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Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic, email:
medkova@math.cas.cz

Abstract: We study classical solutions of the Robin problem for the Brinkman
system and for the Darcy-Forchheimer-Brinkman system in a bounded domain with
Ljapunov boundary.

Keywords: Brinkman system; Darcy-Forchheimer-Brinkman system; Robin
problem; classical solution

1. Introduction

The paper is devoted to classical solutions of the Robin problem for the Darcy-
Forchheimer-Brinkman system

(1.1) ∇p−∆v + λv + a|v|v + b(v · ∇)v = F, ∇ · v = ψ in Ω,

(1.2) T (v, p)nΩ + hv = g on ∂Ω.

Here Ω ⊂ Rm is a bounded domain with Ljapunov boundary, λ is a positive number,
a, b and h are Hölder continuous functions with h ≥ 0. The stress tensor T (v, p)
corresponding to the velocity v and the pressure p is given by

T (v, p) = 2∇̂v − pI, ∇̂v =
1
2
[∇v + (∇v)T ].

The Darcy-Forchheimer-Brinkman system describes flows through porous media
saturated with viscous incompressible fluids, where the inertia of such fluids is not
negligible. The constants λ, b > 0 are determined by the physical properties of a
porous medium. (For further details we refer the reader to the book [27, p. 17] and
the references therein.)

Boundary value problems for the Darcy-Forchheimer-Brinkman system have
been extensively studied in the recent years. The papers [7], [8], [12], [17], [22]
and [25] concern the Dirichlet problem for the Darcy-Forchheimer-Brinkman sys-
tem. The papers [1], [2], [10] and [13] are devoted to transmission problems that
include the Darcy-Forchheimer-Brinkman system. M. Kohr at al. discussed in [11]
the problem of Navier’s type for the Darcy-Forchheimer-Brinkman system. The
mixed Dirichlet-Robin problem and the mixed Dirichlet-Neumann problem for the
Darcy-Forchheimer-Brinkman system (1.1) with b = 0 and ψ = 0 are studied in
H3/2(Ω,R3) × H1/2(Ω) (see [11] and [9]). Here Ω ⊂ R3 is a bounded creased do-
main with connected Lipschitz boundary. The paper [11] investigates the Robin
problem (1.1), (1.2) with b = 0 and ψ = 0 in the space Hs(Ω,Rm) × Hs−1(Ω),
where 1 < s < 3/2 and Ω ⊂ Rm is a bounded domain with connected Lipschitz
boundary, m ∈ {2, 3}. The paper [24] is devoted to the Robin problem (1.1), (1.2)
in the Sobolev space W 1,q(Ω; Rm) × Lq(Ω), where Ω ⊂ Rm is a bounded domain
with Lipschitz boundary, m ∈ {2, 3}, and 3/2 < q ≤ 3.

We begin with the Brinkman system

(1.3) −∆v + λv +∇p = f , ∇ · v = ψ in Ω
1
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with the boundary condition (1.2). This problem has been studied in many pa-
pers, especially for h ≡ 0 (i.e. the Neumann problem for the Brinkman sys-
tem). If Ω ⊂ Rm is a bounded domain with connected Lipschitz boundary and
g ∈ L2(∂Ω; Rm) then there exists a unique solution of the Neumann problem for
the homogeneous Brinkman system in the sense of non-tangential limit. (See [3],
[9], [16], [28].) (Remark that v ∈ W 1,2(Ω; Rm) and p ∈ L2(Ω) for such solu-
tion (v, p).) If Ω ⊂ Rm is a bounded domain with connected Lipschitz bound-
ary, s ∈ (0, 1), h ∈ L∞(∂Ω), h ≥ 0, g ∈ Hs−1(∂Ω; Rm), ψ ∈ Hs−1/2(Ω) and
f ∈ Hs−3/2(Rm; Rm) is supported on Ω, then there exists a unique solution of the
problem (1.3), (1.2) in Hs+1/2(Ω; Rm) × Hs−1/2(Ω). (See [11], [12].) The papers
[29], [30] prove the unique solvability of the Neumann problem for the Brinkman
system in W 2,q(Ω; Rm) ×W 1,q(Ω) for a bounded domain Ω ⊂ Rm with boundary
of class C2,1. The paper [24] is devoted to the Robin problem for the Brinkman
system in Sobolev spaces W 1,q(Ω; Rm)×Lq(Ω) on a bounded domain Ω ⊂ Rm with
Lipschitz boundary. Here one of the following three conditions is fulfilled: 1) q = 2;
2) ∂Ω is of class C1 and 1 < q <∞; 3) 2 ≤ m ≤ 3 and 3/2 ≤ q ≤ 3.

We study by the integral equation method the Robin problem for the homo-
geneous Brinkman system (1.3), i.e. for f ≡ 0 and ψ ≡ 0. For this reason we
define a Brinkman single layer potential and a Brinkman double layer potential
and gather their properties. We look for a solution of the problem (1.3), (1.2) in
an appropriate linear combination of a single layer potential and a double layer po-
tential. Using boundary properties of potentials we obtain an integral equation on
the boundary of the domain. We show the unique solvability of this integral equa-
tion and then the unique solvability of the problem (1.3), (1.2). Now we are able
to concentrate on the Robin problem for the non-homogeneous Brinkman system.
We prove that for a bounded domain Ω ⊂ Rm with boundary of class C1,α with
0 < β < α < 1, λ ∈ (0,∞), h ∈ Cβ(∂Ω) with h ≥ 0, f ∈ Cβ(Ω; Rm), ψ ∈ C1,β(Ω)
and g ∈ Cβ(∂Ω; Rm) there exists a unique solution (v, p) of the Robin problem (1.3),
(1.2) in the space

[
C1,β(Ω; Rm) ∩ C2(Ω; Rm)

]
×
[
Cβ(Ω) ∩ C1(Ω)

]
. We obtain by the

Fixed point theorem the existence of a classical solution of the Robin problem for
the Darcy-Forchheimer-Brinkman system (1.1), (1.2) with Hölder continuous a and
b.

2. Fundamental solution for the Brinkman system

We are going to study the Robin problem for the Brinkman system by the integral
equation method. For this reason we need to define a fundamental solution for the
Brinkman system and boundary layer potentials.

Let 0 ≤ λ < ∞. Suppose that Eλ = (Eλ
ij) is a matrix function of the type

m × (m + 1) and Qλ = (Qλ
j )1≤j≤m+1. We say that (Eλ, Qλ) is a fundamental

solution of the Brinkman system (1.3) in Rm if

(2.1) −∆Eλ
ij + λEλ

ij + ∂iQ
λ
j = δijδ0, ∂1E

λ
1j + . . . ∂mE

λ
mj = 0, i, j ≤ m,

(2.2) −∆Eλ
i,m+1 + λEλ

i,m+1 + ∂iQ
λ
m+1 = 0, ∂1E

λ
1,m+1 + . . . ∂mE

λ
m,m+1 = δ0.

Here δ0 is the unit measure concentrated at 0.
There exists a fundamental solution (Eλ, Qλ) of the system (1.3) such that Eλ

ij ,
Qλ

j are tempered distributions. If Éλ = (Éλ
ij), Q́

λ = (Q́λ
j ) form another funda-

mental solution of the system (1.3) such that Éλ
ij , Q́

λ
j are tempered distributions,
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then Eλ
ij − Éλ

ij , Q
λ
j − Q́λ

j are polynomials. (See [26, Theorem 10.3].) We use the
fundamental solution introduced by W. Varnhorn in [33].

If j ∈ {1, . . . ,m} then

Qλ
j (x) = Eλ

j,m+1(x) =
1
ωn

xj

|x|m
,

Qλ
m+1 =

{
δ0(x) + (λ/ωm) ln |x|−1, m = 2,
δ0(x) + (λ/ωm)(m− 2)−1|x|2−m, m > 2,

where ωm is the area of the unit sphere in Rm. (See [33, p. 60].)
For λ = 0 we obtain the fundamental solution of the Stokes system. If i, j ∈

{1, . . . ,m}, the components of E0 are given by

(2.3) E0
ij(x) =

1
2ωm

{
δij

(m− 2)|x|m−2
+
xixj

|x|m

}
, m ≥ 3,

(2.4) E0
ij(x) =

1
4π

{
δij ln

1
|x|

+
xixj

|x|2

}
, m = 2

(see, e.g., [33, p. 16]). The expression of Eλ for λ > 0 can be found in [33,
Chapter 2]. We omit it for the sake of brevity.

If i, j ≤ m then Eλ
ij ∈ C∞(Rm \ {0}),

(2.5) Eλ
ij − E0

ij ∈ C(Rm)

by [33, p. 66],

(2.6) |∇Eλ
ij(x)−∇E0

ij(x)| = O(|x|2−m), |x| → 0

by [22, Lemma 4.1]. If λ > 0 and β is a multiindex, then

(2.7) ∂βEλ(x) = O(|x|−m−|β|), |x| → ∞

by [15, Lemma 3.1].

3. Brinkman boundary layer potentials

We will look for a solution of the Robin problem for the Brinkman system in the
form of a linear combination of a Brinkman single layer potential and a Brinkman
double layer potential. Let us define these potentials.

We denoteQ(x) := (Q0
1(x), . . . , Q

0
m(x)) = (Qλ

1 (x), . . . , Qλ
m(x)). By Ẽλ we denote

the matrix of the type m×m, where Ẽλ
ij(x) = Eλ

ij(x) for i, j ≤ m.
Let now Ω ⊂ Rm be a bounded open set with Lipschitz boundary. If g ∈

C(∂Ω,Rm) then the single layer potential (Eλ
Ωg, QΩg) with the density g for the

Brinkman system (1.3) is given by

Eλ
Ωg(x) :=

∫
∂Ω

Ẽλ(x− y)g(y) dσ(y),

QΩg(x) :=
∫

∂Ω

Q(x− y)g(y) dσ(y).

Then Eλ
Ωg ∈ C∞(Rm\∂Ω,Rm), QΩg ∈ C∞(Rm\∂Ω) and ∇QΩg−∆Eλ

Ωg+λEλ
Ωg =

0, ∇ · Eλ
Ωg = 0 in Rm \ ∂Ω.

Set
Kλ

Ω(x, y) := −Ty(Ẽλ(y − x), Q(y − x))nΩ(y).
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Remark that

(3.1) [K0
Ω(x, y)]ij =

m

ωm

(xi − yi)(xj − yj)(x− y) · nΩ(y)
|x− y|m+2

(see for example [16, p. 38, 39, 132]). For Ψ ∈ C(∂Ω,Rm) define in Rm \ ∂Ω the
velocity part of the double layer potential with density Ψ by

(3.2) (Dλ
ΩΨ)(x) :=

∫
∂Ω

Kλ
Ω(x, y)Ψ(y) dσ(y),

and the corresponding pressure part by

(3.3) (Πλ
ΩΨ)(x) :=

∫
∂Ω

Πλ
Ω(x, y)Ψ(y) dσ(y).

If m > 2 then

Πλ
Ω(x, y) =

1
ωm

{
−(y − x)

2m(y − x) · nΩ(y)
|y − x|m+2

+
2nΩ(y)
|y − x|m

− λ
|x− y|2−m

m− 2
nΩ(y)

}
.

If m = 2 then

Πλ
Ω(x, y) =

1
2π

{
−(y − x)

4(y − x) · nΩ(y)
|y − x|4

+
2nΩ(y)
|y − x|2

− λ

(
ln

1
|x− y|

)
nΩ(y)

}
.

(See [33, pp. 61–62].) One has Dλ
ΩΨ ∈ C∞(Rm \ ∂Ω,Rm), Πλ

ΩΨ ∈ C∞(Rm \ ∂Ω)
and ∇Πλ

ΩΨ−∆Dλ
ΩΨ + λDλ

ΩΨ = 0, ∇ ·Dλ
ΩΨ = 0 in Rm \ ∂Ω.

Proposition 3.1. Let Ω ⊂ Rm be a bounded open set with boundary of class
C1,α, 0 < β < α < 1 and 0 ≤ λ < ∞. Then QΩ : Cβ(∂Ω; Rm) → Cβ(Ω),
Eλ

Ω : Cβ(∂Ω; Rm) → C1,β(Ω; Rm) and Eλ
Ω − E0

Ω : Cβ(∂Ω; Rm) → C1,α(Ω; Rm) are
bounded linear operators.

Proof. For λ = 0 see [20, Lemma 3.12].
Let now λ > 0. Fix Ψ ∈ Cβ(∂Ω; Rm). Then Eλ

ΩΨ, E0
ΩΨ ∈ C(Rm; Rm) by [34,

Theorem 2.3]. Define the distributions F1, . . . , Fm by

〈Fj , ϕ〉 :=
∫

∂Ω

Ψjϕ dσ.

Set F = (F1, . . . , Fm). Since Eλ
ΩΨ = Ẽλ ∗ F, properties of fundamental solutions

give

−∆Eλ
ΩΨ + λEλ

ΩΨ−∇QΩΨ = F,

−∆E0
ΩΨ−∇QΩΨ = F.

Subtracting

∆(Eλ
ΩΨ− E0

ΩΨ) = λEλ
ΩΨ.

Since Eλ
ΩΨ ∈ C(Rm; Rm) and (Eλ

ΩΨ−E0
ΩΨ) ∈ C(Rm; Rm), [23, Proposition 3.18.1]

gives that (Eλ
ΩΨ−E0

ΩΨ) ∈ C1,α(Ω; Rm). If fk → f in Cβ(∂Ω; Rm), then Eλ
Ωfk(x)−

E0
Ωfk(x) → Eλ

Ωf(x)− E0
Ωf(x) for all x ∈ Ω. The Closed graph theorem forces that

Eλ
Ω−E0

Ω : Cβ(∂Ω; Rm) → C1,α(Ω; Rm) is a bounded operator. Since C1,α(Ω; Rm) ↪→
C1,β(Ω; Rm), the operator Eλ

Ω : Cβ(∂Ω; Rm) → C1,β(Ω; Rm) is bounded. �
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4. Boundary integral operators

If we study boundary behavior of potentials at boundary then crucial role is
played by the integral operators KΩ,λ and K ′

Ω,λ. Let us define them.
Let Ω ⊂ Rm be an open set with compact Lipschitz boundary and 0 ≤ λ < ∞.

For Ψ ∈ C(∂Ω,Rm) and x ∈ ∂Ω define

KΩ,λΨ(x) := lim
ε↘0

∫
∂Ω\B(x;ε)

Kλ
Ω(x, y)Ψ(y) dσ(y),

K ′
Ω,λΨ(x) := lim

ε↘0

∫
∂Ω\B(x;ε)

Kλ
Ω(y, x)Ψ(y) dσ(y),

where B(x; ε) = {y; |x− y| < ε}.

Lemma 4.1. Let Ω ⊂ Rm be a bounded open set with boundary of class C1,α,
0 < α < 1 and 0 ≤ λ <∞. Then there exists a constant C such that

(4.1) |Kλ
Ω(x, y)| ≤ C|x− y|α+1−m, x, y ∈ ∂Ω.

Proof. If λ = 0 then (4.1) holds by (3.1) and [23, Lemma 1.17.9].
Let now λ > 0. According to (2.6) there exists a constant C1 such that

|Kλ
Ω(x, y)−K0

Ω(x, y)| ≤ C1|x− y|2−m, x, y ∈ ∂Ω.

This and the inequality (4.1) for λ = 0 give (4.1) for general λ. �

Lemma 4.2. Let Ω ⊂ Rm be a bounded open set with boundary of class C1,α with
0 < α < 1 and 0 ≤ λ <∞. If Ψ ∈ C(∂Ω,Rm) and x ∈ ∂Ω then

(4.2) KΩ,λΨ(x) =
∫

∂Ω

Kλ
Ω(x, y)Ψ(y) dσ(y),

(4.3) K ′
Ω,λΨ(x) =

∫
∂Ω

Kλ
Ω(y, x)Ψ(y) dσ(y)

are well defined. The operators KΩ,λ and K ′
Ω,λ are bounded on C(∂Ω; Rm).

Proof. According to Lemma 4.1 there exists a constant C such that (4.1) holds.
The rest is a consequence of [18, Theorem 2.22]. �

Lemma 4.3. Let Ω ⊂ Rm be a bounded open set with boundary of class C1,α,
0 < β < α < 1 and 0 ≤ λ <∞. If Ψ ∈ Cβ(∂Ω,Rm) and z ∈ ∂Ω then

(4.4) T (Eλ
ΩΨ(z), QΩΨ(z))nΩ(z) =

1
2
Ψ(z)−K ′

Ω,λΨ(z).

Proof. For λ > 0 see [34, Theorem 2.3]. Let now λ = 0. Then E0
ΩΨ ∈ C1,β(Ω; Rm),

QΩΨ ∈ Cβ(Ω) by Proposition 3.1. This forces T (E0
ΩΨ.QΩΨ)nΩ ∈ C(∂Ω; Rm). The

relation (4.4) holds for almost all z ∈ ∂Ω by [14, Lemma 3.1]. Since 1
2Ψ−K ′

Ω,0Ψ ∈
C(∂Ω; Rm) by Lemma 4.2, we deduce that (4.4) is true for all z ∈ ∂Ω. �

Proposition 4.4. Let Ω ⊂ Rm be a bounded open set with boundary of class C1,α,
0 < β < α < 1 and 0 ≤ λ <∞. Then the operators

(4.5) K ′
Ω,λ : Cβ(∂Ω,Rm) → Cβ(∂Ω,Rm),

(4.6) K ′
Ω,λ −K ′

Ω,0 : Cβ(∂Ω,Rm) → Cα(∂Ω,Rm)

are bounded.
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Proof. If Ψ ∈ Cβ(∂Ω,Rm) then

(4.7) K ′
Ω,λΨ =

1
2
Ψ− T (Eλ

ΩΨ, QΩΨ)nΩ

by (4.4). The mapping Ψ 7→ T (Eλ
ΩΨ, QΩΨ) is bounded from Cβ(∂Ω,Rm) to

Cβ(∂Ω,Rm × Rm) by Proposition 3.1. Since nΩ ∈ Cα(∂Ω; Rm) ⊂ Cβ(∂Ω; Rm),
[23, Lemma 1.16.8] and (4.7) give that K ′

Ω,λ is a bounded operator on Cβ(∂Ω,Rm).

(4.8) K ′
Ω,λ −K ′

Ω,0 = T (E0
Ω, QΩ)nΩ − T (Eλ

Ω, QΩ)nΩ = T (E0
Ω − Eλ

Ω, 0)nΩ

by (4.7). Proposition 3.1 gives that T (E0
Ω − Eλ

Ω, 0) is a bounded mapping from
Cβ(∂Ω,Rm) to Cα(∂Ω,Rm × Rm). Remember that nΩ ∈ Cα(∂Ω; Rm). According
to [23, Lemma 1.16.8] and (4.8) we infer that the operator (4.6) is bounded. �

We want to prove compactness of the operator K ′
Ω,λ on the space Cβ(∂Ω,Rm).

For this we need the following auxiliary lemmas:

Lemma 4.5. Let Ω ⊂ Rm be a bounded open set with boundary of class C1,α and
0 < α < 1. If 0 < β < 1 then KΩ,0 is a compact operator on Cβ(∂Ω,Rm).

Proof. V. Maz’ya, M. Mitrea and T. Shaposhnikova proved in [21, p. 232] that KΩ,0

is a compact operator on some scale of Besov spaces including B∞,∞
β (∂Ω,Rm). Re-

member that B∞,∞
β (∂Ω,Rm) = Cβ(∂Ω,Rm). (See for example [32, §3.5.3, Theorem]

or [31, §2.5.7, Theorem].) �

Lemma 4.6. Let f ∈ C1(Rm \ {0}) with |∇f(x)| ≤ C1|x|α. Then there exists a
constant C2 such that |f(x)− f(y)| ≤ C2|x− y||x|α for |x| > 2|x− y|.

Proof. Let |x| > 2|x − y|. Then there exists z in the interval xy such that f(x) −
f(y) = (x− y) · ∇f(z). Since 1

2 |x| ≤ |z| ≤ 3
2 |x| we infer that

|f(x)− f(y)| = |(x− y) · ∇f(z)| ≤ C1|x− y|[(1/2)α + (3/2)α]|x|α.
�

Lemma 4.7. Let Ω ⊂ Rm be a bounded open set with boundary of class C1,α and
0 < β < α < 1. Then KΩ,0 + K ′

Ω,0 : L∞(∂Ω,Rm) → Cβ(∂Ω,Rm) is a bounded
operator.

Proof. (3.1) yields

(4.9) [K0
Ω(x, y) +K0

Ω(y, x)]ij =
m

ωm

(xi − yi)(xj − yj)(x− y) · (nΩ(y)− nΩ(x))
|x− y|m+2

.

If x, y ∈ ∂Ω then |nΩ(x) − nΩ(y)| ≤ M1|x − y|α for some constant M1. Therefore
there exists a constant C1 such that

|K0
Ω(x, y) +K0

Ω(y, x)| ≤ C1|x− y|α+1−m x, y ∈ ∂Ω.

Hence there is a constant M2 such that

(4.10)
∫

B(x;r)∩∂Ω

|K0
Ω(x, y) +K0

Ω(y, x)| dσ(y) ≤M2r
α

for each x ∈ ∂Ω and r > 0. (See [23, Lemma 1.26.1].) So,

|(KΩ,0 +K ′
Ω,0)f(x)| ≤ C2‖f‖L∞(∂Ω;Rm) ∀x ∈ ∂Ω
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for some constant C2.
If ‖f‖L∞(∂Ω;Rm) ≤ 1 and x, z ∈ ∂Ω with |x− z| ≥ 1 then

|(KΩ,0 +K ′
Ω,0)f(x)− (KΩ,0 +K ′

Ω,0)f(z)| ≤ 2C2 ≤ 2C2|x− z|β .

According to Lemma 4.6 there exists a constant M3 such that

(4.11) |wγ |w|−m−2 − uγ |u|−m−2| ≤M3|w − u||w|−m for |w| > 2|w − u|

for each multiindex γ with |γ| = 3. If x, y, z ∈ ∂Ω with |y − z| > 2|x − z| =
2|(x− y)− (z − y)|, then (4.9) and (4.11) yield

|[K0
Ω(x, y) +K0

Ω(y, x)]ij − [K0
Ω(z, y) +K0

Ω(y, z)]ij | ≤
m

ωm
|x− y|1−m|nΩ(z)−nΩ(x)|

+
m

ωm

∣∣∣∣ (xi − yi)(xj − yj)(x− y)
|x− y|m+2

− (zi − yi)(zj − yj)(z − y)
|z − y|m+2

∣∣∣∣ |nΩ(z)− nΩ(y)|

≤M1
m

ωm
|x− y|1−m|x− z|α +M3

m

ωm
|x− z| |z − y|−mM1|z − y|α.

Therefore

(4.12) |[K0
Ω(x, y) +K0

Ω(y, x)]− [K0
Ω(z, y) +K0

Ω(y, z)]| ≤ C3|x− z|α

|x− y|m−1
+

C3|x− z|
|z − y|m−α

for some constant C3.
Suppose that ‖f‖L∞(∂Ω;Rm) ≤ 1 and x, z ∈ ∂Ω with 0 < |x− z| < 1. According

to (4.10) and (4.12)

|(KΩ,0 +K ′
Ω,0)f(x)− (KΩ,0 +K ′

Ω,0)f(z)| ≤
∫

B(z;2|x−z|)∩∂Ω

|K0
Ω(z, y)

+K0
Ω(y, z)| dσ(y) +

∫
B(z;2|x−z|)∩∂Ω

|K0
Ω(x, y) +K0

Ω(y, x)| dσ(y)

+
∫

∂Ω\B(z;2|x−z|)
|(K0

Ω(x, y) +K0
Ω(y, x))− (K0

Ω(z, y) +K0
Ω(y, z))| dσ(y)

≤ 2M2|x− z|α +
∫

B(x;3|x−z|)∩∂Ω

|K0
Ω(x, y) +K0

Ω(y, x)| dσ(y)

+
∫

∂Ω\B(z;2|x−z|)

(
C3|x− z|α

|x− y|m−1
+

C3|x− z|
|z − y|m−α

)
dσ(y)

≤ 5M2|x− z|α + C3|x− z|β
∫

∂Ω\B(x;|x−z|)
|x− y|1−m+α−β dσ(y)

+C3|x− z|β
∫

∂Ω\B(z;2|x−z|)
|z − y|1−m+α−β dσ(y)

≤ |x− z|β
[
5M2 + C3

∫
∂Ω

(|x− y|1−m+α−β + |z − y|1−m+α−β) dσ(y)
]
≤ C4|x− z|β

with C4 independent on x and z (see [23, Lemma 1.26.1]). �

Theorem 4.8. Let Ω ⊂ Rm be a bounded open set with boundary of class C1,α and
0 < β < α < 1. Suppose that 0 ≤ λ < ∞. Then K ′

Ω,λ is a compact operator on
Cβ(∂Ω,Rm).
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Proof. KΩ,0 +K ′
Ω,0 : L∞(∂Ω,Rm) → Cβ(∂Ω,Rm) is a bounded operator by Lemma

4.7. Since Cβ(∂Ω,Rm) ↪→ L∞(∂Ω,Rm) compactly by [18, Theorem 7.4], the oper-
ator KΩ,0 +K ′

Ω,0 is compact on Cβ(∂Ω,Rm). Thus K ′
Ω,0 = (KΩ,0 +K ′

Ω,0) −KΩ,0

is a compact operator on Cβ(∂Ω,Rm) by Lemma 4.5.
The operator K ′

Ω,λ −K ′
Ω,0 : Cβ(∂Ω,Rm) → Cα(∂Ω,Rm) is bounded by Proposi-

tion 4.4. Since Cα(∂Ω,Rm) ↪→ Cβ(∂Ω,Rm) compactly by [18, Theorem 7.4], the op-
erator K ′

Ω,λ−K ′
Ω,0 is compact on Cβ(∂Ω,Rm). Hence K ′

Ω,λ = (K ′
Ω,λ−K ′

Ω,0)+K
′
Ω,0

is compact on Cβ(∂Ω,Rm). �

5. Robin problem for the Brinkman system

In this section we study the Brinkman system (1.3) with the Robin boundary
condition (1.2). First we study the homogeneous Brinkman system, i.e. with f ≡ 0
and ψ ≡ 0.

Let Ω ⊂ Rm be a bounded domain with boundary of class C1,α, 0 < β < α <
1 and λ ∈ (0,∞). If ∂Ω is connected then we shall look for a solution of the
problem in the form of a single layer potential (Eλ

ΩΦ, QΩΦ) with Φ ∈ Cβ(∂Ω; Rm).
Unfortunately, it is not possible for Ω with disconnected boundary because∫

C

nΩ · Eλ
ΩΦ dσ = 0

for each component C of ∂Ω. Therefore we shall look for a solution in the form of
a modified single layer potential. Let G(1), . . . , G(k) be all bounded components of
Rm\Ω. Fix open balls B(j) such that B(j) ⊂ G(j). According to [6, Lemma 1.5.19]
there exists Θ ∈ C∞(Rm; Rm) such that Θ ·nΩ > 0 on ∂Ω. If Φ ∈ Cβ(∂Ω; Rm), we
define the modified Brinkman single layer potential with density Φ by

Êλ
ΩΦ := Eλ

ΩΦ +
k∑

j=1

(∫
∂G(j)

Θ ·Φ dσ

)
Dλ

B(j)n
B(j),

Q̂λ
ΩΦ := QΩΦ +

k∑
j=1

(∫
∂G(j)

Θ ·Φ dσ

)
Πλ

B(j)n
B(j).

(If ∂Ω is connected then Êλ
ΩΦ = Eλ

ΩΦ and Q̂λ
ΩΦ = QΩΦ.)

Theorem 5.1. Let Ω ⊂ Rm be a bounded domain with boundary of class C1,α,
0 < β < α < 1 and λ ∈ (0,∞). Let h ∈ Cβ(∂Ω) with h ≥ 0.

(1) For Φ ∈ Cβ(∂Ω; Rm) define

τλ
Ω,hΦ := hÊλ

ΩΦ +
1
2
Φ−K ′

Ω,λΦ

+
k∑

j=1

(∫
∂G(j)

Θ ·Φ dσ

)
T (Dλ

B(j)n
B(j),Πλ

B(j)n
B(j))nΩ.

Then τλ
Ω,h is an isomorphism on Cβ(∂Ω; Rm).

(2) Suppose that g ∈ Cβ(∂Ω; Rm), f ≡ 0, Ψ ≡ 0. Put

(5.1) Φ :=
(
τλ
Ω,h

)−1
g, v := Êλ

ΩΦ, p := Q̂λ
ΩΦ.
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Then (v, p) is a unique solution of the Robin problem (1.3), (1.2) in the
space

[
C1,β(Ω; Rm) ∩ C2(Ω; Rm)

]
×
[
Cβ(Ω) ∩ C1(Ω)

]
. Moreover,

(5.2) ‖v‖C1,β(Ω) + ‖p‖Cβ(Ω) ≤ C‖g‖Cβ(∂Ω)

where C does not depend on g.

Proof. K ′
Ω,λ is a compact operator in Cβ(∂Ω; Rm) by Theorem 4.8. The opera-

tor Ẽλ
Ω : Cβ(∂Ω; Rm) → C1,β(∂Ω; Rm) is bounded. (It is an easy consequence of

Proposition 3.1.) Therefore Ẽλ
Ω is a compact operator on Cβ(∂Ω; Rm) by [18, Theo-

rem 7.4]. Define the operator H by Hw := hw. Then H is a bounded operator on
Cβ(∂Ω; Rm) by [23, Lemma 1.16.8]. So, HẼλ

Ω is a compact operator on Cβ(∂Ω; Rm).
Denote by I the identity operator. The operator τλ

Ω,h −HẼλ
Ω − 1

2I +K ′
Ω,λ is finite-

dimensional and therefore compact. Since the operator τλ
Ω,h − 1

2I is compact in
Cβ(∂Ω; Rm), the operator τλ

Ω,h is Fredholm with index 0 in Cβ(∂Ω; Rm). The op-
erator τλ

Ω,h is one to one by [24, Theorem 9.2]. Hence τλ
Ω,h is an isomorphism on

Cβ(∂Ω; Rm).
Suppose now that g ∈ Cβ(∂Ω; Rm), f ≡ 0, Ψ ≡ 0. Let Φ, v and p be given by

(5.1). Since Eλ
ij , Q

λ
i ∈ C∞(Rm \{0}), we infer that v ∈ C∞(Ω; Rm) and p ∈ C∞(Ω).

Moreover, (1.3) holds true. The invertibility of τλ
Ω,h and Proposition 3.1 give that

v ∈ C1,β(Ω; Rm), p ∈ Cβ(Ω) and the estimate (5.2) holds with some constant C.
The boundary condition (1.2) is satisfied by Lemma 4.3.

We now show the uniqueness of a classical solution of the problem (1.3), (1.2).
Let (v, p) ∈

[
C1,β(Ω; Rm) ∩ C2(Ω; Rm)

]
×
[
Cβ(Ω) ∩ C1(Ω)

]
be a solution of the prob-

lem (1.3), (1.2) with f ≡ 0, Ψ ≡ 0 and g ≡ 0. If x ∈ ∂Ω, a > 0, denote the
non-tangential approach region of opening a at the point x by

Γa(x) := {y ∈ Ω; |x− y| < (1 + a)dist(y, ∂Ω)}.
According to [35, Theorem 1.12] there is a sequence of domains Ωj with boundaries
of class C∞ such that the following assertions hold:

• Ωj ⊂ Ω.
• There are a > 0 and homeomorphisms Λj : ∂Ω → ∂Ωj , such that Λj(y) ∈

Γa(y) for each j and each y ∈ ∂Ω and sup{|y − Λj(y)|; y ∈ ∂Ω} → 0 as
j →∞.

• There are positive functions ωj on ∂Ω bounded away from zero and infinity
uniformly in j such that for any measurable set E ⊂ ∂Ω,∫

E

ωj dσ =
∫

Λj(E)

1 dσ,

and so that ωj → 1 point-wise a.e. and in every Ls(∂Ω), 1 ≤ s <∞.
• The normal vectors to Ωj , n(Λj(y)), converge point-wise a.e. and in every
Ls(∂Ω), 1 ≤ s <∞, to n(y).

Lebesgue lemma yields

0 =
∫

∂Ω

v · [T (v, p)nΩ + hv] dσ =
∫

∂Ω

h|v|2 dσ + lim
j→∞

∫
∂Ωj

v · T (v, p)n dσ.

According to the Green formula (compare [33, p. 14] or [24, §3])

0 =
∫

∂Ω

h|v|2 dσ + lim
j→∞

∫
Ωj

(2|∇̂v|2 + λ|v|2) dx
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=
∫

∂Ω

h|v|2 dσ +
∫

Ω

(2|∇̂v|2 + λ|v|2) dx.

Therefore v ≡ 0. Since 0 = −∆v + λv +∇p = ∇p, there exists a constant c such
that p ≡ c. But 0 = T (v, p)nΩ + hv = −cnΩ on ∂Ω. This forces that c = 0 and
thus p ≡ 0. �

Now we are able to solve the Robin problem for the non-homogeneous system
(1.3).

Theorem 5.2. Let Ω ⊂ Rm be a bounded domain with boundary of class C1,α,
0 < β < α < 1 and λ ∈ (0,∞). Let h ∈ Cβ(∂Ω) with h ≥ 0. Then there exists
a constant C such that the following holds: If f ∈ Cβ(Ω; Rm), ψ ∈ C1,β(Ω) and
g ∈ Cβ(∂Ω; Rm), then there exists a unique solution (v, p) of the Robin problem
(1.3), (1.2) in the space

[
C1,β(Ω; Rm) ∩ C2(Ω; Rm)

]
×
[
Cβ(Ω) ∩ C1(Ω)

]
. Moreover,

(5.3) ‖v‖C1,β(Ω) + ‖p‖Cβ(Ω) ≤ C
(
‖g‖Cβ(∂Ω) + ‖f‖Cβ(Ω) + ‖ψ‖C1,β(Ω)

)
.

Proof. The uniqueness follows from Theorem 5.1.
Choose a bounded domain ω with smooth boundary such that Ω ⊂ ω. According

to [5, Lemma 6.37] there exists ψ̃ ∈ C1,β(ω) with compact support in ω such that
ψ̃ = ψ in Ω and

‖ψ̃‖C1,β(ω) ≤ C1‖ψ‖C1,β(Ω)

where the constant C1 depends only on Ω, ω and β. Denote

C3,α
0 (ω) := {ϕ ∈ C3,α(ω);ϕ = 0 on ∂ω}.

Then the Laplace operator is a continuous injective operator from C3,β
0 (ω) onto

C1,β(ω). (See [19, Lemma 3.10].) Therefore it is an isomorphism. So, there exists
a solution ϕ ∈ C3,β(ω) of

∆ϕ = ψ̃ in ω, ϕ = 0 on ∂ω.

Moreover.
‖ϕ‖C3,β(ω) ≤ C2‖ψ̃‖C1,β(ω)

where C2 depends only on ω and β. Put w := ∇ϕ. Then w ∈ C2,β(Ω), ∇ · w =
∆ϕ = ψ in Ω and

‖w‖C2,β(Ω) ≤ mC1C2‖ψ‖C1,β(Ω).

According to [25, Theorem 2.2] there exists a unique solution

(u, q) ∈
[
C1,β(Ω; Rm) ∩ C2(Ω; Rm)

]
×
[
Cβ(Ω) ∩ C1(Ω)

]
of the problem

−∆u + λu +∇q = f + ∆w − λw, ∇ · u = 0 in Ω,

u = 0 on ∂Ω,
∫

Ω

q dx = 0.

Moreover,
‖u‖C1,β(Ω) + ‖q‖Cβ(Ω) ≤ C3‖f + ∆w − λw‖Cβ(Ω),

where C3 depends only on Ω, β and λ. According to Theorem 5.1 there exists a
unique solution

(ũ, q̃) ∈
[
C1,β(Ω; Rm) ∩ C2(Ω; Rm)

]
×
[
Cβ(Ω) ∩ C1(Ω)

]
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of the problem
−∆ũ + λũ +∇q̃ = 0, ∇ · ũ = 0 in Ω,

T (ũ, q̃)nΩ + hũ = g − T (u + w, q)nΩ − h(u + w).
Moreover,

‖ũ‖C1,β(Ω) + ‖q̃‖Cβ(Ω) ≤ C4‖g − T (u + w, q)nΩ − h(u + w)‖Cβ(∂Ω),

where C4 depends only on Ω, β, λ and h. Put v = w+u+ ũ, p = q+ q̃. Then (v, p)
is a solution of (1.3), (1.2). Moreover, the estimate (5.3) holds with C depending
only on Ω, β, λ and h. �

6. Darcy-Forchheimer-Brinkman system

Theorem 6.1. Let Ω ⊂ Rm be a bounded domain with boundary of class C1,α,
0 < β < α < 1 and λ ∈ (0,∞). Let h ∈ Cβ(∂Ω) with h ≥ 0 and a, b ∈ Cβ(Ω).
Then there exist δ, ε, C ∈ (0,∞) such that the following holds: If g ∈ Cβ(∂Ω; Rm),
F ∈ Cβ(Ω; Rm), ψ ∈ C1,β(Ω) and

(6.1) ‖g‖Cβ(∂Ω) + ‖F‖Cβ(Ω) + ‖ψ‖C1,β(Ω) < δ,

then there exists a unique solution (v, p) ∈ [C1,β(Ω; Rm) ∩ C2(Ω; Rm)] × [Cβ(Ω) ∩
C1(Ω)] of the Robin problem for the Darcy-Forchheimer-Brinkman system (1.1),
(1.2) such that

(6.2) ‖v‖C1,β(Ω) < ε.

Moreover,

(6.3) ‖v‖C1,β(Ω) + ‖p‖Cβ(Ω) ≤ C
(
‖g‖Cβ(∂Ω) + ‖F‖Cβ(Ω) + ‖ψ‖C1,β(Ω)

)
.

If g̃ ∈ Cβ(∂Ω; Rm), F̃ ∈ Cβ(Ω; Rm), ψ̃ ∈ C1,β(Ω), ṽ ∈ C1,β(Ω; Rm)∩C2(Ω; Rm) and
p̃ ∈ Cβ(Ω) ∩ C1(Ω),

(6.4a) ∇p̃−∆ṽ + a|ṽ|ṽ + λṽ + b(ṽ · ∇)ṽ = F̃, ∇ · ṽ = ψ̃ in Ω,

(6.4b) T (ṽ, p̃)nΩ + hṽ = g̃ on ∂Ω

and ‖ṽ‖C1,β(Ω) < ε, then

‖v−ṽ‖C1,β(Ω)+‖p−p̃‖Cβ(Ω) ≤ C
(
‖g − g̃‖Cβ(∂Ω) + ‖F− F̃‖Cβ(Ω) + ‖ψ − ψ̃‖C1,β(Ω)

)
.

Proof. For u ∈ C1,β(Ω; Rm) define

Dabu := a|u|u + b(u · ∇)u.

According to [25, Lemma 3.1 and Lemma 3.2] there exists a constant C1 such that

(6.5) ‖Dabu‖Cβ(Ω) ≤ C1‖u‖2
C1,β(Ω)

,

(6.6) ‖Dabv −Dabu‖Cβ(Ω) ≤ C1‖v − u‖C1,β(Ω)

[
‖v‖C1,β(Ω) + ‖u‖C1,β(Ω)

]
.

For each g ∈ Cβ(∂Ω; Rm), f ∈ Cβ(Ω; Rm) and ψ ∈ C1,β(Ω) there exists a unique
solution (v, p) ∈ [C1,β(Ω; Rm)∩C2(Ω; Rm)]× [Cβ(Ω)∩C1(Ω)] of the Robin problem
(1.3), (1.2). Moreover,

(6.7) ‖v‖C1,β(Ω) + ‖p‖Cβ(Ω) ≤ C2

(
‖g‖Cβ(∂Ω) + ‖f‖Cβ(Ω) + ‖ψ‖C1,β(Ω)

)
where C2 depends only on Ω, β and h. (See Theorem 5.2.)
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Remark that (v, p) is a solution of (1.1) if (v, p) is a solution of (1.3) with
f = F−Dabv. Put

ε :=
1

4(C1 + 1)(C2 + 1)
, δ :=

ε

2(C2 + 1)
.

If (v, p), (ṽ, p̃) ∈ [C1,β(Ω; Rm)∩C2(Ω; Rm)]× [Cβ(Ω)∩C1(Ω)] are solutions of (1.1),
(1.2) and (6.4) with (6.2) and ‖ṽ‖C1,β(Ω) < ε, then

‖v − ṽ‖C1,β(Ω) + ‖p− p̃‖Cβ(Ω) ≤ C2

(
‖g − g̃‖Cβ(∂Ω) + ‖F− F̃‖Cβ(Ω)

+‖ψ − ψ̃‖C1,β(Ω) + ‖Dabv −Dabṽ‖Cβ(Ω)

)
≤ C2

(
‖g − g̃‖Cβ(∂Ω)

+‖F− F̃‖Cβ(Ω) + ‖ψ − ψ̃‖C1,β(Ω) + 2εC1‖v − ṽ‖C1,β(Ω)

)
.

Since 2C1C2ε < 1/2 we get subtracting 2εC1C2‖v − ṽ‖C1,β(Ω) from the both sides

‖v− ṽ‖C1,β(Ω) +‖p− p̃‖Cβ(Ω) ≤ 2C2

(
‖g− g̃‖Cβ(∂Ω) +‖F− F̃‖Cβ(Ω) +‖ψ− ψ̃‖C1,β(Ω)

)
.

Therefore a solution of (1.1), (1.2) satisfying (6.2) is unique. Putting p̃ ≡ 0, ũ ≡ 0,
F̃ ≡ 0, ψ̃ ≡ 0 and g̃ ≡ 0, we obtain (6.3) with C = 2C2.

Denote X := {v ∈ C1,β(Ω,Rm); ‖v‖C1,β(Ω) ≤ ε}. Fix g ∈ Cβ(∂Ω; Rm), F ∈
Cβ(Ω; Rm) and ψ ∈ C1,β(Ω) satisfying (6.1). For v ∈ X there exists a unique
solution (uv, pv) ∈ [C1,β(Ω; Rm)∩C2(Ω; Rm)]×[Cβ(Ω)∩C1(Ω)] of the Robin problem
(1.3), (1.2) with f = F − Dabv. Remember that (uv, pv) is a solution of (1.1) if
and only if uv = v. According to (6.7)

‖uv‖C1,β(Ω) ≤ C2

[
‖g‖Cβ(∂Ω) + ‖ψ‖C1,β(Ω) + ‖F‖Cβ(Ω) + ‖Dabv‖Cβ(Ω)

]
.

By virtue of (6.1) and (6.5)

‖uv‖C1,β(Ω) ≤ C2δ + C2C1ε
2.

As C2δ + C2C1ε
2 < ε, we infer uv ∈ X. If w ∈ X then

‖uv − uw‖C1,β(Ω) ≤ C2‖Dabv −Dabw‖Cβ(Ω) ≤ C2C12ε‖w − v‖C1,β(Ω)

by (6.7) and (6.6). Since C2C12ε < 1, the Fixed point theorem ([4, Satz 1.24]) gives
that there exists v ∈ X such that uv = v. So, (uv, pv) is a solution of (1.1), (1.2)
in [C1,β(Ω; Rm) ∩ C2(Ω; Rm)]× [Cβ(Ω) ∩ C1(Ω)] satisfying (6.2). �
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[24] Medková, D.: The Robin problem for the Brinkman system and for the Darcy-Forchheimer-

Brinkman system. Z.Angew. Math. Phys. 69, article 132 (2018)
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