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Abstract

In this paper, we study the homogenization problems for the stationary compressible Navier-Stokes
system in a bounded 2D domain, where the domain is perforated with very tiny holes (or obstacles) whose
diameters are much smaller than their mutual distances. We obtain that the process of homogenization
doesn’t change the motion of the fluids. From another point of view, we obtain the same system of
equations in the asymptotic limit. It is the first result of homogenization problem in the compressible
case in 2 dimension.
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1 Introduction
Homogenization of colorblue the Newtonian fluid in physical domains perforated by a large number of tiny
holes plays an important role in fluid mechanics and has gain lots of interest. Viscous fluid flows passing
a great many fixed solid obstacles is a situation frequently occurring in real applications referring to [27].
Based on these applications, the models like stationary, viscous fluid flows represented by the the standard
Stokes or Navier-Stokes system of equations in porous medium could be of vital importance.

The typical diameter and mutual distance of these holes become the main factors in the asymptotic
behavior of fluid flows in the regime where the number of holes tends to infinity and their size tends to zero.
With the increasing number of holes, the limit motion of fluid flow approaches a state governed by certain
homogenized equations which are homogeneous in form of different cases (without obstacles).

Allaire [3], [4] (or earlier results by Tartar [28]) provided a systematical study of Stokes and/or Navier-
Stokes system for three different circumstances where the holes are periodically distributed with different
size. Roughly speaking, the asymptotic limit behavior is governed by Darcy’s law when the holes are
of supercritical size; when the holes are of the critical size, the asymptotic limit behavior gives rise to
Brinkman’s law; the subcritical size of holes makes no differences in the motion of the asymptotic limit -
the limit problem coincides with the original system of equations.
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Moreover, relevant results has been extended to the evolutionary (time-dependent) incompressible
Navire-Stokes system by Mikelić [23] and Allaire [2], and more recently in [14]. For the evolutionary
barotropic (compressible) Navier-Stokes system, Masmoudi [22] obtained that the homogenization limit
was governed by porous medium equation (Darcy’s law) where the diameter of the holes is comparable
to their mutual distance (critical size), and similar results for the full Navier-Stokes-Fourier system were
obtained in [15]. In [10, 11, 20], the authors considered the case of small holes for the compressible Navier-
Stokes equations and in [21], steady compressible Navier–Stokes–Fourier system is considered, homogenized
equations mentioned above remain the same asymptotic limit as the original ones. Let us also mention the
case when the hole is the moving rigid body. In the case of the compressible fluid with the moving rigid
body the homogenization was study by Bravin and Nečasová [5].

1.1 Problem formulation
Similar to the case in [10] and [11], where the homogenization of 3D steady compressible Navier-Stokes
equations is considered, here we concentrated on homogenization of the compressible (isentropic) stationary
Navier-Stokes system in two spatial dimensions of the subcritical case and we show that the asymptotic limit
coincides with the original one, where ε denotes the mutual distance between the holes and the diameter
of the holes is taken as aε = e−σε−α with α > 2. Considering a bounded domain Ω ⊂ R2 of class C2, we
introduce a family of ε-dependent perforated domains {Ωε}ε>0,

Ωε = Ω \
∪

k∈Kε

Tε,k, Kε := {k| εC̄k ⊂ Ω} (1.1)

where the sets Tε,k represent holes or obstacles. We suppose the following property concerning the
distribution of the holes:

Tε,k := xε,k + aεTk ⊂⊂ B(xε,k, b0aε) ⊂⊂ εCk ⊂ Ω, (1.2)

with
Ck := (0, 1)2 + k, k ∈ Z2, aε = e−σε−α for α > 2. (1.3)

Here xε,k ∈ Tε,k, b0 > 0 and σ is positive constant independent of ε, for each k, Tk ⊂ R2 is a simply
connected bounded domain of class C2, B(x, r) denotes the open ball centered at x with radius r in R2.
The diameter of each Tε,k is of size O(aε) and their mutual distance is O(ε), where their total number |Kε|
can be estimated as

|Kε| ≤
|Ω|
ε2

(1 + o(1)).

For convenience, we use the symbol Lq
0(Ω) to denote the space of functions in Lq(Ω) with zero integral mean

Lq
0(Ω) :=

{
f ∈ Lq(Ω) :

∫
Ω
f dx = 0

}
. (1.4)

Then, we consider the following stationary (compressible) Navier-Stokes system in Ωε

div (%u) = 0, (1.5)
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div (%u⊗ u) +∇p(%) = div S(∇u) + %f + g, (1.6)

S(∇u) = µ

(
∇u+∇tu− 2

3
(divu)I

)
+ η(divu)I, µ > 0, η ≥ 0. (1.7)

Here % is the fluid mass density, u is the velocity field, p = p(%) is the pressure, S(∇u) stands for the
Newtonian viscous stress tensor with constant viscosity coefficients µ, η.

In the spatial domain Ωε, the system is supplemented with the standard no-slip boundary condition

u = 0 on ∂Ωε. (1.8)

For the sake of simplicity, we concentrate on the isentropic pressure-density state relationship

p(%) = a%γ , a > 0, (1.9)

with the adiabatic exponent γ, which will be specified as follows.
The motion of the fluid is driven by the volume force f and nonvolume force g, defined on the whole

domain Ω and independent of ε, those are supposed to be uniformly bounded,

‖f‖L∞(Ω;R2) + ‖g‖L∞(Ω;R2) ≤ C <∞. (1.10)

Specifically, we use the symbol C to denote a generic bounded constant that may vary from line to line in the
following contents but it is independent of the parameters of the problem, in particular of ε. Furthermore,
we use the symbol h̃ to denote the zero− extension of h in R2, which means

h̃ = h in Ωε, h̃ = 0 in R2 \ Ωε. (1.11)

To be consistent with its physical interpretation, the density % is non-negative and we fix the total mass
of the fluid to be

0 < inf
0<ε<1

Mε ≤Mε =

∫
Ωε

% dx ≤ sup
0<ε<1

Mε <∞. (1.12)

In particular, the Restriction operator introduced by Allaire [3] can be used in a compatible way in 2D
to construct the inverse of the divergence - the so-called Bogovskii’s operator (see Bogovskii [6], Galdi [17,
Chapter 3]).

The paper is organized as follows. In Section 1.1 to Section 1.3, we introduce the formulation of the
problem, the definition of weak solutions and state our main results. Then in section 1.4, we introduce the
Restriction operator and construct the inverse of the divergence - a Bogovskii’s type operator which plays
a crucial role in the proof of the uniform bound to the solution [ρ,u]. After that, uniform estimates are
obtained via this operator in Section 2.1 to identify the asymptotic limit for the Navier-Stokes system in
perforated domains. In Section 2.2 to Section 2.4, we give the convergence (or homogenization) process of
2D compressible Navier-Stokes system in perforated domains, which shows the homogenization process for
the stationary compressible Navier-Stokes equations in a perforated domain is not affected by obstacles and
the limit problem coincides with the original one. Finally, we obtain the main results listed in Section 1.3.
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1.2 Weak solutions
We recall the definition of finite energy weak solutions to (1.5)-(1.8), see [24, Definition 4.1].

Definition 1.1. A couple of functions [%,u] is said to be a finite energy weak solution of the Navier-Stokes
system (1.5)-(1.7) supplemented with the conditions (1.8)-(1.12) in Ωε provided:

% ≥ 0 a.e. in Ωε,

∫
Ωε

% dx =Mε, % ∈ Lβ(γ)(Ωε) for some β(γ) > γ, u ∈W 1,2
0 (Ωε;R

2); (1.13)

for any test functions ψ ∈ C∞(Ωε) and ϕ ∈ C∞
c (Ωε;R

2):∫
Ωε

%u · ∇ψ dx = 0; (1.14)

∫
Ωε

%u⊗ u : ∇ϕ+ p(%)divϕ− S(∇u) : ∇ϕ+ (%f + g) · ϕ dx = 0; (1.15)

and the energy inequality ∫
Ωε

S(∇u) : ∇u dx ≤
∫
Ωε

(%f + g) · u dx (1.16)

holds.

Remark 1.2. A finite energy weak solution of the Navier-Stokes system (1.5)-(1.7) in Ω is similar to it in
Ωε.

Definition 1.3. A finite energy weak solution [%,u] (see [24]) is said to be a renormalized weak solution if∫
R2

b(%)u · ∇xψ +
(
b(%)− b′(%)%

)
divu ψ dx = 0 (1.17)

for any ψ ∈ C∞
c (R2), where [%,u] were extended to be zero outside Ωε, and any b ∈ C0([0,∞))∩C1((0,∞))

such that
b′(s) ≤ c s−λ0 for s ∈ (0, 1], b′(s) ≤ c sλ1 for s ∈ [1,∞), (1.18)

with
c > 0, λ0 < 1, −1 < λ1 ≤

β(γ)

2
− 1. (1.19)

Lemma 1.4. By DiPerna-Lions’ transport theory (see [9, Section II.3] and the modification in [24, Lemma
3.3]), for any r ∈ Lβ(Ω), β ≥ 2, v ∈W 1,2

0 (Ω), where Ω ⊂ R2 is a bounded domain of class C2, such that

div (rv) = 0 in D′(Ω), (1.20)

the renormalized equation

div
(
b(r)v

)
+
(
rb′(r)− b(r)

)
divv = 0, holds in D′(R2), (1.21)

for any b ∈ C0([0,∞)) ∩ C1((0,∞)) satisfying (1.18)-(1.19) provided r and v have been extended to be zero
outside Ω.
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Remark 1.5. Recall that the relevant values of the adiabatic exponent are 1 ≤ γ ≤ 5/3, where the case γ = 1
corresponds to the isothermal case while γ = 5/3 is the adiabatic exponent of the monoatomic gas. Based
on energy type arguments combined with the refined pressure estimates, Lions [19] proved the existence of
weak solutions in the range γ > 5/3 in 3D. Lions’ theory for the existence of weak solutions to homogeneous
Dirichlet (no-slip) boundary conditions has been extended to the physical range γ ≤ 5/3 by several authors,
see Březina and Novotný [7], Plotnikov and Sokolowski [25] for γ > 3/2, Frehse, Steinhauer and Waigant
[16] for γ > 4/3, Plotnikov and Weigant [26] for γ > 1. While in two spatial dimensions with γ > 1,
Lions ([19], Chapter 6) has given the existence of the weak solution [%ε,uε] ∈ [L2γ(Ωε)]× [H1

0 (Ωε)]
2, which

establishes the following uniform norm estimates for the solution [ρ, u] in Ω. Then, we need to show that the
asymptotic limit of solutions [%ε,uε] of the compressible Navier-Stokes system (1.5)-(1.8) in Ωε coincides
with a solution of the same system on the homogeneous domain Ω.

1.3 Main results
In this paper, we consider the case of optimal adiabatic exponent γ > 1 in the pressure law (1.9), which is
also an innovation in this article.

Theorem 1.6. Suppose the conditions (1.9), (1.10), (1.12) are satisfied. Let γ > 1 and α > 2 be given and
[%ε,uε]0<ε<1 be a family of finite energy weak solutions to (1.5)-(1.8) in Ωε, where f and g satisfy (1.10).
Then we have uniform estimates

sup
0<ε<1

(
‖%ε‖L2γ(Ωε) + ‖uε‖W 1,2

0 (Ωε;R2)

)
≤ C <∞. (1.22)

Moreover, up to a substraction of subsequence, the zero-extentsions [%̃ε, ũε] to outside Ωε satisfy

%̃ε → % weakly in L2γ(Ω), ũε → u weakly in W 1,2
0 (Ω;R2), (1.23)

where [%,u] is a finite energy weak solution to the same system of equations (1.5)-(1.8) in the limit domain
Ω.

1.4 Preliminaries
1.4.1 Bogovskii’s operator

Our principal result concerns the construction of the inverse of the divergence operator on the family of
perforated domains {Ωε}ε>0.

Proposition 1.7. Let {Ωε}ε>0 be a family of domains with the properties specified in Section 1.1. Then
there exists a linear operator

Bε : L
2
0(Ωε) →W 1,2

0 (Ωε;R
2),

such that for any f ∈ L2
0(Ωε),

div (Bε(f)) = f in Ωε,

‖Bε(f)‖W 1,2
0 (Ωε;R2)

≤ C‖f‖L2(Ωε),
(1.24)

for some constant C independent of ε.
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The existence of Bogovskii’s operator on a fixed Lipschitz domain has been shown by several authors,
such as Galdi [17] or Acosta, Durán and Muschietti [1] and Diening, Růžička and Schumacher [8], especially
by Bogovskii [6], Pileckas and Kapitanskii [18]. Here, we need to establish the uniform estimate (1.24),
where the constant C is independent of ε. For the sake of readers, we briefly give a proof of Proposition 1.7.
Referring to [10] and [11], such a Bogovskii’s operator is established in 3D case. Considering the significance
of the Restriction operator in proving the existence of Bogovskii’s operator and therefore, we introduce the
following Restriction operator Rε analogously by employing the Restriction operator constructed by Allaire
([3], Section 2.2).

Lemma 1.8. For Ωε defined in Section 1.1, there exists a linear bounded Restriction operator Rε :
W 1,2

0 (Ω;R2) →W 1,2
0 (Ωε;R

2) such that

u ∈W 1,2
0 (Ωε;R

2) =⇒ Rε(ũ) = u in Ωε (1.25)

divu = 0 in Ω =⇒ divRε(u) = 0 in Ωε (1.26)

‖Rε(u)‖W 1,2
0 (Ωε;R2)

≤ C‖u‖
W 1,2

0 (Ω;R2)
, C independent of ε, (1.27)

This Restriction operator is constructed in the proof of [[3], Lemma 2.1] in the following way

B(xk, b1ε) ⊂ εCk, B̄ε,k = B̄(xk, b0aε) ⊂ B(xk, b1ε). (1.28)

Let us introduce the following decomposition of the cube εC with k ∈ Kε:

εC̄k = Tε,n
∪
Ēε,k

∪
F̄ε,k with Eε,k := B(xk, b1ε) \ Tε,k, Fε,k := (εCk) \B(xk, b1ε), (1.29)

where b1 > 0. For any u ∈W 1,2
0 (Ω;R2), we can define Rε by{

Rε(u) = u on εCk
∩
Ω, for k /∈ Kε

Rε(u) = u on Fε,k, Rε(u) = 0 on Tε,k, Rε(u) = vε,k in Eε,k, for k ∈ Kε.
(1.30)

where vε,k ∈W 1,2
0 (εCk;R

2) satisfies

∇pε,k −∆vε,k = −∆u in Eε,k (1.31)

divvε,k = divu+
1

|Eε,k|

∫
Tε,k

divxu dx in Eε,k, (1.32)

vε,k = u on ∂Eε,k − ∂Tε,k, vε,k = 0 on ∂Tε,k. (1.33)

Proof of Proposition 1.7. For f ∈ L2
0(Ωε), we consider the following zero-extension of f

f̄ = f in Ωε, f̄ = 0 on Ω\Ωε = Ω \
∪

k∈Kε

Tε,k. (1.34)
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By classical Bogovskii’s operator (see Bogovskii [6]) defined on domain Ω, we obtain u := B(f) ∈W 1,2
0 (Ω;R2)

satisfying

divu = f in Ωε, ‖u‖
W 1,2

0 (Ω;R2)
≤ C‖f̃‖L2(Ω;R2) = C‖f‖L2(Ωε;R2) (1.35)

where C depends only on Ω. Furthermore, by (1.34) we have

divu = f̃ = 0 in Tε,k. (1.36)

Applying the Restriction operator constructed in (1.30)-(1.33), we obtain

divvε,k = divu = f̃ = 0 on Eε,k, (1.37)

whenever u satisfies (1.35). Moreover, we have Rε(u) = u in Ω \
∪

k∈Kε
Eε,k. Combined with (1.30) and

(1.37), we conclude that
divRε(u) = f in Ωε. (1.38)

Now we define
Bε(f) := Rε(u) = Rε(B(f̃)). (1.39)

where B is the classical Bogovskii’s operator on Ω. It’s easy to check that

‖Bε(f)‖W 1,2
0 (Ωε;R2)

:= ‖Rε(u)‖W 1,2
0 (Ωε;R2)

≤ C‖u‖
W 1,2

0 (Ω;R2)
= C‖B(f)‖

W 1,2
0 (Ω;R2)

≤ C‖f̃‖L2(Ω) = C‖f‖L2(Ωε).

(1.40)
Thus we proved Proposition 1.7.

2 Proof of Theorem 1.6
This section deals with the proof of Theorem 1.6. By Lemma 1.4, let us stress that the solution [%ε,uε] is
also a renormalized weak solution as follows.

Lemma 2.1. We have

div
(
b(%̃ε)ũε

)
+

(
%̃εb

′(%̃ε)− b(%̃ε)
)
div ũε = 0, in D′(R2),

for any b ∈ C0([0,∞)) ∩ C1((0,∞)) satisfying (1.18)-(1.19), where [%̃ε, ũε] denotes the functions [%ε,uε]
extended to be zero outside Ωε.

2.1 Uniform bounds
As shown in Lions ([19], Chapter 6) with N = 2, γ > 1, we have the existence of solution [%ε,uε] ∈
[L2γ(Ωε)]×[H1

0 (Ωε)]
2 for any fixed ε. However, the classical estimates of their norms depend on the Lipschitz

character of domain Ωε, which goes to infinity as ε→ 0. In order to show the uniform estimates (1.22), we
employ the uniform Bogovskii type operator Bε constructed in Section 1.4 to establish the independence of
ε ∈ (0, 1) in (1.22).
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By the Korn’s inequality and the Hölder’s inequality, the energy inequality (1.16) implies

‖∇uε‖2L2(Ωε;R2×2) ≤ C
(
‖f‖L∞(Ωε;R2)‖%ε‖Ls(Ωε)‖uε‖Lt(Ωε;R2)

+ ‖g‖L∞(Ωε;R2)‖uε‖L1(Ωε;R2)

)
,

(2.1)

where 1
s +

1
t = 1 and s→ 1+, t→ ∞−.

Remark 2.2. In Section 2.1 and Section 2.2, we frequently use ∞− to denote a bounded real number
arbitrarily close to positive infinity and x+ (x−) denotes the real number arbitrarily close to x on the right
(left) side.

Since uε ∈ W 1,2
0 (Ωε;R

2) has zero trace on the boundary, the Sobolev embedding and the Poincaré
inequality imply

‖uε‖Lt(Ωε;R2) ≤ ‖uε‖W 1,2
0 (Ωε;R2)

≤ C ‖∇uε‖L2(Ωε;R2×2), (2.2)

‖uε‖L1(Ωε;R2) ≤ ‖uε‖W 1,2
0 (Ωε;R2)

≤ C ‖∇uε‖L2(Ωε;R2×2), (2.3)

for some constant C independent of the domain Ωε.
By the above estimates (2.1)-(2.3), we deduce

‖∇uε‖L2(Ωε;R2×2) + ‖uε‖Lt(Ωε;R2) ≤ C
(
‖f‖L∞(Ωε;R2)‖%ε‖Ls(Ωε) + ‖g‖L∞(Ωε;R2)

)
≤ C

(
‖%ε‖Ls(Ωε) + 1

)
.

(2.4)

Let Bε be the operator introduced in Proposition 1.7, we introduce the test function

ϕ := Bε

(
%γε −

1

|Ωε|

∫
Ωε

%γε dx

)
. (2.5)

By Remark 1.5, we notice that

%ε ∈ L2γ(Ωε), uε ∈W 1,2
0 (Ωε;R

2), for any fixed ε. (2.6)

Then by Proposition 1.7 and (2.5), we have

divϕ = %γε −
1

|Ωε|

∫
Ωε

%γε dx in Ωε (2.7)

and
‖ϕ‖

W 1,2
0 (Ωε;R2)

≤ C‖%γε −
1

|Ωε|

∫
Ωε

%γε dx‖L2(Ωε)

≤ C
(
‖%γε‖L2(Ωε) + ‖%γε‖L1(Ωε)

)
≤ C ‖%ε‖γL2γ(Ωε)

.

(2.8)

Taking ϕ as a test function in the weak formulation of the momentum equation (1.15) gives∫
Ωε

p(%ε)%
γ
ε dx =

4∑
j=1

Ij (2.9)
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with
I1 :=

∫
Ωε

p(%ε) dx
1

|Ωε|

∫
Ωε

%γε dx,

I2 :=

∫
Ωε

µ∇uε : ∇ϕ dx+

∫
Ωε

(µ
3
+ η

)
divuε : divϕ dx,

I3 := −
∫
Ωε

%εuε ⊗ uε : ∇ϕ dx,

I4 := −
∫
Ωε

(%εf + g) · ϕ dx.

For I1:
I1 :=

∫
Ωε

p(%ε) dx
1

|Ωε|

∫
Ωε

%γε dx =
a

|Ωε|
‖%ε‖2γLγ(Ωε)

≤ a

|Ωε|
‖%ε‖2γθ1L1(Ωε)

‖%ε‖2γ(1−θ1)
L2γ(Ωε)

=
aM2γθ1

ε

|Ωε|
‖%ε‖2γ(1−θ1)

L2γ(Ωε)
,

(2.10)

where we used (1.12), Young’s inequality, and interpolations between Lebesgue spaces. Mε is the total mass
and the number θ1 satisfies

0 < θ1 < 1 s.t. 1

γ
=
θ1
1

+
1− θ1
2γ

. (2.11)

For I2:
I2 ≤ C ‖∇uε‖L2(Ωε;R2×2)‖∇ϕ‖L2(Ωε;R2×2) ≤ C

(
‖%ε‖Ls(Ωε) + 1

)
‖%ε‖γL2γ(Ωε)

≤ C
(
‖%ε‖θ2L1(Ωε)

‖%ε‖1−θ2
L2γ(Ωε)

+ 1
)
‖%ε‖γL2γ(Ωε)

≤ C
(
M θ2

ε ‖%ε‖γ+1−θ2
L2γ(Ωε)

+ ‖%ε‖γL2γ(Ωε)

)
,

(2.12)

where we used (1.12), (2.4) and (2.8). The number 0 < θ2 < 1 is determined by
1

s
=
θ2
1

+
1− θ2
2γ

,
1

s
+

1

t
= 1, s→ 1+, t→ ∞− (2.13)

which implies θ2 =
1
s
− 1

2γ

1− 1
2γ

→ 1(1− θ2 → 0+) for s→ 1+ and any γ ∈ (1,+∞).
For I3:

I3 = −
∫
Ωε

%εuε ⊗ uε : ∇ϕ dx

≤ C ‖%ε‖Ls1 (Ωε)‖uε‖2Lt1 (Ωε;R2)‖∇ϕ‖L2(Ωε;R2×2)

≤ C ‖%ε‖θ3L1(Ωε)
‖%ε‖1−θ3

L2γ(Ωε)
(‖%ε‖2Ls(Ωε)

+ 1)‖%ε‖γL2γ(Ωε)

≤ C ‖%ε‖θ3L1(Ωε)
‖%ε‖1−θ3

L2γ(Ωε)
(‖%ε‖2θ2L1(Ωε)

‖%ε‖2(1−θ2)
L2γ(Ωε)

+ 1)‖%ε‖γL2γ(Ωε)

≤ CM θ3+2θ2
ε ‖%ε‖γ+(1−θ3)+2(1−θ2)

L2γ(Ωε)
+ CM θ3

ε ‖%ε‖γ+(1−θ3)
L2γ(Ωε)

,

(2.14)

where the estimates are similar to I1, I2 and

0 < θ2, θ3 < 1 s.t. 1

s
=
θ2
1

+
1− θ2
2γ

and 1

s1
=
θ3
1

+
1− θ3
2γ

. (2.15)
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This implies

θ3 =

1
s1

− 1
2γ

1− 1
2γ

→ 0 + (1− θ3 → 1−) as s1 → 2+, γ → 1 + . (2.16)

For I4:
I4 = −

∫
Ωε

(%εf + g) · ϕ

≤ C ‖%ε‖Ls(Ωε)‖f‖L∞(Ωε;R2)‖ϕ‖Lt(Ωε;R2) + ‖f‖L∞(Ωε;R2)‖ϕ‖L2(Ωε;R2)

≤ C (1 + ‖%ε‖Ls(Ωε))‖ϕ‖W 1,2(Ωε;R2)

≤ C(1 +M θ2
ε ‖%ε‖1−θ2

L2γ(Ωε)
)‖%ε‖γL2γ(Ωε)

,

(2.17)

where s, t and θ2 are the same as above.
Summing up the estimates for I1 to I4 implies

‖%ε‖2γL2γ(Ωε)
≤ C

(
1 + ‖%ε‖β1(γ)

L2γ(Ωε)

)
, (2.18)

where
β1(γ) = max{2γ(1− θ1), γ + (1− θ3), γ + (1− θ2), γ, γ + (1− θ3) + 2(1− θ2)}.

Once γ > 1 fixed, we can always find s → 1+ smaller than γ s.t. 1 − θ2 → 0+ (for any γ ∈ (1,+∞)). At
the same time, 1− θ3 goes down with the increase of γ and there exists s1 → 2+ s.t. 1− θ3 → 1− (for any
γ → 1+) to obtain β1(γ) < 2γ in (2.18).

Then we deduce
‖%ε‖L2γ(Ωε) ≤ C, C is independent of ε. (2.19)

Moreover, combined with (2.4), we have

‖uε‖W 1,2
0 (Ωε;R2)

≤ C, C is independent of ε. (2.20)

Let [%̃ε, ũε] be the zero extension of [%ε,uε] in Ω. Then by (2.19) and (2.20) we have

‖%̃ε‖L2γ(Ω) + ‖ũε‖W 1,2
0 (Ω;R2)

≤ C. (2.21)

Thus, up to a substraction of subsequence,

%̃ε → % weakly in L2γ(Ω), ũε → u weakly in W 1,2
0 (Ω;R2). (2.22)

We obtained the uniform estimate (1.22) and the weak convergence in (1.23).

2.2 Equations in homogeneous domain
Now, we show that the couple [%̃ε, ũε] solves the momentum equations as (1.6) in Ω up to a small remainder.
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Lemma 2.3. Under the assumptions in Theorem 1.6, there holds

div (%̃εũε ⊗ ũε) +∇p(%̃ε) = div S(∇ũε) + %̃εf + g + rε, in D′(Ω;R2), (2.23)

where the distribution rε is small and satisfies:

|〈rε, ϕ〉D′(Ω;R2),D(Ω;R2)| ≤ Cεδ1(‖∇ϕ‖Lt(Ωε;R2×2) + ‖ϕ‖L∞(Ωε;R2)), (2.24)

for any ϕ ∈ C∞
c (Ω;R2) and δ1 := 1

2α− 1 > 0, t→ 2+, bounded constant C > 0.
Proof of Lemma 2.3. By the assumptions on the distribution and the size of the holes in (1.2), there
exists cut-off function gε ∈ C∞

c (Ω) satisfying 0 ≤ gε ≤ 1 and

gε = 1 on
∪

k∈Kε

Tε,k, gε = 0 in Ω \
∪

k∈Kε

B(xε,k, b0εα), ‖gε‖2W 1,2(Ω;R2) ≤ 2Cε−2|logaε|−1. (2.25)

Then for any ϕ ∈ C∞
c (Ω;R2), we have

Iε =

∫
Ω
%̃εũε ⊗ ũε : ∇ϕ+ p(%̃ε) divϕ− S(∇ũε) : ∇ϕ+ %̃εf · ϕ+ g · ϕ dx

=

∫
Ωε

(
%̃εũε ⊗ ũε : ∇((1− gε)ϕ) + p(%̃ε) div ((1− gε)ϕ)− S(∇ũε) : ∇((1− gε)ϕ)

+ %̃εf · ((1− gε)ϕ) + g · ((1− gε)ϕ)
)
dx+ Iε,

where we used the fact that (1 − gε)ϕ ∈ C∞
c (Ωε;R

2) is a good test function for the momentum equations
(1.6) in Ωε, and the quantity Iε is of the form

Iε :=
4∑

j=1

Ij,ε, (2.26)

with
I1,ε :=

∫
Ω
%̃εũε ⊗ ũε : (gε∇ϕ) + %̃εũε ⊗ ũε : (∇gε ⊗ ϕ) dx,

I2,ε :=

∫
Ω
p(%̃ε)gεdivϕ+ p(%̃ε)∇gε · ϕ dx,

I3,ε := −
∫
Ω
S(∇ũε) : (gε∇ϕ) + S(∇ũε) : (∇gε ⊗ ϕ) dx,

I4,ε :=

∫
Ω
%̃εf · gεϕ+ g · gεϕ dx.

We now estimate Ij,ε (j = 1, 2, 3, 4) one by one. For I1,ε, direct calculation gives

|I1,ε| : = |
∫
Ω
%̃εũε ⊗ ũε : (gε∇ϕ) + %̃εũε ⊗ ũε : (∇gε ⊗ ϕ) dx|

≤ C ‖%̃ε‖L2γ(Ω;R)‖ũε‖2Ls′ (Ω;R2)

(
‖∇gε‖L2(Ω;R2)‖ϕ‖Lt′ (Ω;R2) + ‖gε‖Lt′ (Ω;R)‖∇ϕ‖L2(Ω;R2×2)

)
≤ C ‖∇gε‖L2(Ω;R2)‖∇ϕ‖L2(Ω;R2×2) ≤ Cε

1
2
α−1‖∇ϕ‖L2(Ω;(R2×2) ≤ Cε

1
2
α−1‖∇ϕ‖Lt(Ω;R2×2),

(2.27)
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where

α > 2,
2

s′
+

1

t′
= (

1

2
− 1

2γ
), 1 < γ <∞, and s′, t′ → ∞−, t→ 2 + as γ → 1 + .

For I2,ε and I3,ε, similar to the estimate for I1,ε, we have

|I2,ε| : = |
∫
Ω
p(%̃ε)gεdivϕ+ p(%̃ε)∇gε · ϕ dx|

≤ C a‖%̃ε‖γL2γ(Ω;R)

(
‖gε‖Ls(Ω;R)‖∇ϕ‖Lt(Ω;R2×2) + ‖∇gε‖L2(Ω;R2)‖ϕ‖L∞(Ω;R2)

)
≤ Cε

1
2
α−1(‖∇ϕ‖Lt(Ω;R2×2) + ‖ϕ‖L∞(Ω;R2)).

(2.28)

|I3,ε| : = | −
∫
Ω
S(∇ũε) : (gε∇ϕ) + S(∇ũε) : (∇gε ⊗ ϕ) dx|

≤ C ‖∇ũε‖L2(Ω;R2×2)

(
‖gε‖Ls(Ω;R)‖∇ϕ‖Lt(Ω;R2×2) + ‖∇gε‖L2(Ω;R2)‖ϕ‖L∞(Ω;R2)

)
≤ Cε

1
2
α−1(‖∇ϕ‖Lt(Ω;R2×2) + ‖ϕ‖L∞(Ω;R2)).

(2.29)

where
α > 2, 1 < γ <∞,

1

s
+

1

t
=

1

2
, and s→ ∞−, t→ 2 + . (2.30)

For I4,ε, the similar argument gives the following analogous estimate:

|I4,ε| : = |
∫
Ω
%̃εf · gεϕ+ g · gεϕ dx|

≤ C ‖ϕ‖L∞(Ω;R2)

(
‖%̃ε‖L2γ(Ω;R)‖f‖L∞(Ω;R2)‖gε‖

L
(1− 1

2γ )−1
(Ω;R)

+ ‖g‖L∞(Ω;R2)‖gε‖L1(Ω;R)

)
≤ C ‖ϕ‖L∞(Ω;R2)

(
‖%̃ε‖L2γ(Ω;R)‖f‖L∞(Ω;R2)‖gε‖L2(Ω;R) + ‖g‖L∞(Ω;R2)‖gε‖L2(Ω;R)

)
≤ C ‖gε‖L2(Ω;R)‖ϕ‖L∞(Ω;R2) ≤ Cε

1
2
α−1‖ϕ‖L∞(Ω;R2).

(2.31)

Summing up the estimates in (2.27), (2.28), (2.29) and (2.31), we finally obtain

Iε :=
4∑

j=1

Ij,ε ≤ Cε
1
2
α−1(‖ϕ‖L∞(Ω;R2) + ‖∇ϕ‖Lt(Ω;R2×2)), (2.32)

where
δ1 :=

1

2
α− 1 > 0, t→ 2 + . (2.33)

Thus we completed the proof of Lemma 2.3.
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2.3 The limit equations
In this section, we deduce the limit equation for the couple [%,u] obtained in (2.22) which represent a finite
energy renormalized weak solution of (1.5) to (1.8) in Ω. First of all, from (2.22), we have the following
convergence

%̃ε → % weakly in L2γ(Ω), ũε → u weakly in W 1,2
0 (Ω;R2). (2.34)

Applying compact Sobolev embedding, we have

ũε → u strongly in Lq(Ω;R2) for any 1 ≤ q <∞. (2.35)

Then, the following weak convergence of nonlinear terms holds

%̃εũε → %u weakly in Lq(Ω;R2) for any 1 < q < 2γ,

%̃εũε ⊗ ũ → %u⊗ u weakly in Lq(Ω;R2×2) for any 1 < q < 2γ.
(2.36)

Then in Lemma 2.1 and (2.23), passing with ε→ 0 gives

div (%u) = 0,

div (%u⊗ u) +∇p(%) = div S(∇u) + %f + g,
(2.37)

in the sense of distribution in D′(Ω), where p(%) is the weak limit of p(%̃ε) in L2(Ω). Furthermore, by Lemma
1.4, [%,u] satisfies the renomalized equation

div
(
b(%)u

)
+
(
%b′(%)− b(%)

)
divu = 0, in D′(R2), (2.38)

where b ∈ C0([0,∞)) ∩ C1((0,∞)) satisfies (1.18)-(1.19). To finish the proof of Theorem 1.6, it suffices to
show p(%) = p(%). Thus we obtain in the following section.

2.4 Convergence of pressure term - end of the proof
Here, we introduce p(%)− (4µ3 +η)divu called effective viscous flux, which possesses some weak compactness
property specified in the following lemma, which take up great significance in the existence theory of weak
solutions for the compressible Navier-Stokes equations.

Lemma 2.4. Up to a substraction of subsequence, there holds for any ψ ∈ C∞
c (Ω):

lim
ε→0

∫
Ω
ψ

(
p(%̃ε)− (

4µ

3
+ η)div ũε

)
%̃ε dx =

∫
Ω
ψ

(
p(%)− (

4µ

3
+ η)divu

)
% dx. (2.39)

Proof of Lemma 2.4. The main idea is to give proper test functions via taking advantage of Fourier
multiplier and Riesz type operators. Referring to Section 1.3.7.2 in [24] or Section 10.16 in [12] for the
definitions and properties used here of Fourier multiplier and Riesz operators, we choose proper test functions
defined by

ψ∇∆−1(1Ω%̃ε), ψ∇∆−1(1Ω%), (2.40)
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where ψ ∈ C∞
c (Ω) and ∆−1 is the Fourier multiplier on R2 with symbol − 1

|ξ|2 .
Observing that

∇∇∆−1 = (Ri,j)1≤i,j≤2

are the classical Riesz operators, then for any f ∈ Lq(R2), 1 < q <∞, we have

‖∇∇∆−1(f)‖Lq(R2;R2×2) ≤ C ‖f‖Lq(R2).

By virtue of (1Ω%̃ε) ∈ L2γ(R2;R)
∩
L1+(R2;R), owing to 2 < 2γ <∞, 1 < 1+ <∞, we have

‖∇∇∆−1(1Ω%̃ε)‖L2γ(R2;R2×2) ≤ C ‖1Ω%̃ε‖L2γ(R2;R) ≤ C.

‖∇∇∆−1(1Ω%̃ε)‖L1+(R2;R2×2) ≤ C ‖1Ω%̃ε‖L1+(R2;R) ≤ C.

That means ∇∇∆−1(1Ω%̃ε) ∈ L2γ(R2;R2×2)
∩
L1+(R2;R2×2). Since 2γ > 2+ > d = 2, by the embedding

theorem in homogeneous Sobolev spaces (see Theorem 1.55 and Theorem 1.57 in [24] or Theorem 10.25 and
Theorem 10.26 in [12]), we have

∇∆−1(1Ω%̃ε) ∈W 1,2γ(R2;R2) ↪→ L∞(R2;R2) (2.41)

which means

‖∇∆−1(1Ω%̃ε)‖L∞(R2;R2) ≤ ‖∇∇∆−1(1Ω%̃ε)‖L2γ(R2;R2×2) ≤ C ‖1Ω%̃ε‖L2γ(R2;R) ≤ C. (2.42)

Again by the embedding theorem in homogeneous Sobolev spaces, we have for any f ∈ Lq(R2), supp f ⊂ Ω:

‖∇∆−1(f)‖Lq∗ (R2;R2) ≤ C ‖f‖Lq(R2),
1

q∗
=

1

q
− 1

2
, if 1 < q < 2, (2.43)

since 1Ω%̃ε ∈ L1+(R2;R)
∩
L2γ (R2;R), by interpolation theorem between Lebesgue spaces, then we have

1Ω%̃ε ∈ Lp(R2;R), 1+ < p < 2γ and

‖∇∆−1(1Ω%̃ε)‖Lq∗ (R2;R2) ≤ C ‖1Ω%̃ε‖Lq(R2;R) ≤ C,

where 1
q∗ = 1

q −
1
2 , 1+ < q < 2, 2+ < q∗ <∞−. Combined with (2.41), we obtain

∇∆−1(1Ω%̃ε) ∈ Lq̃(R2;R2), 2+ ≤ q̃ ≤ ∞.

Then by the uniform estimate for %̃ε and its weak limit % in (2.22) and the fact 2γ > 2+ under our
assumption γ > 1,

‖∇
(
ψ∇∆−1(1Ω%̃ε)

)
‖L2γ(Ω;R2×2) + ‖∇

(
ψ∇∆−1(1Ω%)

)
‖L2γ(Ω;R2×2) ≤ C. (2.44)

Since δ1 := 1
2α− 1 > 0 in Lemma 2.3, thus, (2.24) and (2.42) implies

|〈rε, ψ∇∆−1(1Ω%̃ε)〉D′(Ω;R2),D(Ω;R2)|
≤ C εδ1

(
‖∇

(
ψ∇∆−1(1Ω%̃ε)

)
‖Lt(Ω;R2×2) + ‖ψ∇∆−1(1Ω%̃ε)‖L∞(Ω;R2)

)
≤ C εδ1

(
‖∇

(
ψ∇∆−1(1Ω%̃ε)

)
‖L2γ(Ω;R2×2) + ‖ψ∇∆−1(1Ω%̃ε)‖W 1,2γ(Ω;R2)

)
≤ C εδ1 , t→ 2+,
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which goes to zero as ε→ 0.
Then we chose ψ∇∆−1(1Ω%̃ε) as a test function in the weak formulation of equation (2.23) and pass

ε→ 0. Moreover, we choose ψ∇∆−1(1Ω%) as a test function in the weak formulation of (2.37)2. Comparing
the results of theses two operations, through long and straightforward calculations, we finally get

I : = lim
ε→0

∫
Ω
ψ

(
p(%̃ε)− (

4µ

3
+ η)div ũε

)
%̃ε dx−

∫
Ω
ψ

(
p(%)− (

4µ

3
+ η)divu

)
% dx

= lim
ε→0

∫
Ω
%̃εũ

i
εũ

j
εψRi,j(1Ω%̃ε) dx−

∫
Ω
%uiujψRi,j(1Ω%) dx.

(2.45)

In addition, choosing 1Ωdiv∆
−1(ψ%̃εũε) as a test function in the weak formulation of Lemma 2.1 with

b(%) = % and 1Ωdiv∆
−1(ψ%u) as a test function in the weak formulation of (2.37)1 yields∫

Ω
1Ω%̃εũ

i
εRi,j(ψ%̃εũε) dx = 0,

∫
Ω
1Ω%u

iRi,j(ψ%u) dx = 0. (2.46)

Substituting (2.46) into (2.45) generates

I = lim
ε→0

∫
Ω
ũi
ε

(
%̃εũ

j
εψRi,j(1Ω%̃ε)− 1Ω%̃εRi,j(ψ%̃εũε)

)
dx

−
∫
Ω
ui
(
%ujψRi,j(1Ω%)− 1Ω%Ri,j(ψ%u)

)
dx.

(2.47)

Now, we introduce the following Lemma.

Lemma 2.5. Let 1 < p, q <∞ satisfy
1

r
:=

1

p
+

1

q
< 1.

Suppose
uε → u weakly in Lp(R2), vε → v weakly in Lq(R2), as ε→ 0.

Then for any 1 ≤ i, j ≤ 2:

uεRi,j(vε)− vεRi,j(uε) → uRi,j(v)− vRi,j(u) weakly in Lr(R2).

Critically, applying lemma 2.5 (refer to [13, Lemma 3.4] for the proof) to (2.47) to obtain I → 0(as ε→ 0)
in (2.45), then the convergence result (2.39) can be deduced.

A direct consequence of the compactness of the effective viscous flux is as follows.

Lemma 2.6. We denote p(%)% as the weak limit of p(%̃ε)%̃ε in L
2γ
γ+1 (Ω). Then we have p(%)% = p(%)%.
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Proof of Lemma 2.6. In the beginning, we have

2γ − (γ + 1) = γ − 1 > 0.

Then by (2.21), we obtain
p(%̃ε)%̃ε → p(%)% weakly in L

2γ
γ+1 (Ω).

Taking b(s) = s log s in the renormalized equations in Lemma 2.1 and (2.38) yields

div
(
(%̃ε log %̃ε)ũε

)
+ %̃εdiv ũε = 0, div

(
(% log %)u

)
+ %divu = 0, in D′(Ω). (2.48)

Passing ε→ 0 in the first equation of (2.48) gives

div
(
(% log %)u

)
+ %divu = 0, in D′(Ω), (2.49)

where we used the strong convergence of the velocity in (2.35) and

%̃ε log %̃ε → % log % weakly in Lq(Ω) for any q < 2γ,

%̃εdiv ũε → %divu weakly in L
2γ
γ+1 (Ω).

(2.50)

Then for any ψ ∈ C∞
c (Ω), (2.49) and (2.50) implies

(2.39)left = lim
ε→0

∫
Ω
ψ

(
p(%̃ε)− (

4µ

3
+ η)div ũε

)
%̃ε dx =

∫
Ω
ψp(%)%− (

4µ

3
+ η)(% log %)u · ∇ψ dx. (2.51)

Utilizing the second equation in (2.48), we obtain

(2.39)right =
∫
Ω
ψ

(
p(%)− (

4µ

3
+ η)divu

)
% dx =

∫
Ω
ψp(%)%− (

4µ

3
+ η)(% log %)u · ∇ψ dx. (2.52)

Assume the test functions {ψn}n∈Z+ ⊂ C∞
c (Ω) such that

ψn(x) = 0 if d(x, ∂Ω) < 1

n
, ψn(x) = 1 if d(x, ∂Ω) > 2

n
, ‖∇ψn‖L∞(Ω;R2) ≤ 2n.

Then for any q ∈ [1,∞]:

‖1− ψn‖Lq(Ω) ≤ C n
− 1

q , ‖∇ψn‖Lq(Ω;R2) ≤ C n
1− 1

q ,

and consequently
‖d(x, ∂Ω)∇ψn‖Lq(Ω;R2) ≤ C n

− 1
q .

Here, by Hardy’s inequality, the velocity u ∈W 1,2
0 (Ω;R2) implies

‖[d(x, ∂Ω)]−1u‖L2(Ω;R2) ≤ C‖u‖W 1,2(Ω;R2) ≤ C.
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Therefore, ∫
Ω
∇ψn · (% log %)u dx

≤ ‖d(x, ∂Ω)∇ψn‖L10(Ω;R2)‖(% log %)‖L5/2(Ω)‖[d(x, ∂Ω)]
−1u‖L2(Ω;R2)

≤ C n−1/10.

(2.53)

Similarly, ∫
Ω
∇ψn · (% log %)u dx ≤ C n−1/10. (2.54)

Take ψ = ψn in (2.39) and pass to the limit n→ ∞. By using (2.51)-(2.54), we deduce∫
Ω
p(%)%− p(%)% dx = 0. (2.55)

By the strict monotonicity of the mapping % 7→ p(%), applying Theorem 10.19 in [12] or Lemma 3.35 in
[24] implies

p(%)% ≥ p(%)%, a.e. in Ω.

Together with (2.55), we deduce
p(%)% = p(%)%, a.e. in Ω.

Thus we complete the proof of Lemma 2.6.

By virtue of the monotonicity of p(·), and using Theorem 10.19 in [12] again, we obtain p(%) = p(%).
Hence, we finish the proof of Theorem 1.6.

For convenience, we recall Theorem 10.19 in [12]: Let I ⊂ R be an interval, Q ⊂ Rd be a domain, P and
G be non-decreasing functions in C(I). Let {%n}n∈N be a sequence in L1(Q; I) such that

P (%n) → P (%), G(%n) → G(%), P (%n)G(%n) → P (%)G(%), weakly in L1(Q).

Then the following properties hold:

(i). P (%) G(%) ≤ P (%)G(%).

(ii). If P ∈ C(R), G ∈ C(R), G(R) = R, G is strictly increasing, and P (%) G(%) = P (%)G(%), then
P (%) = P ◦G−1G(%). If, in particular, G(z) = z be the identity function, there holds P (%) = P (%).

Acknowledgement: The research of Š.N. leading to these results has received funding from the Czech
Sciences Foundation (GAČR), GA19-04243S and in the framework of RVO: 67985840. The authors are
grateful to Yong Lu for fruitful discussions.

17



References
[1] G. Acosta, R. G. Durán, M. A. Muschietti. Solutions of the divergence operator on John domains.

Adv. Math. 206 (2006) 373-401.

[2] G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptotic Anal. 2
(1989) 203-222.

[3] G. Allaire. Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I.
Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal., 113 (1990) 209-259.

[4] G. Allaire. Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes.
II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch.
Ration. Mech. Anal. 113 (1990) 261-298.

[5] M. Bravin, Š. Nečasová. On the vanishing rigid body problem in a viscous compressible fluid.
arXiv:2011.05040

[6] M.E. Bogovskii. Solution of some vector analysis problems connected with operators div and grad.
Trudy Sem. S.L. Soboleva 80 (1980) 5-40. In Russian.

[7] J. Březina, A. Novotný. On weak solutions of steady Navier-Stokes equations for monatomic gas.
Comment. Math. Univ. Carolin. 49 (2008) 611-632.

[8] L. Diening, M. Růžička, K. Schumacher. A decomposition technique for John domains. Ann. Acad.
Sci. Fenn. 35 (2010) 87-114.

[9] R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces.
Invent. Math. 98 (1989) 511-547.

[10] L. Diening, E. Feireisl, Y. Lu. The inverse of the divergence operator on perforated domains with
applications to homogenization problems for the compressible Navier-Stokes system. ESAIM: Control
Optim. Calc. Var., 23 (2017), 851-868.

[11] E. Feireisl, Y. Lu. Homogenization of stationary Navier-Stokes equations in domains with tiny holes.
J. Math. Fluid Mech. 17 (2015) 381-392.

[12] E. Feireisl and A. Novotný. Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser Verlag,
Basel, 2009.

[13] E. Feireisl, A. Novotný, H. Petzeltová. On the existence of globally defined weak solutions to the
Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3 (2001) 358–392.

[14] E. Feireisl, Y. Namlyeyeva, Š. Nečasová. Homogenization of the evolutionary Navier–Stokes system.
Manusc. Math. 149 (2016) 251-274.

[15] E. Feireisl, A. Novotný, T. Takahashi. Homogenization and singular limits for the complete Navier-
Stokes-Fourier system. J. Math. Pures Appl. 94 (2010) 33-57.

18



[16] J. Frehse, M. Steinhauer, W. Weigant. The Dirichlet problem for steady viscous compressible flow in
three dimensions. Journal de mathématiques pures et appliquées 97 (2012) 85-97.

[17] G.P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State
Problems. Springer Science and Business Media, 2011.

[18] L. V. Kapitanskii, K. I. Piletskas. Some problems of vector analysis. (Russian) Boundary value
problems of mathematical physics and related problems in the theory of functions, Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 16, 138 (1984), 65-85.

[19] P.-L. Lions. Mathematical topics in fluid dynamics, Vol.2, Compressible models. Oxford Science
Publication, Oxford, 1998.

[20] Y. Lu, S. Schwarzacher. Homogenization of the compressible Navier-Stokes equations in domains with
very tiny holes. J. Differential Equations, 265(4) (2018), 1371-1406.

[21] Y. Lu, M. Pokorný. Homogenization of stationary Navier–Stokes–Fourier system in domains with tiny
holes. J. Differential Equations, 278(5) (2021), 463-492.

[22] N. Masmoudi. Homogenization of the compressible Navier-Stokes equations in a porous medium.
ESAIM Control Optim. Calc. Var. 8 (2002) 885-906.

[23] A. Mikelić. Homogenization of nonstationary Navier-Stokes equations in a domain with a grained
boundary. Ann. Mat. Pura Appl. 158 (1991) 167-179.

[24] A. Novotný, I. Stras̆kraba. Introduction to the mathematical theory of compressible flow. Oxford
University Press, Oxford, 2004.

[25] P. Plotnikov, J. Sokolowski. Compressible Navier-Stokes equations, volume 73 of Instytut Matematy-
czny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the
Polish Academy of Sciences. Mathematical Monographs (New Series)]. Birkhäuser/Springer Basel AG,
Basel, 2012. Theory and shape optimization.

[26] P. Plotnikov, W. Weigant. Steady 3D viscous compressible flows with adiabatic exponent γ ∈ (1,∞).
J. Math. Pures Appl. 104 (2015) 58-82.

[27] E. Sánchez-Palencia. Non homogeneous media and vibration theory, Lecture Notes in Physics 127,
Springer-Verlag (1980).

[28] L. Tartar. Incompressible fluid flow in a porous medium: convergence of the homogenization process,
in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia, 1980, 368-377.

19

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

