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Abstract

We show that the Euler system of gas dynamics in Rd, d = 2, 3, with positive far field density and arbitrary far
field entropy, admits infinitely many steady solutions with compactly supported velocity. The same proof yields a
similar result for the incompressible Euler system with variable density. In particular, these are examples of global
in time smooth (non-trivial) solutions for the corresponding time-dependent systems.
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1 Introduction

In the recent work [4], Gavrilov showed that there exists a compactly supported non-trivial velocity
field U ∈ C∞

c (R3;R3) solving the steady incompressible Euler equations

(1)

{
U · ∇xU + ∇xP = 0

divxU = 0 .

A different proof of this fact, based on the Grad-Shafranov ansatz from plasma physics, was given
by Constantin, La and Vicol [3]. In addition, the solution enjoys a remarkable orthogonality
relation:

(2) U · ∇xP = 0.

The result of Gravilov may seem surprising at the first glance as the Euler system (1), due
to non-locality (by Biot-Savart law), is not expected to admit compactly supported velocity field,
even when its vorticity is compactly supported. On the contrary, this property is known in the
two-dimensional case, where a typical example is the Rankine vortex (see Section 2.2 of [5]):

u = (u1, u2)(x1, x2) , u1 = −x2Ψ(|x|2) , u2 = x1Ψ(|x|2) ,
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where Ψ is an arbitrary smooth function.
Moreover, observe that, if % = %(|x|) is a radially symmetric smooth function, with % ≥ 0, it

is easy to check that

(3) divxu = 0 , divx(%u) = ∇x% · u = 0

and that, if in addition Ψ vanishes in a neghbourhood of origin, it is possible to find a suitable
radially symmetric function π = π(|x|) such that

(4) %u · ∇xu = −%(|x|)Ψ2(|x|2)x = −∇xπ(|x|) .

Consequenly, the couple [%,u] thus constructed solves the steady non-homogeneous incompressible
Euler system (3), (4). Note that % can be an arbitrary non–negative C1 function, vacuum is
allowed and % may be even unbounded for |x| → ∞.
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2 Stationary solutions of the Euler system of gas dynamics

The stationary solutions to the (complete) Euler system of gas dynamics satisfy the following
system of equations:

(5)


divx(%u) = 0,

divx(%u⊗ u) +∇xπ(%, s) = 0

divx
(
%su

)
= 0

, x ∈ Rd , d = 2, 3 ,

where % is the mass density, u the velocity, s the entropy, and π = π(%, s) the pressure, see e.g.
Chapter 13 of [1] for details. There are various possibilities for choosing the state variables for
this problem. As we are interested in smooth solutions, the specific choice plays no role. For the
sake of simplicity, we consider the equation of state of polytropic gases:

(6) π(%, s) = %γ exp(as) , γ > 1 , a > 0 .

More general state equations can be handled in a similar manner.
As the problem is posed on the whole space Rd, the far field conditions must be prescribed.

It can be seen, by a straightforward modification of the argument by Chae [2, Theorem 1.1], that
all solutions of (5) with compactly supported velocity field and integrable pressure,

π(%, s) ≥ 0 ,

∫
Rd

π(%, s) dx <∞ ,

must be trivial, meaning u = 0. Indeed multiplying the momentum equation in (5) on x and
integrating by parts yields ∫

Rd

(
%|u|2 + π(%, s)

)
dx = 0 .
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Accordingly, we focus on positive far field values of the density and arbitrary constant values of
the entropy:

(7) u→ 0 , %→ %∞ > 0 , s→ s∞ ∈ R as |x| → ∞ ,

where %∞ > 0 and s∞ ∈ R are given constants.
We remark that the same argument as the previous one can be used for the incompressible

system (1), to show that the pressure P satisfies

(8) P (x) < P∞ ≡ lim
|y|→∞

P (y) for any x ∈ O − a non–empty open subset of R3 .

As observed by Gavrilov [4], if U is a compactly supported velocity field solving the homoge-
neous incompressible Euler system (1), (2) with a pressure P , and Ψ ∈ C1

c (R), then u = Ψ(P )U
satisfies

(9) divxu = 0 , u · ∇xu + Ψ2(P )∇xP = 0 , u · ∇xP = 0 in R3 .

We focus on Ψ ∈ C1
c (R) such that

(10) supp[Ψ] = (b, P∞) , b ≤ inf
x∈Rd

P (x) .

In view of (8), we have that u = Ψ(P )U 6≡ 0.
Now, given (9), we look for the density and entropy in the form % = %̃(P ), s = s̃(P ), for

suitable %̃, s̃ ∈ C1(R). Obviously,

divx(%u) = %̃′(P )∇xP · u + %̃(P )divxu = 0 , divx(%su) = (%̃s̃)′(P )∇xP · u + %̃s̃(P )divxu = 0 ,

while the momentum equation yields

divx(%u⊗ u) + %̃(P )Ψ2(P )∇xP = 0 .

Therefore, seeing that

∇xπ(%, s) = ∂%π
(
%̃(P ), s̃(P )

)
%̃′(P )∇xP + ∂sπ

(
%̃(P ), s̃(P )

)
s̃′(P )∇xP ,

we adjust %̃, s̃ so that they solve

(11)
d

dz
π
(
%̃(z), s̃(z)

)
= %̃(z)Ψ2(z), %̃ = %0 ≥ 0, s̃ = s0 for z ≤ b, %̃(P∞) = %∞, s̃(P∞) = s∞ .

In accordance with the pressure law (6), we have ∂%π > 0 and ∂sπ > 0 whenever % > 0; whence
it is easy to see that (11) admits infinitely many different solutions. In particular, for any given
%̃ ∈ C3(R), s̃ ∈ C3(R) such that

%̃ = %0 > 0 for z ≤ b , %̃ = %∞ for z ≥ P∞ , %̃′(z) > 0 for z ∈ (b, P∞)

s̃ = s0 for z ≤ b , s̃ = s∞ for z ≥ P∞ , s̃′(z) ≥ 0 for z ∈ (b, P∞) ,
(12)

we may fix

Ψ(z) =

(
1

%̃(z)

d

dz
π
(
%̃(z), s̃(z)

)) 1
2

.

Thus, the triplet
[
% = %̃(P ), s = s̃(P ),u = Ψ(P )U

]
is the desired stationary solution. We have

shown the following result.
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Theorem 2.1 (Stationary solutions for the full Euler system). Suppose that the pressure satisfies
the equation of state (6). Let [U, P ] be a smooth solution of the system (1), (2) in R3 with
compactly supported velocity field U.

Then any triplet
[
% = %̃(P ), s = s̃(P ),u = Ψ(P )U

]
, with %̃, s̃, Ψ satisfying (10), (11), is a

smooth solution of the full Euler system (5), (6), with the far field conditions (7). In particular,
for any given far field conditions %∞ > 0, s∞ ∈ R, the Euler system (5), (6), (7) admits infinitely
many smooth solutions satisfying

u = 0 , % = %∞ , s = s∞ outside a bounded ball in R3 .

The choice s̃ = s∞ in (12) yields the result for the isentropic system. In addition, in this case
we get solutions satisfying

divxu = 0 , u · ∇x% = 0 .

In particular, they also solve the non-homogeneous incompressible Euler system (3), (4) in R3.
Finally, we point out that a similar construction for d = 2 is possible, with the Rankine vortices
replacing Gavrilov’s solution.

To conclude, we remark that smooth stationary solutions are, of course, global in time smooth
solutions of the corresponding evolutionary Euler system.
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