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ABSTRACT. We show that every essentially countable orbit equivalence relation induced
by a continuous action of a Polish group on a Polish space is o-lacunary. In combination
with [4] we obtain a straightforward proof of the result from [3] that every essentially
countable equivalence relation that is induced by an action of abelian non-archimedean
Polish group is Borel reducible to Ey, i.e., it is essentially hyperfinite.

We say that an equivalence relation £ on a Polish space X is Borel reducible to an
equivalence relation F' on a Polish space Y, and write £ <p F', if there is a Borel map
¥+ X — Y such that

(r,y) € £ & ((x),9¥(y)) € F

for every x,y € X. An equivalence relation F' on Y is countable if |[y|p| < Ry for every
y € Y. We follow [10] and say that an equivalence relation F on a Polish space X

(A) is essentially countable if there is a countable Borel equivalence relation F' on some
Polish space Y such that &/ ~p F',ie., EE<gp Fand F <p F,
(B) admits a Borel countable complete section if there is a Borel set B C X such that
[Blg = X and |B N [z]g| <N for every x € X.
If we assume that F is a Borel equivalence relation, then (B) = (A) by the Lusin—Novikov
Theorem, see [7, Theorem 18.10].

Let G ~ X be a continuous action of a Polish group G on a Polish space X. We denote
as EX the orbit equivalence relation defined as (z,y) € Ef < (g€ G)g-z = v.
If we have such an action, then we say that X is a Polish G-space. It follows from [10,
Theorem 3.6] that if EY satisfies (A), then EX satisfies (B). It is natural to ask if we can
find a Borel countable complete section with additional properties. Following [12] we say
that EJ is

(C) o-lacunary if there are sequences of Borel sets {B,}n<. and {V,,},<, such that

U<, Br is a countable complete section of EZ, V., C G is an open neighbourhood
of 1¢ and B, is V,,-lacunary for every n € N, i.e., if g - x = y for some g € V,, and
x,y € B, then z = y.
It follows from [9] that in the case when G is a locally compact Polish group, then (A) and
(C) are equivalent. Main result of this paper is the following statement.

Theorem 0.1. Let G be a Polish group, X be a Polish G-space and suppose that EX is
essentially countable. Then EJ is o-lacunary.
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There are some other similar concepts in the literature. Following [10], we say that

(D) EZ is reducible to countable if there is a countable Borel equivalence relation F on
some Polish space Y such that B <p F,

(E) EX admits countable invariants if there is a Polish space Y and a Borel map ¢ :
X — Y such that [p([z]gx)| < N for every z € X and o([z]gx) N o([y]gx) = 0

whenever (x,y) ¢ EX (see [6, Section 7.6.]).

Next we summarize what is known about these concepts. It is easy to see that (A) = (D)
= (E) and (C) = (B). Moreover, (A) and (D) implies that EY is Borel. If we suppose
that E¥ is a Borel equivalence relation, then (E) = (D) by [6, Lemma 7.6.1.]. Altogether,
combination of Theorem 0.1 and the discussion above yields that, if E& is Borel, then all
the concepts are equivalent.

In fact, we show that if EX satisfies (E), then EX is Borel and satisfies (C). As a corollary
we get

(A) = (D) & (E) = (C) = (B)

without assuming that EF is Borel.

1. APPLICATION

Let G be a Polish group and X be a Polish G-space. Suppose that EJ satisfies (A). It
is natural to ask if there is a connection between properties of G and the position of EX in
the Borel reducibility among countable Borel equivalence relations. For example, we say
that EY is essentially hyperfinite if EX ~p F where F is a countable Borel equivalence
relation induced by a Borel action of Z. Variations of the following question appeared in

[3, Conjecture 8.4] or [6, Question 5.7.5].

Question 1.1. Let EX be an essentially countable orbit equivalence relation induced by a
continuous action of an abelian Polish group G on a Polish space X. Is it true that EX
1s essentially hyperfinite?

The answer is affirmative in the case when the abelian Polish group G is discrete, see [4],
non-archimedean, see [3], and locally compact, see [2].

Next result is derived directly from Theorem 0.1, we note that it is a variation on [5,
Theorem 7.3].

Theorem 1.2. Let G be a non-archimedean Polish group that admits two-sided invariant
metric and X be a Polish G-space. Suppose that EX is essentially countable. Then there is
a sequence of open normal subgroups { Ny, }nen and a continuous actions H,, = G/N, ~ X,
where X, is a Polish space such that

X Xn
EY <s PE;"
neN

First we need a variation of an unpublished result of Conley and Dufloux, see [10,
Theorem 3.11]. They considered locally compact groups but not necessarily with two-
sided invariant metric.
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Lemma 1.3. Let G be a Polish group that admits a two-sided invariant metric and X be
a Polish G-space such that EX is a Borel equivalence relation. Let V C G be an open
symmetric conjugacy-invariant neighbourhood of 1 and B C X be a Borel V-lacunary
complete section of E5, i.e., g-x =1y for g €V and x,y € B implies that x = y. Then
there is C 2 B a Borel V-lacunary complete section of E5 such that V*.C = X.

Proof. Fix some countable dense subset {g;};en € G. Let Cy = B and define inductively
Ciy1=C;U(g;-Ci \'V - C;). We claim that C' = J,.y C; works as required.

First note that C; is a countable section for every ¢+ € N. We show by induction that C;
is Borel for every ¢ € N. If ¢ = 0, then it follows from the assumption on B. Suppose that
C; is Borel.

Claim. The set T, ={(g-z,2) e X x X :x € C; & g € V'} is Borel .

Proof. The assumption that E3 is Borel together with [1, Theorem 7.1.2] gives that the
assignment y — stab(y) = {g € G : g-y = y} is Borel. Note that stab(y) is non-empty
closed subset of G and by [7, Theorem 12.13] there is a Borel map y — (g;,);jen such that
(9j4)jen is dense subset of stab(y) for every y € X. We claim that the relation

Ry={(y,2) e XxX:3geVgo=yt={(g-z,x) e XxX:zeX&geV}

is Borel. It is clearly analytic by the definition. We show that the complement is analytic
as well, we have

(v,0) ¢ By & (1,0) ¢ BS VEREGh-s—y A VjEN gy hg V).
Finally, note that T; = X x C; N Ry. O

It is easy to see that 7 has countable vertical sections. This is because (1;), = {z €
X :(y,z) € i} € C;N [ylpx for every y € X and we know that C; is a countable section.
By Lusin—Novikov Theorem [7, Theorem 18.10] we have that V' - C;, which is equal to the
projection of T; to the first coordinate, is a Borel set and so is the set C;;;. This gives
immediately that C' is Borel.

Suppose that x € X. Then there is y € Cy, h € G and ¢ € N such that h -y = x and
h=t.g; € V. Let z = g;-y. Then either z € C;,; and therefore x € V - 2, or there is 2, € C;
such that z € V - 2y and then we have z € V2 - z,. This shows that X = V?.C.

It remains to show that C' is V-lacunary. We show by induction that C; is V-lacunary
for every ¢« € N. It clearly holds for + = 0. Let z,y € C;1; and suppose that y € V - x.
If x,y & C;, then there is xg,yy € C; such that g; - xg = x and g¢; - yo = y. Then we have
Yo € ;' -V -gi-m9 =V -3y because V is conjugacy invariant and therefore x = y by
the inductive assumption. If x € C;, then y € C; by the definition of C;,;. Again, the
inductive assumption gives x = y and that finishes the proof. Il

Proof of Theorem 1.2. Using Theorem 0.1 we get sequences { By, }neny and {V, }nen where
B, is V,-lacunary Borel section and V,, is an open neighbourhood of identity. By the
assumption on G we find N,, C V,, an open normal subgroup and by Lemma 1.3 X,, O B,
an N,-lacunary Borel section such that N2 - X,, = N,, - X,, = [B,,] EX for every n € N.
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For each n € N, (gN,,) € H, = G/N,, and = € X,, define (¢N,,) x  to be the unique
element of X, in g-N,,-x. It follows from the maximality and N,-lacunarity of X,, that this
is a well-defined map and it can be easily verified that it is an action H,, ~ X,,. Moreover,
it follows from Lusin-Novikov Theorem [7, Theorem 18.10] that the action is Borel for
every n € N. Another use of Lusin—Novikov Theorem [7, Theorem 18.10] gives the desired
reduction. O

Corollary 1.4. [3] Let G be an abelian non-archimedean Polish group and X be a Polish
G-space such that EF is essentially countable. Then EF is essentially hyperfinite.

Proof. This is a combination of Theorem 1.2 and [4, Corollary 8.2]. U

2. Proor orF THEOREM 0.1

Let X be a Polish space and F' an equivalence relation on X. We denote as [z|r the
F-equivalence class of x € X. Let G be a Polish group that acts continuously on a Polish
space X and EZ be the corresponding orbit equivalence relation on X. We denote the
o-ideal of meager subsets of G as Mg. For A C X we define G(z,A) ={ge G:g-z € A}
and B4 = EX | A x A.

We say that C' C X is a G-lg (G-locally globally) comeager set if G\ G(z,C) € Mg for
every x € X. Using the category quantifier V*, for comeager many, this can be equivalently
stated as

Vee X VgeG (g-zeC).

Note that the collection of G-lg comeager sets is closed under supersets and countable
intersections. If G is countable, then the only G-lg comeager set is X. Even though we
do not need it here, we remark that it follows from [7, Theorem 8.41] that if C' C X is a
Borel G-lg comeager set, then C' is comeager in X. This might serve as an explanation for
the word “globally” in the definition. More generally, a Borel set C' C X is G-lg comeager
if and only if it is comeager in every finer Polish topology on X such that the action of G
is continuous.
Next we collect the technical statements that we need in the proof.

Proposition 2.1. Let C C X be a Borel G-lg comeager set. Then ES ~p E5 .

Proposition 2.2. Let F C EX be a Borel equivalence relation on X such that each E} -
class contains at most countably many F'-classes. Then there is a Borel G-lg comeager set
C C X such that G(z,C N [z]|F) is relatively open in G(z,C) for every x € C, i.e., for
every x € C there is V C G open neighbourhood of 1 such that V -x N C C [z|pNC.

Proposition 2.3. Let F C EX be a Borel equivalence relation on X such that each E} -
class contains at most countably many F-classes. Then EZ is Borel.

Proposition 2.4. [7, Theorem 18.6][8, Theorem 18.6*][11, Proof of Lemma 3.7] Let Y, X
be standard Borel spaces and P CY x X be Borel with A = projy (P). Lety € A I, be
a map assigning to each y € A a o-ideal of subsets of P, such that:
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(i) For each Borel R C P, there is a 31 set S CY and a I1} set T CY such that
yeA = [Ryel, & yesS & yeT),
(i) ye A= P, &1,

Then there is a Borel uniformization of P and, in particular, A is Borel.

Proof of Theorem 0.1. Suppose that EJ satisfies (E). We show that EX is Borel and sat-
isfies (C).

Let o : X — Y be as in (E). Define F = (p~! x o7 1) (=y), i.e., (z,y) € F if and only
if p(z) = ¢(y). Then it follows from (E) that F' is a Borel equivalence relation and every
E&-class contains at most countably many F-classes. By Proposition 2.3 we have that
EZ is Borel and by Proposition 2.2 we find a Borel G-lg comeager set C' C X such that
G(z,C N [x]F) is relatively open in G(z,C) for every z € C.

Next we want to apply Proposition 2.4. Define P CY x X as P = {(¢(z),z) : x € C},
A = projy (P) and the assignment p(z) € A — I,,) as

Bel,. < G(z,BNCN[z]p) € Mg

where z € C'and B C C'N [z]p.

We verify the assumptions of Proposition 2.4. It is easy to see that P is a Borel set
because it is just the reversed graph of the Borel function ¢ [ C': C' = Y. Let x,y € C
such that (z,y) € F, i.e., p(z) = p(y). Especially, there is g € G such that g - = = y. Let
B C CNz]r. Note that G(y, BNCN|[z|p)-g = G(x, BNCN[z]|r). This implies that the
assignment p(x) € A I, () is well-defined and it is easy to see that I, is an o-ideal of
subsets of P, ;) for every € C. Moreover, since V-2 NC C C N [z]p = P,) for some
open set 1g € V C G and C'is G-1g comeager we have that P,y & I,() for every x € C.
It remains to show that (ii) in Proposition 2.4 holds as well. To this end pick a Borel set
R C P. Define the set R’ as

R ={(r,s) e X x X :r,se€C & (p(r),s) € R}.
Note that R’ is Borel and we have R, = R whenever ro,r; € C such that (rg,r) € F.
Then for r € C' we have
(*) Ry € Iy & G(r, Ry N CNirlrp) € Mg < G(r, R;) € Mg
because R,y = R, € C N [r|p. It follows from [7, Theorem 16.1] together with (*) that
the sets
Zy={reC:G(r,R)eMct & Z,={reC:G(r,R,) & Mg}

are Borel and F' [ C' x C-invariant. Set S = ¢(Zy) and T =Y \ ¢(Z;). Then S C Y is X}
and T C Y is IT} because ¢ is a Borel map and the rest follows again from (*).

Having verified the assumptions of Proposition 2.4, we get that the set A is Borel and
there is a Borel map f: A — C such that (y, f(y)) € P for every y € A. It is easy to see
that (f(y), f(z)) € F for every y # z € A because ¢(f(y)) = y for every y € A by the
definition of P. Especially, f is injective and po f : A — A is the identity on A. It follows
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that D = f(A) C C is a Borel countable complete section of EX and a transversal of the
equivalence relation F' | C' x C' on C.
Pick any decreasing sequence {V}, },en of open neighbourhoods of 14 such that {15} =
Mnen Voo Define
B,={xe€eD:V,-znC Cz|r}.

We claim that {B,}n,en and {V,,}nen is the sequence from (C). It follows from the fact
that G(z,C N [z]p) is relatively open in G(z,C') for every x € C together with the fact
that D C C that D = UneN B,,. The definition of B,, together with the fact that D is a
transversal of F' | C' x C' implies that if g - x = y for some g € V,, and z,y € B,, then
x = y. It remains to show that B, is Borel for every n € N. To see this first note that the
set

C,={(z,9) e DxV,:(x,9-x) € F}
is Borel because F' and D are Borel sets. Then we have

By ={xeD:(VgeV,)(z,g)€Cn}

and the set on the right-hand side is Borel by [7, Theorem 16.1]. This finishes the proof. [

3. TECHNICAL PROOFS

Proof of Proposition 2.1. Define D = {(z,9) € X x G : g-x € C}. Then D is a Borel set,
projyx (D) = X and D, ¢ Mg for every z € X. By [7, Theorem 18.6] or Proposition 2.4
there is a Borel function f : X — G such that (z, f(x)) € D for every x € X. The function

Pla)= f(z) -
is the desired Borel reduction from EJ to ES. O

Proof of Proposition 2.2. Let {V,}nen be an open basis at 1 made of symmetric sets such
that V11 - Vi1 C V. Define

C={reX: (IneN)WMgeV,) (v,9-2) € F}.

It follows from [7, Theorem 16.1] that C is a Borel set. Let x € C' and n € N such that
(x,g-x) € F for comeager many g € V,,. Take g € G(z,C) N V,,41. Then we have that
Vos1-g C 'V, and therefore (x,h-g-z) € F for comeager many h € V,,;1. By the choice of g
we have that g-z € C and by the definition of C' we find n’ € N such that (¢g-z,h'-g-z) € F
for comeager many h' € V,,. This shows that (z,¢-x) € F and as a consequence that
G(z,C N z]p) is relatively open in G(z, C).

It remains to show that C' is G-lg comeager in G. Suppose that there is z € X such
that G(x,C) is not comeager. By [7, Theorem 8.26] there is an open set U C G such that
G(z,C) is meager in U. Let {f;};en be an enumeration of the F-classes that are subset of
[z]px. Define D; = G(z, ;). It follows that D; has the Baire property for every ¢ € N and
that U C (J;cy Di- Another use of [7, Theorem 8.26] gives an open set V' C U and i € N
such that D; is comeager in V. In another words h - x € §; for comeager many h € V.
Pick ¢ € (VN D;)\ G(z,C) and n € N such that V,, - ¢ C V. Then we have that D; is
comeager in V,, - g and g - x € §;. This shows that there are comeager many h € V,, such
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that (g -x,h-g-x) € F. That is a contradiction with g & G(z,C) and that finishes the
proof. O

Proof of Proposition 2.3. Let C' C X be as in Proposition 2.2. We claim that
(1) (x,9) € ES < (F(a,0) e G xG) (a-z,b-y) €F

for every z,y € C.

Let z,y € C. If x,y satisfies the right-hand side of (1), then (z,y) € ES because
F C EZ. Suppose, on the other hand, that (z,y) € ES. By the definition of ES and C
we find an open set 1o € V C G and g € G such that g-x =y and V-yNC C [y]rNC.
Note that W = G(y,V -y N C) = VN G(y,C) is nonmeager and a -y € [y|p for every
a € W. The set W - g x W is nonmeager in G x G. Let (a-g,b) € W-g x W. Then we
have a-g-x=a-y € [y]pNC and b-y € [y]r N C by the definition of WW. This shows that
x,y satisfies the right-hand side of (1).

It remains to show that the right-hand side of (1) defines a Borel set. The set

R={(z,y,9,h) e CxCxGxG:(g-x,h-y)€F}

is Borel because F' is a Borel equivalence relation and C' is a Borel set. This implies by
7, Theorem 16.1] that ES is a Borel equivalence relation and Proposition 2.1 finishes the
proof. O
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