056. DCh was supported by the GACR project

17-33849L and RVO: 67985840. OG was supported by NSERC grant number 455916.

1



2 CABELLO-S�ANCHEZ, AVIL�ES, BORODULIN-NADZIEJA, CHODOUNSK�Y, AND GUZM�AN

paper that, however, was never published). Also, we show that the existence of a splitting chain is

compatible with the assumption that p > ω1.

Our initial motivation for the study of tunnels and splitting chains stems from their uses in the

construction and analysis of certain \twisted sums" of Banach spaces. Let us recall that a short

exact sequence of Banach spaces is a diagram of Banach spaces and (linear, continuous) operators

(1) 0 −−−−→ Y
ı−−−−→ Z

π−−−−→ X −−−−→ 0

in which the kernel of each arrow agrees with the range of the preceding one. The middle space Z

is often called a \twisted sum" of Y and X ... in that order! One says that such an exact sequence

is trivial (or that it splits, but we prefer to avoid this terminology in this paper) if the mapping ı

admits an inverse (see Section 3 for the precise de�nition) in which case the twisted sum space Z

is \well isomorphic" to the direct sum Y ⊕X.

Questions about whether a Banach space Z contains a copy of some classical Banach space

Y (or it does not) are central in Banach space theory (recall, e.g., the celebrated Rosenthal's `1
theorem [Ros74], or Bessaga-Pe lczy�nski theorem characterizing Banach spaces containing a copy of

c0, [BP58]).

We may ask about how a subspace Y is situated in Z considering also the quotient space

X = Z/Y and the exact sequence

(2) 0 −−−−→ Y
ı−−−−→ Z

π−−−−→ Z/Y −−−−→ 0

where ı is the inclusion and π is the natural quotient map. In this context, Y is complemented in

Z if and only if (2) is trivial; if the sequence is not trivial, then Y lies in Z in a non-trivial way

and Z is kind of an alloy of Y and X, but not a trivial one. Determining for which Banach spaces

Y and X one can construct a nontrivial sequence (1) is a fundamental question in the homological

theory of Banach spaces (see the monograph [CG97] for a general account; the approaches of the

more recent papers [ACSC+13], [CSCKY03], [MP18] are more akin to ours).

As we shall see, each tunnel of K induces an exact sequence of the form

0 −−−−→ C(K) −−−−→ Z −−−−→ c0(κ) −−−−→ 0

which is nontrivial if the tunnel has some additional properties, for instance, when it is made of

regular open sets. Here, and throughout the paper, C(K) denotes the Banach space of all continuous

functions f : K −→ R with the sup norm. Also, if I is a set, then c0(I) denotes the space of all

functions f : I −→ R such that, for every ε > 0, the set {i ∈ I : |f(i)| > 0} is �nite, again with the

sup norm.

The most interesting case is, by far, when K = ω∗ is the �Cech-Stone remainder of the natural

numbers. Our main result in this line is that if there is a splitting chain of clopens in ω∗, then a

nontrivial exact sequence

(3) 0 −−−−→ C(ω∗) −−−−→ Z −−−−→ c0(c) −−−−→ 0.

exists; see Theorem 3.7. Twisted sums of the form

(4) 0 −−−−→ C(ω∗) −−−−→ Z −−−−→ X −−−−→ 0

were constructed �rst by Amir [Ami64] and later by Avil�es and Todorcevic [AT11], but not much

is speci�ed in these constructions about the structure of X. Amir's construction is described in

[ACSC+16, Section 2.5, Proposition 2.43]. More recently, the authors of [ACSC+17] constructed a

twisted sum like (3) under CH. As we have mentioned above, we are able to prove the existence of
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splitting chains of clopens in ω∗ under several other assumptions, and so by Theorem 3.7 we get

new examples of twisted sums of the form (3).

The paper is organized as follows: In Section 2 we study the notion of tunnels and splitting

chains in the more general context of topological spaces. Section 3 relates tunnels and splitting

chains with twisted sums of Banach spaces, and �nally in Section 4 we prove the consistency

results concerning the existence of splitting chains in P(ω)/�n.

2. Tunnels and splitting chains of open sets

We assume that all topological spaces are Hausdor�. Let U , V be open in a topological space

X. By U < V we will denote the relation U ⊆ V . The relation \≤" de�ned by

U ≤ V if (U < V or U = V )

is a partial order on the topology of X.

Definition 2.1. We say that a family of open subsets of X is a chain (of open sets) if it is

linearly ordered by ≤.

Definition 2.2. A chain of open subsets U of X is a tunnel if the set
⋃
{∂U : U ∈ U } is

dense in X.

Clearly, no space with an isolated point can have a tunnel. However, the property of having

a tunnel is quite common among spaces without isolated points. We will begin with some easy

examples.

Example 2.3. The family of all open balls with �xed center forms a tunnel in Euclidean spaces.

More generally if (X, d) is a metric space with a point x0 ∈ X such that for each r > 0

B(x0, r) = {x ∈ X : d(x, x0) ≤ r}

then the family {B(x0, r) : r > 0} is a tunnel. Consequently, normed spaces have tunnels.

Less obvious examples of spaces with tunnels are given by the following proposition.

Proposition 2.4. If X is a separable normal space without isolated points, then X has a

countable tunnel.

Proof. First, notice that if V < U are open subsets of X and x ∈ U \ V , then there is an open W

such that V < W < U and x ∈ ∂W . Indeed, use normality to �nd an open neighbourhood W0 of x

such that W0 < U \ V . Since x is not an isolated point, x ∈ ∂(W0 \ {x}). Now, again by normality,

there is W1 such that V < W1 < U and x /∈W1. The set W = W0 \ {x} ∪W1 is as desired.

Let D = {dn : n ∈ ω} be a dense subset of X. Using the above remark it is easy to construct

inductively a chain of open sets {Un : n ∈ ω} such that dn ∈ ∂Un. Of course {Un : n ∈ ω} is a

tunnel. �

Corollary 2.5. Every compact metrizable space without isolated points has a countable tunnel.

Remark 2.6. A study of tunnels in metric spaces was undertaken by Maciej Niewczas in [Nie17].

Witold Marciszewski proved that the assumption on compactness is obsolete and in fact every

metrizable space without isolated points has a countable tunnel, using the fact that every metric

space has a σ-discrete base.

Proposition 2.7. If X has a tunnel and Y is a topological space, then X × Y has a tunnel.
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Proof. Let U be a tunnel in X. It is easy to verify that {U ×Y : U ∈ U } is a tunnel in X×Y . �

Corollary 2.8. The space 2κ has a countable tunnel for each in�nite κ.

Proof. 2κ = 2ω × 2κ\ω and 2ω has a tunnel, according to Proposition 2.4. �

We say that A splits B if both B ∩A and B \A are nonempty. A family A of subsets of X is

splitting if every nonempty open subset of X is split by some member of A . It will be convenient

to notice that splitting families which form chains of open sets satisfy a slightly stronger splitting

property.

Lemma 2.9. If U is a splitting chain, then for each nonempty open V ⊆ X there is U ∈ U

such that V ∩ U 6= ∅ and V \ U 6= ∅.

Proof. Let V ⊆ X be a nonempty open set. Consider U ′ ∈ U which splits V and then U ∈ U

which splits U ′ ∩ V . We have U < U ′ because U ′ ≤ U is impossible. Clearly, V ∩ U 6= ∅ and

V \ U ⊇ V \ U ′ 6= ∅. �

The proof of the following simple fact is left to the reader.

Proposition 2.10. Every tunnel is a splitting.

Of course not every splitting chain is a tunnel, but in compact spaces each splitting chain can

be used to produce a tunnel.

Proposition 2.11. Assume that U is a splitting chain in a compact space K. Then

V =
{⋃

U ′ : ∅ 6= U ′ ⊆ U and U ′ does not have a ≤ -maximal element
}

forms a tunnel in K. Moreover, V has the following properties:

(1) if V ′ ⊆ V , then
⋃

V ′ ∈ V ;

(2) if V < U ∈ V , then there is W ∈ V such that V < W < U .

Proof. First, we will show that V is a chain. Let V0, V1 be distinct elements of V and let V0 =
⋃

U0,

V1 =
⋃

U1, where U0 and U1 are subfamilies of U without maximal elements. Without loss of

generality, we may assume that there is U1 ∈ U1 such that U < U1 for each U ∈ U0 and so V0 ⊆ U1.

Since U1 is not maximal in U1, there is U1 < U2 ∈ U1. Hence V0 ⊆ U1 < U2 ⊆ V1 and so V0 < V1.

So, V is a chain.

Now let W be a nonempty open subset of K and let W ′ be a nonempty open set such that

W ′ < W (since K admits a splitting chain, it cannot have an isolated point, so there is such W ′).

Using Lemma 2.9 we can recursively �nd a sequence (Un) of elements of U such that Un < Un+1

and Un splits W ′ for every n. Then V =
⋃
n Un ∈ V . By compactness, there is

x ∈ V ∩W ′ \ V.

But this means that x ∈ ∂V ∩W ′ and so x ∈ ∂V ∩W .

It is straightforward to check that V has properties (1) and (2). �

A variant of the above proposition in which we take only countable unions will be important

for us later:
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Proposition 2.12. Assume that U is a splitting chain in a compact space K. Then

Vω =

{⋃
n∈ω

Wn : Wn ∈ U ,W1 < W2 < · · ·

}
forms a tunnel in K.

Proof. Just the same proof as the previous proposition. �

Remark 2.13. Thanks to Proposition 2.11 to show that a compact zerodimensional space has a

tunnel it is enough to �nd a family of clopens C which is linearly ordered by ⊆ and which is

splitting (although, the tunnel produced according to the recipe from Proposition 2.11 does not

contain any element of C ). It is however unclear for us if the existence of a tunnel in a compact

zero-dimensional space implies the existence of such chain of clopens.

Theorem 2.14. Let K be a compact space. The following are equivalent:

(a) K has a tunnel.

(b) K has a splitting chain of open sets.

(c) There is a continuous mapping f : K −→ L, where L is a linearly ordered space, whose

�bers are nowhere dense (i.e. f−1(l) is nowhere dense for each l ∈ L).

Proof. The equivalence of (a) and (b) follows from Proposition 2.11 and Proposition 2.10.

(b) =⇒ (c) Assume that V is a tunnel in K. We may immediately assume that it has properties

(1) and (2) of Proposition 2.11. Now, equip V with the order topology with respect to \≤". De�ne

f : K −→ V by

f(x) =
⋃
{U ∈ V : x /∈ U}.

Assume that V < U ∈ V and f(x0) ∈ (V,U) and notice that x0 ∈ U . In order to verify the

continuity of f we will show that x0 has an open neighbourhood contained in f−1(V,U). First,

notice that for each x ∈ K we have x /∈ f(x). Therefore, if x ∈ U , then f(x) < U . Second, if

V < W , W ∈ V and x /∈ W , then f(x) > V . Now, let W ∈ V be such that V < W < f(x0) and

notice that x0 /∈W . Then, using the above remarks, we have

x0 ∈ U \W ⊆ f−1(V,U).

(c) =⇒ (b) Suppose f : K −→ L is a mapping with the desired properties. For l ∈ L by (−∞, l)
we will denote the set {x ∈ L : x < l}, where ≤ is the linear ordering compatible with the topology

of L. We will understand (−∞, l] in the similar way. For l ∈ L let

Ul = f−1(−∞, l).

We claim that {Ul : l ∈ L} is a splitting chain of open sets. First, we will check that it is a chain.

Let l < l′ ∈ L. Then, by continuity of f ,

Ul = f−1(−∞, l) ⊆ f−1(−∞, l) ⊆ f−1(−∞, l] ⊆ f−1(−∞, l′) = Ul′ .

To show that {Ul : l ∈ L} is splitting, consider a nonempty open set V ⊆ K and notice that, by

the assumption on f , we can �nd l0 < l1 in f [V ]. Then Ul1 splits V . �

Remark 2.15. In [Nyi88] Nyikos introduced the notion of complete tunnel. A chain of open subsets

U of X is a complete tunnel if for every U ′ ⊆ U we have

Int
(⋂
{U ∈ U : U ′ < U for every U ′ ∈ U ′}

)
⊆
⋃

U ′.
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Nyikos proved ([Nyi88, Theorem 1.5]) that being a complete tunnel is equivalent to (c) of Theo-

rem 2.14 and so it is equivalent, at least in the realm of compact spaces, to being a tunnel in our

sense.

Corollary 2.16. Let K be a compact space without an isolated point and let L be linearly

ordered and metrizable. Assume that there is a continuous mapping f : K −→ L with nowhere

dense �bers. Then K has a countable splitting chain of Fσ-open sets.

Proof. Let D be a countable dense subset of L and let U = {Ud : d ∈ D}, where Ux = f−1(−∞, x).

That U is splitting can be proved in the same way as in proof of Theorem 2.14, (c) =⇒ (b). �

Recall that an interval algebra is a Boolean algebra generated by a chain. The Stone space of

an interval algebra is linearly ordered (and the Boolean algebra of clopens of a linearly ordered

zerodimensional compact space forms an interval algebra).

Corollary 2.17. If A is a Boolean algebra which contains an interval subalgebra B which

splits nonempty elements of A, then the Stone space of A has a tunnel.

Proof. Let K, L be the Stone spaces of A, B respectively. Then there is a canonical continuous

surjection f : K −→ L, where L is a linearly ordered space. If V is a clopen subset of K, then it

is split by some B ∈ B. So, if x ∈ V ∩ B and y ∈ V \ B, then f(x) 6= f(y) and so f has nowhere

dense �bers. �

Recall that a measure µ on a compact space K is strictly positive if µ(U) > 0 for each nonempty

open set U ⊆ K. A measure µ is atomless if µ({x}) = 0 for every x ∈ K. If K is zerodimensional,

then µ is atomless if and only if for every ε > 0 there is a partition of K into clopen sets of measure

at most ε.

Proposition 2.18. Every compact zero-dimensional space supporting a strictly positive atom-

less probability measure has a tunnel.

Proof. Assume K supports such a measure µ. It is enough to construct a chain C of clopen subsets

of K such that {µ(C) : C ∈ C } is dense in [0, 1]. Indeed, suppose that C has this property and V

is a nonempty clopen subset of K. Then µ(V ) = r > 0. Let R = sup{µ(C) : C ∈ C and C ∩ V =

∅} ≤ 1−r and consider C ∈ C such that µ(C) ∈ (R,R+r). Then C∩V 6= ∅ because µ(C) > R. If

V ⊆ C, then C contains V and all the C ′ ∈ C such that C ′∩V = ∅, so we would have µ(C) > R+r.

We conclude that C splits V . Now we can use Theorem 2.14.

One can construct C inductively subsequently using the following remark. Assume C is non-

empty clopen subsets of K. Then, by non-atomicity of µ, there is a clopen set D such that D ⊆ C
and µ(D) ∈ (µ(C)/4, 3µ(C)/4). �

2.1. Spaces without tunnels. After so many examples of spaces having tunnels, we have to face

the natural question: are there compact spaces without isolated points and without tunnels?

Recall that a compact space K is Corson compact if it can be embedded into

Σ(Rα) = {x ∈ Rα : {ξ ∈ α : x(ξ) 6= 0} is countable}

for some α.

Lemma 2.19. If K is Corson compact and K has a splitting chain, then K has a countable

splitting chain of Fσ open sets.
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Proof. According to Theorem 2.14, we have a continuous mapping f : K −→ L with nowhere dense

�bers onto a linearly ordered compact space. By [Ark92, IV.3.15], L is a Corson compact space.

But every linearly ordered Corson compact space is metrizable [Ev78], so we can use Corollary

2.16. �

Recall than an Aronszajn tree is an uncountable tree without an uncountable level and without

an uncountable branch. Notice that Aronszajn trees are of height ω1. We will say that a Boolean

algebra A is Aronszajn if it is generated by an Aronszajn tree T , in the sense that there is a set

of generators {at : t ∈ T} of A such that at ≤ as when s ≤ t and at ∩ as = 0 when s and t are

incomparable.

Theorem 2.20. Stone spaces of Aronszajn algebras do not have tunnels.

Proof. Let T be an Aronszajn tree and let A be the Boolean algebra generated by T . Let K be the

Stone space of A. Notice that K is Corson compact. Indeed, let g : K −→ 2T be given by g(x)(t) = 1

if and only if t ∈ x. It is plain to check that g is a continuous embedding. Moreover, there is no

y ∈ f [K] of an uncountable support (since then T would contain an uncountable branch). If K

has a tunnel, then according to Lemma 2.19, K has a countable splitting chain U of Fσ open sets.

Since each open set in U is Fσ, it is a countable union of clopen sets, and there is a countable

ordinal α < ω1 such that each element of U is in the algebra generated by the elements at with

t of height less than α. Consider now s ∈ T of height greater than α. Then as is not split by any

element of height less than α (each at of height less than α either contains or is disjoint from as).

Hence as is not split by any element of U , a contradiction. �

We �nish with a remark which indicates that seeking for a compact space without tunnels

(and isolated points) we should rather focus on spaces with many disjoint open sets. Recall that a

topological space is ccc if it does not contain an uncountable family of nonempty open subsets.

Proposition 2.21. Suslin Hypothesis is equivalent to the assertion that every ccc compact

zerodimensional space without isolated points has a tunnel.

Proof. ( =⇒ ) Suppose that K is a ccc compact zerodimensional space without isolated points.

Using Zorn's lemma, we can �nd a maximal family of clopen sets of the form {at : t ∈ T} such

that T is a tree, at ≤ as when s ≤ t and at ∩ as = 0 when s and t are incomparable. The algebra

generated by this tree is countable, and is therefore an interval algebra. By Corollary 2.17, it is

enough to check that the elements {at : t ∈ T} split all clopen subsets of K. So take b a nonempty

clopen set in K that is not split by that family. Since we have no isolated points, we �nd two

disjoint nonempty clopens c, d ⊆ b. Notice that c, d 6∈ {at : t ∈ T} because they split b. The family

{at : t ∈ T} ∪ {c, d} would be a larger tree family, in contradiction with maximality.

(⇐= ) Let T be a Suslin tree, and let [T ] be the set of all (maximal) branches of T . For every

t, let at = {x ∈ [T ] : t ∈ x}, and let A be the algebra of subsets of [T ] generated by the at.

Since Suslin trees are Aronszajn, we can use Theorem 2.20. It remains to show that A is ccc. For

this, notice that every nonempty element of A contains nonempty element with atomic formula

a =
⋂
t∈R at \

⋃
s∈S as. If we take a high enough node r in a branch that belongs to a, then ar ⊆ a.

All this means that if there is an uncountable pairwise disjoint family in A , then there is one made

of elements of the form ar, and that would give an uncountable family of pairwise incompatible

elements of T , that contradicts that T is Suslin. �
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2.2. Ultraproducts of tunnels. We assume some familiarity with the Banach space ultraproduct

construction, as presented in [ACSC+16, Chapter 4], [Ste78] or [HI02]. Let (Ki)i∈I be a family of

compact spaces indexed by I and let U be a countably incomplete ultra�lter on I. Then the

Banach space ultraproduct [C(Ki)]U is a Banach algebra under the product

[(fi)][(gi)] = [(figi)].

By general representation results, this algebra is isometrically isomorphic to one of the form C(K)

for some compact spaceK which is called the topological ultracoproduct of the family (Ki) following

U and is denoted by (Ki)
U . If all the Ki coincide we speak of the ultracopower, instead.

Proposition 2.22. With the preceding notations, if each Ki has a tunnel, then so (Ki)
U does.

Proof. We need to translate our topological notions from K to the algebra C(K). The basic idea

is that each open subset U of K gives rise to a closed ideal just taking

JU = C0(U) = {f ∈ C(K) : f |K\U = 0},

and, conversely, all closed ideals of C(K) have this form. On the other hand, the condition f |K\U = 1

is equivalent to the class of f being the unit of the quotient algebra C(K)/JU .

Thus, the fact that U and V are open subsets of K with U ⊆ V , which is obviously equivalent

to the existence of f ∈ C(K) such that f |U = 0 and f |K\V = 1 can be stated as:

• There is f ∈ C(K) such that fg = 0 for all g ∈ JU and whose class is the unit of C(K)/JV .

Now assume that each Ki has a tunnel Wi. We construct a family of open sets W of (Ki)
U as

follows. For each i ∈ I we pick Ui ∈ Wi, then we consider the corresponding ideal JUi ⊆ C(Ki)

and form the ultraproduct [JUi ]U . Quite clearly, [JUi ]U is a closed ideal in [C(Ki)]U and, by the

preceding remarks, this ideal determines a certain open set W of (Ki)
U . Let us check that the

family of open sets of (Ki)
U obtained in this way forms a tunnel.

First, we prove that they form a chain. Take two families (Ui), (Vi), with Ui, Vi ∈ Wi and let W

and V be the corresponding subsets of (Ki)
U . We partition I into three subsets as follows:

• I\ = {i ∈ I : Ui = Vi};
• I[ = {i ∈ I : Ui ⊆ Vi};
• I] = {i ∈ I : Vi ⊆ Ui}.

Then exactly one of these sets belongs to U . If I\ belongs to U , then W = V . Now assume I[
belongs to U and let us prove that W ⊆ V . For each i ∈ I[, take a continuous fi : Ki → [0, 1] such

that fi|Ui = 0 and fi|Ki\Vi = 1. If i /∈ I[, set fi = 1. Let us take a look at [(fi)]. It is clear that the

class of [(fi)] in

[C(Ki)]U
/

[JVi ]U = [C(Ki)/JVi ]U

is the unit of the quotient algebra. On the other hand, if (gi) is a bounded family such that gi ∈ JUi
for all i ∈ I, then [(fi)][(gi)] = [(figi)] = 0 since figi = 0 at least for i ∈ I[. This shows that W ⊆ V .

Finally, if I] ∈ U , then V ⊆W .

To complete the proof we need to manage some points of (Ki)
U , that is, some \nice" maximal

ideals of [C(Ki)]U .

Let (pi)i be a family such that pi ∈ Ki for each i ∈ I. Then we can de�ne a unital homomorphism

[C(Ki)]U → R by the formula

(5) [(fi)] 7−→ lim
U (i)

fi(pi).
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The de�nition makes sense and, moreover, two families (pi)i and (qi)i induce the same homomor-

phism if and only if they represent the same element in the set-theoretic ultraproduct 〈Ki〉U , that

is, when the set {i ∈ I : pi = qi} belongs to U . If we agree to denote by 〈(pi)〉 the \point" of (Ki)
U

associated to (5) (as in the Gelfands representation theorem, see e.g. [AK16, Theorem 4.2.1]), then

we have an injective mapping 〈Ki〉U → (Ki)
U . This mapping is known to have dense range. We

need a slightly stronger fact:

Claim. If, for each i, the set Di is dense in Ki, then every nonempty zero set of (Ki)
U meets

〈Di〉U . In particular, 〈Di〉U is dense in (Ki)
U .

Proof of the Claim. The second assertion clearly follows from the �rst one since, by the very

de�nition, (Ki)
U is a completely regular space.

So, let us check the �rst statement. The hypothesis that U is countably incomplete is used as

follows: there is a function δ : I → (0,∞) such that δ(i) −→ 0 along U . Now, take a non-negative,

continuous f : (Ki)
U → R with f−1(0) 6= ∅. Write f = [(fi)], with fi ≥ 0 in C(Ki) and put

m(i) = min
x∈Ki

fi(x) = inf
x∈Di

fi(x).

Note that m(i) −→ 0 along U since otherwise f would be invertible. Take δ as before and, for each

i ∈ I, choose xi ∈ Di so that fi(xi) < m(i) + δ(i). Then f vanishes on the point 〈(xi)〉 and the

Claim is proved. �

The proof will be complete if we show that if for each index i the set Ui is open in Ki and

pi ∈ ∂Ui, then 〈(pi)〉 ∈ ∂W , where W is the open set of (Ki)
U attached to the family (Ui) { that

is, to the ideal [JUi ]U .

To do this we add two new entries to our basic dictionary: suppose U is an open set in a

compactum K and that p ∈ K. Then:

• p /∈ U is equivalent to the statement \for every f ∈ JU one has f(p) = 0".

• p ∈ U is equivalent to the statement \for g ∈ C(K) such that g(p) = 1 there is q ∈ U such

that g(q) ≥ 1
2".

Now, if pi, Ui,W are as before, then pi ∈ Ui \ Ui. Since every f ∈ JW can be written as [(fi)],

with fi ∈ JUi , we have

f(〈(pi)〉) = lim
U (i)

fi(pi) = 0,

so, certainly, 〈(pi)〉 /∈W .

Finally, we check that 〈(pi)〉 ∈ W . We �rst remark that W contains every point of the form

〈(qi)〉 with qi ∈ Ui for all i ∈ I (think of functions fi such that fi(qi) = 1 and fi ∈ JUi). Now, if

f is a continuous function on (Ki)
U such that f(〈(pi)〉) = 1, then writing f = [(fi)] and recalling

that pi ∈ Ui we can pick qi such that fi(qi) ≥ 1
2fi(pi), so f(〈(qi)〉) ≥ 1

2 , so 〈(pi)〉 ∈W . �

We now give the application that motivated our interest in ultracoproducts. We need some basic

facts from model theory in the context of Banach spaces. The reader can take a look to [Ste78] or

[HI02] for the general background and to [Ban77] for a more topological approach.

Following the uses in model theory, let us say that two compact spaces K and L are co-

elementarily equivalent if there are ultra�lters U and V such that KU and LV are homeomorphic,

equivalently, the Banach algebras (C(K))U and (C(L))V are isomorphic. This happens if and only

if the underlying Banach spaces (C(K))U and (C(L))V are (linearly) isometric. This roughly means
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that the base Banach spaces C(K) and C(L) \approximately" satisfy the same positive bounded

sentences (in a suitable signature); see [HI02, Chapter 5].

Thus, the following result explains in part why it is so di�cult to �nd compacta (without

isolated points) having no tunnel.

Proposition 2.23. Let K be a compact space. The following conditions are equivalent:

(a) K has no isolated points.

(b) There is an ultra�lter U (on some index set) for which the ultracopower KU has a

tunnel.

(c) K is co-elementarily equivalent to a compactum having a tunnel.

Proof. We �rst remark that the property of (not) having isolated point is preserved under co-

elementary equivalence. This is implied by the following two facts:

• A compact space K has an isolated point if and only if the algebra C(K) has a \minimal

idempotent": a non-zero f ∈ C(K) such that f2 = f with the property that if 0 ≤ g ≤ f ,

then g = cf for some c ∈ R.

• Every idempotent in [C(Ki)]U can be written as [(fi)], where fi is an idempotent of C(Ki).

We thus have (c) =⇒ (a). Next, we prove (a) =⇒ (b). The key fact is that every compactum is

co-elementarily equivalent to some metrizable compact space. This follows from the Banach space

version of the (\downward") L�owenheim{Skolem theorem; see [Ste78, Theorem 2.2] or [HI02, 9.13

Proposition]. Suppose K has no isolated points and let M be a metrizable compactum such that

KU and MV are homeomorphic, where U and V are ultra�lters on suitably chosen sets of indices.

By the preceding remark, neither KU nor M have isolated points. By Corollary 2.5, M has a

tunnel and so MV and KU have, by Proposition 2.22.

(b) =⇒ (c) Each compact space is co-elementarily equivalent to its ultracopowers, by the Banach

space version of the Keisler{Shelah (\ultrapower") theorem; see [Ste78, Theorem 2.1] or [HI02, 10.7

Theorem]. �

3. Twisted sums

Recall that a short exact sequence is a diagram of Banach spaces and (linear, bounded) operators

(6) 0 −−−−→ Y
ı−−−−→ Z

π−−−−→ X −−−−→ 0

in which the kernel of each arrow agrees with the range of the preceding one. We say that a short

exact sequence is trivial if there is an operator $ : Z → Y such that $ ◦ ı = IY (or, equivalently,

there is an operator  : X → Z such that π ◦  = IZ). Note that (6) is trivial if and only if ı[Y ] is a

complemented subspace of Z. In this case the space Z is linearly homeomorphic to the direct sum

Y ⊕X. Simple examples show that the converse is not true.

The space C(K) can be viewed as a subspace (or a subalgebra) of `∞(K), the Banach algebra

of all bounded functions f : K → R, again with the supremum norm.

Given a family A of subsets of K, we de�ne an intermediate space C(K) ⊆ X(A ) ⊆ `∞(K)

as the Banach space generated by C(K) and by the characteristic functions of the sets in A. This

produces a short exact sequence

(7) 0 −−−−→ C(K)
ı−−−−→ X(A )

π−−−−→ X(A )/C(K) −−−−→ 0,

in which ı is the inclusion map and π is the natural quotient map. This was the approach followed

by Amir [Ami64]. For this sequence to provide a relevant example, we must ensure that it is not
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trivial, and we must identify what the quotient X(A )/C(K) is. Lemmas 3.1 and 3.3 will deal with

these issues.

Recall that the oscillation of a function f : K −→ R at a point x ∈ K is de�ned by

osc f(x) = inf
V

sup
y,z∈V

(
f(y)− f(z)

)
,

where V runs over the neighborhoods of x in K. The oscillation of an arbitrary function f on K

is the number oscf = supx∈K oscf(x).

Lemma 3.1. Let A be a family of subsets of K. If the boundaries of sets in A are all

nonempty and pairwise disjoint, then the quotient space X(A )/C(K) is isometric to c0(A ).

Proof. The equivalence classes of the characteristic functions 1A for A ∈ A generate the quotient

space X(A )/C(K). We check that these vectors are isometric to the basis of c0 multiplied by 1/2.

That is, we want to show that

(8)

∥∥∥∥∥
n∑
i=1

λi1Ai + C(K)

∥∥∥∥∥
X(A )/C(K)

=
1

2
max
1≤i≤n

|λi|

whenever Ai ∈ A and λi ∈ R. The norm of (the class of) a function f in the quotient space

by C(K) is the distance of f to C(K), which by a classical result in topology (see e.g. [BL00,

Proposition 1.18]) equals half of the oscillation of f , so∥∥f∥∥
X(A )/C(K)

= dist(f, C(K)) =
osc f

2
.

A characteristic function 1A has oscillation 1 at every point of ∂A while it is continuous (oscillation

0) out of ∂A. Since the sets of A have disjoint nonempty boundaries, a linear combination f =∑
i λi1Ai has oscillation |λi| on ∂Ai and oscillation 0 out of these boundaries. From this, equation

(8) follows. �

We now describe a derivation procedure induced by A that will help in proving that the short

exact sequence (7) is not trivial. This is based on an idea of Ditor [Dit73]. Suppose again that the

subsets of A have disjoint boundaries.

Definition 3.2. Given D ⊆
⋃
A∈A ∂A, we de�ne D(1) as the set of those a ∈ D for which the

following is true: If a ∈ ∂A and V is a neighborhood of a, then there are B,C ∈ A , both

di�erent from A, such that ∂B ∩ V ∩A ∩D 6= ∅ and ∂C ∩ V ∩Ac ∩D 6= ∅.

For every n ∈ N we recursively de�ne D(n) = (D(n−1))(1), starting from D(0) = D. Recall that if

Y is a subspace of a Banach space Z, then by a linear lifting of the quotient map π : Z −→ Z/Y we

understand a (not necessarily bounded) linear right-inverse of π. The quotient map π : Z −→ Z/Y

admits a bounded linear lifting  if and only if Y is complemented in Z, the map $(z) = z−(π(z))

being a bounded projection of Z onto Y .

Lemma 3.3. Let A be a family of subsets of K with nonempty pairwise disjoint boundaries.

Let D =
⋃
{∂A : A ∈ A }. If D(n) 6= ∅, then the norm of any linear lifting for the quotient

map π : X(A ) −→ X(A )/C(K) is at least n. Therefore, if D(n) 6= ∅ for every n ∈ N, then
C(K) is uncomplemented in X(A ).

Proof. We will �rst prove the following claim.
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Claim. Let (fA) be any family in X(A ) such that gA := fA−1A ∈ C(K) for every A ∈ A . Suppose

D(n) 6= ∅ and �x any ε > 0. Then there are di�erent sets A1, . . . , An ∈ A and signs ui = ±1 such

that

(9)

∥∥∥∥∥
n∑
i=1

uifAi

∥∥∥∥∥
∞

≥ n

2
− nε.

To obtain this we will prove by induction on 1 ≤ k ≤ n that there are di�erent sets A1, . . . , Ak,

signs ui = ±1, and a point

(10) ak ∈ D(n−k)
∖( k⋃

i=1

∂Ai

)

such that

(11) (u1fA1 + · · ·+ u1fAk)(ak) >
k

2
− kε.

First we deal with the case k = 1. Pick any a ∈ D(n) and let A1 be the set from A whose

boundary contains a. Consider the neighborhood of a,

V = {z ∈ K : |gA1(z)− gA1(a)| < ε}.

Using De�nition 3.2, we can �nd x ∈ V ∩A1 ∩D(n−1) and y ∈ V ∩Ac1 ∩D(n−1) that do not belong

to ∂A1. We have two cases:

• If gA1(a) ≥ −1/2, then fA1(x) > 1
2 − ε and we take a1 = x and u1 = 1.

• If gA1(a) ≤ −1/2, then fA1(y) < ε− 1
2 and we take a1 = y and u1 = −1.

Let us check the induction step. Suppose one has found Ai, ui for 1 ≤ i ≤ k and ak satisfying (10)

and (11). The point ak does not belong to any border ∂Ai by (10), each function 1Ai is continuous

at ak, and hence also each function fAi = gAi + 1Ai is continuous at ak. Since u1fA1 + · · ·+ u1fAk
is continuous at ak we can �nd a neighborhood V of ak disjoint from

⋃
1≤i≤k ∂Ai and such that

the value of u1fA1 + · · ·+ u1fAk at any point of V di�ers from (u1fA1 + · · ·+ u1fAk)(ak) at most

by ε/2. Let A be the set of A whose boundary contains ak. Shrinking V if necessary, we may also

assume that

|gA(ak)− gA(x)| < ε/2 for all x ∈ V.

According to De�nition 3.2 there are B,C ∈ A di�erent from A such that

(12) ∂B ∩ V ∩A ∩D(n−k−1) 6= ∅,

(13) ∂C ∩ V ∩Ac ∩D(n−k−1) 6= ∅.
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If gA(ak) ≥ −1
2 , then we take Ak+1 = A, uk+1 = 1 and ak+1 any element in the set (12), and we

get (
u1fA1 + · · ·+ ukfAk + uk+1fAk+1

)
(ak+1)

= (u1fA1 + · · ·+ u1fAk)(ak+1) + fA(ak+1)

> (u1fA1 + · · ·+ u1fAk)(ak)−
ε

2
+ gA(ak+1) + 1

>
k

2
− kε− ε

2
+ gA(ak)−

ε

2
+ 1

≥ k

2
− kε− ε

2
− 1

2
− ε

2
+ 1

=
k + 1

2
− (k + 1)ε.

The other case is that gA(ak) < −1
2 . Then we take Ak+1 = A, uk+1 = −1 and ak+1 in the set (13)

and we get (
u1fA1 + · · ·+ u1fAk + uk+1fAk+1

)(ak+1

)
= (u1fA1 + · · ·+ u1fAk)(ak+1)− fA(ak+1)

> (u1fA1 + · · ·+ u1fAk)(ak)−
ε

2
− gA(ak+1)

>
k

2
− kε− ε

2
− gA(ak)−

ε

2

>
k

2
− kε− ε

2
+

1

2
− ε

2

=
k + 1

2
− (k + 1)ε.

This �nishes the proof of the claim.

If L : X(A )/C(K) −→ X(A ) is a linear lifting for the quotient map π : X(A ) −→ X(A )/C(K),

then the functions fA = L(1A +C(K))) satisfy that fA− 1A ∈ C(K). Therefore (9) holds for some

ui and Ai, and hence

n

2
− nε ≤

∥∥∥∥∥
n∑
i=1

uifAi

∥∥∥∥∥
∞

=

∥∥∥∥∥L
(

n∑
i=1

ui(1Ai + C(K))

)∥∥∥∥∥
∞

≤ ‖L‖ ·

∥∥∥∥∥
n∑
i=1

ui(1Ai + C(K))

∥∥∥∥∥
X(A )/C(K)

= ‖L‖ · 1

2
max
1≤i≤n

|ui| =
‖L‖

2
.

Since this holds for arbitrary ε we conclude that ‖L‖ ≥ n. �

Corollary 3.4. Let A be a family of subsets of K with nonempty pairwise disjoint boundaries

such that

∂A ⊆ {∂B ∩A : B ∈ A \ {A}} ∩ {∂C \A : C ∈ A \ {A}}
for all A ∈ A . Then the exact sequence

0 −−−−→ C(K) −−−−→ X(A ) −−−−→ c0(A ) −−−−→ 0

is not trivial.
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Recall that an open set V is said to be regular if it is the interior of its closure, or equivalently

if ∂V = ∂V .

Definition 3.5. A regular tunnel is one made of regular open sets.

Theorem 3.6. If K has a regular tunnel of cardinality κ, then there exists nontrivial exact

sequence

(14) 0 −−−−→ C(K) −−−−→ Z −−−−→ c0(κ) −−−−→ 0.

Proof. We can suppose that the tunnel is nontrivial, in the sense that all borders are nonempty.

We have to prove that such a tunnel A satis�es the hypotheses of Corollary 3.4. Fix A ∈ A , and

x ∈ ∂A, and U a neighborhood of x. Since x ∈ ∂A, we have that U ∩ A is a nonempty open set,

so by the de�nition of tunnel there exists B ∈ A such that ∂B ∩ U ∩ A 6= ∅. On the other hand,

since A is a regular tunnel, x ∈ ∂A = ∂A = ∂(K \A), therefore U \A 6= ∅, and again there exists

C ∈ A such that ∂C ∩ U \A 6= ∅. �

Now we are ready to prove the theorem announced in the Introduction.

Theorem 3.7. If there is a splitting chain of clopen sets in ω∗, then there is a nontrivial

exact sequence

0 −−−−→ C(ω∗) −−−−→ Z −−−−→ c0(c) −−−−→ 0.

Proof. The �Cech-Stone remainder ω∗ has the property that every open Fσ-set is regular (this is

a consequence of the fact that every nonempty Gδ closed set has nonempty interior). Thus, if U

is a splitting chain of clopen subsets of ω∗, the countable increasing unions form a tunnel (by

Proposition 2.12) which is moreover regular. Its cardinality is |U |ω = c. �

As we will see in the next section, splitting chains of clopen sets do exist in ω∗ under some

assumptions, e.g., under CH or in the classical Cohen model, but one cannot prove their existence

in ZFC. We do not know if twisted sums like in Theorem 3.7 exist in ZFC.

In [ACSC+17], a twisted sum as above was constructed under CH. It was used to produce a

further nontrivial twisted sum

(15) 0 −−−−→ C(ω∗) −−−−→ Z −−−−→ C(ω∗) −−−−→ 0.

We do not know if such a sequence exists in any axiomatic setting other than CH. The note

[ACSC+17] pointed out that a statement made in [ACSC+13] that all exact sequences like (15) are

trivial was incorrect. It is also unknown if there are nontrivial sequences

0 −−−−→ C(ω∗) −−−−→ Z −−−−→ X −−−−→ 0,

with X of density less than c. It cannot be taken separable because C(ω∗) is \separably injective";

see [ACSC+16, Section 2.5] for this issue. We remark that if (1) is nontrivial, then so is the

\expanded" sequence

0 −−−−→ Y
(ı,0)−−−−→ Z ⊕ S π×IS−−−−→ X ⊕ S −−−−→ 0,

where, as one can guess, (ı, 0)(y) = (ı(y), 0) and (π × IS)(y, s) = (π(y), s), whichever is the space

S. In particular, any reduction of the size of c0(κ) on the right side of our exact sequences would

be an improvement of our statements.

We �nish this section with some results relating tunnel-like conditions with the existence of

twisted sums in settings di�erent than that of ω∗.
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Proposition 3.8. Suppose that there exists a continuous surjection f : K −→ L, where L is

a linearly ordered space, and a set S ⊆ L such that

f−1(s) ⊆ {x : s < f(x) ∈ S} ∩ {x : s > f(x) ∈ S}

for every s ∈ S. Then there is a nontrivial sequence

0 −−−−→ C(K) −−−−→ Z −−−−→ c0(S) −−−−→ 0.

Proof. For s ∈ S, put As = f−1(−∞, s) and then consider the family A = {As : s ∈ S}. Notice

that f−1(s) ⊆ ∂As by the assumption and ∂As ⊆ f−1(s) by continuity of f . Thus, ∂As = f−1(s)

and we can apply Corollary 3.4. �

Proposition 3.8 uni�es a number of earlier constructions of twisted sums with C(K)-spaces.

Indeed, if we take K = L = [0, 1] with the usual order, f the identity, and S is the set of dyadic

rationals, one gets the Foia�s{Singer sequence in [FS65, Theorems 3 and 4], in which the space

Γ[0, 1] corresponds to \our" X(A ). Analogously, taking K = L = {0, 1}N as the Cantor set with

the \lexicographical" order, f the identity, and S is the subset of sequences with �nitely many

ones, one obtains the exact sequence used in [ACSC+17].

Finally, a nontrivial sequence of the form

0 −−−−→ C(ωω) −−−−→ Z −−−−→ c0 −−−−→ 0

(see [CSCKY03, Section 4]) can be obtained from Lemma 3.3 as follows. We need the following

representation of ωω. We consider a reversed, signed version of Schreier family:

L =

{(
1

n1
, . . . ,

1

nk
, 0, 0, 0, , . . .

)
: ni ∈ Z, k ≤ |n1| < |n2| < · · · < |nk|

}
We put on L the lexicographical order, declaring r < s if ri < si, where i is the �rst index such that

ri 6= si. The line L is compact in the order topology. This is because the order is complete: every

subset has an in�mum and a supremum. Moreover, L is countable, hence scattered. The derivatives

can be checked to be the sets

L(d) =

{(
1

n1
, . . . ,

1

nk
, 0, 0, 0, , . . .

)
∈ L : k ≤ |n1| − d

}
.

Thus, L has height ω and L(ω) is a singleton, so L is homeomorphic to the ordinal interval [0, ωω].

Now, for s ∈ L(1), put As = (−∞, s) and de�ne A = {As : s ∈ L(1)}. Then if D =
⋃
s ∂As we

have D = L(1) and by the peculiarities of the ordering we have D(n) = L(n+1) 6= ∅ for all n and

Lemma 3.3 shows that the sequence

0 −−−−→ C(ωω) −−−−→ X(A ) −−−−→ c0 −−−−→ 0

is not trivial.

4. Splitting chains in P(ω)/fin

A set A ⊆ ω splits B ⊆ ω if |A ∩B| = |B \A| = ω. We say that a family A ⊆ [ω]ω is splitting

if for each B ∈ [ω]ω there is A ∈ A splitting B. Clearly, ω∗ has a splitting chain of clopens if and

only if there is a family C ⊆ [ω]ω which is splitting and which forms a ⊆∗-chain. We will call such

C a splitting chain. Consequently, if there is a splitting chain in [ω]ω, then ω∗ has a tunnel. It is

unclear if this implication can be reversed (see Remark 2.13).

In this section we will consider the question of the existence of splitting chains.
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We will begin with the easy observation that the existence of a splitting chain is consistent with

ZFC. Recall that (L ,R) is a pre-gap if L is ⊆∗-increasing, R is ⊆∗-decreasing and L (∗ R for

each L ∈ L and R ∈ R. We will assume that both L and R are nonempty. If C ⊆ ω is such that

L ⊆∗ C and C ⊆∗ R for each L ∈ L and R ∈ R, then we say that C interpolates (L ,R). If there

is no C interpolating (L ,R), then we say that (L ,R) is a gap.

Proposition 4.1. (See [Nyi88, Theorem 2.4].) (CH) implies that there is a splitting chain.

Proof. Enumerate [ω]ω = {Aα : α < ω1}. We will construct the desired chain inductively. Let

C0 = ∅ and suppose that we have constructed Cα for each α ≤ γ in such a way that Cα ⊆ Cβ
for each α < β ≤ γ and Aα is split by Cα+1 for α < γ. If Aγ is split by Cγ , then put Cγ+1 = Cγ .

Otherwise, let C ? = {C ∈ Cγ : Aγ ⊆∗ C} and C? = {C ∈ Cγ : Aγ ∩ C =∗ ∅ and notice that

C = C ? ∪ C?. Since there are no (ω, ω)-gaps, there is an in�nite N such that C0 ⊆∗ N ⊆∗ C1 for

C0 ∈ C? and C1 ∈ C ?. Fix any H ⊆ Aγ splitting Aγ . If N splits Aγ then let Cγ+1 = Cγ ∪ {N}. If

N ∩Aγ =∗ ∅, then let Cγ+1 = Cγ ∪ {N ∪H}. Finally, if Aγ ⊆∗ N , then let Cγ+1 = Cγ ∪ {N \H}.
If γ is a limit ordinal, then let Cγ =

⋃
α<γ Cα. �

We say that (L ,R) is a cut in a ⊆∗-chain C if it is a pre-gap, L ∪R ⊆ C and there is no

element of C interpolating it. In other words, if C ∈ C , then either R ⊆∗ C for some R ∈ R or

C ⊆∗ L for some L ∈ L .

We call a pre-gap (L ,R) tight if for each in�nite A ⊆ ω such that A ⊆∗ R for each R ∈ R,

there is L ∈ L such that L∩A 6=∗ ∅. We say that A ⊆ ω spreads a pre-gap (L ,R) if A∩L =∗ ∅
and A ⊆∗ R for each L ∈ L , R ∈ R. In other words, A spreads a pre-gap G if and only if it

witnesses that G is not tight. We say that a cut in a chain is tight if it is tight as a pre-gap.

Proposition 4.2. A ⊆∗-chain C is splitting if and only if every cut in C is tight.

Proof. Assume that (L ,R) is a cut in C which is not tight. It means that there is an in�nite

A ⊆ ω such that A ⊆∗ R and A ∩ L =∗ ∅ for each L ∈ L , R ∈ R. If C ∈ C , then either R ⊆∗ C
for some R ∈ R or C ⊆∗ L for some L ∈ L . In both cases C does not split A.

If an in�nite A is not split by C , then let L = {C ∈ C : C∩A =∗ ∅ and R = {C ∈ C : A ⊆∗ C}.
It is easy to verify that (L ,R) is a cut in C and A witnesses that it is not tight. �

We say that a pre-gap (L ,R) is of type (κ, λ) if L is of co�nality λ and R is of coinitiality κ.

Theorem 4.3 ([NV83]). There is a (ω1, ω1)-tight pre-gap if and only if p = ω1.

The above result indicates that it is quite di�cult to construct a splitting chain in general. It

is not completely trivial to obtain a single tight pre-gap, and a splitting chain has to look like a

tight pre-gap everywhere. Also, Theorem 4.3 suggests a strategy to prove that consistently there

are no splitting chains. We have to �nd a model in which p = ω2 but for some reasons every chain

has to have a cut being an (ω1, ω1)-gap. As we will see such a reason can be provided by Proper

Forcing Axiom. The following theorem was proved by Nyikos in [Nyi88].

Theorem 4.4. Assume MA(ω1) holds and there are no (ω1, ω2)-gaps. Then there is no splitting

chain.

Proof. Assume C is a ⊆∗-chain of in�nite subsets of ω and assume that ω ∈ C . If C is splitting,

then we can �nd an increasing sequence (Lα)α<ω1 of elements of C . MA(ω1) implies that if Lα ⊆∗ B
for some B, then there is B′ (∗ B such that Lα ⊆∗ B′ for each α < ω1. Using this remark one can

construct inductively a ⊆∗-decreasing chain (Rα)α<κ of elements of C such that (Lα, Rβ)α<ω1,β<κ
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forms a gap. Indeed, assume that R0 = ω and suppose that (Lα, Rβ)α<ω1,β<γ is not a gap. Then

there is B ⊆ ω interpolating it. Using, the above remark, we can �nd B′ (∗ B such that Lα ⊆∗ B′
for each α < ω1. There is C ∈ C splitting B \ B′. Clearly, C has to interpolate (Lα, Rβ)α<ω1,β<γ

and thus, we can proceed with the construction.

Now, by our assumption γ = ω1. By Theorem 4.3 (Lα, Rα)α<ω1 cannot be tight. Thus, there is

A ⊆ ω such that Lα ∩A =∗ ∅ and A ⊆∗ Rα for every α < ω1. So, A is not split by C . �

Corollary 4.5. PFA implies that there is no splitting chain.

Proof. PFA implies that the assumptions of Theorem 4.4 are satis�ed, see e.g. [Tod89, Theorem

8.6]. �

Remark 4.6. Of course Theorem 4.4 means that there is no splitting chain of clopens in ω∗. In

[Nyi88] Nyikos proved a stronger theorem: under the assumptions of Theorem 4.4 ω∗ does not have

a tunnel (cf. Remark 2.13).

In the light of the above results it is natural to ask if the existence of a splitting chain implies

CH. First, notice that the proof of Proposition 4.1 uses CH in an essential way. The reason is that,

by the classical result of Hausdor�, there are (ω1, ω1)-gaps in ZFC. So, to construct a splitting chain

by a trans�nite induction longer than ω1 we would have to keep control on the cuts appearing in

the construction at steps of co�nality ω1, to avoid a situation in which we have constructed a

non-tight gap in our chain. This seems to be a hopeless task.

What is worse, the gaps constructed by Hausdor� are indestructible, i.e. we cannot interpolate

them even extending our universe using a ccc forcing (see e.g. [Sch93, Section 2]). So, even in the

forcing constructions we have to be quite careful.

We will show two ways to avoid this problem. In the �rst construction, showing that splitting

chains exist in the standard Cohen model, we will add generically elements of the chain, ensuring

that all uncountable cuts which show up are tight and that their tightness will not be killed later

on. In the second construction we will have to change our method (as we want to have p > ω1 in

the �nal model). This time we will keep all the gaps in the constructed chain destructible. In this

way for every cut we will be able to split (generically) sets spreading it.

4.1. Splitting chains after adding Cohen reals. Let Cκ be the forcing with κ Cohen reals. We

are going to prove the following.

Theorem 4.7. If κ is of uncountable co�nality, then in V Cκ there is a splitting chain.

This result was mentioned by Nyikos in [Nyi88]. He announced that its proof would appear in

a later paper that, however, was never published.

First, we will recall the standard forcing adding a set interpolating a given gap.

Definition 4.8. Let G = (L ,R) be a pre-gap. Let PG be de�ned in the following way: p ∈ PG

if p = (Lp, Rp, sp), where

• sp ∈ 2<ω,

• Lp, Rp are �nite subsets of L and R, respectively,

• L \ |sp| ⊆ R for each L ∈ Lp and R ∈ Rp.
Denote Fp = {n : sp(n) = 1}. Now, p ≤ q if

• sq ⊆ sp,
• Lq ⊆ Lp, Rq ⊆ Rp,
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•
⋃
Lq \maxFq ⊆ Fp \maxFq ⊆

⋂
Rq.

Say that a gap G is destructible if there is a ccc forcing notion which adds a set interpolating

G . In fact, as the following fact shows, if there is a ccc forcing interpolating a gap, then the above

one would do the job, too.

Fact 4.9. ([Sch93]) A gap G is destructible if and only if the forcing PG is ccc.

Lemma 4.10. Assume that G = (L ,R) a pre-gap. Then PG adds generically a name Ṡ for a

set interpolating G . Moreover, Ṡ splits each set spreading G from the ground model. If G is

countable, i.e. |L ∪R| ≤ ω, then PG is just a Cohen forcing.

Proof. If G is a PG -generic and Ṡ is a name for
⋃
p∈G Fp, then

PG
"Ṡ interpolates G ".

Now, assume that A ∈ V spreads G . Since

Dn = {p ∈ PG : ∃m > n m ∈ Fp ∩A and ∃m′ > n m′ ∈ Fp \A}

is dense for each n,

PG
"Ṡ splits A".

Clearly, if G is countable, then PG is countable and non-atomic, so it is isomorphic to the Cohen

forcing. �

We will need one more fact. It is known that a Cohen forcing does not destroy towers (see e.g.

[Hir00, Theorem 2.5]). The argument can be easily modi�ed to show the following.

Theorem 4.11. Let G be a tight pre-gap. Adding any number of Cohen reals cannot add a

subset spreading G .

Proof. Denote by C the Cohen forcing. Assume that G = ((Lα)α<κ, (Rα)α<λ) is a tight pre-gap.

We may assume that κ and λ are regular. We will show that

C "G is tight".

Translating our task using the standard Cohen names for subsets of ω we have to show that there

is no Borel function f : 2ω −→ [ω]ω such that {x : f(x) ∩ Lα =∗ ∅} and {x : f(x) ⊆∗ Rα} are

comeager.

Indeed, suppose that such function f exists and let G ⊆ 2ω be a co-meager set such that f |G is

continuous. Fix a countable base U of 2ω. Denote

Lnα = {x ∈ G : f(x) \ n ∩ Lα = ∅}.

Since f is continuous on G, each Lnα is closed in G. By Baire theorem there is nα and Uα ∈ U

such that Uα ∩G ⊆ Lnαα . Since G is tight, it has to be uncountable and so we may assume that λ

is uncountable. Hence, we can �nd n, U and Γ ⊆ λ co�nal in λ such that n = nα and U = Uα for

every α ∈ Γ.

We have to deal with two cases.

• κ is countable. Let Rn = {x ∈ 2ω : f(x) ⊆∗ Rn}. Let R =
⋂
n∈λR

n. Then R is comeager,

since Rn is comeager for each n ∈ λ. Pick x ∈ R ∩ U ∩G and let A = f(x). Then A ⊆∗ Rn
for each n and Lα ∩ A = ∅ for each α ∈ Γ. Thus, Lα ∩ A =∗ ∅ for each α < λ and so A

spreads G , a contradiction.
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• κ is uncountable. Then, let

Rkα = {x ∈ U : f(x) \ k ⊆ Rα}.

Using the same argument as before we can �nd n′ > n, U ′ ⊆ U and Γ′ ⊆ κ co�nal in κ,

such that U ′ ∩G ⊆ Rn′α for α ∈ Γ′. Let x ∈ U ′ ∩G and let A = f(x). Then A \ n′ ∩Lα = ∅
for each α ∈ Γ and A \ n′ ⊆ Rα for each α ∈ Γ′. Therefore, A spreads G , a contradiction.

Since each set added by forcing with many Cohen reals can be added by a single Cohen real,

we are done. �

Proof of Theorem 4.7. Let V be a model with CH. We will construct an iteration (Pα)α<κ and a

sequence Ċα of names for ⊆∗-chains such that for every α ≤ κ

(1) Ċα ∈ V Pα ,

(2) Pα+1 = Pα ? PĠ , where Ġ is a name for a countable cut in Ċα, if there are countable cuts

in Ċα or Pα+1 = Pα ? C otherwise (where C is the standard Cohen forcing),

(3) Ċα+1 is the name for the chain Ċα ∪ {Ṡ}, where Ṡ is the name for a set added generically

by Pα+1,

(4) if α is limit, then Pα is the �nite support iteration of (Pξ)ξ<α and Ċα =
⋃
ξ<α Ċξ,

(5) Pα "each uncountable cut in Ċα is tight\,

(6) there are no countable cuts in Ċκ.

Let P0 be the trivial forcing and let C0 = {∅, ω}. Then we can recursively de�ne Pα and Ċα
satisfying (2) and (3), using the standard bookkeeping argument (and the fact that each countable

cut in a ⊆∗-chain can be interpolated and so there are at most c countable cuts in a ⊆∗-chain) to

satisfy also (6).

To show that the condition (5) will be satis�ed we �rst prove the following claim.

Claim. For each α < κ

(?α) Pα "each uncountable cut in Ċα is tight".

We will prove it by induction on α. First, notice that C0 does not contain any uncountable

cut, so (?0) is satis�ed trivially. Suppose that there is α ≤ κ such that (?ξ) holds for each ξ < α

and that (?α) does not hold. Since Cohen forcing cannot destroy tightness of a pre-gap (thanks

to Theorem 4.11) and it cannot add any new uncountable pre-gap (since each uncountable set of

ordinals in the Cohen extension contains an uncountable subset from the ground model), α has to

be of uncountable co�nality. Let G be an uncountable cut in Cα which is not tight and let A ⊆ ω

spreads it. Since cf(α) > ω, there is ξ < α such that Ȧ ∈ V Pξ . There is a cut G0 = (L ,R) in Cα
such that A spreads it. By the induction hypothesis G0 has to be countable. Since G is uncountable,

there is ξ ≤ β < α such that Pβ+1 = Pβ ? PH , where H is equivalent to G0 (in the sense that H

and G0 have the same family of interpolating sets). But then using Lemma 4.10 we get that Cβ+1

splits A, a contradiction. The claim is proved.

Of course the conjunction of (5) and (6) implies that

Pκ "every cut in Ċκ is tight".

and so, by Proposition 4.2 we are done. �
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4.2. Splitting chains with big p. Theorem 4.3 and Theorem 4.4 seem to suggest that the ex-

istence of splitting chains may be connected to the value of p. Indeed, if p > ω1, then a splitting

chain could not have cuts which are (ω1, ω1)-gaps (as they cannot be tight) and it is not obvious

how to avoid them in the construction. However, we will show that splitting chains can exist even

if p > ω1. The basic idea is to use iteration intertwining forcings destroying gaps from De�nition

4.8 with forcings adding pseudointersections to bases of �lters on ω.

Definition 4.12. Let F be a �lter on ω. The Mathias-Prikry forcing MF is de�ned in the

following way: p ∈MF i� p = (tp, Fp), where tp ∈ 2<ω, supp(tp)∩Fp = ∅ and Fp ∈ F . p ≤ q if
tq ⊆ tp, Fp ⊆ Fq and tp(n) = 0 whenever n ∈ (supp(tp) \ supp(tq)) \ Fq.

Recall that MF diagonalizes F (i.e. it adds a pseudo-intersection of F ; see e.g. [Mat77]).

Let κ be a regular uncountable cardinal. For the rest of this section �x two subsets Γ, Λ ⊆ κ

which form a partition of κ into co�nal subsets. In our construction, at steps from Γ we will

add sets interpolating cuts, and at steps from Λ we will diagonalize �lters. Namely, we start with a

model with GCH and perform a �nite support iteration (Qα,Pα)α<κ, where Q0 is the trivial forcing,

Qα+1 = Qα ? Pα for every α < κ. Moreover, for each α < κ the forcing Pα is either trivial or

• for α ∈ Γ it is of the form MḞ , where Ḟ is a Qα-name for a �lter generated by less than κ

sets.

• for α ∈ Λ it is of the form PĠ , where Ġ is a Qα-name for a cut in the chain {Ṡβ : β ∈
Λ ∩ α} ∪ {∅, ω}, where Ṡβ is the Qβ-name for a subset of ω added generically by Qβ.

Let Qκ be the limit of the iteration.

Note that in this de�nition we a priori assume that Qα forces {Ṡβ : β ∈ Λ ∩ α} to be a chain.

That this is the case can be shown by induction using Lemma 4.10: if α ∈ Λ∩κ, S = {Ṡβ : β ∈ Λ∩α}
forms a chain, and Ġ is a Qα-name for a cut in S , then Pα = PG adds a set Ṡα interpolating the

cut and thus Qα ? PG forces S ∪ {Ṡα} to be a chain.

In what follows we will make a cosmetic change in the de�nition of PG . At step α of the iteration,

as G ⊆ {Ṡβ : β < α} ∪ {∅, ω} and thus elements of G are naturally indexed by elements of α, the

sets Lp and Rp, for p ∈ Pα, will be subsets of [α]<ω (instead of [G ]<ω). (To avoid problems with ∅
and ω, we may assume that 0, 1 ∈ Γ and S0 = ∅, S1 = ω.)

We will prove inductively that regardless of the choice of the names for the �lters and cuts,

the forcing Qα is ccc for every α ≤ κ. We will use arguments from [Lav79]. Although Laver's

construction serves for di�erent purposes and concerns a di�erent structure, in fact we follow the

path of his proof quite strictly.

Notice that usually to prove that a �nite support iteration is ccc, one uses the preservation

theorem for �nite support iterations of ccc forcings. This time, the fact that the iterands are ccc

will be rather a conclusion of the fact that the whole iteration is ccc. Further conclusion is that all

the cuts in the generically added chain which form gaps are destructible (see Fact 4.9).

Theorem 4.13. Qα is ccc for every α ≤ κ.

To prove the theorem we will need several lemmas.

Definition 4.14. Let Rα be the set of conditions p in Qα satisfying the following properties:

(1) p|β decides (Lp(β), Rp(β), sp(β)) for β ∈ Λ∩supp(p) and p|β decides tp(β) for β ∈ Γ∩supp(p),

(2) for each β, γ ∈ Λ ∩ supp(p) we have max(sp(γ)) = max(sp(β)) (in such case denote this

maximum by `p),
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(3) for each β ∈ Λ ∩ supp(p) we have Lp(β) ∪Rp(β) ⊆ supp(p).

The following simple lemma says that we may work only with conditions in Rα.

Lemma 4.15. For each α the set Rα is dense in Qα.

Proof. We will prove it inductively on α. Since the iteration is of �nite support, the limits steps

are obvious. Let α < κ and consider p ∈ Qα+1. Denote q = p|α. Find q′ ≤ q so that

• q′ decides p(α),

• Lq′(α) ∪Rq′(α) ⊆ supp(q′),

• max(sq′(β)) > max(sp(α)) for some β ∈ supp(q′).

Use the inductive hypothesis to �nd r ≤ q′, r ∈ Rα. Now, notice that there is s such that max(s) =

`p and r_(Lp(α), Rp(α), s) ≤ r_(Lp(α), Rp(α), sp(α)). Indeed, the existence of such s follows from the

fact that `p ≥ max(sα) and Lp(α) ∪ Rp(α) ⊆ supp(r) (and so sα can be appropriately extended).

Clearly, r_(Lp(α), Rp(α), s) is in Rα. �

Lemma 4.16. Let p ∈ Rα. If β, γ ∈ supp(p) ∩ Λ, β < γ and p  Ṡβ ⊆∗ Ṡγ (p  Ṡγ ⊆∗ Ṡβ), then
there is r such that

• supp(r) = supp(p) and sr(δ) = sp(δ) for each δ ∈ supp(p) ∩ Λ, tr(δ) = tp(δ) for δ ∈
supp(p) ∩ Γ,

• β ∈ Lr(γ) (β ∈ Rr(γ)).

Proof. Assume that p  Ṡβ ⊆∗ Ṡγ (the other case is clearly symmetric). We will prove the lemma

by induction on α. The limit step is obvious so assume that α < κ and consider α + 1's step. We

may assume that γ = α.

Notice that p|α  Ṡβ ⊆∗ Ṡα. Hence, for each δ ∈ Rp(α) we have p|α  Ṡβ ⊆∗ Ṡδ. By inductive

hypothesis used Rp(α) many times we may �nd q ≤ p|α as in the lemma, such that β ∈ Lq(δ) or

δ ∈ Lq(β) for every δ ∈ Rp(α). Finally, let

r = q_(Lp(α) ∪ {β}, Rp(α), sp(α)). �

Lemma 4.17. Let p, q ∈ Rα be such that `p = `q and sp(β) = sq(β) for each β ∈ Λ ∩ supp(p) ∩
supp(q) and tp(β) = tq(β) for β ∈ Γ ∩ supp(p) ∩ supp(q). Then there is r ≤ p, q.

Proof. As before, we will prove it inductively on α. In fact, to make induction work, we will prove

a stronger statement: we show that under the above conditions there is r ≤ p, q such that r ∈ Rα
and `r = `p.

Again, the limit step is clear, so let α < κ and consider p, q ∈ Qα+1. De�ne r′ in the following

way:

• if supp(p|α) is empty, then let r′ = q|α,

• if supp(q|α) is empty, then let r′ = p|α,

• if both of the supports are non-empty, then let r′ be given by the inductive hypothesis for

p|α and q|α.

We may assume that α ∈ supp(p), otherwise r = r′_q(α) will be as desired. Similarly, we assume

that α ∈ supp(q).

Suppose �rst that α ∈ Γ. Then it is enough to take

r = r′_(tp(α), Fp(α) ∩ Fq(α)).
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If α ∈ Λ, then notice that

r′  Ṡβ ⊆∗ Ṡγ for each β ∈ Lp(α) ∪ Lq(α), γ ∈ Rp(α) ∪Rq(α).

Indeed, if β ∈ Lp(α) (β ∈ Lq(α)) and γ ∈ Rp(α) (γ ∈ Rq(α)), then β, γ ∈ supp(p|α) (β, γ ∈ supp(q|α))

and so p|α (q|α) forces that Ṡβ ⊆∗ Ṡγ .

Notice that extending r′ in the obvious way on α would give us a condition stronger than p and

q but not necessarily in Rα. To ful�l condition (3) of De�nition 4.14 we have to apply subsequently

Lemma 4.16 to �nd r′′ ≤ r′ such that

• for every β ∈ Lp(α) ∪ Lq(α) and every γ ∈ Rp(α) ∪Rq(α) we have β ∈ Lr(γ) or γ ∈ Rr(β).
• supp(r′′) = supp(r′) and sr′′(β) = sr′(β) for each β ∈ supp(r′).

Take r = r′′_(Lp(α) ∪ Lq(α), Rp(α) ∪Rq(α), sp(α)). �

Now, we are ready to prove Theorem 4.13.

Proof. (of Theorem 4.13) Suppose that P is an uncountable subset of Qα. We may assume that

P ⊆ Rα, that `p = `q for each p, q ∈ P and, �nally, that the supports of elements in P form a

∆-system with a root R. Again, shrinking P if needed, we may assume that for each p, q ∈P we

have sp(α) = sq(α) for α ∈ R ∩ Λ and tp(α) = tq(α) for α ∈ R ∩ Γ. Now, use Lemma 4.17. �

Theorem 4.18. The existence of a splitting chain is consistent with p = κ for each regular

uncountable κ.

Proof. Assume that Ȧ is a Qα-name for an in�nite subset of ω. If it is not split by the chain {Ṡβ : β <

α}, then let L = {β : Ṡβ ∩ Ṙ =∗ ∅} and R = {β : Ṙ ⊆∗ Ṡβ}. Let G = ({Ṡβ : β ∈ L}, {Ṡβ : β ∈ R}).
By Theorem 4.13 the forcing PG is ccc and it adds a generic set Ṡ ⊆ ω interpolating G . Moreover,

by Lemma 4.10, Ṡ splits Ȧ.

Using this remark, we can apply the standard bookkeeping machinery over all the Qα-names,

α ∈ Λ, for in�nite subsets of ω to ensure that all of them will appear as a subset de�ning a cut as

above which will be used to de�ne Pα for some α ∈ Λ (if at step α the subset is already split by

the previously constructed chain, then let Pα be the trivial forcing).

Simultaneously, we apply the bookkeeping over all the Qα-names, α ∈ Γ, for �lters generated

by less than κ sets to ensure that all of them will be diagonalized in the process of iteration. �
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