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ALMOST-COMPACT AND COMPACT EMBEDDINGS OF

VARIABLE EXPONENT SPACES

D. E. EDMUNDS, A. GOGATISHVILI, AND A. NEKVINDA

Abstract. Let Ω be an open subset of RN , and let p, q : Ω → [1,∞] be

measurable functions. We give a necessary and sufficient condition for the
embedding of the variable exponent space Lp(·) (Ω) in Lq(·) (Ω) to be almost

compact. This leads to a condition on Ω, p and q sufficient to ensure that

the Sobolev space W 1,p(·) (Ω) based on Lp(·) (Ω) is compactly embedded in

Lq(·) (Ω) ; compact embedding results of this type already in the literature are

included as special cases.

1. Introduction

Let Ω be an open subset of RN and consider the Lebesgue measure on Ω. If
M ⊂ Ω is measurable we write |M | for its measure. Let p, q : Ω → [1,∞] be
measurable. Much attention has been paid in recent years to the variable exponent
space Lp(·) (Ω) , the space W 1,p(·)(Ω) of Sobolev type based on Lp(·)(Ω) and con-
ditions under which W 1,p(·)(Ω) is embedded in Lq(·)(Ω) : we refer to [2, 4, 5] for a
comprehensive account of such matters. The compactness of such an embedding
is addressed here: we give conditions that are sufficent to ensure compactness yet
weak enough for much earlier work on this topic to be included. To do this we
first establish necessary and sufficient conditions for the embedding of Lp(·)(Ω) in
Lq(·)(Ω) to be almost compact.

Let M(Ω) be the family of all measurable functions u : Ω → [−∞,∞]; denote
by χE the characteristic function of a set E ⊂ Ω. Given any sequence {En} of
measurable subsets of Ω, we write En → ∅ a.e. if the characteristic functions χEn
converge to 0 pointwise almost everywhere in Ω. Let the symbol |u| stand for the
modulus of a function u. We recall the definition of a Banach function space: see,
for example, [1]. A normed linear space (X, ‖.‖X) is a Banach function space (BFS

1991 Mathematics Subject Classification. 46E30, 26D15.
Key words and phrases. almost-compact embeddings, Banach function spaces, variable

Lebesgue spaces, variable Sobolev spaces.
The second and the third author of this research were supported by the grant P201-18-00580S

of the Grant Agency of the Czech Republic. The second author has been partially supported by

Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [grant number FR17-589] and
RVO:67985840.

1
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for short) if the following conditions are satisfied:

the norm ‖u‖X is defined for all u ∈M(Ω), and u ∈ X if and only if(1.1)

‖u‖X <∞;

‖u‖X = ‖ |u| ‖X for every u ∈M(Ω);(1.2)

if 0 6 un ↗ u a.e. in Ω, then ‖un‖X ↗ ‖u‖X ;(1.3)

if E ⊂ Ω is a measurable set of finite measure, then χE ∈ X;(1.4)

for every measurable set E ⊂ Ω of finite measure |E|, there exists(1.5)

a positive constant CE such that

∫
E

|u(x)|dx 6 CE‖u‖X .

If X and Y are Banach function spaces then X is said to be almost-compactly

embedded in Y and we write X
∗
↪→ Y if, for every sequence (En)n∈N of measurable

subsets of Ω such that En → ∅ a.e., we have

lim
n→∞

sup
‖u‖X≤1

‖uχEn‖Y = 0.

We believe this notion to have independent interest. Moreover, as we know from
[10], almost compactness results quickly lead to assertions concerning the compact-
ness of the Sobolev embedding.

To explain in a little more detail what is acheived, suppose that Ω is bounded,
p ∈ C

(
Ω
)

and for all x ∈ Ω, 1 < p− ≤ p(x) ≤ p+ < N and

p#(x) =
Np(x)

N − p(x)
;(1.6)

denote by W
1,p(·)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(·)(Ω). Let Ip,q (resp. Ip,q,0)

stand for the embedding of W 1,p(·)(Ω)
(

resp.W
1,p(·)
0 (Ω)

)
in Lq(·)(Ω). Then it is

known (see [7]) that Ip,q,0 is compact if there exists ε > 0 such that q(x) ≤ p](x)−
ε for all x ∈ Ω. In [8] the compactness of I2,q,0 is studied under more general
assumptions: it is supposed that there exists x0 ∈ Ω, a small η > 0, 0 < l < 1 and
C > 0 such that q (x0) = 2N/(N − 2) and

q(x) ≤ 2N

N − 2
− C(

log 1
|x−x0|

)l
holds for a.e. x ∈ Ω with |x − x0| 6 η. Some generalizations of these results are
given in [6] and [9]. In [9] it is assumed that q(x) = p](x) on a compact set K,
and compactness of Ip,q,0 is established under some restrictions on K and on the
behavior of p](x)− q(x) far from K. The principal aim of this paper is to establish
compactness of Ip,q for a wider class of sets K on which q is allowed to have the same
values as p : various examples of Cantor type are given for which this is possible.

First we find a necessary and sufficient condition for this embedding to be al-
most compact and as an application we establish the compactness of the Sobolev
embedding mentioned above under more general conditions than those previously
available.
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2. Preliminaries

Let X and Y be Banach function spaces on an open set Ω of RN with norms
‖·‖X , ‖·‖Y respectively. We say that X is embedded in Y, and write X ↪→ Y, if
there exists c > 0 such that ‖u‖Y ≤ c ‖u‖X for all u ∈ X. The space X is said to be
compactly embedded in Y, and we write X ↪→↪→ Y, if given any sequence {un}n∈N
with each ‖un‖X ≤ 1, there is a subsequence

{
un(k)

}
⊂ Y and a point u ∈ Y such

that
∥∥un(k) − u

∥∥
Y
→ 0.

Definition 2.1. Let X be a BFS. The Sobolev space W 1(X) is defined to be the
set of all functions u ∈M(Ω) with

‖u‖W 1(X) = ‖u‖X + ‖∇u‖X <∞.

The following proposition is proved in [10], see Theorem 3.2.

Proposition 2.2. Let X,Y, Z be BFSs and assume

W 1(X) ↪→ Y, Y
∗
↪→ Z.

Then

W 1(X) ↪→↪→ Z.

Now, define variable Lebesgue spaces. Let E(Ω) denote the set of all measurable
functions p(·) : Ω → [1,∞). Let p(·) ∈ E(Ω). Define for a function u : Ω → R a
modular

mp(·)(u) =

∫
Ω

|u(x)|p(x)dx(2.1)

and define the space Lp(·)(Ω) to be the set of all measurable functions u on Ω with
a finite norm

‖u‖p(·) = inf
{
λ > 0; mp(·)(u/λ) ≤ 1

}
.

We adopt the notation

p− = inf{p(x); x ∈ Ω}, p+ = sup{p(x); x ∈ Ω} and p′(x) =
p(x)− 1

p(x)
.

Define for a function u : Ω→ R a non-increasing rearrangement u∗ on [0,∞) by

u∗(t) = inf{λ > 0; |{x ∈ Ω; |u(x)| > λ}| 6 t}, (t > 0).

Lemma 2.3. Let s : Ω→ R and α > 1. Then (αs(·))∗(t) = αs
∗(t) for all t > 0.

Proof. We can easily write

(αs(·))∗(t) = inf{λ > 0; |{x ∈ Ω;αs(x) > λ}| 6 t}

= inf{αµ > 0; |{x ∈ Ω; αs(x) > αµ}| 6 t}
= inf{αµ > 0; |{x ∈ Ω; s(x) > µ}| 6 t}

= αinf{µ>0;|{x∈Ω; s(x)>µ}|6t} = αs
∗(t).

�

In [7] (see Theorem 2.8) the following lemma is proved.

Lemma 2.4. Let p, q ∈ E(Ω). Then Lp(·)(Ω) ↪→ Lq(·)(Ω) if and only if q(x) 6 p(x)
a.e. in Ω.
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Definition 2.5. We say that p : Ω→ R satisfies a log-Hölder condition if there is
c > 0 such that

|p(x)− p(y)| 6 − c

ln |x− y|
, 0 < |x− y| 6 1

2
.(2.2)

Definition 2.6. We say that Ω ∈ C0,1 if there is a finite number of ballsB(xk, rk), k =
1, 2, . . . ,m and the same number of bi-Lipschitz mappings Tk : [0, 1]N−1× [−1, 1]→
B(xk, rk) such that for all k ∈ {1, 2, . . . ,m},

(i) xk ∈ ∂Ω,
(ii)

⋃m
k=1B(xk, rk) ⊃ ∂Ω,

(iii) Tk([0, 1]N−1 × [−1, 0]) = (RN \ Ω) ∩B(xk, rk),

(iv) Tk([0, 1]N−1 × [0, 1]) = Ω ∩B(xk, rk),

(v) Tk([0, 1]N−1 × {0}) = ∂Ω ∩B(xk, rk).

Let Ω ∈ C0,1 and M ⊂ Ω be a compact set. Given p(·), q(·) : Ω → R we find
conditions on M and, moreover, determine how quickly can q(·) tend to p#(·) near
M while preserving the compactness of the embedding of W 1,p(·)(Ω) in Lq(·)(Ω).

3. Almost-compact embedding between variable spaces

We fix in this section a domain Ω ⊂ RN and functions p(·), q(·) ∈ E(Ω). Adopt

the notation r(x) = p(x)
q(x) .

Lemma 3.1. Let Ω be bounded and q(·) ∈ E(Ω), q+ <∞. Then

‖u‖q(·) 6 (mq(·)(u))1/q+ provided mq(·)(u) 6 1,(3.1)

‖u‖q(·) > (mq(·)(u))1/q− provided mq(·)(u) 6 1,(3.2)

‖u‖q(·) 6 (mq(·)(u))1/q− provided mq(·)(u) > 1,(3.3)

‖u‖q(·) > (mq(·)(u))1/q+ provided mq(·)(u) > 1.(3.4)

Proof. Set a = mq(·)(u) and assume a 6 1. Then∫
Ω

( |u(x)|
a1/q+

)q(x)

dx 6
∫

Ω

( |u(x)|
a1/q(x)

)q(x)

dx =

∫
Ω

|u(x)|q(x)

a
dx = 1

which gives ‖u‖q(·) 6 a1/q+ and proves (3.1). The assertions (3.2), (3.3) and (3.4)
can be proved analogously. �

Lemma 3.2. Let Ω be bounded and suppose that q(x) 6 p(x) 6 p+ < ∞ for all
x ∈ Ω. If ‖u‖p(·) 6 1 then

‖u‖q+p(·) 6 ‖ |u(·)|q(·)‖r(·) 6 ‖u‖
q−
p(·).

Proof. Assume first 0 < a := ‖u‖p(·) < 1. Then

1 =

∫
Ω

( |u(x)|
a

)p(x)

dx >

∫
Ω

|u(x)|p(x)dx.(3.5)

Denote b = ‖ |u(·)|q(·)‖r(·). Then

1 =

∫
Ω

( |u(x)|q(x)

b

)r(x)

dx =

∫
Ω

( |u(x)|
b1/q(x)

)p(x)

dx.
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If b > 1 then

1 =

∫
Ω

( |u(x)|
b1/q(x)

)p(x)

dx <

∫
Ω

|u(x)|p(x)dx
(3.5)
< 1

which is a contradiction. So b 6 1. Consequently,∫
Ω

( |u(x)|
b1/q+

)p(x)

dx 6 1 =

∫
Ω

( |u(x)|
b1/q(x)

)p(x)

dx 6
∫

Ω

( |u(x)|
b1/q−

)p(x)

dx

which gives b1/q+ > ‖u‖p(·) > b1/q− and finally

‖u‖q+p(·) 6 ‖ |u(·)|q(·)‖r(·) 6 ‖u‖
q−
p(·).

Assume now 0 < ‖u‖p(·) 6 1. Choose ε > 0. Then ‖ u
1+ε‖p(·) < 1 and so,∥∥∥ |u(·)|

1 + ε

∥∥∥q+
p(·)
6
∥∥∥ ( |u(·)|

1 + ε

)q(·)∥∥∥
r(·)
6
∥∥∥ |u(·)|

1 + ε

∥∥∥q−
p(·)

.

Since 1
(1+ε)q− >

1
(1+ε)q(x)

> 1
(1+ε)q+ we have

1

(1 + ε)q+

∥∥∥ |u(·)|q(·)
∥∥∥
r(·)
6
∥∥∥ ( |u(·)|

1 + ε

)q(·)∥∥∥
r(·)
6
∥∥∥ |u(·)|

1 + ε

∥∥∥q−
p(·)
6

1

(1 + ε)q−
‖u‖q−p(·)

and

1

(1 + ε)q−

∥∥∥ |u(·)|q(·)
∥∥∥
r(·)
>
∥∥∥ ( |u(·)|

1 + ε

)q(·)∥∥∥
r(·)
>
∥∥∥ |u(·)|

1 + ε

∥∥∥q+
p(·)
>

1

(1 + ε)q+
‖u‖q+p(·)

which proves

(1 + ε)q−−q+‖u‖q+p(·) 6 ‖ |u(·)|q(·)‖r(·) 6 (1 + ε)q+−q−‖u‖q−p(·).

Tending ε→ 0+ we obtain

‖u‖q+p(·) 6 ‖ |u(·)|q(·)‖r(·) 6 ‖u‖
q−
p(·).

�

Lemma 3.3. Let Ω be bounded, p(·), q(·) ∈ E(Ω), and suppose that q(x) 6 p(x) 6
p+ < ∞ for all x ∈ Ω. Assume that for any sequence {En}n∈N of measurable
subsets of Ω such that |En| → 0, we have

‖χE‖r′(·) → 0.

Then Lp(·)(Ω)
∗
↪→ Lq(·)(Ω).

Proof. Let En ⊂ Ω, |En| → 0. Then by Lemma 3.1 we obtain

lim
n→∞

sup{‖uχEn‖q(·); ‖u‖p(·) 6 1}

6 lim
n→∞

sup{max{(mq(·)(uχEn))1/q+ , (mq(·)(uχEn))1/q−}; ‖u‖p(·) 6 1}.

If ‖u‖p(·) 6 1 we obtain by the Hölder inequality and Lemma 3.2

mq(·)(uχEn) =

∫
Ω

|u(x)χEn(x)|q(x)dx 6 c‖χEn‖r′(·)‖ |u(·)|q(·)‖r(·)

6 c‖χEn‖r′(·)‖u‖
q−
p(·).
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This gives

lim
n→∞

sup{‖uχEn‖q(·); ‖u‖p(·) 6 1}

6 c lim
n→∞

sup{max{‖χEn‖
1/q+
r′(·) ‖u‖

q−/q+
p(·) , ‖χEn‖

1/q−
r′(·) ‖u‖p(·)}; ‖u‖p(·) 6 1}

6 c lim
n→∞

max{‖χEn‖
1/q+
r′(·) , ‖χEn‖

1/q−
r′(·) } = 0.

�

Theorem 3.4. Let Ω be bounded, p(·), q(·) ∈ E(Ω), and suppose that q(x) 6 p(x) 6
p+ <∞ for all x ∈ Ω. Denote s(x) = 1

p(x)−q(x) . Assume∫ |Ω|
0

as
∗(t)dt <∞.(3.6)

for all a > 1. Then Lp(·)(Ω)
∗
↪→ Lq(·)(Ω).

Proof. Let En ⊂ Ω, |En| → 0. Assume that there is α > 0 such that

‖χEn‖r′(·) > α

for all n. Without loss of generality we can assume α < 1. Then

α 6 inf
{
λ > 0;

∫
Ω

∣∣∣χEn(x)

λ

∣∣∣r′(x)

dx 6 1
}

= inf
{
λ > 0;

∫
Ω

∣∣∣χEn(x)

λ

∣∣∣p(x)s(x)

dx 6 1
}
.

Choose 0 < β < α. Then we obtain by Lemma 2.3

1 <

∫
Ω

∣∣∣χEn(x)

β

∣∣∣p(x)s(x)

dx 6
∫
En

( 1

βp+

)s(x)

dx =

∫ |En|
0

( 1

βp+

)s∗(t)
dt.

Since by the assumption∫ |En|
0

( 1

βp+

)s∗(t)
dt→ 0 for n→∞

we have a contradiction. So, ‖χEn‖r′(·) → 0. By Lemma 3.3 we have Lp(·)(Ω)
∗
↪→

Lq(·)(Ω). �

We remark that the condition (3.6) was first introduced in Corollary 2.7 of [3].

Lemma 3.5. Let Ω be bounded, p(·), q(·) ∈ E(Ω), and suppose that q(x) 6 p(x) 6
p+ < ∞ for all x ∈ Ω. Assume that there exist an α > 0 and a sequence En ⊂ Ω
with |En| → 0 such that for all n

‖χEn‖r′(·) > α.

Then Lp(·)(Ω)
∗
↪→/ Lq(·)(Ω).

Proof. Let En ⊂ Ω, ‖χEn‖p′(·) > α. Fix n. Without loss of generality we can
assume α 6 1. Set

un(x) =
χEn(x)

‖χEn‖
r′(x)

r(x)q(x)

r′(·)

.
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Clearly,

∫
Ω

|un(x)|p(x)dx =

∫
Ω

 χEn(x)

‖χEn‖
r′(x)

r(x)q(x)

r′(·)


p(x)

dx =

∫
Ω

χEn(x)

‖χEn‖
r′(x)
r′(·)

dx

=

∫
Ω

(
χEn(x)

‖χEn‖r′(·)

)r′(x)

dx = 1.

Thus

‖un‖p(·) = 1.

Then by Lemma 3.1 we obtain

sup{‖uχEn‖q(·); ‖u‖p(·) 6 1} > min{(mq(·)(unχEn))1/q+ , (mq(·)(unχEn))1/q−}.

Further

mq(·)(unχEn) =

∫
Ω

|un(x)χEn(x)|q(x)dx =

∫
Ω

χEn(x)

 χEn(x)

‖χEn‖
r′(x)

r(x)q(x)

r′(·)


q(x)

dx

=

∫
Ω

χEn(x)

‖χEn‖
r′(x)
r(x)

r′(·)

dx = ‖χEn‖r′(·)
∫

Ω

χEn(x)

‖χEn‖
1+

r′(x)
r(x)

r′(·)

dx = ‖χEn‖r′(·)
∫

Ω

χEn(x)

‖χEn‖
r′(x)
r′(·)

dx

= ‖χEn‖r′(·)
∫

Ω

(
χEn(x)

‖χEn‖r′(·)

)r′(x)

dx = ‖χEn‖r′(·) > α.

Then

sup{‖uχEn‖q(·); ‖u‖p(·) 6 1} > min{(mq(·)(unχEn))1/q+ , (mq(·)(unχEn))1/q−}

> min{α1/q+ , α1/q−} = α1/q−

which proves the lemma. �

Lemma 3.6. Let E ⊂ Ω, g : Ω→ [0,∞) and assume that

inf{g(x);x ∈ E} > sup{g(x);x ∈ Ω \ E}.

Then

(gχE)∗(t) = g∗(t)χ(0,|E|)(t).

Proof. Trivial. �

Theorem 3.7. Let Ω be bounded, p(·), q(·) ∈ E(Ω), and suppose that q(x) 6 p(x) 6
p+ < ∞ for all x ∈ Ω. Denote s(x) = 1

p(x)−q(x) . Assume that there is a > 1 such

that ∫ |Ω|
0

as
∗(t)dt =∞.(3.7)

Then Lp(·)(Ω)
∗
↪→/ Lq(·)(Ω).
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Proof. Define En = {x ∈ Ω; s(x) > n}. Assume for a moment that there exists n0

such that |En0
| = 0. Then

s(x) =
1

p(x)− q(x)
< n0

almost everywhere and so we have for any a > 1∫ |Ω|
0

as
∗(t)dt 6

∫ |Ω|
0

an0dt = an0 |Ω| <∞

which is a contradiction with the assumption. So, |En| > 0 for all n. Fix n and
assume

max{‖χEn‖
p+
r′(·), ‖χEn‖

p−
r′(·)} 6

1

a
.(3.8)

Then

1 =

∫
Ω

(
χEn(x)

‖χE‖r′(·)

)r′(x)

dx =

∫
Ω

 χEn(x)

‖χEn‖
p(x)
r′(·)

s(x)

dx(3.9)

>
∫
En

(
1

max{‖χEn‖
p+
r′(·), ‖χEn‖

p−
r′(·)}

)s(x)

dx >
∫
En

as(x)dx.

Now, by the definition of En we have that s(x) > n on En and s(x) < n on Ω \En.
This gives us as(x) > an on En and as(x) < an on Ω \En. Then we have by Lemma
3.6

(as(·)χEn(·))∗(t) = (as(·))∗(t)χ(0,|En|)(t) = as
∗(t)χ(0,|En|)(t)

which gives with (3.9)

1 >
∫
En

as(x)dx =

∫
Ω

as(x)χEn(x)dx =

∫ |Ω|
0

(as(·)χEn(·))∗(t)dt

=

∫ |Ω|
0

as
∗(t)χ(0,|En|)(t)dt =

∫ |En|
0

as
∗(t)(t)dt =∞

which is a contradiction. So, our assumption (3.8) is false and we have

max{‖χEn‖
p+
r′(·), ‖χEn‖

p−
r′(·)} >

1

a

which yields

‖χEn‖r′(·) > min{a−1/p+ , a−1/p−} := b > 0.

Thus, we have ‖χEn‖r′(·) > b > 0 for any n and Lemma 3.5 gives us Lp(·)(Ω)
∗
↪→/

Lq(·)(Ω). �

Consider a special case. Let K ⊂ Ω be compact with |K| = 0. Denote dK(x) =
dist(x,K). Set

K(t) = {x ∈ Ω; dK(x) < t}.(3.10)

Denote

ϕ(t) = |K(t)|, t ∈ [0,diam(Ω)].(3.11)



ALMOST-COMPACT AND COMPACT EMBEDDING . . . 9

Let ω : [0,diam(Ω)] → R be a decreasing continuous non-negative function, ω0 :=
ω(diam(Ω)). Let ω−1 denote the inverse function to ω.

Lemma 3.8. Let Ω be bounded, p(·), q(·) ∈ E(Ω), and suppose that q(x) 6 p(x) 6
p+ <∞ for all x ∈ Ω. Assume that there is c > 0 such that

s(x) =
1

p(x)− q(x)
6 c ω(dK(x)), x ∈ Ω,∫ ∞

ω0

ϕ(ω−1(y))aydy <∞ for all a > 1.

Then Lp(·)(Ω)
∗
↪→ Lq(·)(Ω).

Proof. Let a > 1. Then∫ |Ω|
0

as
∗(t)dt =

∫
Ω

as(x)dx 6
∫

Ω

acω(dK(x))dx =

∫ ∞
0

|{x; acω(dK(x)) > λ}|dλ

=

∫ acω0

0

|{x; acω(dK(x)) > λ}|dλ+

∫ ∞
acω0

|{x; acω(dK(x)) > λ}|dλ

= acω0 |Ω|+ c ln a

∫ ∞
ω0

|{x; acω(dK(x)) > acy}|acydy

= acω0 |Ω|+ c ln a

∫ ∞
ω0

|{x;ω(dK(x)) > y}|acydy

= acω0 |Ω|+ c ln a

∫ ∞
ω0

|{x; dK(x)) < ω−1(y)}|acydy

= acω0 |Ω|+ c ln a

∫ ∞
ω0

ϕ(ω−1(y))acydy <∞.

By Theorem 3.4 we have Lp(·)(Ω)
∗
↪→ Lq(·)(Ω). �

4. Examples of Cantor sets

Let {ak}k∈N be a given sequence of positive real numbers with

∞∑
k=1

ak = 1.(4.1)

Construct a generalized Cantor set by the following process. Set K0 = [0, 1]. Omit
in the first step from K0 a centered interval of length a1 to obtain a set K1. We
write

K1 = K0 \
(1− a1

2
,

1 + a1

2

)
=
[
0,

1− a1

2

]
∪
[1 + a1

2
, 1
]

:= J0 ∪ J1.

In the second step we omit from J0 and J1 centered intervals of length a2/2 to
obtain K2. Then

K2 = K1 \
((1− a1 − a2

22
,

1− a1 + a2

22

)
∪
(3 + a1 − a2

22
,

3 + a1 + a2

22

))
=
[
0,

1− a1 − a2

22

]
∪
[1− a1 + a2

22
,

1− a1

2

]
∪
[1 + a1

2
,

3 + a1 − a2

22

]
∪
[3 + a1 + a2

22
, 1
]

:= J00 ∪ J01 ∪ J10 ∪ J11.
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We follow this process step by step to obtain sets Kn. Then Kn consists of 2n

intervals Jα, α ∈ {0, 1}n. Clearly,

|Jα| = 2−n
(

1−
n∑
k=1

ak

)
.(4.2)

Set

K =
∞⋂
n=1

Kn.

Clearly, K is a compact set and for each n

|K| 6 |Kn|

which gives with (4.2)

|K| 6
∑

α∈{0,1}n
|Jα| = 2n2−n

(
1−

n∑
k=1

ak

)
= 1−

n∑
k=1

ak.

Using (4.1) we have

|K| = 0.

Now, we will be interested in the behavior of the function |K(t)|.

Lemma 4.1. The function |K(·)| is non-increasing and limt→0+
|K(t)| = 0.

Proof. The monotonicity of |K(·)| is clear. Moreover, K(t) ↘ K and K(1) < ∞
since K is compact. It is easily seen that limt→0+

|K(t)| = 0. �

Lemma 4.2. For each n ∈ N let rn, εn be given by

rn = 1−
n∑
k=1

ak;

εn = 2−n
(

1−
n∑
k=1

ak

)
= 2−nrn.

Then

rn 6 |K(εn)| 6 4rn.

Proof. Clearly, εn = |Jα| for α ∈ {0, 1}n and so,

K(εn) ⊃
⋃

α∈{0,1}n
Jα

which gives

|K(εn)| >
∑

α∈{0,1}n
|Jα| = 2nεn = rn.

For the right-hand inequality, denote by M the set of all endpoints of intervals Jα,
α ∈ {0, 1}n. The number of these points is 2(1 + 2 + 22 + · · ·+ 2n−1) = 2(2n − 1)
and

K(εn) ⊂
⋃
x∈M

(x− εn, x+ εn).
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Then

|K(εn)| 6
∑
x∈M

2εn = 2(2n − 1)2εn 6 4.2nεn = 4rn.

�

One important case is obtained by choosing ak = ak−1

(a+1)k
where a > 0. When

a = 2 we obtain the classical Cantor set.

Lemma 4.3. Let ak = ak−1

(a+1)k
and set

s =
ln( a

a+1 )

ln( a
2(a+1) )

.

Then there are positive constants c1, c2 such that

c1t
s 6 |K(t)| 6 c2ts, t ∈ [0,diam(Ω)].

Proof. Let q = a
a+1 . Then s = ln q

ln(q/2) . Clearly,

rn = 1−
n∑
k=1

ak−1

(a+ 1)k
=
( a

a+ 1

)n
= qn,

εn = 2−n
( a

a+ 1

)n
= 2−nqn

and

rn+1 = qrn, εn+1 =
q

2
εn.

It is easy to see that 0 < s < 1.
Fix t ∈ [εn+1, εn]. By Lemmas 4.1 and 4.2 we know that

qrn = rn+1 6 |K(εn+1)| 6 |K(t)| 6 |K(εn)| 6 4rn.(4.3)

Since q/2εn 6 t 6 εn, we have

ln q/2 + n ln q/2 = ln q/2 + ln εn 6 ln t 6 ln εn = n ln q/2

which gives

ln t

ln q/2
6 n 6

ln t− ln q/2

ln q/2
.

This implies that

t
ln q

ln q/2 = q
ln t

ln q/2 6 rn 6 q
ln t−ln q/2

ln q/2 =
1

q
t

ln q
ln q/2 .

By (4.3) we obtain

qts 6 |K(t)| 6 4

q
ts.

�

We recall the definition of the Riemann function

ζ(s) =
∞∑
k=1

k−s, s > 1.
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Lemma 4.4. Let ak = k−s

ζ(s) . Then there are positive constants c1, c2 such that

c1
(ln(e/t))s−1

6 |K(t)| 6 c2
(ln(e/t))s−1

, t ∈ [0,diam(Ω)].

Proof. Clearly,

rn = 1− 1

ζ(s)

n∑
k=1

k−s =
1

ζ(s)

∞∑
k=n+1

k−s.

It is easy to see that

1

ζ(s)(s− 1)(n+ 1)s−1
=

1

ζ(s)

∫ ∞
n+1

x−sds 6 rn

6
1

ζ(s)

∫ ∞
n

x−sds =
1

ζ(s)(s− 1)ns−1
.

This gives for n > 2

21−s 6
rn+1

rn
6 1, 2−s 6

εn+1

εn
6

1

2
.

Fix t ∈ [εn+1, εn]. Then

21−srn = rn+1 6 |K(εn+1)| 6 |K(t)| 6 |K(εn)| 6 4rn.(4.4)

We know

2−sεn 6 εn+1 6 t 6 εn

which gives

2−n(n+ 1)1−s

ζ(s)(s− 1)
6 εn 6

2−nn1−s

ζ(s)(s− 1)

and consequently

1

2s2s−1

2−nn1−s

ζ(s)(s− 1)
6 t 6

2−nn1−s

ζ(s)(s− 1)
.

So, there are constants b1, b2 such that

b12−nn1−s 6 t 6 b22−nn1−s.

It yields

ln b1 − n ln 2− (s− 1)n 6 ln b1 − n ln 2− (s− 1) lnn

6 ln t

6 ln b2 − n ln 2− (s− 1) lnn 6 ln b2 − n ln 2

and so

ln(b1/t)

ln 2 + s− 1
6 n 6

ln(b2/t)

ln 2
.

Then

|K(t)| 6 4rn =
4

ζ(s)(s− 1)ns−1
6

4(ln 2 + s− 1)s−1

ζ(s)(s− 1)(ln(b1/t))s−1
6

c2
(ln(e/t))s−1
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Finally,

|K(t)| > rn+1 >
4

ζ(s)(s− 1)(n+ 2)s−1
>

1

ζ(s)(s− 1)

( n

n+ 2

)s−1 1

ns−1

>
1

3s−1ζ(s)(s− 1)ns−1
>

(ln 2)s−1

3s−1ζ(s)(s− 1)(ln(b2/t))s−1
>

c1
(ln(e/t))s−1

.

�

Lemma 4.5. Define a function η(s) =
∑∞
k=1

1
(k+1) lns(k+1) , s > 1. Choose ak =

1
η(s)

1
(k+1) lns(k+1) . Then there are positive constants c1, c2 and b such that

c1(ln ln(b/t))1−s 6 |K(t)| 6 c2(ln ln(b/t))1−s.

Proof. The proof is analogous to the previous one. Clearly,

rn =
∞∑

k=n+1

1

(k + 1) lns(k + 1)
, εn = 2−nrn.

By the integral criterion we have estimate

1

2(ε− 1) lns−1 n
6 rn 6

1

(ε− 1) lns−1 n
, n > 2.

Fix t ∈ [εn+1, εn]. Then

1

2(ε− 1)2n+1 lns−1(n+ 1)
6 2−n−1rn+1 = εn+1 6 t 6 εn = 2−nrn 6

1

(ε− 1)2n lns−1 n
.

Since 2n+1 lns−1(n+1) is comparable with 2n lns−1 n for large n we can take positive
contant b1, b2 such that

b1

2n lns−1 n
6 t 6

b2

2n lns−1 n
.(4.5)

By Lemma 4.2 we have

rn+1 6 |K(t)| 6 rn(4.6)

and so there are two positive constants d1, d2 with

d1

lns−1 n
6 |K(t)| 6 d2

lns−1 n
.

By (4.5) we obtain

ln b1 − n ln 2− (s− 1) ln lnn 6 ln t 6 ln b2 − n ln 2− (s− 1) ln lnn

which gives for some constants L1, L2

L1n 6 n ln 2 + (s− 1) ln lnn 6 ln
b2
t
,

ln
b1
t
6 n ln 2 + (s− 1) ln lnn 6 L2n.

So
1

L2
ln
b1
t
6 n 6

1

L1
ln
b2
t
.

This implies (
ln
( 1

L2
ln
b1
t

))s−1

6 lns−1 n 6

(
ln
( 1

L1
ln
b2
t

))s−1

.
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Finally we can find c1, c2 and b such that

c1(ln ln(b/t))1−s 6 |K(t)| 6 c2(ln ln(b/t))1−s.

�

All Cantor sets are constructed on an interval [0, 1] so far. But we can construct
Cantor sets in [0, 1]N as a cartesian product. But having |K(t)| = ϕ(t) we have
|KN (t)| 6 |K(t)|N 6 ϕN (t). In Lemmas 4.3, 4.4 and 4.5 we essentially get nothing
new, the behavior of ϕ(t) stays qualitatively the same.

5. Examples of almost compact embeddings

Example 5.1. Let Ω be bounded, p(·), q(·) ∈ E(Ω), and suppose that q(x) 6
p(x) 6 p+ < ∞ for all x ∈ Ω. Let K ⊂ Ω be compact and let ϕ be given by
(3.11). Suppose that ϕ(t) 6 Cts for some C > 0 and s ∈ (0, N ]. Assume that
ψ : [ω0,∞)→ (0,∞) satisfies

(i) ψ(t)
ln t is decreasing;

(ii) lim
t→∞

ψ(t) =∞;

(iii) s(x) := 1
p(x)−q(x) 6

ln(1/dK(x))
ψ(1/dK(x)) .

Then Lp(·)(Ω)
∗
↪→ Lq(·)(Ω).

Proof. Let a > 1. Set ω(t) = ln(1/t)
ψ(1/t) . Clearly, s(x) 6 ω(dK(x)) by (iii). Using (ii)

we have

ω(t)

ln(1/t)
=

1

ψ(1/t)
→ 0 for t→ 0+.

Since ω is decreasing by (i) on (0, 1/ω0) we can take an inverse function and write
t = ω−1(y), y ∈ [ω(1/ω0),∞). Then

ψ(1/ω−1(y)) =
y

ln(1/ω−1(y))
→ 0 for y →∞.(5.1)

This gives us

ln
1

ω−1(y)
=

y

ψ(1/ω−1(y))
⇒ ω−1(y) = e

− y

ψ(1/ω−1(y))

and consequently∫ ∞
ω0

ϕ(ω−1(y))aydy 6 C
∫ ∞
ω0

e
− sy

ψ(1/ω−1(y)) ey ln ady = C

∫ ∞
ω0

e
y(ln a− s

ψ(1/ω−1(y))
)
dy = I.

By (5.1) we have ψ(1/ω−1(y)) → 0 for y → ∞ and so, ln a− s
ψ(1/ω−1(y)) 6 −1 for

large y which implies I <∞. Now, Lemma 3.8 gives Lp(·)(Ω)
∗
↪→ Lq(·)(Ω). �

Example 5.2. Let Ω be bounded, p(·), q(·) ∈ E(Ω), and suppose that q(x) 6
p(x) 6 p+ < ∞ for all x ∈ Ω. Let K ⊂ Ω be compact and let ϕ be given
by (3.11) and ϕ(t) 6 C(ln(e/t))1−s for some C > 0 and s > 1. Assume that
ψ : [ω0,∞)→ (0,∞) satisfies

(i) ψ(t)
ln ln t is decreasing;
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(ii) lim
t→∞

ψ(t) =∞;

(iii) s(x) := 1
p(x)−q(x) 6

ln ln(1/dK(x))
ψ(1/dK(x)) .

Then Lp(·)(Ω)
∗
↪→ Lq(·)(Ω).

Proof. Let a > 1. Set ω(t) = ln ln(1/t)
ψ(1/t) . Clearly, s(x) 6 ω(dK(x)) by (iii). Using (ii)

we have

ω(t)

ln ln(1/t)
=

1

ψ(1/t)
→ 0 for t→ 0+.

Since ω is decreasing by (i) on (0, 1/ω0) we can take an inverse function and write
t = ω−1(y), y ∈ [ω(1/ω0),∞). Then

ψ(1/ω−1(y)) =
y

ln ln(1/ω−1(y))
→ 0 for y →∞.(5.2)

It gives us

ln ln
1

ω−1(y)
=

y

ψ(1/ω−1(y))
⇒ 1

ω−1(y)
= exp(exp(y/ψ(1/ω−1(y))))

and consequently∫ ∞
ω0

ϕ(ω−1(y))aydy =

∫ ∞
ω0

(
ln

1

ω−1(y)

)1−s
aydy =

∫ ∞
ω0

e
(1−s) ln ln 1

ω−1(y) ey ln ady

6 c
∫ ∞
ω0

e
(1−s) y

ψ(1/ω−1(y)) ey ln ady = c

∫ ∞
ω0

e
y(ln a+ 1−s

ψ(1/ω−1(y))
)
dy = I.

By (5.2) we have ψ(1/ω−1(y)) → 0 for y → ∞ and so, ln a + 1−s
ψ(1/ω−1(y)) 6 −1 for

large y which implies I <∞. Now, Lemma 3.8 gives Lp(·)(Ω)
∗
↪→ Lq(·)(Ω). �

Example 5.3. Let Ω ∈ C0,1, p(·), q(·) ∈ E(Ω), and suppose that 1 6 p(x) 6 p+ <
N , 1 6 q(x) 6 p#(x) for all x ∈ Ω. Let K ⊂ RN , ϕ be given by (3.11) and ϕ(t) 6
C(ln ln ln(ee/t))1−s for some C > 0 and s > 1. Assume that ψ : [ω0,∞) → (0,∞)
satisfies

(i) ψ(t)
ln ln ln t is decreasing;

(ii) lim
t→∞

ψ(t) =∞;

(iii) s(x) := 1
p(x)−q(x) 6

ln ln ln(1/dK(x))
ψ(1/dK(x)) .

Then Lp(·)(Ω)
∗
↪→ Lq(·)(Ω).

Proof. Let a > 1. Set ω(t) = ln ln ln(1/t)
ψ(1/t) . Clearly, s(x) 6 ω(dK(x)) by (iii). Using

(ii) we have

ω(t)

ln ln ln(1/t)
=

1

ψ(1/t)
→ 0 for t→ 0+.

Since ω is strictly monotone by (i) on (0, 1/ω0) we can take an inverse function and
write t = ω−1(y), y ∈ [ω(1/ω0),∞). Then

ψ(1/ω−1(y)) =
y

ln ln ln(1/ω−1(y))
→ 0 for y →∞.(5.3)
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Thus

ln ln ln
1

ω−1(y)
=

y

ψ(1/ω−1(y))
⇒ 1

ω−1(y)
= exp(exp(exp(y/ψ(1/ω−1(y)))))

and consequently∫ ∞
ω0

ϕ(ω−1(y))aydy =

∫ ∞
ω0

(
ln ln

1

ω−1(y)

)1−s
aydy =

∫ ∞
ω0

e
(1−s) ln ln ln 1

ω−1(y) ey ln ady

6 c
∫ ∞
ω0

e
(1−s) y

ψ(1/ω−1(y)) ey ln ady = c

∫ ∞
ω0

e
y(ln a+ 1−s

ψ(1/ω−1(y))
)
dy = I.

By (5.3) we have ψ(1/ω−1(y)) → 0 for y → ∞ and so, ln a + 1−s
ψ(1/ω−1(y)) 6 −1 for

large y which implies I <∞. Now, Lemma 3.8 gives Lp(·)(Ω)
∗
↪→ Lq(·)(Ω). �

6. Compact embeddings between variable Sobolev and variable
Lebesgue spaces

First of all we establish a necessary condition for an embedding to be compact.

Lemma 6.1. Let Br = B(0, r) denote the ball in RN centered at 0 with radius
r. Assume M ⊂ Br and s ∈ R are such that |Br \ Bs| 6 |M |. Suppose that
ϕ : (0, r] → R is non-negative and non-increasing and set ψ(x) = ϕ(|x|), x ∈ Br.
Then ∫

M

ψ(x)dx >
∫
Br\Bs

ψ(x)dx.

Proof. By the assumption |Br \Bs| 6 |M | we have

|(Br \Bs) \M |+ |(Br \Bs) ∩M | = |(Br \Bs)| 6 |M |
= |(Br \Bs) ∩M |+ |M ∩Bs|.

and consequently

|M ∩Bs| > |(Br \Bs) \M |.
By the assumptions on ψ we have ψ(x) > ψ(y) for every x ∈ Bs and every y ∈
Br \Bs. This implies∫

M

ψ(x)dx =

∫
M∩Bs

ψ(x)dx+

∫
(Br\Bs)∩M

ψ(x)dx

>
|M ∩Bs|

|(Br \Bs) \M |

∫
(Br\Bs)\M

ψ(x)dx+

∫
(Br\Bs)∩M

ψ(x)dx

>
∫

(Br\Bs)\M
ψ(x)dx+

∫
(Br\Bs)∩M

ψ(x)dx

=

∫
Br\Bs

ψ(x)dx.

which finishes the proof. �

Theorem 6.2. Let p, q ∈ E(Ω), 1 6 p(x) 6 p+ < N on Ω and let p(·) satisfy (2.2),
1 6 q(x) 6 p#(x) and let M = {x ∈ Ω; p(x) = q(x)}. Assume

W 1,p(·)(Ω) ↪→↪→ Lq(·)(Ω).

Then |M | = 0.



ALMOST-COMPACT AND COMPACT EMBEDDING . . . 17

Proof. Suppose |M | > 0. Let x0 ∈ Ω be a point of Lebesgue density of M . Given
ε > 0 denote

pε− = inf{p(x);x ∈ B(x0, ε)}, pε+ = sup{p(x);x ∈ B(x0, ε)}

and define a function uε by

uε(x) = ε

pε−−N
pε− (1− |x|/ε)χB(x0,ε)(x).

Clearly,

|∇uε(x)| = ε

pε−−N
pε− 1/ε χB(x0,ε)(x) = ε

− N
pε− χB(x0,ε)(x).

First we prove that the set {uε} is bounded in W 1,p(·)(Ω) for ε 6 1. Plainly,

∫
Ω

|uε(x)|p(x)dx =

∫
B(x0,ε)

ε

pε−−N
pε−

p(x)
(1− |x|/ε)p(x)dx

6
∫
B(x0,ε)

εp(x)ε
− N
pε−

p(x)
dx 6

∫
B(x0,ε)

ε
− N
pε−

p(x)
dx := Iε.

Moreover, ∫
Ω

|∇uε(x)|p(x)dx 6
∫
B(x0,ε)

ε
− N
pε−

p(x)
dx := Iε.

Now,

Iε =

∫
B(x0,ε)

ε
− N
pε−

(p(x)−pε−)
ε−Ndx =

∫
B(x0,ε)

e
− N
pε−

(p(x)−pε−) ln ε
ε−Ndx

=

∫
B(x0,ε)

e
N
pε−

(p(x)−pε−) ln(1/ε)
ε−Ndx.

From the log-Lipschitz condition (2.2) we have

(p(x)− pε−) ln(1/ε) 6 C

and so

Iε 6
∫
B(x0,ε)

e
CN
pε− ε−Ndx 6 eCN

∫
B(x0,ε)

ε−Ndx := A.

This immediately implies that ‖uε‖W 1,p(·)(Ω) is bounded for ε 6 1.
Now fix ε0 such that for all ε 6 ε0 we have

|B(x0, ε) ∩M | > |B(x0, 7ε/8)|.
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Fix for a moment ε 6 ε0. Then

Aε :=

∫
(B(x0,ε)\B(x0,3/4 ε)∩M

(1− |x|/ε)p
#(x)

(
ε

pε−−N
pε−

)p#(x)

dx

>
∫

(B(x0,ε)\B(x0,3/4 ε)∩M
(1− |x|/ε)p

#(x)ε

pε−−N
pε−

(pε−)#

dx

=

∫
(B(x0,ε)\B(x0,3/4 ε)∩M

(1− |x|/ε)p
#(x)ε

pε−−N
pε−

Npε−
N−pε− dx

=

∫
(B(x0,ε)\B(x0,3/4 ε)∩M

(1− |x|/ε)p
#(x)ε−Ndx

>
∫

(B(x0,ε)\B(x0,3/4 ε)∩M
(1− |x|/ε)(pε+)#ε−Ndx := Bε.

By Lemma 6.1 we have

Bε >
∫

(B(x0,ε)\B(x0,7/8 ε)

(1− |x|/ε)(pε+)#ε−Ndx

= σNε
−N
∫ ε

7/8 ε

(1− r/ε)(pε+)#rN−1dr

> σNε
−N
∫ 15/16 ε

14/16 ε

(1− (15ε/16)/ε)(pε+)#rN−1dr

= σN (1/16)(pε+)# ε−N
∫ 15/16ε

14/16 ε

rN−1dr := K.

σN denotes the area of N -dimensional unit sphere SN .
Denote εn = (3/4)nε0 and consider the corresponding sequence uεn(x). Let

m > n. Then um(x) = 0 for x ∈ B(x0, εn) \B(x0, εm) and so,∫
Ω

|um(x)− un(x)|q(x)dx =

∫
B(x0,εn)

|um(x)− un(x)|q(x)dx

>
∫
B(x0,εn)\B(x0,εm)

|un(x)|q(x)dx =

∫
(B(x0,εn)\B(x0,3/4 εn))∩M

|un(x)|q(x)dx

=

∫
(B(x0,εn)\B(x0,3/4 εn))∩M

|un(x)|p
#(x)dx > K.

Hence, there is a constant L > 0 such that

‖um − un‖Lq(·)(Ω) > L

and the embedding W 1,p(·)(Ω) ↪→↪→ Lq(·)(Ω) is not compact. �

The next lemma is proved in [2] (see Corollary 8.3.2.).

Lemma 6.3. Let Ω ∈ C0,1, p, q ∈ E(Ω) and p(·) satisfies the log-Hölder condition
(2.2). Assume that for all x ∈ Ω

1 6 p(x) 6 p+ < N.

Then W 1,p(·)(Ω) ↪→ Lp
#(·)(Ω) where p#(x) is given in (1.6).
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Theorem 6.4. Let Ω ∈ C0,1, p, q ∈ E(Ω) and let p(·) satisfy the log-Hölder condi-
tion (2.2). Assume that for all x ∈ Ω,

1 6 p(x) 6 p+ < N, 1 6 q(x) 6 p#(x)

where p#(x) is given in (1.6). Let K ⊂ Ω be compact, |K| = 0 and denote ϕ(t) =
|K(t)|. Let ω : [0,diam(Ω)]→ R be a decreasing continuous non-negative function,
ω0 := ω(diam(Ω)). Suppose that ω(·) satisfies

1

p#(x)− q(x)
6 c ω(dK(x)), x ∈ Ω,∫ ∞

ω0

ϕ(ω−1(y))aydy <∞ for all a > 1.

Then W 1,p(·)(Ω) ↪→↪→ Lq(·)(Ω).

Proof. Lemmas 6.3 and 3.8 give

W 1,p(·)(Ω) ↪→ Lp
#

(Ω)
∗
↪→ Lq(·)(Ω).

Now Proposition 2.2 finishes the proof. �

As an application we introduce the following several examples. The first one is
in fact proved in [9] (see Theorem 3.4) but we obtain it as an easy consequence of
the previous theorem. Let ϕ and q denote in following three examples the same as
in Theorem 6.4.

Example 6.5. Let Ω ∈ C0,1 and p(·) : Ω→ R satisfy (2.2). Assume

1 6 p(x) 6 p+ < N.

Let K ⊂ Ω and ϕ(t) 6 Cts for some C > 0 and s ∈ (0, N ]. Assume that ψ :
[ω0,∞)→ (0,∞) satisfies

(i) ψ(t)
ln t is decreasing;

(ii) lim
t→∞

ψ(t) =∞;

(iii) s(x) := 1
p#(x)−q(x)

6 ln(1/dK(x))
ψ(1/dK(x)) .

Then W 1,p(·)(Ω)↪→↪→Lq(·)(Ω).

Proof. It suffices to choose

ω(t) =
ln(1/t)

ψ(1/t)

and then to use Theorem 6.4. �

Example 6.6. Let Ω ∈ C0,1 and p(·) : Ω→ R satisfy (2.2). Assume

1 6 p(x) 6 p+ < N.

Let K ⊂ Ω and ϕ(t) 6 C(ln(e/t))1−s for some C > 0 and s > 1. Assume that
ψ : [ω0,∞)→ (0,∞) satisfies

(i) ψ(t)
ln ln t is decreasing;

(ii) lim
t→∞

ψ(t) =∞;
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(iii) s(x) := 1
p#(x)−q(x)

6 ln ln(1/dK(x))
ψ(1/dK(x)) .

Then W 1,p(·)(Ω)↪→↪→Lq(·)(Ω).

Proof. Take

ω(t) =
ln ln(1/t)

ψ(1/t)

and use Theorem 6.4. �

Example 6.7. Let Ω ∈ C0,1 and p(·) : Ω→ R satisfy (2.2). Assume

1 6 p(x) 6 p+ < N.

Let K ⊂ Ω and ϕ(t) 6 C(ln ln(e/t))1−s for some C > 0 and s > 1. Assume that
ψ : [ω0,∞)→ (0,∞) satisfies

(i) ψ(t)
ln ln ln t is decreasing;

(ii) lim
t→∞

ψ(t) =∞;

(iii) s(x) := 1
p#(x)−q(x)

6 ln ln ln(1/dK(x))
ψ(1/dK(x)) .

Then W 1,p(·)(Ω)↪→↪→Lq(·)(Ω).

Proof. Take

ω(t) =
ln ln ln(1/t)

ψ(1/t)

and use Theorem 6.4. �

To conclude we remark that the construction of Cantor sets could be refined,
adding some more logarithms to give additional examples.
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