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Abstract

We prove global existence of weak solutions for a version of one velocity Baer-Nunziato system
with dissipation describing a mixture of two non interacting viscous compressible fluids in a piece-
wise regular Lipschitz domain with general inflow/outflow boundary conditions. The geometrical
setting is general enough to comply with most current domains important for applications as, for
example, (curved) pipes of picewise regular and axis-dependent cross sections.

As far as the existence proof is concerned, we adapt to the system the nowaday’s classical
Lions-Feireisl approach to the compressible Navier-Stokes equations which is combined with a
generalization of the theory of renormalized solutions to the transport equations in the spirit of
Vasseur-Wen-Yu. The results related to the families of transport equations presented in this paper
extend/improve some of statements of the theory of renormalized solutions, and they are therefore
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1 Introduction

One of the acceptable models for description of mixture of several compressible fluids is the so called
two velocity Baer-Nunziato model. The equations of the Baer–Nunziato model with dissipation read
(cf. [5], [16], [28, Section 1]):

∂tα± + vI · ∇α± = 0,

∂t(α±%±) + div(α±%±u±) = 0,

∂t(α±%±u±) + div(α±%±u± ⊗ u±) +∇(α±P±(%±))− PI∇(α±)

= α±µ±(∆u±) + α±(µ± + λ±)∇divu±

0 ≤ α± ≤ 1, α+ + α− = 1.

In the above (α±, α±%± ≥ 0,u± ∈ R3) -concentrations, densities, velocities of the ± species - are
unknown functions of time-space (t, x) = QT := I × Ω, t ∈ I = (0, T ), T > 0, and x ∈ Ω ⊂ R3,
P± are two (different) given functions defined on [0,∞) and PI , vI are conveniently chosen quantities
- they represent pressure and velocity at the interface. In the multifluid modeling, there are many
possibilities how the quantities vI , PI could be chosen, and there is no consensus about this choice.

Our goal in this paper is to prove the existence of weak solutions for the Baer-Nunziato system
with dissipation on an arbitrary large time interval (0, T ) in a Lipschitz bounded domain Ω, under
the following simplifying assumptions:

µ± := µ, λ± := λ, vI = u± := u (1)

αP±(s) = P±(f±(α)s) for all α ∈ (0, 1), s ∈ [0,∞) (2)

with some functions P± defined on [0,∞) and functions f± defined on (0, 1).
With this simplifications, the two velocity Baer-Nunziato system reduces to the following system

(which we will call the one velocity Baer-Nunziato type system):

∂tα+ (u · ∇)α = 0, 0 ≤ α ≤ 1, (3)

∂t%+ div(%u) = 0, (4)

∂tz + div(zu) = 0, (5)

∂t((ρ+ z)u) + div((ρ+ z)u⊗ u) +∇P (f(α)%, g(α)z) = divS(∇u) (6)

Here P : [0,∞)2 7→ [0,∞) as well as f, g : (0, 1) 7→ [0,∞) are given functions, and

S(Z) = µ(Z + ZT ) + λTr(Z)I.

(I is the identity tensor, Tr denotes the trace) is the viscous stress tensor. The constant viscosity
coefficients satisfy standard physical assumptions, µ > 0, λ + 2

3µ ≥ 0. The system is endowed with
initial conditions

α|t=0 = α0, %|t=0 = %0, z|t=0 = z0, (%+ z)u|t=0 = (%0 + z0)u0, (7)

We consider the general inflow-outflow boundary conditions,

u|∂Ω = uB, %|Γin = %B, z|Γin = zB, α|Γin = αB, (8)
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where
Γin =

{
x ∈ ∂Ω

∣∣∣ uB · n < 0
}
. (9)

For further use, we also define

Γout =
{
x ∈ ∂Ω

∣∣∣ uB · n > 0
}
, Γ0 = int2

{
x ∈ ∂Ω

∣∣∣ uB · n = 0 or n(x) does not exist
}
. (10)

Here and in the sequel, int2A denotes the interior of A ⊂ ∂Ω with respect to the trace topology of
R3 on ∂Ω.

Assumption (2) is certainly true in the classical situation of two isentropic gases when

P±(s) = a±s
γ± , γ± > 0; (11)

indeed, in this case

P (R,Z) = a+R
γ+

+ a−Z
γ− , f(s) := f+(s) = s

1
γ+−1

, g(s) := f−(s) = (1− s)
1
γ−−1

. (12)

We shall however be able to treat in system (3–7) more general functions P, f, g than those being
given by (12).

System (3–6) belongs to the family of multi-fluid models with differential closure, cf. Ishii, Hibiki
[33], Drew, Passman [20]. It is not without interest that it can be viewed as a barotropic counterpart
of the so called five-equation bi-fluid model derived in Allaire, Clerc, Kokh [2], [3] or by Guillard,
Murrone [32] by different considerations.

The mathematical literature dealing with these types of models is in a short supply and none of it
deals with the general boundary data. We quote a few papers dealing with no-slip or periodic or slip
boundary conditions for related problems: [9], [11], [21], [22], [37], [40], [41], [43], [45]. In particular,
existence of weak solutions for the problem (3–7) under quite general assumptions on constitutive
functions P and f, g is known in the case of no-slip boundary conditions (u|∂Ω = 0), see [40]. The
main goal and achievement of this work is to treat the general non-zero inflow-outflow problem which
is more adequate than the no-slip or slip cases for most physical and engineering applications.

Similarly as in [40], the proof will be based on the reformulation of the original problem via the
change of variables

R := f(α)%, Z = g(α)z (13)

as follows:
∂t%+ div (%u) = 0,

∂tz + div (zu) = 0,

∂tR+ div (Ru) = 0,

∂tZ + div (Zu) = 0,

∂t
(
(%+ z)u

)
+ div ((%+ z)u⊗ u) +∇P (R,Z) = divS(∇u)

(14)

with boundary and initial conditions

u|∂Ω = uB, %|Γin = %B, z|Γin = zB,
R|Γin = RB := f(αB)%B, Z|Γin = ZB := g(αB)zB,

(15)

%(0, x) = %0(x), z(0, x) = z0(x), (16)

R(0, x) = R0(x) := f(α0)%0(x), Z(0, x) = Z0(x) := g(α0)z0(x),
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(%+ z)u(0, x) = (%0 + z0)u0

for unknown quintet (%, z,R, Z,u) of functions defined on the space-time cylinder QT = I×Ω. In this
paper, we will call it an academic bi-fluid system.

It is to be noticed that, in the family of equations (14), the transport equation for α is tacitly hidden
in the first four continuity equations: We anticipate here the fact that (formally), α = f−1(R/%) and
α̃ = g−1(Z/z) verify transport equation with the same initial condition α0 and the same boundary
condition αB. To pass from the academic system (14 –16) to the original system (3–9), we shall need
to identify α and α̃. This will be done through the observation that the pure transport equation enjoys
the almost uniqueness property (without condition divu ∈ L1(0, T ;L∞(Ω)) and without a slightly
weaker condition of Bianchini, Bonnicatto [6]), see Corollary 6. These notions and further properties
related to families of transport equations which in a sense generalize and complete the results of the
seminal paper by DiPerna-Lions [19] will be specified and put on rigorous grounds in Section 3 which
is of independent interest.

The statement about the existence of weak solutions for the academic system (14–16) is formulated
in Section 2 in Theorem 1 and similar statement about the existence of weak solutions to the one
velocity Baer-Nunziato type system (3–7) is available in Theorem 2.

This article is inspired by two main sources: 1) The paper [40], where the author investigates
weak solutions for the bi-fluid systems (both ”academic” and ”realistic” under the no-slip boundary
conditions). 2) Papers [12], [13], [35] and monograph [44], where the authors construct weak solutions
for the ”mono-fluid” compressible Navier-Stokes equations with general inflow-outflow boundary data.
We wish to concentrate on the effects of the non-homogenous boundary conditions. Therefore, in
contrast with [40], we renounce at accommodation of the most general pressure law, in order to avoid
the unessential technical difficulties. Still, the pressure law considered in this paper covers most of
classical situations including the mixture of two isentropic gases, cf. example (12).

The main steps in our approach are the following:

1. In Section 3 we develop the theory of renormalized solutions to families of transport equations
with non-homogenous boundary data, which is one of the building blocks of the proofs. These
results are new and of independent interest. It includes in this context:

(a) Passage (via renormalization) from the (two) continuity equations to a pure transport
equation.

(b) Passage (via renormalization) from the (two) transport equations and a continuity equation
to a continuity equation

and two consequences of these results

(a) Almost compactness of the ratio of two solutions of continuity equations.

(b) Almost uniqueness of the solutions to the pure transport equation.

As mentioned already above, these are delicate issues which are somehow connected (and as
far as the uniqueness is concerned, somehow generalize) the seminal works of DiPerna-Lions
[19], Ambrosio, Crippa, [4], Bianchini, Bonicatto [6], employing only the Eulerian approach.
Almost compactness generalizes to the uniform in time convergence and to the non homogenous
boundary data the original results of Vasseur, Wen, Yu from their seminal paper [45]. We refer
also to papers by Boyer [8] and Crippa et al [15] for results related to transport equations with
non homogenous boundary data.
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2. We approximate the ”academic” system similarly as in [12]: The momentum equation with added
artificial pressure term (small parameter δ > 0) is approximated by the Galerkin approximation
(of dimension n) while each continuity equation is approximated by a specific parabolic boundary
value problem (small parameter ε) with the Robin type boundary conditions (for a while, we
shall call the solutions of these parabolic problems ”densities”). Having in view applications
in numerical analysis, in contrast with [12]–where one solves the parabolic problems by using
the maximal parabolic regularity and thus needs at least C2 boundary– we solve the parabolic
problem on Lipschitz domains following Crippa et al. [14, Lemma 3.2].

It is known since [37] that the property of domination of one density by another one perpetuates
for all times if it is in force initially. We shall prove by using the maximum principle that the
parabolic equations in consideration enjoy this property. Following [40] and [35], we easily derive
for the approximate system the energy inequality and uniform bounds.

The approximation on Lipschitz domains has an evident practical advantage: In [13], the passage
from C2-domain required in [12] to a Lipschitz piecewise C2 domains (which can be considered
as an reasonable geometry for the inflow-outflow problems) is effectuated by a laborious approx-
imation of domains, while in the present approach, this step is for free (and requires slightly less
of the domain than it is required in [13, Theorem 2.4]) – only at cost of more work at the level
of the Galerkin approximation. This part of the proof is treated in Sections 4–5, see Lemma 8
and Proposition 9.

3. In contrast to [12], we derive the renormalized equation for the parabolic problem for densities
at the level of its weak formulation, see Section 5.3. In particular, we do not need its satisfaction
almost everywhere in the time cylinder. This allows to simplify the approximation of the mo-
mentum equation: compared to [12] or [40], there is no need to consider the ε-dependent power
law dissipation.

4. For the remaining limit passages ε → 0 and then δ → 0, we need to improve the estimates of
pressure. With the domination principle at hand, this is done via the Bogovskii operator exactly
in the same way as for the simple mono-fluid case, cf. [26] completed with [41] or [40]. However,
due to the non homogenous data, these estimates are available only on compact subsets of Ω.

5. The main difficulty in both passages ε → 0 and then δ → 0 is to pass to the limit in the
non-linear pressure term P (R,Z). It was observed for the first time by Vasseur et al. [45] (and
later improved in [41, Proposition 7]) that the quantity Z/R is ”almost compact” provided R
dominates Z and both quantities R and Z satisfy continuity equation with the same transporting
velocity. The almost compactness of Z/R is the property of the continuity equations and it is
completely decoupled from the remaining equations in the system. With this observation at
hand, it is enough to prove the compactness for the quantity Π(Rε, t, x) := P (Rε, Rεθ) (resp.
Π(Rδ, t, x) := P (Rδ, Rδθ), where θ(t, x) is a given function (a ratio of weak limits of the sequences
Zε and Rε resp. of the weak limits of sequences Zδ and Rδ). The task thus reduces practically to
the task to prove the strong convergence of density in the ”mono-fluid” case (with the pressure
dependent on only “dominating” density and time-space (t, x)). This process is nowadays well
understood, cf. Lions [36], Feireisl et al [26].1 It passes through:

(a) Derivation of the effective viscous flux identity.

1Since 2018, there exists an alternative approach to [36] due to Bresch, Jabin [10], which is however not exploited in
the present paper.
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(b) Eliminating oscillations in the sequence of densities by using the theory of renormalized
solutions due to DiPerna-Lions [19] which must be modified to accommodate the non ho-
mogenous boundary conditions and renormalizing functions of several variables.

The first point is very similar to the ”mono-fluid” case. It is briefly explained in Section 6
for ε → 0 and in Section 7 for δ → 0. The second point is more delicate since the theory of
renormalized solutions to the transport equation is not available for the problems with the non-
homogenous boundary conditions. Some elements of it are developed in Plotnikov, Sokolowski
[44] and in [12] but this is not enough for our purpose. We treat this part in Section 6 (ε→ 0)
and Section 7 (δ → 0) referring abundantly to Section 3.

6. In Section 9 we gather all necessary specific results from functional analysis needed throughout
the proofs.

Theorem 2 is the first rigorous result on existence of weak solutions for a version of the Baer-
Nunziato type bi-fluid model with non zero inflow-outflow boundary conditions.

The Di-Perna, Lions transport theory in conjonction with the absence of improved estimates of
pressure up to the boundary imposes limitations on adiabatic coefficients γ± in formula (11) - or an
equivalent limitation on growth conditions of P (see the next Section): at least one of them has to be
greater or equal than 2. In view of the existing mono-fluid theory, existence of weak solutions could
be possibly hoped to be achieved if the adiabatic coefficients of constituents were greater than 3/2.
This remains however a very interesting open problem.

In what follows, the scalar-valued functions will be printed with the usual font, the vector-valued
functions will be printed in bold, and the tensor-valued functions with a special font, i.e. % stands
for the density, u for the velocity field and S for the stress tensor. We use standard notation for the
Lebesgue and Sobolev spaces equipped by the standard norms ‖·‖Lp(Ω) and ‖·‖Wk,p(Ω), respectively. We
will sometimes distinguish the scalar-, the vector- and the tensor-valued functions in the notation, i.e.
we use Lp(Ω) for scalar quantities, Lp(Ω;R3) for vectors and Lp(Ω;R3×3) for tensors. The indication
of the R or tensor character of the fields (here ;R3 or ;R3×3) may be omitted, when there is no lack of
confusion. The Bochner spaces of integrable functions on I with values in a Banach space X will be
denoted Lp(I;X); likewise the spaces of continuous functions on I with values in X will be denoted
C(I;X). The norms in the Bochner spaces will be denoted ‖ · ‖Lp(I;X) and ‖ · ‖C(I;X), respectively.
In most cases, the Banach space X will be either the Lebesgue or the Sobolev space. Finally, we use
vector spaces Cweak(I;X) which is a subspace of L∞(I;X) of continuous functions in I with respect
to weak topology of X (meaning that f ∈ Cweak(I;X) iff t 7→ F(f(t)) belongs for any F ∈ X∗ to
C(I)).

The generic constants will be denoted by c, c, c, C, C, C and their value may change even in the
same formula or in the same line. Sometimes, for two quantities a, b, we shall write

a
<∼ b if a ≤ cb, c > 0 a constant, a ≈ b if a

<∼ b and b
<∼ a.

Here ”constant” typically means a generic quantity independent on the approximating parameters
of the problem (as number of Galerkin modes n, artificial diffusion parameter ε or artificial pressure
parameter δ).
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2 Main results

2.1 Definition of weak solutions

We first explain the notion of the weak solution to problem (14–16) and to problem (3–8). Before
starting the definition, we must underline, that, without loss of generality, the boundary data (15)
(resp. (8) ) are considered as a restriction to the boundary of functions defined on the whole R3 (their
regularity, as well as the regularity of the initial data will be specified later, in Section 2.2).

Definition 1. A quintet (%, z,R, Z,v = u−uB) is a bounded energy weak solution to problem (14–16),
if the following holds:

1. The quintet belongs to the functional spaces %, z,R, Z ≥ 0 a.e. in I × Ω, (%, z,R, Z) ∈ Cweak(I;
Lγ(Ω)) ∩ Lγ(I;Lγ(∂Ω; |uB · n|dSx)) with some γ > 1, v ∈ L2(I;W 1,2

0 (Ω;R3)), (% + z)|v|2 ∈
L∞(I;L1(Ω)), P (R,Z) ∈ L1(I × Ω), (%+ z)u ∈ Cweak(I;Lq(Ω)) with some q > 1.

2. Continuity equations∫
Ω r(τ, ·)ϕ(τ, ·) dx−

∫
Ω r0(·)ϕ(0, ·) dx+

∫ τ
0

∫
Γout ruB · nϕ dSxdt

=
∫ τ

0

∫
Ω

(
r∂tϕ+ ru · ∇ϕ

)
dx dt−

∫ τ
0

∫
Γin rBuB · nϕ dSxdt

(17)

are satisfied for any τ ∈ [0, T ] and with any ϕ ∈ C1
c ([0, T ]×Ω), where r stands for %, z, R, Z.

3. Momentum equation∫
Ω

(%+ z)u ·ϕϕϕ(τ, ·) dx−
∫

Ω
(%0 + z0)u0 ·ϕϕϕ(0, ·) dx =

∫ τ

0

∫
Ω

(
(%+ z)u · ∂tϕϕϕ

+(%+ z)u⊗ u : ∇ϕϕϕ+ P (R,Z)divϕϕϕ− S(∇u) : ∇ϕϕϕ
)

dx dt

(18)

holds with any τ ∈ [0, T ] and ϕϕϕ ∈ C1
c ([0, T )× Ω;R3).

4. Finally, the energy inequality∫
Ω

(1

2
(%+ z)|v|2 +H(R,Z)

)
(τ, ·) dx+

∫ τ

0

∫
Ω
S(∇u) : ∇u dx dt

+

∫ τ

0

∫
Γout

H(R,Z)uB · ndSxdt

≤
∫

Ω

(1

2
(%0 + z0)v2

0 +H(R0, Z0)
)

dx−
∫ τ

0

∫
Γin

H(RB, ZB)uB · ndSxdt

+

∫ τ

0

∫
Ω

(
− P (R,Z)divuB − ρu · ∇uB · v + S(∇u) : ∇uB

)
dx

(19)

is satisfied for a.a. τ ∈ (0, T ), where v0 = u0 − uB and

H(R,Z) = R

∫ R

1

P (s, sZR)

s2
ds, if R > 0, H(0, Z) = 0. (20)

Definition 2. A quartet (α, %, z,u) is a bounded energy weak solution to problem (3–8), if the following
holds:
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1. %, z ≥ 0 a.e. in I × Ω, (%, z) ∈ Cweak(I;Lγ(Ω)) ∩ Lγ(I;Lγ(∂Ω; |uB · n|dSx)) with some γ > 1,
α ∈ L∞(QT ) ∩ Cweak(I;Lγ(Ω))∩L∞(I × ∂Ω), 0 ≤ α ≤ 1, v = u− u∞ ∈ L2(I;W 1,2

0 (Ω;R3)),
(%+ z)|u|2 ∈ L∞(I;L1(Ω)), P (f(α)%, g(α)z) ∈ L1(I ×Ω), (%+ z)u ∈ Cweak(I;Lq(Ω)) with some
q > 1.

2. Continuity equations∫
Ω r(τ, ·)ϕ(τ, ·) dx−

∫
Ω r0(·)ϕ(0, ·) dx+

∫ τ
0

∫
Γout ruB · nϕ dSxdt

=
∫ τ

0

∫
Ω

(
r∂tϕ+ ru · ∇ϕ

)
dx dt−

∫ τ
0

∫
Γin rBuB · nϕdSxdt

(21)

are satisfied for all τ ∈ [0, T ] and with any ϕ ∈ C1
c ([0, T ]× Ω), where r stands for %, z.

3. Pure transport equation∫
Ω α(τ, ·)ϕ(τ, ·) dx−

∫
Ω α0(·)ϕ(0, ·) dx+

∫ τ
0

∫
Γout αuB · nϕdSxdt

=
∫ τ

0

∫
Ω

(
α∂tϕ+ αu · ∇ϕ+ϕαdivu

)
dx dt−

∫ τ
0

∫
Γin αBuB · nϕdSxdt

(22)

holds for all τ ∈ [0, T ] with any ϕ ∈ C1
c ([0, T ]× Ω).

4. Momentum equation∫
Ω

(%+ z)u ·ϕϕϕ(τ, ·) dx−
∫

Ω
(%0 + z0)u0 ·ϕϕϕ(0, ·) dx =

∫ τ

0

∫
Ω

(
(%+ z)u · ∂tϕϕϕ

+(%+ z)u⊗ u : ∇ϕϕϕ+ P (f(α)%, g(α)z)divϕϕϕ− S(∇u) : ∇ϕϕϕ
)

dx dt

(23)

holds for all τ ∈ [0, T ] with any ϕϕϕ ∈ C1
c ([0, T )× Ω;R3).

5. The energy inequality holds∫
Ω

(1

2
(%+ z)|u|2 +H(f(α)%, g(α)z)

)
(τ, ·) dx+

∫ τ

0

∫
Ω
S(∇u) : ∇u dx dt

+

∫ τ

0

∫
Γout

H(f(α)%, g(α)z)uB · ndSxdt ≤
∫

Ω

(1

2
(%0 + z0)u2

0 +H(f(α0)%0, g(α0)z0)
)

dx

−
∫ τ

0

∫
Γin

H(f(αB)%B, g(αB)zB)uB · ndSxdt

+

∫ τ

0

∫
Ω

(
− P (f(α)%, g(α)z)divuB − ρu · ∇uB · v + S(∇u) : ∇uB

)
dxdt

(24)

for a.a. τ ∈ (0, T ), where H is the same as in (19).

2.2 Assumptions

Motivated by [41, Section 2] and [40, Section 2.2] we shall gather the hypotheses for Theorems 1 and
2. In this paper, we however concentrate to the phenomenons due to the the effects of the non-zero
inflow-outflow, and we do not insist on the most general hypotheses concerning constitutive law for
pressure, which would introduce to the problem further unessential technical difficulties. We refer
the reader to the Remark 1 for the possible relaxation of this part of hypotheses.

To start, we define an admissible inflow-outflow boundary related to uB as follows:

Definition 3. We say that Ω is a domain with admissible inflow-outflow boundary related to uB iff:
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1. Ω is a bounded Lipschitz domain.

2.
Γa = ∅ or Γa = ∪kaka=1Γa

ka , a stands for “in”, “out” (25)

and Γin
kin

, Γout
kout

are (open) parametrized C2-surfaces or C2 compact manifolds, cf. Section 3.1.2

3.
∂Γin ∪ ∂Γout = gbd, (26)

where
gbd =

(
∪kbd
kbd

gbd
kbd

)
∪
(
∪jbd
jbd

pbd
jbd

)
with gbd

kbd
being bounded parametrized (open) C1-curves and pbd

jbd
points in R3.

4. The sets Γin
kin

, Γout
kout

, gbd
kbd

, pbd
jbd

have two by two empty intersection.

We are now at the point to summarize the hypotheses for Theorem 1.

1. Boundary and initial conditions:3

0 < rB ∈ Cc(R3), uB ∈ C1
c (R3), r stands for %, z, R, Z. (27)

0 < R0 ∈ Lγ(Ω), γ ≥ 2, Z0 ∈ Lβ(Ω) if β > γ, (%0 + z0)|u0|2 ∈ L1(Ω). (28)

(R0, Z0)(x) ∈ O, FR0(x) ≤ %0(x) ≤ FR0(x), GZ0(x) ≤ z0(x) ≤ GZ0(x), (29)

(RB, ZB)(x) ∈ O, FRB(x) ≤ %B(x) ≤ FRB(x), GZ0(x) ≤ zB(x) ≤ GZB(x),

In the above 0 < F < F , 0 < G < G and

O := (R,Z) ∈ R2 | aR < Z < aR} with some 0 ≤ a < a. (30)

2. Domain

Ω is a bounded domain with admissible inflow-outflow boundary related to uB. (31)

3. Regularity and growth of the pressure function P :

P ∈ C1(O) ∩ C2(O), P (0, 0) = 0. (32)

Rγ + Zβ − 1
<∼ P (R,Z)

<∼ Rγ + Zβ + 1 in O, (33)

0 ≤ ∂ZP (R,Z)
<∼ Rγ−1 +Rγ−1 in O with some γ ∈ (0, 1], 1 ≤ γ < γ + γBog (34)

2Condition that each “Γ = Γ
in/out
· is a C2-surface or a C2 compact manifold” can be relaxed. It is a sufficient contition

to guarantee existence of a projection P to Γ on a neighborghood U of Γ, which is continuous on U . Indeed, this is the
only condition from conclusion of Lemma 3 which is used in the proof. Also, conditions on gbd could be relaxed. Indeed,
the only thing we need in the proofs is that ∂Γin ∪ ∂Γout satisfies (48). These are the least conditions needed in the
proofs and they enter into the game only through the Proposition 4.

3The strict inequalities rB > 0 and R0 > 0 are here for the sake of simplicity. They could be relaxed up to rB ≥ 0
and R0 ≥ 0.
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where

γ ≥ 2, β > 0, γBog = min{2

3
γ − 1,

γ

2
},

Rγ−1 <∼ ∂RP (R,Z) in O. (35)

Finally,
H is convex on O. (36)

At this stage a few remarks impose.

Remark 1. 1. The pressure function introduced in (12) with 1 ≤ γ− ≤ γ+, γ+ ≥ 2 is an example
of a constitutive law which satisfies all conditions (32–36).

2. We introduce

∀s ∈ L∞(QT ), such that s ∈ [a, a], Π(R, t, x) = P (R,Rs(t, x)). (37)

Due to (34–35), there exists d > 0 such that

for a.a. (t, x) ∈ QT , Π(R, t, x) = dRγ + π(R, t, x) (38)

where for a.a. (t, x) ∈ QT , R 7→ π(R, t, x) is an non-decreasing function on (0,∞). This
observation is an important point in the proof of the strong convergence of the dominating density
sequence.

3. The function H defined in (20) is called Helmholtz function. We easy verify that

H ∈ C1(O) ∩ C(O), H(1, Z) = 0, ∀Z ∈ [a, a], H(R,Z) ≥ H > −∞ for all (R,Z) ∈ O. (39)

provided P ∈ C2(O)∩C1(O), P (0, 0) = 0 and it is a solution of the first order partial differential
equation

R∂RH(R,Z) + Z∂ZH(R,Z)−H(R,Z) = P (R,Z). (40)

4. Due to formula (20), the function H inherits the growth conditions of P , in particular,

Rγ + Zβ − 1
<∼ H(R,Z)

<∼ Rγ + Zβ + 1 for all (R,Z) ∈ O. (41)

5. The conditions (32–36) are not the most general ones to guarantee the existence of weak solu-
tions, cf. [40]. Nevertheless, they provide a reasonable compromise between a presentable proof
and overhelming technical complexity. Indeed:

Condition (34) could be replaced by a weaker one,

−1
<∼ ∂ZP (R,Z)

<∼ Rγ−1 +Rγ−1 in O (42)

with the range of γ and γ as in (34).

Condition (35) could be replaced by a weaker one,

Rγ−1 − 1
<∼ ∂RP (R,Z) in O . (43)

The most restrictive hypotheses (36) could be replaced by

∀(R,Z) ∈ O, |H(R,Z)−H0(R,Z)| <∼ Rγ̃ + 1, 0 < γ̃ < γ, (44)

with some H0 ∈ C1(O) ∩ C(O) convex on O.
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2.3 Main results

The first main result of the paper deals with the academic system (14–16) and reads

Theorem 1. Under Hypotheses (27–36), problem (14–16) admits at least one bounded energy weak
solution in the sense of Definition 1. Moreover, for all t ∈ I, (R(t, x), Z(t, x)) ∈ O, FR(t, x) ≤
%(t, x) ≤ FR(t, x) and GZ(t, x) ≤ z(t, x) ≤ GZ(t, x) for a.a. x ∈ Ω, and further for a.a. (t, x) ∈
I × ∂Ω, (R(t, x), Z(t, x)) ∈ O, FR(t, x) ≤ %(t, x) ≤ FR(t, x) and GZ(t, x) ≤ z(t, x) ≤ GZ(t, x).

Finally, %, z,R, Z ∈ C(I;L1(Ω)), (%+ z)u ∈ Cweak([0, T ); L
2γ
γ+1 (Ω;R3)) and P (R,Z) ∈ Lq(I × Ω) for

some q > 1 and Z ∈ Cweak([0, T );Lβ(Ω))∩Lβ(I, Lβ(∂Ω; |uB · n|dSx)) if β > γ.

The second main result of the paper deals with the one velocity Baer-Nunziato type system (3–8)
and reads:

Theorem 2. Suppose that f, g ∈ C1(0, 1) are two strictly monotone and strictly positive functions
on interval (0, 1) and that the boundary conditions %B, zB, uB satisfy conditions (27). Let γ ≥ 2,
β > 0 and, in addition,

αB ∈ C(Ω), 0 < α ≤ αB ≤ α < 1, (f(αB)%B, g(αB)zB)(x) ∈ O,

α0 ∈ L∞(Ω), 0 < α ≤ α0 ≤ α < 1, (f(α0)%0, g(α0)z0)(x) ∈ O

0 < %0 ∈ Lγ(Ω), z0 ∈ Lβ(Ω) if β > γ, (%0 + z0)|u0|2 ∈ L1(Ω). (45)

Suppose that the domain Ω is a bounded Lipschitz domain with the admissible inflow-outflow boundary
with respect to uB, cf. (31). Finally suppose that the pressure P and its Helmholtz function H verify
hypotheses (32–36). Then the problem (3–8) admits at least one bounded energy weak solution in the
sense of Definition 2. Moreover, for all t ∈ I, (f(α)%(t, x), g(α)z(t, x)) ∈ O and α ≤ α(t, x) ≤ α for
a.a. x ∈ Ω, and further for a.a. (t, x) ∈ I × ∂Ω, (f(α)%(t, x), g(α)z(t, x)) ∈ O and α ≤ α(t, x) ≤ α.
Finally, α, %, z ∈ C(I;L1(Ω)), z ∈ Cweak(I; Lβ(Ω))∩Lβ(I, Lβ(∂Ω; |uB · n|dSx)) if β > γ, (% + z)u ∈
Cweak([0, T ); L

2γ
γ+1 (Ω;R3)) and P (f(α)%, g(α)z) ∈ Lq(I × Ω) with some q > 1.

Remark 2. 1. As already mentioned in Remark 1, Theorems 1, 2 remain still valid if we replace
the hypotheses (34–36) for the constitutive law for pressure by weaker hypotheses (42–44).

2. The growth corresponding to β ∈ (0, 1] is covered by Theorems 1–2 only provided 0 < a and
provided one considers the version of the theorems with weaker hypotheses (42–44). Indeed,
β ∈ (0, 1] is in contradiction with (36) whatever is the value of a and it is in contradiction with
(42) if a = 0.

Theorem 1 will be proved through Sections 4–7. Theorem 2 is proved in Section 8. Without
loss of generality, we shall concentrate on the case when Γin and Γout are not empty. For the sake of
simplicity, we shall also discard the situation, when Γin or Γout contain a compact manifold. Finally,
also for the sake of simplicity, we shall limit ourselves to the case β ≤ γ.

3 Transport equations with non homogenous boudary data

The properties of solutions to the continuity equation and an interplay between the solutions of
continuity and transport equations play essential role in the proofs in this paper. These results are
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well known in the case, when the transporting velocity u is zero at the boundary, essentially due to
seminal paper of Di-Perna, Lions [19], see Vasseur et al. [45], and [41, Section 3], [40, Section 3] for
further extension, still with the condition u = 0 at ∂Ω. The purpose of this section is to extend them
to non-homogenous boundary data. This section is therefore of independent interest.

3.1 Some elements of differential geometry

Let k = 1, 2, . . .. A set Γ ⊂ R3 (resp. g ⊂ R3) is a Ck-parametrized bounded surface (resp. Ck-
parametrized bounded curve) iff there exists a bounded domain O ⊂ R2 (resp. O ⊂ R) a bijection
G ∈ Ck(O; Γ) (resp. G ∈ Ck(O; g)) such that G is an C1-differomorphism from O onto Γ (resp. g).4

For a set A ⊂ R3 we denote dA(x) = dist(x;A) := infy∈A |x − y| the distance function to A and
n = ∂1G×∂2G

|∂1G×∂2G| the (outer) normal vector to the surface Γ ⊂ ∂Ω with respect to Ω.

We define
T (Γ; ε) := {x ∈ R3 |x = xΓ + sn(xΓ), xΓ ∈ Γ, s ∈ (−ε, ε)},

T±(Γ; ε) := {x ∈ R3 |x = xΓ + sn(xΓ), xΓ ∈ Γ, ±s ∈ (0, ε)}, (46)

T (g; ε) := B(g; ε) \B(∂g; ε),

where, for a subset A of R3,
B(A; ε) := {x ∈ R3|dist(A;x) < ε}.

It is well known that dA is 1-Lipschitz function on R3 and if A is closed, for almost all x /∈ A, there
exists a unique point PA(x) ∈ A nearest to A such that

∇dA(x) =
x− PA(x)

dA(x)
, (47)

cf. Ziemer [46, Exercice 1.15]. We also recall that if k ≥ 1,

|T (Γ; ε)| <∼ ε, |T (g; ε)| <∼ ε2, |B(∂g; ε)| <∼ ε3 (48)

cf. Gray [31].
The following Lemma resumes the properties of distance and projection to Γ which can be deduced

from Theorems 1,2 in Foote [27].

Lemma 3. Let k ≥ 2. Then there exists ε > 0 such that for all 0 < ε ≤ ε, we have the following:

1. Tε := T (Γ; ε), T±ε := T±(Γ; ε) are open sets in R3.

2. ∀x ∈ Tε, ∃!xΓ ∈ Γ, |xΓ − x| = dΓ(x). We denote PΓ(x) := xΓ. Then PΓ ∈ Ck−1(Tε).

3. dΓ ∈ Ck(T+
ε ∪ Γ) ∪ Ck(T−ε ∪ Γ) and for all x ∈ T±ε , ∇dΓ(x) = x−PΓ(x)

|x−PΓ(x)| = ±n(PΓ(x)).

4Meaning that G is a bijection of regularity C1(O) and the differential ∇G(x) is a bijection of R2 to R2 (resp. R to
R) for any x ∈ O.
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3.2 Renormalized solutions to families of transport equations

We consider the general transport equations on the time-space cylinder QT = I × Ω, Ω a bounded
Lipschitz domain in R3 and I = (0, T ), T > 0 a time interval. The equations read:

∂tr + div (ru) + rv = 0 in (0, T )× Ω (49)

with initial and boundary conditions

r(0, ·) = r0(·) in Ω, r|I×Γin = rB.

Equation (49) is called continuity equation if v = 0 and pure transport equation if v = −div u.
We shall consider the following regularity of transporting coefficients

u = v + uB, v ∈ L2(I;W 1,2
0 (Ω;R3)), v ∈ L2(QT ). (50)

A function 0 ≤ r ∈ L2(Q) ∩ L∞(I, Lγ(Ω)) ∩ Lγ(I;Lγ(∂Ω; |uB · n|dSx)) is a weak solution of the
transport equation (49) with boundary data rB and initial data r0 iff∫ T

0

∫
Γin

rBuB · ndSdt+

∫ T

0

∫
Γout

ruB · ndSdt−
∫

Ω
r0ϕ(0, ·) dx (51)

=

∫ T

0

∫
Ω

(
r∂tϕ+ ru · ∇ϕ− rvϕ

)
dxdt

holds with any ϕ ∈ C1
c ([0, T )× Ω).

We shall need the following result on the renormalized solutions to the transport equation, which
is of independent interest. It is formulated in the specific functional setting needed for the purpose of
this paper and its formulation could be easily generalized to the Lp − Lq setting.

Proposition 4. [Renormalized solutions to families of transport equations] Let Ω ⊂ R3 be a bounded

Lipschitz domain and γ > 1. Let uB belong to class (27), let each component of rB = (r
(1)
B , . . . , r

(M)
B ),

sB = (s
(1)
B , . . . , s

(N)
B ) be non negative function in C(Ω) and let each component of r0 = (r

(1)
0 , . . . , r

(M)
0 ),

s0 = (s
(1)
0 , . . . , s

(N)
0 ) be non negative and belong to Lγ(Ω) (for the components of r) resp. to L∞(Ω)

(for the components of s). Suppose that Ω has an admissible inflow-outflow boundary relative to uB
in the sense of Definition 3.5 Assume further that u belongs to the class (50) and that

0 ≤ r = [(r(1), . . . , r(M)] ∈ L2(I;L2(Ω)) ∩ L∞(I, Lγ(Ω)) ∩ Lγ(I;Lγ(Γout; |uB · n|dSx)),

0 ≤ s = [s(1), . . . , s(N)) ∈ L∞((0, T )× Ω)∩L∞(I;L∞(Γout; |uB · n|dSx))

are such that each component of r is a weak solution of the continuity equation (49) (i.e., it satisfies
(51) with u and v = 0), while each component of s is a weak solution the pure transport equation (49)
(i.e., it satisfies (51) with u and v = −div u). In the above the sign ”≤” means that each component
of the vector is a non negative number.

Then there holds:

5As we already mentioned in Definition 3, condition that each “Γ = Γ
in/out
· is a C2-surface or a C2 compact manifold”

can be relaxed. It is a sufficient contition to guarantee existence of a projection P to Γ on a neighborghood U of Γ, which
is continuous on U . Indeed, this is the only condition from conclusion of Lemma 3 which is used in the proof. Also,
conditions on gbd in Definition 3 could be relaxed. The only thing we need in the proofs is that ∂Γin ∪ ∂Γout satisfies
(48).
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1. The quantities r, B(r) ∈ Cweak(I;Lγ(Ω)) ∩ C(I;Lp(Ω)), 1 ≤ p < γ and we have∫
Ω
B(r)ϕdx

∣∣∣τ
0

+

∫ τ

0

∫
Γout

B(r)uB · nϕ dSxdt+

∫ τ

0

∫
Γin

B(rB)uB · nϕ dSxdt (52)

=

∫ τ

0

∫
Ω

(
B(r)∂tϕ+B(r)u · ∇ϕ− ϕ

(
B′(r)r−B(r)

)
div u

)
dxdt, B(r(0)) = B(r0)

with any τ ∈ I, for any ϕ ∈ C1
c ([0, T ]× Ω) and any

B ∈ C([0,∞)M ), ∇rB ∈ L∞((0,∞)M ). (53)

2. The quantities s, B(s) ∈ C([0, T ];Lp(Ω)), 1 ≤ p <∞ and we have∫
Ω
B(s)ϕdx

∣∣∣τ
0

+

∫ τ

0

∫
Γout

B(s)uB · nϕ dSxdt+

∫ τ

0

∫
Γin

B(sB)uB · nϕ dSxdt (54)

=

∫ τ

0

∫
Ω

(
B(s)∂tϕ+B(s)u · ∇ϕ+ ϕB(s)div u

)
dxdt, B(s(0)) = B(s0)

with any τ ∈ I, for any ϕ ∈ C1
c (I × Ω) and any B in class

B ∈ C([0,∞)N ) ∩ C1((0,∞)N ). (55)

3. Let now r be one component of r. Then rB(s) ∈ Cweak([0, T ];Lγ(Ω))∩C([0, T ];Lp(Ω)), 1 ≤ p < γ
and we have:∫

Ω
rB(s)ϕdx

∣∣∣τ
0

+

∫ τ

0

∫
Γout

rB(s)uB · nϕ dSxdt+

∫ τ

0

∫
Γin

rBB(sB)uB · nϕ dSxdt (56)

=

∫ τ

0

∫
Ω

(
rB(s)∂tϕ+ rB(s)u · ∇ϕ

)
dx, r(0)B(s(0)) = r0B(s0)

with any τ ∈ I, for any ϕ ∈ C1
c (I × Ω)), and any B in the class (55).

Remark 3. 1. The condition (53) on the renormalizing function B in Lemma 4 can be relaxed
by using the Lebesgue dominated convergence theorem: one can take, e.g., B ∈ C([0,∞)M ) ∩
C1((0,∞)M ), r · ∇rB − B ∈ C[0,∞) and |B(r)| ≤ c(1 + r)q1, |r · ∇rB(r) − B(r)| <∼ c(1 + |r|)q2,
0 ≤ q1 ≤ 5

6γ, 0 ≤ q2 ≤ min{1, γ/2}. In this case, relation (52) remains still valid and

B(r) ∈ Cweak(I;Lγ/q1(Ω)) ∩ C(I;Lp(Ω)), 1 ≤ p < γ/q1.

2. Equation (52) implies

−
∫ T

0

∫
Ω
B(r)η∂tϕdxdt =< F, ϕ >, ∀ϕ ∈ C1

c ((0, T )× Ω), ∀η ∈ C1
c (Ω).

where

< F, ϕ >=

∫
Ω
B(r)ηu · ∇ϕ+B(r)ϕu · ∇η − ϕ

(
B′(r)r−B(r)

)
div u

)
dxdt

−
∫ τ

0

∫
Γout

B(r)uB · nϕ dSxdt−
∫ τ

0

∫
Γin

B(rB)uB · nϕ dSxdt.

We verify by using the Hölder inequality and the trace theorem that

∂t[B(r)η] ∈ L2(I; [W 1,p(Ω)]∗) with 1
p + q

γ = 5
6 , q = max{q1, q2}.
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Proof of Proposition 4
We shall limit ourselves to show Item 1. (i.e. (52)) in the ”simple situation”M = 1. To this end we

set r = r(1), r0 = r
(1)
0 , rB = r

(1)
B and consider B ∈ C([0,∞)), B′ ∈ L∞(0,∞). The proof is divided

into seven steps. Extension from M = 1 to M > 1 is briefly described in Step 8. The general case and
the proof of Items 2.-3. follow the same strategy.

In Step 1 we construct convenient outer neighborhoods U+ of Γ0 and of each component Γ ⊂
Γout/in. In particular, the projection operatorP (cf. Lemma 3) must be sufficiently regular on the
outer neighborhoods of components of Γout/in. In Step 2, we construct an outer neighborhood
V+ ⊂ U+ of any component Γ ⊂ Γin to which the density field can be extended via the characteristics
of the vector field −uB in such a way that the couple (density,uB) satisfies the continuity equation
on (0, T ) ×V+–see (70). In Step 3, we do the same for any component Γ ⊂ Γout– see (73), and, in
Step 4., for Γ0. The global extension is then defined in Step 5.; it satisfies the continuity equation
in the sense of distributions on a domain Ω̃ created as union of Ω with Γ’s and their outer neigh-
boghoods. It provides enough space to apply the DiPerna-Lions regularization procedure (cf. [19]) in
Step 6.. The result of Steps 1-6, is the renormalized continuity equation satisfied with test functions
up to Ω but with compact support in I. The extension to its time integrated form is discussed in Step 7.

Step 1: Construction of a particular outer neighborhoods of Γin, Γout and Γ0–cf. (9), (10) and Defi-
nition 3. We denote,

B+(ξ, ε) = B(ξ, ε) ∩ R3 \ Ω, B−(ξ, ε) = B(ξ, ε) ∩ Ω, (57)

1. Let Γ = Γ0. Then for any ξ ∈ Γ there exists ε(ξ) such that B+(ξ, ε) ∩ ∂Ω ⊂ Γ. We then set

U+(Γ) = ∪ξ∈ΓB
+(ξ; ε). (58)

2. Let Γ be any parametrized surface in the decomposition (25). We deduce that

∀ξ ∈ Γ, ∃ε = ε(ξ) ∈ (0, ε), B(ξ, ε)⊂ T (Γ; ε), (59)

where T (Γ; ε) is defined in Lemma 3. We define open sets

U = Uε(Γ) := ∪ξ∈ΓB(ξ; ε(ξ)), U± = U±ε (Γ) := ∪ξ∈ΓB
±(ξ; ε(ξ)). (60)

Taking into account Lemma 3, we deduce that for any ε > 0 sufficiently small, we have, in
particular,

U = U+ ∪U− ∪ Γ, U+ ⊂ R3 \ Ω, U− ⊂ Ω,

and
PΓ ∈ C1(U), dΓ ∈ C2(U+) ∩ C2(U−), ∀x ∈ U±, ∇dΓ(x) = ±n(P (x)) (61)

3. We realize that construction (58), (60) can be done in such a way that

U+(Γ) ∩U+(Γ̃) = ∅, for any couple Γ 6= Γ̃ in the decomposition (25) (62)

or for Γ in the decomposition (25) and Γ̃ = Γ0.
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The goal now is to extend the density and velocity fields (r,u) from Ω to an outer neighborhood
of Γ (which is a subset of U+ and which we will denote for a moment V+(Γ)) in such a way that
the extended fields will satisfy the continuity equation in the sense of distributions on the open set
Ω ∪V+(Γ) ∪ Γ). The construction will depend on the fact whether Γ ⊂ Γin or Γ ⊂ Γout or Γ = Γ0.

Step 2: Extension of the density beyond the inflow boundary:

1. V+ in the case Γ = Γin.

(a) Flux of −uB. We denote by X the flux of the vector field −uB, i.e. solution of the following
family of Cauchy problems for ODE,

d

ds
X(s;x) = −uB(X), X(0;x) = x, s ∈ R, x ∈ R3. (63)

It is well known, cf. e.g. [17, Chapter XI], that,

X ∈ C1(R× R3), X(t, ·) is C1 diffeomorphism of R3 onto R3,

in particular,

∀(s, x) ∈ R×R3, X(−s,X(s;x)) = x, det
[
∇X(s;x)

]
= exp

(
−
∫ s

0
div uB(z,X(z, x))dz

)
> 0.

(b) Construction of V, V±.

i. Let K ⊂ Γ be a compact set (with respect to the trace topology of R3 on ∂Ω) where
Γ ⊂ Γin is any component in decomposition (25). We want to prove that ∀ε > 0,
∃δ = δK > 0,

∀(s, ξ) ∈ (−δ, δ)×K, X(s, ξ) ⊂ Uε(Γ) and ∀(s, ξ) ∈ (0, δ)×K, X(s, ξ) ⊂ U+
ε (Γ). (64)

Indeed:

ii. By the uniform continuity of X on compacts of R× R3 we easily get

∃δ > 0, X((−δ, δ);K) ⊂ Uε(Γ).

iii. Moreover, due to (63),

∀xB ∈ Γin, ∃δ > 0, ∀s ∈ (0, δ), (X(s, xB)− P (X(0, xB))) · n(xB) > 0.

By the uniform continuity of n on compacts of Γ, P on compacts of T (Γ) and X on
compacts of R× R3, we deduce, in particular, that

∃δ > 0, ∀(s, ξ) ∈ (0, δ)×K,
(
X(s, ξ)− P (X(s, ξ))

)
· n(P (X(s, ξ)) > 0.

This means that X((0, δ);K) ⊂ U+
ε (Γ) which finishes the proof of (64)

iv. Recalling Definition 3 and the definition of the parametrized surface in Section 3.1, we
know that Γ = G(O) where G ∈ C2(O;R3) is a C2-diffeomorhism of a domain O ∈ R2

onto Γ. Let Ln be an exhaustive sequence of compacts of O,

Ln ⊂ int2Ln+1, ∪∞n=1Ln = O (65)
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so that Kn := G(Ln) is an exhaustive sequence of compacts in Γ (one can take Ln =
{x ∈ O |dist(x,R2 \O) ≥ 1/n}).
We define

W = Wε = Wε(Γ), W+ = W+
ε = W+

ε (Γ) = ∪n∈NW+
n (66)

V = Vε = Vε(Γ) = ∪n∈NVn, V+ = V+
ε = V+

ε (Γ) = ∪n∈NV+
n ,

where
Wn = (−δKn , δKn)× int2Ln, W

+
n = (0, δKn)× int2Ln,

Vn := X((−δKn , δKn);G(int2Ln)) ⊂ Uε(Γ), V+
n := X((0, δKn);G(int2Ln)) ⊂ U+

ε (Γ).

(c) Construction of a local diffeomorphism

i. Now, we define a map,

Φ : (−∞,∞)×O 3 (s, ζ) 7→ X(s;G(ζ)) ∈ R3. (67)

Clearly, Φ is contiunous and Φ(0, ·) is a bijection from Ln to Kn. We shall prove
that Φ|Wn is a C1 local diffeomorphisms of Wn onto Vn. Likewise, Φ|W+

n
is a C1 local

diffeomorphisms of W+
n onto V+

n . In particular, V, V+ and V+ ∪ Γ ∪ Ω are open.

ii. Indeed, in view of the theorem of local inversion, it is enough to show that

∀ζ ∈ O, s ∈ R, det
[
∂sΦ,∇ζΦ

]
(s, ζ) 6= 0.

Seeing that, X(s;X(−s; ξ)) = ξ, we infer

∀ξ ∈ R3, s ∈ R, ∂sX(s;X(−s; ξ)) + uB(X(−s; ξ)) · ∇xX(s;X(−s; ξ)) = 0,

i.e., equivalently,

∂sΦ(s, ζ) = −uB(G(ζ)) · ∇ξX(s;G(ζ)), in particular, for all s > 0, ζ ∈ O,

we easily find that

[
∂sΦ, ∂ζ1Φ, ∂ζ2Φ

]
(s, ζ) = −

[uB(G(ζ))]T

[∂ζ1G(ζ)]T

[∂ζ1G(ζ)]T

 [∇X1(s;G(ζ)),∇X2(s;G(ζ)),∇X3(s;G(ζ))
]
,

where vectors and ∇ are columns. Whence,

det
[
∂sΦ,∇ζΦ

]
(s, ζ) = −uB · n(G(ζ))exp

(
−
∫ s

0
div uB(z,X(z;G(ζ)))dz

)
> 0

for all ζ ∈ O and s ∈ R.

(d) A diffeomorphism induced by Φ. Finally, we observe (employing the uniform continuity and
the fact that Φ is a local diffeomorphism), that δKn can be chosen so small that

∀s1, s2 ∈ (−δKn , δKn), Φ(s1, Ln) ∩ Φ(s2, Ln) = ∅.

Consequently, in particular,

∀ξ ∈V+, ∃!(s, xB) ∈W+ such that ξ = X(s, xB), (68)

where W+ = ∪n∈N (0, δKn)×G(On).
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2. Extension of the density beyond the inflow boundary. We may therefore extend the boundary
data to V+ by setting

r̃(t, ξ) = rB(xB)exp
(∫ s

0
divuB(X(z;xB))dz

)
, where ξ = X(s, xB). (69)

Clearly, r̃ ∈ C1(I ×V+) and

∂tr̃ + div (r̃uB) = 0 in (0, T )×V+, (70)

and
∂tB(r̃) + div(B(r̃)uB) + [̃rB′(r̃)−B(r̃)]divuB = 0 in (0, T )×V+. (71)

Step 3: Extension of the density beyond the outflow boundary

1. We construct the open set V, V± as in the Step 3.2 using the flow determined by EDO (63),
where we replace −uB by uB. We denote this flow again by X and the corresponding diffeo-
morphisme by Φ. In particular, for any ξ ∈ V+ there exists unique (s, xB) ∈ W+ such that
X(s, xB) = ξ.

2. We take a sequence
C1
c (Γ) 3 rn → r in Lγ(I;Lγ(Γ; |uB · n|dSx)). (72)

3. We extend rn from Γ to V+: ∀(t, ξ) ∈ [0, T ]×V+,

r̃n(t, ξ) =

 rn(t− s, xB)exp
(
−
∫ s

0 divuB(X(ζ, xB))dζ
)
, ξ = X(s, xB) if t ≥ s

rn(0, xB)exp
(
−
∫ s

0 divuB(X(ζ, xB))dζ
)
, ξ = X(s, xB) if 0 ≤ t < s

 (73)

and easily verify that that the couple (r̃n,uB) verifies equations (70)–(71).

4. Seeing (72) an using change of variables ξ → Φ(s, xB) we infer

r̃n → r̃ in Lγ(I;Lγ(V+
h )), V+

h = (V+ ∪ Γ) \B(∂Γ; h) (74)

with any 0 < h sufficiently small. Consequently, we deduce from (73),∫ T

0

∫
V+

(
r̃∂tϕ+ r̃u · ∇uB

)
−
∫ T

0

∫
Γ
r̃ · nϕdSxdt = 0, ϕ ∈ C1

c ((0, T )× (V+ ∪ Γ)) (75)

and ∫ T

0

∫
V+

(
B(r̃)∂tϕ+B(r̃) · uB · ∇ϕ− [̃rB′(r̃)−B(r)]divu

)
dxdt (76)

−
∫ T

0

∫
Γ
B(r̃) · nϕdSxdt = 0, ϕ ∈ C1

c ((0, T )× (V+ ∪ Γ)),

where, here, n is the outer normal to V+ (at Γ).
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Step 4: Extension of the density field beyond the slip boundary.
Let now Γ = Γ0. We take V+ = V+

ε (Γ) = U+(Γ), cf. (58), and we set in this case simply

r̃(t, x) = 0, (t, x) ∈ (0, T )×V+. (77)

Clearly, equations (70) and (71) hold in this case.

Step 5: Continuity equation extended.
Referring to the decomposition (25), we construct V+(Γin

kin
) according to (66), V+(Γout

kout
) according

to Item 1 in Step 3, and V+(Γ0) according to (58), cf. (77). These open sets are mutually disjoint by
virtue of (62). Finally, we set,

Ṽ+ :=
[
∪kinkin

(
V+(Γin

kin
) ∪ Γin

kin

)]
∪
[
∪kinkin

(
V+(Γout

kin
) ∪ Γout

kin

)]
∪
[
V+(Γ0) ∪ Γ0

]
, Ω̃ = Ṽ+ ∪ Ω (78)

and extend [r,u] from (0, T )× Ω to (0, T )× Ω̃ as follows

(r,u)(t, x) =

{
(r,u)(t, x) if (t, x) ∈ (0, T )× Ω,

(r̃(t, x),uB(x)) if (t, x) ∈ (0, T )× Ṽ+

}
, (79)

where r̃ in Ṽ+ is defined through (69) or (73)–(74) or (77), according to the case.
By virtue of (51)v=0 and (70), (77), (75) we easily deduce, that the new couple [r,u] satisfies

continuity equation (49)v=0 in the sense of distributions on D((0, T )× Ω̃).

Step 6: Application of the DiPerna-Lions regularization, proof of equation (52). Next, we use the
regularization procedure due to DiPerna and Lions [19] applying convolution with a family of regu-
larizing kernels obtaining for the regularized function [r]e,

∂t[r]e + div ([r]eu) = Re a.e. in (0, T )× Ω̃e, (80)

where

Ω̃e =
{
x ∈ Ω̃

∣∣∣ dist(x, ∂Ω̃) > e
}
, Re := div ([r]eu)− div ([ru]e)→ 0 in L1

loc((0, T )× Ω̃) as e→ 0.

The convergence of Re evoked above results from the application of the refined version of the Friedrichs
lemma on commutators, see e.g. [19] or [25, Lemma 10.12 and Corollary 10.3].

Multiplying equation (80) on B′([r]e), we get

∂tB([r]e) + div (B([r]e)u) +
(
B′([r]e)[r]e −B([r]e)

)
div u = B′([r]e)Re (81)

or ∫ T

0

∫
Ω̃

(
B([r]e)∂tϕ+B([r]e)u · ∇ϕ− ϕ

(
B′([r]e)[r]e −B([r]e)

)
div u

)
dxdt

−
∫ T

0

∫
Ω̃
ϕB′([r]e)Redx dt = 0

for any ϕ ∈ C1
c (I× Ω̃), 0 < e < dist(supp(ϕ), ∂Ω̃). Since the last term at the right hand side converges

to 0 by virtue of the Friedrichs commutator lemma (cf. Lemma 22), letting e→ 0, we get∫ T

0

∫
Ω

(
B(r)∂tϕ+B(r)u · ∇ϕ− ϕ

(
B′(r)r−B(r)

)
div u

)
dxdt (82)
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+

∫ T

0

∫
Ṽ+

(
B(r)∂tϕ+B(r)u · ∇ϕ− ϕ

(
B′(r)r−B(r)

)
div u

)
dxdt = 0

for any ϕ ∈ C1
c (I × Ω̃), where, by virtue of (71), (76), (77),∫ T

0

∫
Ṽ+

(
B(r)∂tϕ+B(r)u · ∇ϕ− ϕ

(
B′(r)r−B(r)

)
div u

)
dxdt

= −
∫ T

0

∫
∂Ω
B(r)uB · nϕdSxdt, r = rB on Γin.

Using in (82) test function

ϕ(t, x) = φ(1− χh), φ ∈ C1
c (I × Ω), χh(x) = χ

(dgbd(x)

h

))
,

where

χ ∈ C1[0,∞), |χ′(x)| ≤ 3, χ(x)


∈ [0, 1]

= 1 if x ∈ [0, 1/2]
= 0 if x > 1

 ,

and h is a positive sufficiently small number, we get∫ T

0

∫
Ω

(
B(r)∂tφ(1− χh) +B(r)u · ∇φ(1− χh)− φ(1− χh)

(
B′(r)r−B(r)

)
div u

)
χh dxdt

+

∫ T

0

∫
Γout

B(r)uB · nϕχhdSxdt+

∫ T

0

∫
Γin

B(r)uB · nφχhdSxdt (83)

−
∫ T

0

∫
Ω∩B(gbd;h)

φB(r)u · ∇χh dx dt = 0,

where the last term at the left hand side can be written as∫ T

0

∫
Ω∩B(gbd;h)

φB(r)(u− uB) · ∇χh dx dt+

∫ T

0

∫
Ω∩B(gbd;h)

φB(r)uB · ∇χh dx dt.

The first term in the latter expression tends to 0 as h → 0 by virtue of the Hardy inequlity and the
second one tends to 0 due to the Hölder inequality and (27), cf. (47) and (48).

Thus letting h→ 0 we obtain the desired result, namely∫ T

0

∫
Ω

(
B(r)∂tφ+B(r)u · ∇φ− φ

(
B′(r)r−B(r)

)
div u

)
dxdt

−
∫ T

0

∫
Γout

B(r)uB · nφdSxdt−
∫ T

0

∫
Γin

B(r)uB · nφdSxdt = 0, φ ∈ C1
c (I × Ω).

Step 7: Time integrated renormalized continuity equation
Since the couple (r,u) satisfies (51)v=0, and since r ∈ L∞(I;Lγ(Ω)), it is standard to see that
r ∈ Cweak(I;Lγ(Ω)). Moreover, since the renormalized equation holds in the sense of distributions,
one can infer that r ∈ C(I;L1(Ω)) and the renormalized time integrated equation (52) holds. This
can be deduced from Di-Perna, Lions [19], see e.g. [42, Theorems 3, 5] for more details.
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Step 8: The case M > 1:
In this case, we obtain instead of (80) M identities,

∂t[r
i]e) + div ([ri]e)u) = Rie := div([ri]eu)− div[riu]e, i = 1, . . . ,M

We obtain the required result by multiplying i-th equation by ∂iB([r1]ε, . . . , [r
M ]ε), summing the re-

sulting equations and then proceeding in the same way as in Step 6.

This finishes the proof of Proposition 4.

Proposition 4 gives rise to several useful corollaries. Before stating them we define

∀τ ∈ I, for a.a. x ∈ Ω, sd(τ, x) = [Z/dR](τ, x) :=

{
Z(τ,x)
R(τ,x if R(τ, x) 6= 0,

d if R(τ, x) = 0

}
, d ∈ R, (84)

for a.a. (τ, x) ∈ I × ∂Ω, sd(τ, x) = [Z/dR](τ, x) :=

{
Z(τ,x)
R(τ,x if R(τ, x) 6= 0,

d if R(τ, x) = 0

}
.

The first of the corollaries is the following:

Corollary 5. [From continuity to pure transport equation] Let γ, Ω, uB and u be the same as in
Proposition 4. Suppose that

0 ≤ Z ≤ aR, R ∈ L2(I, L2(Ω)) ∩ L∞(I;Lγ(Ω)) ∩ Lγ(I;Lγ(Γout; |uB · n|dSx))

and that both Z and R are weak solutions of the continuity equation (49) with initial conditions

0 ≤ Z0 ≤ aR0, R0 ∈ Lγ(Ω)

and boundary conditions
0 ≤ ZB ≤ aRB, RB ∈ C(Ω).

Then we have: The quantities

Z,R ∈ Cweak(I;Lγ(Ω)) ∩ C(I;Lp(Ω)), 1 ≤ p < γ,

and for any d ∈ R the quantity sd := Z/dR (cf. (84) belongs to C(I;Lp(Ω)) ∩ L∞(I, L∞(Γout)), and
it satisfies the pure transport equation∫

Ω
sdϕ(τ) dx−

∫
Ω
s0,dϕ(0) dx+

∫ τ

0

∫
Γout

sduB · ndSxdt+

∫ τ

0

∫
Γin

sB,duB · ndSxdt

=

∫ τ

0

∫
Ω

(
sd∂tϕ+ sdu · ∇ϕ+ ϕsddiv u

)
dxdt (85)

with any τ ∈ I and any ϕ ∈ C1
c ([0, T ]× Ω). In the above, s0,d = Z0/dR0, sB,d = ZB/dRB.
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Indeed, the identity (85) can be obtained from (52) with M = 2, r(1) = Z, r(2) = R, B(R,Z) = Z
R+a

after letting a→ 0 with help of the Lebesgue dominated convergence theorem.

The last item of Proposition 4, namely identity (56) yields readily the following corollary about
the ”almost uniqueness” for the transport equation.

Corollary 6. [Almost uniqueness to the pure transport equation] Let Ω, u, uB be the same as in
Proposition 4. Let 0 ≤ s(i) ∈ L∞(QT ) ∩ C(I, L1(Ω) ∩ L∞(I;L∞(Γout)), i = 1, 2 be two weak solutions
of the pure transport equation (49) (i.e. they satisfy (51) with v = −divu).

If s(1)(0, ·) = s(2)(0, ·), s(1)
B = s

(2)
B then

for all τ ∈ I s(1)(τ, ·) = s(2)(τ, ·) for a.a. x ∈ {%(τ, ·) > 0}, (86)

s(1) = s(2) a.e. in {(t, x) ∈ I × Γout|% > 0},

where % is any weak solution to the continuity equation (49) (i.e. satisfying (51) with v = 0) in the
class 0 ≤ % ∈ C(I, L1(Ω)) ∩ L2(I;L2(Ω)) ∩ L∞(I;Lp(Ω)) ∩ Lγ(I;Lp(Γout(|uB · n|dSx)), p > 1.

To prove Corollary 6, it is enough to take in formula (56) in Proposition 4 N = 2, r = %,
B(s(1), s(2)) = (s(1) − s(2))2.

This result generalizes [40, Proposition 5] from the case of zero transporting velocity to the case of
general boundary data. It also generalizes the uniqueness results from seminal paper of DiPerna-Lions
[19, Theorem II.2] and its improvement which can be deduced from Bianchini-Bonicatto [6].

The next corollary is one of the crucial point of the compactness argument in the existence proof.
The case with zero velocity at the boundary has been treated in Vasseur et al. [45], and improved in
[41, Proposition 7]. The generalization of [41, Proposition 7] to the general boundary data reads as
follows.

Corollary 7. We suppose that Ω, uB, RB, ZB, R0, Z0 satisfy assumptions of Corollary 5. Let

un ∈ L2(I,W 1,2(Ω;R3)), un|I×∂Ω = uB, 0 ≤ Zn ≤ aRn,

(Rn, Zn) ∈ L∞(I;Lγ(Ω)) ∩ L2(I;L2(Ω)) ∩ Lγ(I;Lγ(Γout; |uB · n|dSx)),

where γ > 1. Suppose that

sup
n∈N

(
‖Rn‖L2(QT ) + ‖Rn‖L∞(I;Lγ(Ω)) + ‖un‖L2(I;W 1,2(Ω))

)
<∞, (87)

and that both couples (Rn,un), (Zn,un) satisfy continuity equation in the weak sense (i.e. (51) with
v = 0, u = un holds). Then:

1. Rn, B(Rn), Zn, B(Zn) ∈ Cweak(I;Lγ(Ω)) ∩ C(I;Lp(Ω)), 1 ≤ p < γ and each of Rn, Zn is a
renormalized solution of the continuity equation, i.e. it satisfies equation (52)u=un,M=1 with B
specified in (53), see also Remark 3.

2. Up to a subsequence (not relabeled)

(Rn, Zn)→ (R,Z) in Cweak(I;Lγ(Ω)) and weakly in Lγ(I;Lγ(Γout; |uB · n|dSx)),

un ⇀ u in L2(I;W 1,2(Ω;R3)),
(88)
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where (R,Z), 0 ≤ Z ≤ R belongs to spaces

L2(I;L2(Ω)) ∩ L∞(I, Lγ(I,Ω)) ∩ C(I;Lp(Ω)), 1 ≤ p < γ

and (R,u) as well as (Z,u) verify continuity equation in the renormalized sense (i.e., integral
identity (52)u,M=1 with B specified in (53), see also Remark 3), is satisfied.

3. Let d ∈ [0, a]. We define in agreement with convention (84) for all t ∈ I,

sB(x) = ZB(x)/dRB(x), sn(t, x) = Zn(t, x)/dRn(t, x), s(t, x) = Z(t, x)/dR(t, x). (89)

Then sn, s ∈ C(I;Lq(Ω)), 1 ≤ q < ∞ and for all t ∈ I, 0 ≤ sn(t, x) ≤ a, 0 ≤ s(t, x) ≤ a for
a.a. x ∈ Ω, for a.a. (t, x) ∈ I × ∂Ω, 0 ≤ sn(t, x) ≤ a, 0 ≤ s(t, x) ≤ a. Moreover, both (sn,un)
and (s,u) satisfy the pure transport equation in the renormalized sense (i.e., integral identity
(54)u,N=1 with B specified in (53), see also Remark 3), is satisfied.

4. Finally, ∫
Ω

(Rn|sn − s|2)(τ, ·) dx+

∫ τ

0

∫
Γout

Rn|sn − s|2dSxdt→ 0 for all τ ∈ I. (90)

The first statement is statement 1 of Proposition 4. The second statement is nowadays a math-
ematical folklore (see (152–155) for the reasoning). The third statement follows from statement 3 in
Proposition 4.

We prove (90). We realize, employing (88) and (89),

∀τ ∈ [0, T ], lim
n→∞

(∫
Ω
Rn(sn − s)2(τ) dx+

∫ τ

0

∫
Γout

Rnsn
2|uB · n|dSxdt

)
(91)

= lim
n→∞

(∫
Ω
Rns

2
n(τ) dx+

∫ τ

0

∫
Γout

Rnsn
2|uB · n|dSxdt

)
−
∫

Ω
Rs2(τ) dx−

∫ τ

0

∫
Γout

Rs2|uB · n|dSxdt,

where Rns
2
n satisfies continuity equation, in particular, with test function ϕ = 1,∫

Ω
Rns

2
n(τ, x) dx+

∫ τ

0

∫
Γout

Rnsn
2|uB · n|dSxdt

=

∫
Ω
R0(x)s2(0, x) dx−

∫ τ

0

∫
Γin

RBs
2
BuB · ndSxdt,

while Rs2 satisfies the same continuity equation with un replaced by u. Inserting both latter identities
into the right hand side of (91) yields the statement.

4 Approximations

Starting from now, we shall suppose, without loss of generality,

0 < r0 ∈ C1(Ω), u0 = v0 + uB, v0 ∈ C1(Ω). (92)
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The proof of Theorem 1 is based on a multilevel approximation scheme that shares certain common
features with the approximation of the compressible Navier–Stokes in [26], see also monographs [24]
or [39]. First, we introduce a sequence of finite–dimensional spaces Xn ⊂ L2(Ω;R3),

Xn = span
{

wi

∣∣∣ wi ∈ C∞c (Ω;R3), i = 1, . . . , n
}
.

Without loss of generality, we may assume that wi are orthonormal with respect to the standard
scalar product in L2(Ω).

Following [12], [35] and [41], [40] we use the following parabolic approximation of the continuity
equations,

∂tr + div (ru) = ε∆r in (0, T )× Ω, ε > 0, (93)

supplemented with the boundary conditions

ε∇r · n + (rB − r)[uB · n]− = 0 in [0, T ]× ∂Ω, (94)

and the initial condition
r(0, ·) = r0. (95)

Here, u = v + uB, with v ∈ C([0, T ];Xn), in particular, u|∂Ω = uB and r stands for %, z,R, Z,
according to the case. Note that for given u, rB, uB, this is a linear parabolic problem with the Robin
boundary conditions for the unknown r.

Following [35], [40], we use the Galerkin approximation of the momentum equation: we look for
the approximate velocity field in the form

u = v + uB, v ∈ C([0, T ];Xn).

Accordingly, the approximate momentum balance reads∫
Ω

(%+ z)u ·ϕ dx
∣∣∣t=τ
t=0

=

∫ τ

0

∫
Ω

[
(%+ z)u · ∂tϕ + (%+ z)u⊗ u : ∇ϕ + Pδ(R,Z)divϕ (96)

−S(∇u) : ∇ϕ− ε∇(%+ z) · ∇u ·ϕ
]

dx dt

for any ϕ ∈ C1([0, T ];Xn), with the initial condition

(%+ z)u(0, ·) = (%0 + z0)u0, u0 = v0 + uB, v0 ∈ Xn, (97)

where

Pδ(R,Z) = P (R,Z) + δ(Rc + Zc), c > max{9

2
, β, γ}. (98)

For fixed parameters n, δ > 0, ε > 0, the first level approximation is a solution [%, z,R, Z,u] 6 of the
parabolic problem (93)–(95), and the Galerkin approximation (96), (97).

6Here in the sequel, we skip the indexes n, ε, δ and write e.g. ξ instead of ξn,ε,δ, etc. and will use eventually only
one of them in the situations when it will be useful to underline the corresponding limit passage.
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4.1 Parabolic problem (93–95)

In contrast with [12], [35], we do not want to use the maximal regularity theory of parabolic equations
(which requires at least C2 boundary, see Denk, Hüber, Prüss [18]), but, we shall employ rather the
theory from Crippa, Donadello, Spignolo [14] which allows merely the Lipschitz boundaries.

For Lipschitz domains the usual parabolic estimates fail at the level of the spatial derivatives and
we are forced to use the weak formulation:[∫

Ω
rϕdx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[r∂tϕ+ ru · ∇ϕ− ε∇r · ∇ϕ] dx dt

−
∫ τ

0

∫
∂Ω
ϕruB · n dSx dt+

∫ τ

0

∫
∂Ω
ϕ(r − rB)[uB · n]− dSx dt, r(0, ·) = r0,

(99)

for any test function
ϕ ∈ L2(0, T ;W 1,2(Ω)), ∂tϕ ∈ L1(0, T ;L2(Ω)).

Lemma 8. Let Ω ⊂ R3 be a bounded Lipschitz domain and u = v + uB, v ∈ C(I;Xn). Suppose that
(rB,uB) belongs to the class (27) while (r0,u0) belongs to the class (92). Then we have:

1. The initial–boundary value problem (93–95) admits a weak solution r specified in (99), unique
in the class

r ∈ L2(I;W 1,2(Ω)) ∩ C(I;L2(Ω)).

The norm in the aforementioned spaces is bounded only in terms of the data rB, r0, uB and
‖v, divv‖L∞(I;L∞(Ω)).

2. Moreover, ∂tr ∈ L2(I × Ω) and
√
ε∇r ∈ L∞(I;L2(Ω)) are bounded in terms of the data rB,

r0, uB and ‖v, divv‖L∞(I;L∞(Ω)) and ∇2r ∈ L2(I;L2
loc(Ω) is bounded in the same way on any

compact set K of Ω with the constant dependent in addition on K.

3. Strong maximum principle: The solution satisfies,

∀τ ∈ I, ‖r(τ)‖L∞(Ω) ≤M exp
(
T‖div u‖L∞((0,τ)×Ω)

)
,

for a.a. τ ∈ I, r(τ, x) ≤M exp
(
T‖div u‖L∞((0,τ)×Ω)

)
for a.a. x ∈ ∂Ω,

(100)

where

M = max

{
max

Ω
r0,max

Γin
rB, ‖uB‖L∞((0,T )×Ω)

}
.

4. Renormalization: For any B ∈ C2(R),∫
Ω
B(r) dx

∣∣∣τ
0

+ ε

∫ τ

0

∫
Ω
|∇r|2B′′(r) dxdt+

∫ τ

0

∫
Ω

(
rB′(r)−B(r)

)
div u dxdt (101)

−
∫ τ

0

∫
∂Ω

[uB ·n]−EB(rB|r)dSxdt+

∫ τ

0

∫
∂Ω

[uB ·n]+B(r)dSxdt = −
∫ τ

0

∫
∂Ω

[uB ·n]−B(rB)dSxdt,

where τ ∈ I and
EB(r|r̃) = B(r)−B′(r̃)(r − r̃)−B′(r̃).
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5. Strong minimum principle: The solution satisfies,

∀τ ∈ I, ess infx∈Ω r(τ, x) ≥ m exp
(
−T‖div u‖L∞((0,T )×Ω)

)
,

for a.a. τ ∈ I, r(τ, x) ≥ m exp
(
−T‖div u‖L∞((0,τ)×Ω)

)
for a.a. x ∈ ∂Ω,

(102)

where

m = min

{
min

Ω
r0,min

Γin
rB

}
.

The first item is a particular case of Lemma 3.2 in Crippa et al. [14], see also [1, Lemma 3.1].
The latter reference contains also the proof of the second item. The third item, maximum principle,
is proved Crippa et al. [14, Lemma 3.4], see also [1, Lemma 3.2]. Renormalization is proved in [1,
Lemma 3.3]. Finally, the minimum principle is shown in the latter reference in Corollary 3.4.7

4.2 Existence of approximations at level I

The existence of the approximate solutions at the level of the parabolic problem (93–95) coupled
with the Galerkin approximation (96–97) can be proved in the same way as in [12, Section 4] (mono-
fluid case with non zero inflow-outflow) combined with [40, Section 3], eventually with [41, Section
4] (multi-fluid with zero boundary conditions). Specifically, for u = uB + v, v ∈ C([0, T ];Xn), we
identify the unique solutions r = r[u] of (93–95), where r stands for %, z,R, Z and plug them as %, z,
R, Z in (96). The unique solution u = u[%, z,R, Z] of (96) defines a mapping

T : v ∈ C([0, T ];Xn) 7→ T[v] = (u[%, z,R, Z]− uB) ∈ C([0, T ];Xn).

The first level approximate solutions r = rδ,ε,n, u = uδ,ε,n – here, r stands for %, z, R, Z–are obtained
via a fixed point through the mapping T. This procedure is detailed in [12] and in [35] for the
mono-fluid case with the non zero inflow-outflow and in [40] for the multi-fluid case with the no-slip
boundary conditions. Combinnig [35, Section 4] with [40, Section 4], we easily deduce the following
result.8

Proposition 9. [Approximate solutions, level I] Let Ω ⊂ R3 be a bounded Lipschitz domain. Let
the data (%B, zB, RB, ZB,uB), (%0, z0, R0, Z0,u0) belong to the class (27–30), (92). Suppose that
assumptions (32–36) are satisfied.

Then for each fixed δ > 0, ε > 0, n > 0, there exists a solution (%n, zn, Rn, Zn,un = vn + uB) of
the approximate problem (99) and (96), (97). Moreover, the following holds:

7 Inequalities (100) and (102) are proved in [1] with ess supt,x r(t, x) and ess inft,x r(t, x), respectively. They however

hold for all τ ∈ I provided, in addition, r ∈ Cweak(I;Lγ(Ω)), γ ≥ 1. Indeed, suppose for example for the quantity r in
addition to the latter regularity, r(t, x) ≥ 0 for a.a. (t, x) ∈ I × Ω. Then for any M ⊂ Ω, |M | > 0, any τ0 ∈ I and δ > 0

”small”,
∫ τ0+δ

τ0−δ

∫
M
r(t, x)dxdt ≥ 0; whence

∫
M
r(τ0, x)dx ≥ 0, and r(τ0, ·) ≥ 0 a. a. in Ω by the theorem on Lebesgue

points. Since r ∈ L2(I;W 1,2(Ω)), the second inequality in (100) resp. in (102) follows from the first one and the trace
theorem.

8The energy inequality (104) in [35, Lemma 4.2] and in [40, Section 4] is derived under assumption Ω ∈ C2. This
assumption is needed due to the treatment of the parabolic problem (93–95) via the classical maximal regularity methods.
With Lemma 8 at hand, the same proof can be carried out without modifications also in Lipschitz domains.
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1. Lower and upper bounds of ”densities”:

∀t ∈ I, Rn(t, x) ≥ c(δ, n) > 0, Zn(t, x) ≥ c(δ, n) > 0, aRn(t, x) ≤ Zn(t, x) ≤ aRn(t, x),

FRn(t, x) ≤ %n(t, x) ≤ FRn(t, x), GRn(t, x) ≤ zn(t, x) ≤ FZn(t, x) for a.a. x ∈ Ω,

for a.a. t ∈ I, Rn(t, x) ≥ c(δ, n) > 0, Zn(t, x) ≥ c(δ, n) > 0, aRn(t, x) ≤ Zn(t, x) ≤ aRn(t, x),

FRn(t, x) ≤ %n(t, x) ≤ FRn(t, x), GRn(t, x) ≤ zn(t, x) ≤ FZn(t, x) for a.a. x ∈ ∂Ω.
(103)

2. The approximate energy inequality[∫
Ω

[
1

2
(%n + zn)|vn|2 +Hδ(Rn, Zn)

]
dx

]t=τ
t=0

+

∫ τ

0

∫
Ω
S(∇un) : ∇un dx dt

+

∫ τ

0

∫
Γout

Hδ(Rn, Zn)uB · n dSx dt−
∫ τ

0

∫
Γin

EHδ(RB, ZB|Rn, Zn)uB · n dSx dt

+ ε

∫ τ

0

∫
Ω
∇2
R,ZHδ(Rn, Zn)[∇Rn,∇Zn] dx dt

≤ −
∫ τ

0

∫
Ω

[(%n + zn)un ⊗ un + Pδ(Rn, Zn)I] : ∇uB dx dt

+

∫ τ

0

∫
Ω

(%n + zn)un · ∇uB · uB dx dt+

∫ τ

0

∫
Ω
S(∇un) : ∇uB dx dt

−
∫ τ

0

∫
Γin

Hδ(RB, ZB)uB · n dSx dt

(104)

holds for any 0 ≤ τ ≤ T , where

Hδ(R,Z) = H(R,Z) +
δ

c− 1

(
Rc + Zc

)
, (105)

and

∇2
R,ZHδ(R,Z)[∇R,∇Z] = ∂2

RHδ(R,Z)|∇R|2 + 2∂R∂ZHδ∇R · ∇Z + ∂2
ZHδ(R,Z)|∇Z|2.

3. Renormalized identity

‖rn‖2L2(Ω)

∣∣∣τ
0

+ ε

∫ τ

0
‖∇rn‖2L2(Ω)dt−

∫ τ

0

∫
Γin

uB · n(rn − rB)2dSxdt (106)

+

∫ τ

0

∫
Γout

r2
nuB · ndSxdt = −

∫ τ

0

∫
Γin

r2
BuB · ndSxdt−

∫ τ

0

∫
Ω
r2
ndiv un dxdt

holds, where rn stands for %n, zn, Rn, Zn.

This is level I of approximations (with three parameters n, ε, δ). We shall pass first to the limit
n→∞ in order to obtain level II of approximations (with two parameters ε, δ). Then we obtain level
III of approximations (with one parameter δ) by letting ε→ 0+. Finally, we effectuate limit δ to 0+
in order to obtain a weak solution of the (academic) problem (14–16).
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5 Limit passage from level I to level II (limit n→∞)

The goal of this section is to pass to the limit n → ∞ in Proposition 9. The result is formulated in
Proposition 10 at the end of the section.

5.1 Limit in the parabolic equations and in the momentum equation (start)

In view of (29–36), (27), (92), (39–41) and (98), (105) we deduce from (103–106) the following bounds:

∀t ∈ I, Rn(t, x) ≥ 0, Zn(t, x) ≥ 0, aRn(t, x) ≤ Zn(t, x) ≤ aRn(t, x),

FRn(t, x) ≤ %n(t, x) ≤ FRn(t, x), GRn(t, x) ≤ zn(t, x) ≤ FZn(t, x) for a.a. x ∈ Ω,

for a.a. (t, x) ∈ I × ∂Ω, Rn(t, x) ≥ 0, Zn(t, x) ≥ 0, aRn(t, x) ≤ Zn(t, x) ≤ aRn(t, x),

FRn(t, x) ≤ %n(t, x) ≤ FRn(t, x), GRn(t, x) ≤ zn(t, x) ≤ FZn(t, x).

(107)

and

‖(%n + zn)|vn|2‖L∞(I,L1(Ω))
<∼ C(δ), (108)

‖vn‖L2(I,W 1,2(Ω)) ≤ C(δ), (109)

‖rn‖L∞(I,Lc(Ω))
<∼ C(δ), (110)

ε‖∇rn‖2L2(QT )
<∼ C(δ), (111)

‖rn|uB · n|1/c‖Lc((0,T )×∂Ω)
<∼ C(δ), (112)

where rn stands for %n, zn, Rn, Zn, and

ε‖∇(rc/2n )‖2L2(QT )
<∼ C(δ), where rn = Zn or rn = Rn. (113)

By (109),
vn ⇀ v in L2(I;W 1,2

0 (Ω)). (114)

By virtue of (110), Arzela-Ascoli theorem combined with equation (99), estimates (to verify equi-
continuity) and density of C∞c (Ω) in Lc′(Ω),

rn → r in Cweak(I;Lc(Ω)), r states for %, z,R, Z.

Consequently in particular- cf. (108),

(%n + zn)un ⇀∗ (%+ z)u in L∞(I;L
2c
c+1 (Ω)), u = v + uB.

By the similar Arzela-Ascoli argument as above, but now with the momentum equation (96) one gets
first,

(%n + zn)un → (%+ z)u in Cweak(I;L
2c
c+1 (Ω))

and then
(%n + zn)un ⊗ un → (%+ z)u⊗ u in L2(I;L

6c
4c+3 (Ω)).

By (111),
∇rn ⇀ ∇r in L2(I × Ω), r = % or z or R or Z.
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and by (112), for the traces of the same r’s,

rn ⇀ r in Lc(I;Lc(∂Ω; |uB · n|dSx))

We realize that (99) rewrites in the form

∂trn = F(rn,un) in L2(I; [W 1,2(Ω)]∗)), (115)

where

< F(r,u), ϕ >=

∫ T

0

∫
Ω

[ru · ∇ϕ− ε∇r · ∇ϕ] dx dt

−
∫ τ

0

∫
∂Ω
ϕruB · n dSx dt+

∫ τ

0

∫
∂Ω
ϕ(r − rB)[uB · n]− dSx dt.

Consequently, we deduce from the estimates, that

‖∂trn‖L2(I;[W 1,2(Ω)]∗)
<∼ C(ε, δ). (116)

In view of (115) and (116), we find in the limit

∂tr = F(r,u) in L2(I; [W 1,2(Ω)]∗)). (117)

By virtue of (111), (116) and Lions-Aubin lemma, for r = R or Z,

rn → r a.e. in I × Ω; whence rn → r ∈ Lq(I × Ω) with some q > c,

where we have used (110) and (113) and interpolation. Consequently,

Pδ(Rn, Zn)→ Pδ(R,Z) in Lq(I × Ω) with some q > 1.

With what we derived so far in this section, we are at the point to be able to pass to the limit
n → ∞ in the parabolic equations (93–95). In order to pass to the limit in the momentum equation
(96), it remains to prove strong convergence of ∇(%n + zn) and consequently,

∇(%n + zn) · ∇un ⇀ ∇(%+ z) · ∇u in D′(I × Ω). (118)

We shall postpone this point to Section 5.3. Indeed, to do this, we shall need to derive first the
renormalized equation (130) for the limiting couple (r,u).9

9 In [12], the authors obtained the strong convergence of∇Σn, Σn = %n+zn directly by deriving the L4/3-bound for the
second derivatives of Σn via the maximal parabolic regularity – at cost of adding the additional dissipation εdiv(|∇v|2∇v)
to the approximated momentum equation (99). This bound was used also for the derivation of the renormalized identities
of type (131). In addition to the non homogenous boundary data, the present approach generalizes [12] in several
directions: 1) There is no need of the additional dissipation in the approximations of the momentum equation. 2)There
is no need of C2 boundary in order to derive the renormalized equations.
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5.2 Limit in the energy inequality

We have,
1

δ

∫ τ+δ

τ

∫
Ω

(%n + zn)v2
n dxdt→ 1

δ

∫ τ+δ

τ

∫
Ω

(%+ z)v2 dxdt

with limδ→0+
1
δ

∫ τ+δ
τ

∫
Ω(%+ z)v2 dxdt =

∫
Ω(%+ z)v2(τ) dx for a.a. τ ∈ (0, T )

where the latter conclusion is a consequence of the theorem on Lebesgue points.
We further use lower weak semi-continuity of convex functionals, as follows:

∀τ ∈ I,
∫

Ω
Hδ(R,Z)(τ) dx ≤ lim inf

n→∞

∫
Ω
Hδ(Rn, Zn)(τ) dx,

∫ τ

0

∫
Γout

Hδ(R,Z)uB · ndSxdt ≤ lim inf
n→∞

∫ τ

0

∫
Γout

Hδ(Rn, Zn)uB · ndSxdt,

∫ τ

0

∫
Ω
|∇v|2 dxdt ≤ lim inf

n→∞

∫ τ

0

∫
Ω
|∇vn|2 dxdt.

At this point, we can deduce from the energy inequality (104) the energy inequality (129) in
Proposition 10.

5.3 Renormalization

In the sequel, we shall work with equation (117). To begin, we take B ∈ C2
c ((0,∞)). As ∂tr ∈

L2(0, T ; [W 1,2(Ω)]∗), B′(r) ∈ L2(0, T ;W 1,2(Ω)) we deduce from this formulation∫ τ2

τ1

〈
∂tr,B

′(r)ϕ
〉

[W 1,2]∗;W 1,2 dt

=

∫ τ2

τ1

∫
Ω
ru · ∇(B′(r)ϕ) dx dt− ε

∫ τ2

τ1

∫
Ω

[
|∇r|2B′′(r)ϕ+B′(r)∇r · ∇ϕ

]
dx dt

−
∫ τ2

τ1

∫
∂Ω
ϕrB′(r)uB · ndSx dt+

∫ τ2

τ1

∫
∂Ω
ϕB′(r)(r − rB)[uB · n]− dSx dt,

(119)

0 < τ1 < τ2 < T , where ϕ ∈ C1(Ω).
Using the standard temporal regularization via a family of t−dependent convolution kernels, we

find a sequence of functions

rn ∈ C1([τ1, τ2];W 1,2(Ω)), rn → r in L2(τ1, τ2;W 1,2(Ω)), ∂trn → ∂tr in L2(τ1, τ2; [W 1,2(Ω)]∗)

for any 0 < τ1 < τ2, and as r ∈ C([0, T ];Lp(Ω)), 1 ≤ p < c,

B(rn)(τ)→ B(r(τ)) in Lp(Ω) for any τ ∈ (0, T ).

Thus, we obtain,∫
Ω
B(r)ϕdx

∣∣∣τ2
τ1

= lim
n→∞

[∫
Ω
B(rn)ϕdx

]t=τ2
t=τ1

= lim
n→∞

∫ τ2

τ1

∫
Ω
B′(rn)∂trnϕ dx dt =

∫ τ2

τ1

〈
∂tr,B

′(r)ϕ
〉

dt
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and ∫ τ2

τ1

∫
Ω
ru · ∇(B′(r)ϕ) dx dt = lim

n→0

∫ τ2

τ1

∫
Ω
rnu · ∇(B′(rn)ϕ) dx dt

= − lim
n→0

∫ τ2

τ1

∫
Ω

[
ϕdiv (B(rn)u) + (rnB

′(rn)−B(rn))div u
]

dx dt+

∫ τ2

τ1

∫
∂Ω
ϕrnB

′(rn)uB · ndSx dt

= lim
n→0

(∫ τ2

τ1

∫
Ω

[
B(rn)u · ∇ϕ− ϕ(rnB

′(rn)−B(rn))div u
]

dx dt

+

∫ τ2

τ1

∫
∂Ω
ϕ
[
−B(rn) + rnB

′(rn)
]
uB · ndSx dt

=

∫ τ2

τ1

∫
Ω

[
B(r)u · ∇ϕ− ϕ(rB′(r)−B(r))div u

]
dx dt+

∫ τ2

τ1

∫
∂Ω
ϕ
[
−B(r) + rB′(r)

]
uB · ndSx dt

for any 0 < τ1 < τ2 < T .
Inserting the last two formulas to (119) yields,∫

Ω
B(r)ϕdx

∣∣∣τ
0

=

∫ τ

0

∫
Ω

[(
B(r)u− εB′(r)∇r

)
· ∇ϕ− ϕ

(
εB′′(r)|∇r|2 + (rB′(r)−B(r))divu

)]
dxdt

+

∫ τ

0

∫
∂Ω
ϕ[uB · n]−

(
B(rB)−B′(r)(rB − r)−B(r)

)
dSxdt (120)

−
∫ τ

0

∫
∂Ω
ϕ[uB · n]−B(rB)dSxdt−

∫ τ

0

∫
∂Ω
ϕ[uB · n]+B(r)dSxdt.

Identity (120) can be extended to B ∈ C2([0,∞)) with growth

|B(r)| <∼ (1 + r)
1
2
c, |B′(r)| <∼ (1 + r)

1
2
c−1, B′′(r)

<∼ 1. (121)

Under these conditions, and if moreover B is convex on [0,∞), we deduce∫
Ω
B(r)ϕdx

∣∣∣τ
0

+

∫ τ

0

∫
∂Ω
ϕ[uB · n]+B(r)dSxdt (122)

≤
∫ τ

0

∫
Ω

(
B(r)u · ∇ϕ− ϕ(rB′(r)−B(r))divu

)
dxdt

−
∫ τ

0

∫
∂Ω
ϕ[uB · n]−B(rB)dSxdt− ε

∫ τ

0

∫
Ω
B′(r)∇r · ∇ϕ dxdt

with any τ ∈ [0, T ] and any non negative ϕ ∈ C1(Ω).
Inequality (122) is generalizable to renormalizing functions of several variables and several parabolic

equations (93–95) with the same u. In particular, if B ∈ C2([0,∞)2) is convex with the growth

|B(R,Z)| <∼ (1 +
√
R2 + Z2)

1
2
c, |∇R,ZB(R,Z)| <∼ (1 +

√
R2 + Z2)

1
2
c−1, |∇2

R,Z(R,Z)| <∼ 1, (123)

then ∫
Ω
B(R,Z) dx

∣∣∣τ
0

+

∫ τ

0

∫
∂Ω
ϕ[uB · n]+B(R,Z)dSxdt (124)

≤
∫ τ

0

∫
Ω

[
B(R,Z)u · ∇ϕ− ϕdiv u

(
R∂RB + Z∂ZB −B

)
(R,Z)

]
dxdt
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−
∫ τ

0

∫
∂Ω

[uB · n]−B(RB, ZB)dSxdt− ε
∫ τ

0

∫
Ω

(
∂RB(R,Z)∇R+ ∂ZB(R,Z)∇Z

)
· ∇ϕ dxdt

with any τ ∈ I and with any non negative ϕ ∈ C2(Ω).
We shall use (120–124) in the following situations

1. If B(r) = r2 and ϕ = 1, we obtain the renoramlized identity (130).

2. If B(r) = r log(r + a), a > 0 we obtain the renormalized inequality (131).

3. If B(R,Z) = Z2

R+a , a > 0 in (124), we obtain (132) after letting a→ 0+.

5.4 Limit in the momentum equation (end)

Combining (106) with (130) together with the lower weak semicontinuity of norms, we deduce

‖r(τ)‖2L2(Ω) + 2ε

∫ τ

0
‖∇r‖2L2(Ω)dt−

∫ τ

0

∫
Γin

uB · n(r − rB)2dSxdt+

∫ τ

0

∫
Γout

r2uB · ndSxdt

≤ lim inf
n→∞

(
‖rn(τ)‖2L2(Ω) +2ε

∫ τ

0
‖∇rn‖2L2(Ω)dt−

∫ τ

0

∫
Γin

uB ·n(r−rB)2dSxdt+

∫ τ

0

∫
Γout

r2uB ·ndSxdt
)

≤ ‖r(τ)‖2L2(Ω) + 2ε

∫ τ

0
‖∇r‖2L2(Ω)dt−

∫ τ

0

∫
Γin

uB · n(r − rB)2dSxdt+

∫ τ

0

∫
Γout

r2uB · ndSxdt,

where r stands for %, z, R, Z, and any of its linear combinations; whence, in particular,

∇(%n + zn)→ ∇(%+ z) in L2(I × Ω).

This in combination with (114) justifies convergence (118) and ends the proof of the convergence in
the momentum equation, yielding (128).

5.5 Summary of limit passage from level I to level II

We resume the results of Section 5.

Proposition 10. [Approximate solutions, level II] Let Ω ⊂ R3 be a bounded Lipschitz domain. Let
the data (%B, zB, RB, ZB,uB), (%0, z0, R0, Z0,u0) belong to the class (27–30), (92). Suppose that P
satisfies assumptions (32–36).

Then for each fixed δ > 0, ε > 0, there exists a quintet (%, z,R, Z,u = v+uB) = (%ε, zε, Rε, Zε,uε =
vε + uB, ) with the following properties:

1. It belongs to the function spaces

r ∈ Cweak(I;Lc(Ω)) ∩ L2(0, T ;W 1,2(Ω)) ∩ Lc(I;Lc(∂Ω, |uB · n|dSx)), (125)

v := u− uB ∈ L2(0, T ;W 1,2
0 (Ω;R3)),

(%+ z)v ∈ Cweak(I;L
2c
c+1 (Ω)), (%+ z)v2, P (R,Z) ∈ L∞(I;L1(Ω)).
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2. It obeys the following domination inequalities

∀t ∈ I, Rε(t, x) ≥ 0, Zε(t, x) ≥ 0, aRε(t, x) ≤ Zε(t, x) ≤ aRε(t, x),

FRε(t, x) ≤ %ε(t, x) ≤ FRε(t, x), GRε(t, x) ≤ zε(t, x) ≤ FZε(t, x) for a.a. x ∈ Ω,

for a.a. (t, x) ∈ I × ∂Ω, Rε(t, x) ≥ 0, Zε(t, x) ≥ 0, aRε(t, x) ≤ Zε(t, x) ≤ aRε(t, x),

FRε(t, x) ≤ %ε(t, x) ≤ FRε(t, x), GRε(t, x) ≤ zε(t, x) ≤ FZε(t, x).

(126)

3. Each of

%ε, zε, Zε, Rε satisfies the weak formulations (99) and (117) of parabolic equation with u = uε.
(127)

4. The momentum equation∫
Ω

(%ε+zε)uε ·ϕdx
∣∣∣τ
0

=

∫ τ

0

∫
Ω

[
(%ε+zε)uε ·∂tϕ+(%ε+zε)uε⊗uε : ∇ϕ+Pδ(Rε, Zε)divϕ (128)

−S(∇uε) : ∇ϕ− ε∇(%ε + zε) · ∇uε ·ϕ
]
dx dt

for any ϕ ∈ C1
c ([0, T ]× Ω).

5. The energy inequality∫
Ω

[
1

2
(%ε + zε)|vε|2 +Hδ(Rε, Zε)

]
dx
∣∣∣τ
0

+

∫ τ

0

∫
Ω
S(∇uε) : ∇uε dx dt

+

∫ τ

0

∫
Γout

Hδ(Rε, Zε)uB · n dSx dt ≤ −
∫ τ

0

∫
Ω

[(%ε + zε)uε ⊗ uε + Pδ(Rε, Zε)I] : ∇uB dx dt

+

∫ τ

0

∫
Ω

(%ε + zε)uε · ∇uB · uB dx dt+

∫ τ

0

∫
Ω
S(∇uε) : ∇uB dx dt

−
∫ τ

0

∫
Γin

Hδ(RB, ZB)uB · n dSx dt

(129)

holds for a.a. τ ∈ I.

6. Renormalized identity

‖rε(τ)‖2L2(Ω) − ‖r0‖2L2(Ω) + 2ε

∫ τ

0
‖∇rε‖2L2(Ω)dt−

∫ τ

0

∫
Γin

uB · n(rε − rB)2dSxdt (130)

+

∫ τ

0

∫
Γout

r2
εuB · ndSxdt = −

∫ τ

0

∫
Γin

r2
BuB · ndSxdt−

∫
Ω
r2
εdiv uε dx,

where rε stands for any linear combination of %ε, zε, Rε, Zε

7. Renormalized inequality∫
Ω
rε log(rε+a)(τ, x)ϕ(x) dx−

∫
Ω
r0 log(r0 +a)(x)ϕ(x) dx+

∫ τ

0

∫
Γout

ϕrε log(rε+a)uB ·nϕdSxdt

(131)
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≤
∫ τ

0

∫
Ω

(
rε log(rε + a)uε · ∇ϕ− ϕ

r2
ε

rε + a
divuε

)
dxdt

−
∫ τ

0

∫
Γin

ϕrB log(rB + a)uB · nϕdSxdt− ε
∫ τ

0

∫
Ω

(
log(rε + a) +

rε
rε + a

)
∇rε · ∇ϕ dxdt

holds for all τ ∈ I, a > 0, and all 0 ≤ ϕ ∈ C1(Ω), where rε stands for %ε, zε, Rε, Zε.

8. Renormalized inequality∫
Ω
Rεs

2
ε,d(τ, x)ϕ(τ, x) dx+

∫ τ

0

∫
Γout

Rεs
2
ε,duB · nϕdSxdt (132)

≤
∫

Ω
R0(x)s2

d(0, x)ϕ(x) dx−
∫ τ

0

∫
Γin

RBs
2
BuB · nϕdSxdt

+

∫ τ

0

∫
Ω
Rεsε,duε · ∇ϕ dxdt− ε

∫ τ

0

∫
Ω

(
2sε,d∇Zε − s2

ε,d∇Rε
)
· ∇ϕ dxdt

holds for all τ ∈ I with any non negative ϕ ∈ C1(Ω)) and any d ∈ R, where sB(x) = ZB(x)
RB(x) and

sd is defined in (84).

6 Limit from level II to level III (limit ε→ 0)

We deduce from (126), (129) and (130) readily the following uniform bounds with respect to ε ∈ (0, 1):

‖vε‖L2(I,W 1,2(Ω))
<∼ C(δ), ‖(%ε + zε)|uε|2‖L∞(I,L1(Ω))

<∼ C(δ), (133)

‖rε‖L∞(I,Lc(Ω)) ≤ C(δ), ‖rε|uB · n|1/c‖Lc(I,Lc(Ω)) ≤ C(δ), (134)

and ε-dependent bounds √
ε‖∇rε‖L2(QT )

<∼ C(δ). (135)

In the above, r stands for %, z, Z,R.
Estimate (134) yields the pressure bounded solely in L∞(I;L1(Ω)). we can improve this estimate

by taking

φ(t, x) = ψ(t)B

[
ηR(t)− 1

|Ω|

∫
Ω
ηR(t) dx

]
(x), 0 ≤ ψ ∈ C∞c ((I)), 0 ≤ η ∈ C1

c (Ω) (136)

as test function the momentum equation (128), where B is the Bogovskii operator, cf. Lemma 17,∫ T

0
ψ

∫
Ω
Pδ(R,Z)Rη dx dt =

∫ T

0

[
ψ

1

|Ω|

∫
Ω
Rη dx

∫
Ω
Pδ(R,Z) dx

]
dt (137)

−
∫ T

0
ψ

∫
Ω

(%(t) + z(t))u(t) ·B
[
∂t

(
ηR(t)− 1

|Ω|

∫
Ω
ηR(t) dx

)]
dx dt

−
∫ T

0
ψ′
∫

Ω
(%+ z)u(t) ·B

[
ηR(t)− 1

|Ω|

∫
Ω
ηR(t) dx

)]
dx dt

−
∫ T

0
ψ

∫
Ω

((%+ z)u⊗ u) : ∇B
[
R− 1

|Ω|

∫
Ω
R dx

]
dx dt
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+

∫ T

0
ψ

∫
Ω
S(∇u) : ∇ B

[
ηR− 1

|Ω|

∫
Ω
ηR dx

]
dx dt.

In the above,10

∂t(Rη) = Fη ∈ L2(I; [W 1,2(Ω)]∗) < Fη;ϕ >=< F(R,u), φη >, cf. (115).

Seeing (133-135), we easily verify the bounds (chosing properly the sequence of ψ’s),

‖∂tRε‖L2(I;[W 1,2(Ω)]∗))
<∼ C(δ, suppη)), whence ‖B[∂tRε(t)]‖L2(QT )

<∼ C(δ, suppη),

where we have used (199) in Lemma 17. In view of the last estimate, estimates (133–135) and in view
of Lemma 17, we easily verify that the right hand side of the identity (137) is bounded.

Seeing the structural hypotheses (33) we deduce from the above and the domination inequalities
(126) that,

‖rε‖Lc+1(I×K)
<∼ C(δ,K), r stands for %, z,R, Z. (138)

and
‖Pδ(Rε, Zε)‖

L
c+1
c (I×K)

<∼ C(δ,K) (139)

with any compact K ⊂ Ω.
In absence of improved estimates of the pressure up to the boundary, we shall need at least its

equi-integrability near the boundary, in order to pass to the limit in the energy inequality in the term
containing P (Rε, Zε)divuB. To this end we recall the following lemma (see [35, Lemma 6.1]),

Lemma 11. Let Ω be a bounded Lipschitz domain. Denote by U−,h := {x ∈ Ω|dist(x,R3 \Ω} its inner
neighborhood. Consider a sequence (pε, zε,Fε,Gε)ε>0 of functions which satisfy equation

∂tzε + Fε + divGε +∇pε = 0 in D′(QT ;Rd). (140)

Suppose finally that

(zε,Fε,Gε, pε)ε>0 is bounded in L∞(0, T ;Lα(Ω))× Lκ(QT )× Lκ(QT )× L1(QT ) by k > 0

uniformly with respect to ε.
Then there exists h0 > 0 and c = c(k, T,Ω) > 0 such that∫ T

0

∫
U−,h

pεdxdt ≤ chΓ, Γ = min{1/α′, 1/κ′}, (141)

uniformly with respect to ε.

We apply this lemma to the momentum equation (128) and obtain, 11

‖Pδ(Rε, Zε)‖L1(I×U−,h)
<∼ hΓ, with some Γ > 0 (142)

uniformly with respect to ε.
The goal now is to pass to the limit ε→ 0+ in Proposition 10 and to get the following result.

10 Strictly speaking we should take in (136) the time (or space) mollification of ηR, in order to be able to justify the

indentity ∂tB
[(
ηR(t)− 1

|Ω|

∫
Ω
ηR(t) dx

)]
= B

[
∂t
(
ηR(t)− 1

|Ω|

∫
Ω
ηR(t) dx

)]
in Lp(QT ). This is however standard, see

[25, Section 2.2.5].
11Alternatively, this estimate can be achieved directly by testing the momentum equation (140) using test function

ψB
(

1Ω\U−,h
(x)− |Ω|−|U−,h|

|Ω|

)
and estimates (133)–(135), in particular, the bound of P (Rε, Zε) in L∞(I;L1(Ω)).

35



Proposition 12. [Approximate solutions, level III]
Let Ω ⊂ R3 be a bounded Lipschitz domain satisfying (31). Let the data %B, zB, RB, ZB,uB),

(%0, z0, R0, Z0,u0) belong to the class (27–30), (92). Suppose that P satisfies assumptions (32–36).
Then for each fixed δ > 0 there exists a quinted (%, z,R, Z,u = v + uB) = (%δ, zδ, Rδ, Zδ,uδ =

vδ + uB) with the following properties:

1. It belongs to the function spaces

r ∈ Cweak(I;Lc(Ω)) ∩ Lc(I;Lc(Γout, |uB · n|dSx)), (143)

v := u− uB ∈ L2(0, T ;W 1,2
0 (Ω;R3)),

(%+ z)v ∈ Cweak(I;L
2c
c+1 (Ω)), (%+ z)v2, P (R,Z) ∈ L∞(I;L1(Ω)).

2. Domination inequalities:

%δ, zδ, Rδ, Zδ satisfy domination inequalities (126). (144)

3. Each of

%δ, zδ, Zδ, Rδ satisfies the weak formulation of the continuity equation (17) with u = uδ.
(145)

4. The momentum equation ∫
Ω

(%δ + zδ)uδ ·ϕ dx
∣∣∣τ
0

(146)

=

∫ τ

0

∫
Ω

[
(%δ + zδ)uδ · ∂tϕ + (%δ + zδ)uδ ⊗ uδ : ∇ϕ + Pδ(Rδ, Zδ)divϕ− S(∇uδ) : ∇ϕ

]
dxdt

holds with any τ ∈ I, and any ϕ ∈ C1([0, T ]× Ω).

5. The energy inequality∫
Ω

(1

2
(%δ + zδ)|vδ|2 +Hδ(Rδ, Zδ)

)
dx
∣∣∣τ
0

+

∫ τ

0

∫
Ω
S(∇uδ) : ∇uδ dx dt+

+

∫ τ

0

∫
Γout

Hδ(Rδ, Zδ)uB · n dSx dt−
∫ τ

0

∫
Ω

[(%δ + zδ)uδ ⊗ uδ + Pδ(Rδ, Zδ)I] : ∇uB dx dt

+

∫ τ

0

∫
Ω

(%δ + zδ)uδ · ∇uB · uB dx dt+

∫ τ

0

∫
Ω
S(∇uδ) : ∇uB dx dt

−
∫ τ

0

∫
Γin

Hδ(RB, ZB)uB · n dSx dt.

(147)

6. Renormalized equations∫
Ω
B(rδ(τ))ϕ(x) dx−

∫
Ω
B(r0)ϕ(x) dx+

∫ τ

0

∫
Γout

B(rδ)uB · nϕdSxdt (148)

=

∫ τ

0

∫
Ω

(
B(rδ)uδ · ∇ϕ−Y(rδ)divuϕ

)
dxdt−

∫ τ

0

∫
Γin

B(rB)uB · nϕdSxdt,
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hold for all τ ∈ I and all ϕ ∈ C1
c (Ω), where rδ stands for %δ, zδ, Rδ, Zδ. In the above (B,Y) are,

in particular, the following couples(
B(s) = sθ,Y(s) = (θ − 1)sθ

)
,
(
B(s) = s log s,Y(s) = s

)
,
(
B(s) = Lk(s),Y(s) = Tk(s)

)
,

where θ ∈ (0, γ/2], k ≥ 1 and

Tk(s) = kT(s/k), T ∈ C1([0,∞)) T(s) =

{
s if s ∈ [0, 1]

2 if s ≥ 3

}
, concave (149)

is a truncation of the map s 7→ s, while

Lk(s) = s

∫ s

1

Tk(t)

t2
dt, in particular, sL′k(s)−Lk(s) = Tk(s) (150)

7. Renormalized equation∫
Ω
Rδ(τ, x)s2

δ,d(τ, x)ϕ(x) dx+

∫ τ

0

∫
Γout

Rs2
duB · nϕdSxdt =

∫
Ω
R0(x)s2

d(0, x)ϕ(x) dx (151)

−
∫ τ

0

∫
Γin

RBs
2
BuB · nϕdSxdt+

∫ τ

0

∫
Ω
Rδs

2
δ,duδ · ∇ϕ dxdt

holds for all τ ∈ I with any ϕ ∈ C1(Ω) and any d ∈ R, where sB(x) = ZB(x)
RB(x) and sd = sδ,d is

defined in (84).

The remaining part of this section is devoted to the proof of Proposition 12.

6.1 Weak limits

6.1.1 Limit in the continuity equations

Now, let ε→ 0+ in equations (127), cf. (99)r=rε,u=uε , and in (128). We notice that the limit passage
in the convective terms can be performed as in the case of the mono-fluid compressible Navier–Stokes
equations. Indeed,

uε ⇀ u weakly in L2(I;W 1,2(Ω)) (152)

and
rε ⇀ r in Lγ(I;Lγ(Γout; |uB · n|dSx)). (153)

Further, seeing that
rε → r in Cweak(I;Lc(Ω)) (154)

(as one can show by means of the Arzelà–Ascoli type argument - where the requested equi-continuity
hypothesis is deduced from equation (99)r=rε,u=uε and the uniform bounds (133–135))– we deduce
from the compact embedding Lc(Ω) ↪→↪→ W−1,2(Ω) and from uε ⇀ u in L2(I;W 1,2(Ω)) the weak-*
convergence

rεuε ⇀∗ ru in L∞(I;L
2c
c+1 (Ω)). (155)

Recalling (135), we can pass to the limit ε→ 0+ in parabolic equations (127) in order to obtain,∫
Ω
rϕ(τ) dx+

∫ τ

0

∫
Γout

ϕruB · ndSxdt (156)
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=

∫
Ω
r(0)ϕ(0) dx+

∫
Ω

(
r∂tϕ+ ru · ∇ϕ

)
dxdt−

∫ τ

0

∫
Γin

ϕrBuB · ndSxdt.

for all τ ∈ [0, T ] and all ϕ ∈ C([0, T ]× Ω). This yields the statement (145) in Proposition 12.
Further, convergence (153–154) and (126) yield domination inequalities (144).
Finally (156) yields renormalized equations (148) by virtue of (52) in Proposition 4, cf. also Remark

3. Combining Item 3 of Proposition 4 with Corollary 5 and applying them to equation (156) with
r = R and r = Z, we get, in particular, identity (151)

6.1.2 Weak limit in the momentum equation

If rε = %ε + zε, the convergence (155) can be consequently improved thanks to momentum equation
(128) and estimates (133–135), (138–139) to

(%ε + zε)uε → (%+ z)u in Cweak(I;L
2c
c+1 (Ω;R3)) (157)

again by the Arzelà–Ascoli type argument. With this observation at hand, employing compact em-

bedding L
2c
c+1 (Ω) ↪→↪→W−1,2(Ω) and uε ⇀ u in L2(I;W 1,2(Ω;R3)) we infer that

(%ε + zε)uε → (%+ z)u in L2(I;W−1,2(Ω;R3))

and consequently

(%ε + zε)uε ⊗ uε ⇀ (%+ z)u⊗ u weakly e.g. in L1(QT ;R9), (158)

at least for a chosen subsequence (not relabeled).
Finally,

Pδ(Rε, Zε) ⇀ Pδ(R,Z) in L
c+1
c (QT ), (159)

by virtue of (139).12

Resuming (and realizing that all terms in the momentum equation (128) multiplied by ε will
disappear in the limit again by virtue of (133–135)) we get∫

Ω
(%+z)u·ϕdx

∣∣∣τ
0

=

∫ τ

0

∫
Ω

[
(%+z)u·∂tϕ+(%+z)u⊗u : ∇ϕ+Pδ(R,Z)divϕ−S(∇u) : ∇ϕ

]
dxdt (160)

for all ϕ ∈ C1([0, T )× Ω)).

6.2 Limit in the momentum equation- continued

6.2.1 Exploiting the almost compactness

We define quantities sε = Zε/dRε and s =sd = Z/dR as in (84). From (151), we get, in particular,∫
Ω
R(τ, x)s2

d dx+

∫ τ

0

∫
Γout

Rs2
duB · ndSxdt =

∫
Ω
R0(x)s2

d(0, x) dx−
∫ τ

0

∫
Γin

RBs
2
BuB · ndSxdt (161)

for all τ ∈ I.

12Starting from now, in general, f(t, x, r, (. . .),u) denotes the L1−weak limit of the sequence f(t, x, rn, (. . .)n,un) in
L1(QT ) (provided it exists).
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We have,

∀τ ∈ [0, T ], lim
ε→0

∫
Ω
Rε(sε − s)2 dx = lim

ε→0

∫
Ω
Rεs

2
ε dx−

∫
Ω
Rs2 dx,

where we have used the fact that

lim
ε→0

∫
Ω
Rεsεs(τ) dx = lim

ε→0

∫
Ω
Zεs(τ) dx =

∫
Ω
Zs(τ) dx =

∫
Ω
Rs2(τ) dx, τ ∈ [0, T ].

Thus putting together (132) and (161), we get

lim
ε→0

∫
Ω
Rε(sε − s)2(τ) dx = 0 (162)

for all τ ∈ [0, T ]. Consequently, by interpolation, in particular,∫ T

0

∫
K
Rpε(τ)(sε − s)qdt→ 0, 0 < p <

c + 1

c
, 0 < q <∞, K any compact in Ω. (163)

Now, we may write

Pδ(Rε, Zε) = Πδ(Rε, Rεsε) = Pδ(Rε, Rεsε)−Pδ(Rε, Rεs)+Πδ(Rε, t, x), Πδ(R, t, x) := Pδ(R,Rs(t, x)).

We have, due to (163) and hypothesis (33),

lim
ε→0

∣∣∣ ∫ T

0

∫
K

(
Pδ(Rε, Rεsε)− Pδ(%ε, %εs)

)
dx dt

∣∣∣
≤ c(δ) lim

ε→0

[ ∫ T

0

∫
K

(
R
γ
ε +Rγε

)
|sε − s|dx dt+

∫ T

0

∫
K
Rc
ε|scε − sc|dx dt

]
= 0;

whence
Pδ(R,Z) = Πδ(R, t, x). (164)

Consequently, in particular,∫ T

0

∫
Ω

(
(%+z)u·∂tϕϕϕ+

(
(%+z)u⊗u

)
: ∇ϕϕϕ+Πδ(R, t, x) divϕϕϕ

)
dx dt =

∫ T

0

∫
Ω
S(∇u) : ∇ϕϕϕdx dt, (165)

where ϕϕϕ ∈ C1
c (I × Ω).

We may apply to the problem the theory available for the ”mono-fluid” case with pressure of one
variable from Feireisl et al. [26], slightly modified in order to accommodate pressure laws allowing the
space-time dependence, similarly as in [25, Chapter 3].

6.2.2 Effective viscous flux identity

To this aim, we first recall the effective viscous flux identity which in our situation has the form

Proposition 13. We have, possibly for a subsequence ε→ 0+, the following identity

Πδ(R, t, x)R− (2µ+ λ)Rdiv u = Πδ(R, t, x)R− (2µ+ λ)R div u (166)

fulfilled a.a. in I × Ω.
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Proof. We denote by R the Riesz transform with Fourier symbol ξ⊗ξ
|ξ|2 . Following Lions [36], we shall

use in the approximating momentum equation (128) test function

ϕ(t, x) = ψ(t)φ(x)(∇∆−1(Rεφ))(t, x), ψ ∈ C1
c (0, T ), φ ∈ C1

c (Ω) (167)

and in the limiting momentum equation (160) (resp. (165)) test function

ϕ(t, x) = ψ(t)φ(x)(∇∆−1(Rφ))(t, x), ψ ∈ C1
c (0, T ), φ ∈ C1

c (Ω), (168)

subtract both identities and perform the limit passage ε → 0. This is a laborious, but nowadays
standard calculation (whose details, for ”simple” compressible Navier–Stokes equations, can be found
e.g. in [26, Lemma 3.2], [39, Chapter 3], [24] or [25, Chapter 3]) leading to the identity∫ T

0

∫
Ω
ψφ2

(
Πδ(R, t, x)− (2µ+ λ)div u

)
R dx dt (169)

−
∫ T

0

∫
Ω
ψφ2

(
Πδ(R, t, x)R− (2µ+ λ)R div u

)
dx dt

=

∫ T

0

∫
Ω
ψφu ·

(
RR · ((%+ z)uφ)− (%+ z)u ·R(Rφ)

)
dx dt

− lim
ε→0

∫ T

0

∫
Ω
ψφuε ·

(
RεR · ((%ε + zε)uεφ)− (%ε + zε)uε ·R(Rεφ)

)
dx dt.

This process involves several integrations by parts and exploits continuity equations in form (145) and
the parabolic equations (93–95) in form (127) in the same way as in the mono-fluid theory.13 As in the
mono-fluid theory, the essential observation for getting (169) is the fact that the map R 7→ ϕ defined
above (cf. (168) ) is a linear and continuous from Lp(Ω) to W 1,p(Ω), 1 < p < ∞ as a consequence
of classical Hörmander–Michlin’s multiplier theorem of harmonic analysis, cf. Lemma 16. The most
non trivial moment in this process is to show that the right-hand side of identity (169) is 0. To see
it, we repeat the reasoning [26] adapted to this situation. We first realize that the Cweak(I, Lc(Ω))-

convergence of (Rε, Zε) and Cweak([0, T ], L
2c
c+1 (Ω;R3))-convergence of (%ε + zε)uε evoked in (154–157)

imply, in particular,

for all t ∈ [0, T ], (Rε, Zε)(t) ⇀ (R,Z)(t) in e.g. (Lc(Ω))2, (170)

(%ε + zε)uε(t) ⇀ (%+ z)u(t) in L
2c
c+1 (Ω;R3).

Since R is a continuous operator from Lp(R3) to Lp(R3), 1 < p < ∞, we have the same type of
convergence for sequences R[Rε(t)], R[Zε(t)] and R[(%ε + zε)uε(t)] to their respective limits R[R(t)],
R[Z(t)] and R[(%+ z)u(t)].

At this stage we apply to the above situation Proposition 18, and get

[RεR · ((%ε + zε)uεφ)− (%ε + zε)uε ·R(Rεφ)](t) ⇀ [RR · ((%+ z)uφ)− (%+ z)u ·R(Rφ)](t)

for all t ∈ [0, T ] (weakly) in L
2c
c+3 (Ω). In view of compact embedding L

2c
c+1 (Ω) ↪→↪→W−1,2(Ω), and the

boundedness of ‖RεR · ((%ε + zε)uε)− (%ε + zε)uε ·R(Rε)‖W−1,2(Ω) in L∞(I), we infer, in particular,

RεR · ((%ε + zε)uεφ)− (%ε + zε)uε ·R(Rεφ)→ RR · ((%+ z)uφ)− (%+ z)u ·R(Rφ)

13Due to the presence of φ in (167–168), the boundary conditions in the proof of the effective viscous flux identity do
not play any role.
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in L2(0, T ;W−1,2(Ω)). Recalling the L2(I;W 1,2(Ω))-weak convergence of uε we get (169). This com-
pletes the proof of Proposition 13.

We realize for the further later reference, that the part of argumentation starting from (170)
requires c > 9/2.

6.2.3 Strong convergence of the dominating density sequence

We are now ready to prove the strong convergence of Rε → R, more exactly

Rε → R a.a. in I × Ω, (171)

Rε → R a.a. in I × Γout with respect to the measure |uB · n|dSx dt.

We will do it again by mimicking the mono-fluid case, see e.g. [39, Chapter 7].
We already know from Section 6.1.1 that R satisfies the renormalized continuity equation (148),

in particular, ∫
Ω
R logR(τ, x) dx+

∫ τ

0

∫
Γout

R logRuB · ndSxdt (172)

=

∫
Ω
R0 logR0(x) dx−

∫ τ

0

∫
Γin

RB logRBuB · ndSxdt−
∫ τ

0

∫
Ω
Rdivu dxdt

for all τ ∈ I.
Next, we let ε→ 0+ and then a→ 0 in (131) in order to get, in particular,∫

Ω
R logR(τ, x) dx+

∫ τ

0

∫
Γout

R logRuB · ndSxdt−
∫ τ

0

∫
Ω
Rdivu dxdt (173)

≤
∫

Ω
R0 logR0(x) dx−

∫ τ

0

∫
Γin

RB logRBuB · ndSxdt

for all τ ∈ I.
Combining the latter inequality with the identity (172), we get∫

Ω

(
R logR−R logR

)
(τ, x) dx+

∫ τ

0

∫
Γout

(
R logR−R logR

)
uB · ndSxdt

≤
∫ τ

0

∫
Ω
ϕ
(
Rdivu−Rdivu

)
dxdt

for all τ ∈ I.
Now, the crucial point is to observe that for almost all (t, x) ∈ QT , R 7→ Πδ(R, t, x) is a non

decreasing function, by virtue of (34–35), cf. (38). Consequently, according to Proposition 13 and
Lemma 21,∫

Ω

(
R logR−R logR

)
(τ, x)ϕ(x) dx+

∫ τ

0

∫
Γout

(
R logR−R logR

)
uB · ndSxdt ≤ 0.

Since R logR − R logR ≥ 0 a.e. in QT , cf. Lemma 19, this implies R logR − R logR = 0 a.e. in QT ,
and consequently,

Rε → R, Zε → Z a.e. in QT

cf. Lemma 20 (and (162) to see the confergence of Zε).
This, in combination with (139) and (164) allows to show that, in particular,

Pδ(R,Z) = Pδ(R,Z) (174)

and to deduce from momentum equation (160) (resp. (165)) its final form (146) at level III.
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6.3 Limit in the energy inequality

In view of the already proved convergence relations and what was said about the passage from (104)
to (129) in Section 5.2, seeing that one can use the lower weak semicontinuity of convex functionals
at the left hand side, the limit passage ε → 0+ from the energy inequality (129) to (147) is at this
stage rudimentary. We shall give more details in the limit passage δ → 0, which is similar.

7 Limit from level III to the ”academic” system (limit δ → 0)

The goal of this section is to pass to the limit δ → 0+ in continuity equations (145), in the momentum
equation (146) and in the energy inequality (147). Most of the “rough” work was already done within
the previous limit. The only issue will be to handle the lower summability of uniform estimates for
the density variables. Here, the main ideas can be in a large extent taken over from the monofluid
case (namely from papers [12] and [35]). We shall therefore proceed more quickly trying underline
only the key points and differences.

7.1 Estimates and weak limits

Similarly as in Setion 6, we deduce from (129) and (126) readily the following uniform bounds with
respect to δ ∈ (0, 1):

‖vδ‖L2(I,W 1,2(Ω))
<∼ C, ‖rδ|uδ|2‖L∞(I,L1(Ω))

<∼ C, (175)

‖rδ‖L∞(I,Lγ(Ω)) ≤ L, ‖rδ|uB · n|1/γ‖Lγ(I,Lγ(Ω)) ≤ C, (176)

and δ-dependent bounds

δ
1
c ‖rδ‖L∞(I;Lc(Ω))

<∼ C. (177)

In the above, r stands for %, z, Z,R.
Taking in (146) test function

φ(t, x) = ψ(t)B

[
ηRθ(t)− 1

|Ω|

∫
Ω
ηRθ(t) dx

]
(x), θ > 0 sufficiently small,

ψ, η as in (136), we get by the same reasoning as in (137–139), (142), estimates

‖rδ‖Lγ+γBog (I×K)

<∼ C(K), r stands for %, z,R, Z. (178)

and

δ
1

c+γBog ‖Rδ‖Lc+γBog (I×K)
≤ L(K), ‖P (Rδ, Zδ)‖

L
γ+γBog

γ (I×K)

<∼ C(K), (179)

with any compact subset K of Ω, provided

γ >
3

2
, where γBog = min{2

3
γ − 1,

γ

2
}.

In order to pass to the limit in the term
∫ τ

0

∫
Ω Pδ(Rδ, Zδ)divuB dxdt of the energy inequality (147),

we however would need at least equi-integrability of Pδ(Rδ, Zδ) up to the boundary, if we do not want
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to impose further restrictions on uB and P . In order to get such estimate, we shall test momentum
equation (146) by

φ(t, x) = ψ(t)B
(

1Ω\U−,h −
|Ω| − |U−,h|
|Ω|

)
(x), 0 < h < h0, h0 sufficiently small,

where the inner neighborhood U−,h of ∂Ω is defined in Lemma 11. Employing (175–177), we get in
view of Lemma 11,

‖Pδ(Rδ, Zδ)‖L1(U−,h)
<∼ h

2γ−3
6γ (180)

uniformly with respect to δ, provided γ > 3/2, see [35, Lemma 6.1] for the details.
In view of estimates (175–177), a short but detailed inspection of Section 6.1 confirms that the

limits (152–155), (157–158) remain in force also for a subsequence of (%δ, zδ, Rδ, Zδ,uδ) even if one
replace in all exponents of Lebesgue spaces c by γ (provided γ > 3/2). Further, estimates (178–180)
ensure equi-integrability of the sequence Pδ(Rδ, Zδ) in L1(QT ). Recalling, in addition, (177), we infer

Pδ(Rδ, Zδ) ⇀ P (R,Z) in L1(QT ). (181)

We can therefore pass to the limit δ → 0 in the continuity equations (145) in order to get the final
system (17) of continuity equations required by the Definition 1. Likewise, the limit in the momentum
equation (146) is∫

Ω
(%+z)u·ϕdx

∣∣∣τ
0

=

∫ τ

0

∫
Ω

[
(%+z)u·∂tϕ+(%+z)u⊗u : ∇ϕ+P (R,Z)divϕ−S(∇u) : ∇ϕ

]
dxdt (182)

for all ϕ ∈ C1
c ([0, T )× Ω)).

7.2 Exploiting the almost compactness

Now, we are at the point to exploit the almost compactness, as in Section 6.2.1. Starting from this
point we shall use systematically the generalization of the Di-Perna, Lions transport theory formulated
in Proposition 4. Essentially from this reason, we shall need the density sequence Rδ uniformly
integrable in L2(I;L2(Ω)), which amounts, in view of only local improved estimates of density (cf.
(178), to assume γ ≥ 2, cf. (176).

We define s = sd as in (84) by using weak limits Z and R. Combining (161) with (151) one gets,

∀τ ∈ I, lim
δ→0

∫
Ω
Rδ(sδ − s)2(τ) dx = 0, lim

δ→0

∫ τ

0

∫
Γout

Rδ(sδ − s)2(τ)uB · ndSxdt (183)

compare with (162). Further, by interpolation,

∀τ ∈ I,
∫

Ω
Rpδ(τ)(sδ − s)q(τ) dx→ 0, 0 < p < γ, 0 < q <∞,

and ∫ T

0

∫
K
Rpδ(t)(sδ − s)qdxdt→ 0, 0 < p < γ + γBog, 0 < q <∞ (184)

with any K a compact subset of Ω.14

14Relation (183) implies the same type of convergence on I × Γout, but we do not need to exploit it here.
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Introducing
Π(R, t, x) = P (R,Rs(t, x))

and writing
P (Rδ, Zδ) = [P (Rδ, Rδsδ)− P (Rδ, Rδs)] + P (Rδ, Rδs)

we easily deduce by using hypotheses (34), (33), (184) and available bounds,

P (R,Z) = Π(R, t, x),

cf. (164). Thus, equation (182) rewrites∫
Ω

(%+ z)u ·ϕ dx
∣∣∣τ
0

=

∫ τ

0

∫
Ω

[
(%+ z)u · ∂tϕ+ (%+ z)u⊗u : ∇ϕ+ Π(R, t, x)divϕ− S(∇u) : ∇ϕ

]
dxdt

(185)
for all ϕ ∈ C1

c ([0, T )× Ω)).

7.3 Effective viscous flux identity

We use the same main idea as in section 6.2.2. Nevertheless, Rδ does not possess enough summability
in order to carry out the argument in the same way; it is well known from the mono-fluid case, that
the way out of this is to use for the construction of test functions a convenient truncation Tk(Rδ) of
Rδ, cf. (149).

Using in the momentum equation (146)–where Pδ(R,Z)(t, x) = Π(R(t, x), t, x) by virtue of equa-
tion (164)– test function

ϕ(t, x) = ψ(t)φ(x)(∇∆−1(Tk(Rδ)φ))(t, x), ψ ∈ C1
c (0, T ), φ ∈ C1

c (Ω) (186)

and in the momentum equation (185) test function

ϕ(t, x) = ψ(t)φ(x)(∇∆−1(Tk(R)φ))(t, x), ψ ∈ C1
c (0, T ), φ ∈ C1

c (Ω), (187)

we get by the same reasoning as in the proof of Proposition 1315, the effective viscous flux identity in
the following form:

Proposition 14.

Π(R, t, x)Tk(R)− (2µ+ λ)Tk(R)div u = Π(R, t, x)Tk(R)− (2µ+ λ)Tk(R) div u (188)

fulfilled a.a. in I × Ω.

7.4 Oscillations defect measure

Proposition 15. The sequence %δ satisfies

oscγ+1[Rδ ⇀ R](QT ) := sup
k>1

lim sup
δ→0

∫
QT

|Tk(Rδ)−Tk(R)|γ+1 dx dt <∞. (189)

15A short inspection of the sketch of the proof of Proposition 13 shows that the argument to get (188) passes provided
γ > 3/2, cf. (170) and the reasoning after. We have, however, used the treshold γ ≥ 2 in order to prove that
P (R,Z) = Π(R, t, x) in the previous section.
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Proposition 15 follows from the effective viscous flux identity derived in Proposition 14. To see
this fact, we employ in (188) decomposition (38) in order to get

d

∫ T

0

∫
Ω

(
RγTk(R)−Rγ Tk(R)

)
dx dt+

∫ T

0

∫
Ω

(
π(R, t, x)Tk(R)− π(R, t, x) Tk(R)

)
dx dt (190)

= (2µ+ λ) lim sup
δ→0

[ ∫ T

0

∫
Ω

(
Tk(Rδ)−Tk(R)

)
div uδ dxdt+

∫ T

0

∫
Ω

(
Tk(R)−Tk(R)

)
div uδ dxdt

]
.

We first observe that the second integral at the left hand side is non negative according to Lemma
21, cf. (38). Second, we employ the Hölder inequality and interpolation together with the lower weak
semi-continuity of norms in order to estimate the right hand side by

c
[
oscγ+1[Rδ ⇀ R](QT )

] 1
2γ

(191)

with c > 0 independent of k.
Concerning the firts term, we write,∫ T

0

∫
Ω

(
RγTk(R)−Rγ Tk(R)

)
dx dt = lim sup

δ→0

∫ T

0

∫
Ω

(
Rγδ −R

γ
)(

Tk(Rδ)− Tk(R)
)

dx dt

+

∫ T

0

∫
Ω

(
Rγ −Rγ

)(
Tk(T )−Tk(R)

)
dx dt ≥ lim sup

δ→0

∫ T

0

∫
Ω

∣∣∣Tk(Rδ)−Tk(R)
∣∣∣γ+1

dx dt,

where we have employed convexity of R 7→ Rγ and concavity of R 7→ Tk(R) on [0,∞), and algebraic
inequalities

|a− b|γ ≤ |aγ − bγ | and |a− b| ≥ |Tk(a)− Tk(b)|, (a, b) ∈ [0,∞)2.

Inserting the last inequality into (190) yields (in combination with estimates of the right hand side
(191)) the statement of Proposition 15.

7.5 Strong convergence of density

We know that continuity equation (148) is satisfied, in particular, in the renormalized sense with
renormalizing functions B = Lk, and that (52)M=1,r=R is satisfied in the renormalized sense with the
same function Lk, cf. Item 1. in Proposition 4 and Item 1. in Remark 3. Using these equations with
test function ϕ = 1 (and noticing that zL′k(z)−Lk(z) = Tk(z)), we get, in particular,∫

Ω

(
Lk(Rδ)−Lk(R)

)
(τ, x)ϕ(x) dx+

∫ τ

0

∫
Γout

(
Lk(Rδ)−Lk(R)

)
uB · ndSxdt (192)

=

∫ τ

0

∫
Ω

(Tk(R)div u−Tk(R)div uδ) dx dt+

∫ τ

0

∫
Ω

(Tk(R)−Tk(Rδ))div uδ dx dt

for all τ ∈ I.
The absolute value of the first term at the right had side of the above identity is16

<∼ ‖Tk(R)−Tk(R)‖L2(QT )
<∼
[
oscγ+1[Rδ ⇀ R](QT )

] 1
2γ ‖Tk(R)−Tk(R)‖L1(QT )

] γ−1
2γ → 0

16Indeed,
‖Tk(R)−Tk(R)‖L1(QT ) ≤ ‖Tk(R)−R‖L1(QT ) + ‖Tk(R)−R‖L1(QT )

≤ ‖Tk(R)−R‖L1(QT ) + lim inf
δ→0

‖Tk(Rδ)−Rδ‖L1(QT ) → 0

as k →∞.
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as k →∞, while the second term can be expressed through Proposition 14,

1

2µ+ λ

(
Π(R, t, x)Tk(R)−Π(R, t, x)Tk(R)

)
and it is non negative due to Lemma 21.

Thus, letting in δ → 0 in identity (192) yields∫
Ω

(
Lk(R)−Lk(R)

)
(τ, x) dx+

∫ τ

0

∫
Γout

(
Lk(R)−Lk(R)

)
uB · ndSxdt ≤ 0.

Recalling

Lk(R)→ R logR, Lk(R)→ R logR, in Cweak([0, T ];Lq(Ω)) for any 1 ≤ q < γ, (193)

Lk(R) ⇀ R logR, Lk(R) ⇀ R logR, in Lγ(0, T ;Lq(Γout; |uB · n|dSx)) for any 1 ≤ q < γ,

we arrive finally at∫
Ω

(R logR−R logR)(τ, ·) dx+

∫ τ

0

∫
Γout

(R logR−R logR)uB · ndSxdt ≤ 0

which implies in virtue of the strict convexity of R 7→ R logR on [0,∞)

Rδ → R a.a. in QT and a.a. in I × Γout (194)

This relation in combination with (183) yields also Zδ → Z a.e. in QT and a.e. in I × Γout. This
yields, in particular,17

P (R,Z) = P (R,Z)

and, in view of (185), finishes the proof of the momentum equation (18).

7.6 Energy inequality

Now, it is rather standard to pass to the limit in the energy inequality (147) and to obtain energy
inequality (19). In this respect, a few observations are in order:

1. In order to pass to the limit in the term
∫

Ω(%δ + zδ)|vδ|2(τ) dx, we rewrite it in the form∫
Ω E(%δ + zδ,qδ)(τ) dx, qδ = (%δ + zδ)vδ, where

E(r,q) =


q2

r if r > 0
0 if r = 0
∞ otherwise


is the lower semicontinuous convex function on R × R3, and use lower semicontinuity of the
associated functional, cf. Lemma 19.

2. In the passage in the term
∫

ΩH(Rδ, Zδ) dx we consider first the limit δ → 0 in 1
2ξ

∫ τ+ξ
τ−ξ

∫
ΩH(Rδ, Zδ)

dxdt, 0 < ξ < τ/2 by using e.g. Fatou’s lemma (or lower weak semicontinuity of convex func-
tional H) and then let ξ → 0 employing the Theorem on Lebsegue points.

17The statement about a.a. convergence in I × Γout of Rδ and Zδ estblished in (194) is not needed at this place. It is
stated for the sake of completeness.
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3. In the passage in the term
∫ τ

0

∫
Γout H(Rδ, Zδ)uB · ndSxdt we use the weak convergence induced

by estimate (176) and the lower weak semicontinuity of convex functionals, cf. Lemma 19.18

4. In the passage in the term
∫ τ

0

∫
Ω P (Rδ, Zδ)divuBdxdt we consider a.e. convergence deduced in

the previous section in combination with estimate (178) and complete with estimate (180) to
pass to the limit near the boundary.

This finishes the proof of Theorem 1.

8 From the ”academic” to the ”realistic” bifluid system

We set

F (α) =
1

f(α)
, G(α) =

1

g(α)
,

where clearly F , G are strictly monotone, strictly positive functions on interval (0,1), and denote

F = min{F (α), F (α)}, F = max{F (α), F (α)}.

Similarly, we define numbers G, G as above replacing function F by G. Then, in particular, F :
[α, α]→ [F , F ], G : [α, α]→ [G,G] are C1-diffeomorphisms.

We will use Theorem 1 with initial and boundary conditions

%0, z0, R0 = f(α0)%0, Z0 = g(α0)z0, u0,

%B, zB, RB = f(αB)%B, ZB = g(αB)zB, uB.

such that
aR0 ≤ Z0 ≤ aR0.

We easily verify that
FR0 ≤ %0 ≤ FR0, GZ0 ≤ z0 ≤ GZ0.

Theorem 1 guarantees existence of a bounded energy weak solution (%, z,R, Z,u) in the corre-
sponding regularity class described in that theorem which satisfies, in particular, the domination
relations

∀t ∈ I, FR(t) ≤ %(t) ≤ FR(t), GZ(t) ≤ z(t) ≤ GZ(t) a.e. in Ω,

for a.a. t ∈ I, FR(t) ≤ %(t) ≤ FR(t), GZ(t) ≤ z(t) ≤ GZ(t) a.e. in ∂Ω.

We set
∀t ∈ I, α(t) = F−1

(
%(t)/dR(t)

)
, α̃(t) = G−1

(
z(t)/dZ(t)

)
a.e. in Ω, (195)

for a.a. (t, x) ∈ I × Γout, α(t, x) = F−1
(
%(t, x)/dR(t, x)

)
, α̃(t, x) = G−1

(
z(t, x)/dZ(t, x).

Each of the quantities α and α̃ satisfies the pure transport equation (22) with transporting velocity u
and with the same initial and boundary conditions. By Item 2. of Proposition 4, the same is true for
f(α) and g(α). Therefore,

∀t ∈ I, R(t) = (f(α)%)(t) = (f(α̃)%)(t), Z(t) = (g(α̃)z)(t) = g(α)z(t),

18The a.a. convergence in I×Γout established in (194) is not needed in the setting when H is convex. It would however
be necessary if H is not convex, cf. Remark 1, namely assumption (44).
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for a.a. (t, x) ∈ I × Γout, R(t, x) = (f(α)%)(t, x) = (f(α̃)%)(t, x), Z(t, x) = (g(α̃)z)(t, x) = g(α)z(t, x),

where we have used the almost uniqueness established in Corollary 5.
Consequently:

1. In the momentum equation (18),∫ τ

0

∫
Ω
P (R,Z)divϕdxdt =

∫ τ

0

∫
Ω
P (f(α)%, g(α)z)divϕdxdt.

This yields momentum equation (23).

2. In the energy inequality (19),

for all τ ∈ I, [

∫
Ω
H(R,Z) dx](τ) = [

∫
Ω
H(f(α)%, g(α)z) dx](τ),

∫ τ

0

∫
Ω
P (R,Z)divuB dxdt =

∫ τ

0

∫
Ω
P (f(α)%, g(α)z)divuB dxdt

while ∫ τ

0

∫
Γout

H(R,Z)uB · ndSxdt =

∫ τ

0

∫
Γout

H(f(α)%, g(α)z)uB · ndSxdt.

This yields energy inequality (24).

Theorem 2 is thus proved.

9 Appendix

9.1 Some elements of functional, convex and harmonic analysis

We recall some properties of the pseudodifferential operator

A[u] = ∇∆−1[u] := F−1
ξ→x

[
−iξ

|ξ|2
Fx→ξ[u]

]
, u ∈ C∞c (Ω) ⊂ C∞c (R3), (196)

where Fx→ξ denotes the Fourier transform.
We have the following lemma (a consequence of the Hörmander-Michlin multiplier theorem and

Sobolev imbeddings):

Lemma 16. For all u ∈ C∞c (Ω) there holds,

‖A[u]‖W 1,p(Ω)
<∼ ‖u‖Lp(Ω), 1 < p <∞.

Consequently, the operator A admits an extension (denoted by the same symbol) which is a continuous
linear operator from

Lp(Ω) to W 1,p(Ω), 1 < p <∞

The next lemma deals with a particular solution of the equation divw = r in Ω, w|∂Ω = 0 called
the Bogovskii solution, [7].
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Lemma 17. Let Ω be a bounded Lipschitz domain. There exists a linear operator B defined on C∞c (Ω)
with the following properties

B(C∞c (Ω)) ⊂ C∞c (Ω) (197)

∀r ∈ C∞c (Ω), ‖B[r]‖W 1,p(Ω;R3)
<∼ ‖r‖Lp(Ω), 1 < p <∞, (198)

∀r ∈ C∞c (Ω;R4), ‖B[r]‖Lq(Ω;R3)
<∼ ‖r‖[W 1,q′ (Ω)]∗ , 1 < q <∞. (199)

divB[r] = r − 1

|Ω|

∫
Ω
r dx. (200)

Consequently, the operator B admits an extension (denoted by the same symbol) which is a contiuous
linear operator from

Lp(Ω) 7→W 1,p
0 (Ω), 1 < p <∞,

and from

[W 1,q′ ]∗(Ω) 7→ Lq(Ω), where q ∈
{

(1, 3p
3−p) if 1 < p < 3

(1,∞) if p ≥ 3

}
.

Moreover, B satisfies (200) for any r ∈ Lp(Ω).

On Lipschitz domains, the Bogovskii solution is given by an explicit formula involving a singular
kernel which is particularly ”accessible” if the domain is star-shaped and which allows to provide the
proof of Lemma 17 via an explicit (but involved) calculation. We refer to Galdi [29, Chapter 3] for a
detailed proof of the properties (197), (198), (200), and to Geissert, Heck and Hieber [30] for (199).
The admissible values p, q follow from (197–199), the density of C∞c (Ω) in [W 1,q′ ]∗(Ω) and Sobolev
imbeddings.

The next theorem involving commutator of Riesz operators may be seen as a consequence of the
celebrated Div-Curl lemma above, see Murat, Tartar [38] and [24, Section 6] or [25, Theorem 10.27]
for the below adapted formulation

Lemma 18. Let
Vn ⇀ V in Lp(R3;R3),

Un ⇀ U in Lq(R3;R3),

where 1
p + 1

q = 1
s < 1. Then

Un · ∇∆−1div [Vn]−Vn · ∇∆−1div [Un] ·Vn ⇀ U · ∇∆−1div [V]−V · ∇∆−1div [U] in Ls(R3).

Finally, the last two lemmas are well known results from convex analysis, see e.g. Lemma 2.11 and
Corollary 2.2 in Feireisl [24].

Lemma 19. Let O ⊂ Rd, d ≥ 2, be a measurable set and {vn}∞n=1 a sequence of functions in
L1(O;RM ) such that

vn ⇀ v in L1(O;RM ).

Let Φ : RM → (−∞,∞] be a lower semi-continuous convex function such that Φ(vn) is bounded in
L1(O).

Then Φ(v) : O 7→ R is integrable and∫
O

Φ(v)dx ≤ lim inf
n→∞

∫
O

Φ(vn)dx.
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Lemma 20. Let O ⊂ Rd, d ≥ 2 be a measurable set and {vn}∞n=1 a sequence of functions in L1(O;RM )
such that

vn → v weakly in L1(O;RM ).

Let Φ : RM → (−∞,∞] be a lower semi-continuous convex function such that Φ(vn) ∈ L1(O) for any
n, and

Φ(vn)→ Φ(v) weakly in L1(O).

Then

Φ(v) ≤ Φ(v) a.e. in O. (201)

If, moreover, Φ is strictly convex on an open convex set U ⊂ RM , and

Φ(v) = Φ(v) a.e. on O,

then

vn(y)→ v(y) for a.a. y ∈ {y ∈ O | v(y) ∈ U} (202)

extracting a subsequence as the case may be.

Lemma 21. Let O be a domain in Rd, P,G : O × [0,∞) 7→ [0,∞) be a couple of functions such that
for almost all y ∈ O, % 7→ P (y, %) and % 7→ G(y, %) are both non decreasing and continuous on [0,∞).
Assume that %n ∈ L1(O; [0,∞)) is a sequence such that

P (·, %n) ⇀ P (·, %),

G(·, %n) ⇀ G(·, %),

P (·, %n)G(·, %n) ⇀ P (·, %)G(·%)

 in L1(O).

Then
P (·, %) G(·, %) ≤ P (·, %)G(·, %)

a.e. in O.

The last lemma we wish to recall is the Friedrichs lemma on commutators, see e.g; Di-Perna, Lions
[19].

Lemma 22 (Friedrichs commutator lemma). Let I ⊂ R be an open bounded interval and f ∈ Lα(I;

Lβloc(R
d)), u ∈ Lp(I;W 1,q

loc (Rd;Rd)). Let 1 ≤ q, β ≤ ∞, (q, β) 6= (1,∞), 1
q + 1

β ≤ 1, 1 ≤ α ≤ ∞ and
1
α + 1

p ≤ 1. Then
div([uf ]ε)− div(u[f ]ε)→ 0

strongly in Lt(I;Lrloc(Rd)), where
1

t
≥ 1

α
+

1

p
, t ∈ [1,∞)

and
r ∈ [1, q) for β =∞, q ∈ (1,∞],

while 1
β + 1

q ≤
1
r ≤ 1 otherwise. In the above [f ]ε denotes the mollifications of f over the space variables

via the convolution of f with the standard regularizing kernel.
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weak solutions for compressible Navier-Stokes equations with entropy transport. J. Differential
Equations 261, 4448–4485, 2016.
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