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WEIGHTED INEQUALITIES FOR A SUPERPOSITION OF THE
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ÜNVER

Abstract. We study a three-weight inequality for the superposition of the Hardy oper-
ator and the Copson operator, namely(∫ b

a

(∫ b

t

(∫ s

a

f(τ)pv(τ) dτ

) q
p

u(s) ds

) r
q

w(t) dt

) 1
r

≤ C
∫ b

a

f(t) dt,

in which (a, b) is any nontrivial interval, q, r are positive real parameters and p ∈ (0, 1]. A
simple change of variables can be used to obtain any weighted Lp-norm with p ≥ 1 on the
right-hand side. Another simple change of variables can be used to equivalently turn this
inequality into the one in which the Hardy and Copson operators swap their positions. We
focus on characterizing those triples of weight functions (u, v, w) for which this inequality
holds for all nonnegative measurable functions f with a constant independent of f .

We use a new type of approach based on an innovative method of discretization which
enables us to avoid duality techniques and therefore to remove various restrictions that
appear in earlier work.

This paper is dedicated to Professor Stefan Samko on the occasion of his 80th birthday.

1. Introduction and the main result

The main purpose of this paper is to introduce a new line of argument which enables
one to obtain a previously unavailable characterization of the validity of certain specific
inequalities involving superposition of integral operators of Copson and Hardy type and
three weight functions.

More precisely, given a, b ∈ [−∞,∞], a < b, and parameters q, r ∈ (0,∞) and p ∈ (0, 1],
we characterize all triples (u, v, w) of weights (i.e. positive measurable functions) on (a, b)
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such that there exists a constant C > 0 with which the inequality(∫ b

a

(∫ b

t

(∫ s

a

f(τ)pv(τ) dτ

) q
p

u(s) ds

) r
q

w(t) dt

) 1
r

≤ C

∫ b

a

f(t) dt (1)

holds for every nonnegative measurable function f on (a, b). Let us note that the restriction
p ∈ (0, 1] is natural and does not cause any weakness. Indeed, the inequality is obviously
impossible without it as, if p > 1, one can always easily construct a function f that makes
the integral on the left diverge while keeping the right-hand side finite.

The inequality (1), as a certain “mother figure”, immediately paves the way to many
other important inequalities. For instance, one can easily swap the order of the two inner
integral operators and obtain the inequality(∫ b

a

(∫ t

a

(∫ b

s

f(τ)pv(τ) dτ

) q
p

u(s) ds

) r
q

w(t) dt

) 1
r

≤ C

∫ b

a

f(t) dt (2)

instead of (1). This is achieved by a simple change of variables y 7→ −y in the innermost
integral on the left side of (1) and following the forced changes from thereafter. Similarly,
one can turn (1) to the inequality(∫ b

a

(∫ b

t

(∫ s

a

f(τ) dτ

)q
u(s) ds

) r
q

w(t) dt

) 1
r

≤ C

(∫ b

a

f(t)pv(t) dt

) 1
p

(3)

with p ≥ 1 by performing the replacements (in this order) f 7→ f
1
pv−

1
p , v 7→ v−p, q 7→ qp,

r 7→ rp and, finally, p 7→ 1
p
, in (1). Our characterization of (1) thus immediately yields

necessary and sufficient conditions for (2), (3), and their various combinations.
The key innovation is contained in methods of proofs which are based on new discretiza-

tion techniques that require neither duality methods nor nondegeneracy conditions on
weights.

In the theory of weighted inequalities, questions involving iterations of operators have
recently been constituting the cutting edge. The subject has been rather fashionable for
some time, mainly because inequalities involving compositions of operators, on the one
hand, have an impressive array of important applications, while, on the other hand, are
quite difficult to handle.

There is plenty of motivation for studying weighted inequalities for a composition of
operators, and it pours down from various sources, rather different in spirit. A notable
one is the theory of Sobolev-type embeddings where, during the last two decades, various
forms of the so-called reduction principles have flourished. The reduction principle is a
powerful method which establishes an, perhaps somewhat surprising, equivalence between
a difficult problem involving differential operators in several variables, such as a Sobolev-
type embedding, and a weighted inequality for an integral operator acting on functions
defined on an interval. For the first-order embedding, this is usually achieved by an effective
use of some sort of the Pólya–Szegő principle, and the resulting operator is then always a
weighted Copson operator.
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For higher-order embeddings, however, the Pólya–Szegő principle does not work, and one
needs some new way of argumentation. Here, once again, approaches vary. For Euclidean–
Sobolev embeddings (in which functions are defined on a subdomain of the Euclidean
ambient space Rn endowed with the Lebesgue measure), an effective use of interpolation
theory leads to satisfactory results [22]. However, for instance, when Rn is replaced by the
Gauss space (Rn, γn), which is still Rn, but endowed with the Gauss probability measure

γn(x) = (2π)−
n
2 e−

|x|2
2 dx,

interpolation methods turn out to be ineffective and have to replaced for instance by an
argument based on the isoperimetric inequality combined with an iteration technique [7].
The same approach works nicely for instance when higher-order trace embeddings are
studied [6].

Now here comes an interesting point. While for some specific weights (typically for power
weights that occur in reduction principles for Euclidean–Sobolev embeddings) the iterated
operator is pointwise equivalent to a suitable single Copson operator [22], this is impossible
in general (for example for Gaussian–Sobolev embeddings this approach fails [5]). In result,
after performing the reduction principle, one has to grapple either with a kernel operator,
or with a superposition of two or more operators [7]. Specifically, superposition of integral
operators of different type (Hardy vs. Copson) is encountered for example when operators
obtained from the reduction principle are applied to one of many operator-induced function
spaces. The simplest examples of these are spaces whose norm involves the operation of
the maximal nonincreasing rearrangement such as weak spaces, Marcinkiewicz spaces, etc.,
but there are more sophisticated ones which are also important.

Another variety of applications in a completely different direction can be found in the
theory of function spaces and interpolation theory. These shelter, among others, questions
concerning sharp embeddings between important structures [12, 28, 30], Köthe duals of
function spaces [13, 14, 30], inequalities restricted to cones of functions such as those of
monotone or concave functions [16,19,21], or inequalities involving bilinear and multilinear
operators [3].

Several results were obtained recently for iterations of operators of identical type, how-
ever always under some rather unpleasant restrictions. Iteration of Copson operators was
treated in [24]. Next, in [26], a three-weight inequality for the iterated Hardy operator was
characterized, motivated by a specific inequality in which a weighted norm of a mean value
is compared to that of the derivative of a given function. Techniques of proofs in that paper
are related to [29]. The result was later revisited several times, see e.g. [3, 27], where also
further applications to bilinear operators are pointed out. Inequalities for superposition
of the Copson and Hardy operators were studied in [15]; however, the results obtained
there were restricted to nondegenerate weights. Particular cases and related topics had
been studied earlier, see for instance [10] or [11] for p = 1, or [16] for p = ∞, or [29]
and [13] for special cases of weights. The subject is also intimately related to the new
type of spaces governed by operator-induced norms that have been appearing recently in
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connection with various other tasks, notably from embeddings of Sobolev spaces endowed
with slowly-decaying upper Ahlfors measures [8, 9, 30].

Let us recall that discretization techniques have been around for some time. In the early
1990’s they proved to be very useful for example in the theory of one-sided operators and
ergodic theory, see [25] and all the huge amount of subsequent work. In the early 2000’s,
they were used in order to solve some problems in the theory of classical Lorentz spaces that
had been open for long time, see [4, 17]. Later various authors spent considerable efforts
in order to chip away certain technical obstacles such as nondegeneracy assumptions with
varying success - consider e.g. [10] or [23] and the references therein. However, this research
is far from being complete.

Let us note that the current paper is closely related to the project [18] currently under
preparation, in which some of the new discretization methods presented here will be applied
to a different problem, namely to an inequality involving the Hardy operator on one side
and the Copson operator on the other, cf. [4].

We shall now present our principal result, that is, a complete characterization of (1).
We will formulate it in the form of a single theorem. We shall need the following notation.
For a, b ∈ [−∞,∞], a < b, and p ∈ (0, 1], let

Vp(a, b) :=


(∫ b

a
v

1
1−p
) 1−p

p if 0 < p < 1,

ess sup
t∈(a,b)

v(t) if p = 1.

Our main result is:

Theorem A. Let a, b ∈ [−∞,∞], a < b, q, r ∈ (0,∞), p ∈ (0, 1], and let u, v, w be weights
on (a, b). Then there exists a constant C > 0 such that the inequality (1) holds for all
nonnegative measurable functions f on (a, b) if and only if one of the following conditions
is satisfied:

(i) 1 ≤ r, 1 ≤ q,

C1 := sup
t∈(a,b)

(∫ t

a

w(s) ds

) 1
r

ess sup
s∈(t,b)

(∫ b

s

u(τ) dτ

) 1
q

Vp(a, s) <∞

and

C2 := sup
t∈(a,b)

(∫ b

t

w(s)

(∫ b

s

u(τ) dτ

) r
q

ds

) 1
r

Vp(a, t) <∞,

(ii) 1 ≤ r, q < 1, C2 <∞ and

C3 := sup
t∈(a,b)

(∫ t

a

w(s) ds

) 1
r
(∫ b

t

(∫ b

s

u(τ) dτ

) q
1−q

u(s)Vp(a, s)
q

1−q ds

) 1−q
q

<∞,

(iii) r < 1, 1 ≤ q,

C4 :=

(∫ b

a

(∫ t

a

w(s) ds

) r
1−r

w(t) ess sup
s∈(t,b)

(∫ b

s

u(τ) dτ

) r
q(1−r)

Vp(a, s)
r

1−r dt

) 1−r
r

<∞
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and

C5 :=

(∫ b

a

(∫ b

t

w(s)

(∫ b

s

u(τ) dτ

) r
q

ds

) r
1−r

w(t)

(∫ b

t

u(τ) dτ

) r
q

Vp(a, t)
r

1−r dt

) 1−r
r

<∞,

(iv) r < 1, q < 1, C5 <∞ and

C6 :=

(∫ b

a

(∫ t

a

w(s) ds

) r
1−r

w(t)

(∫ b

t

(∫ b

s

u(τ) dτ

) q
1−q

u(s)Vp(a, s)
q

1−q ds

) r(1−q)
q(1−r)

dt

) 1−r
r

<∞.

Moreover, the best constant C in the inequality (1) satisfies

C ≈


C1 + C2 in the case (i),

C2 + C3 in the case (ii),

C4 + C5 in the case (iii),

C5 + C6 in the case (iv).

(4)

The proof is based on a new type of discretization which avoids the use of any kind of
duality principle, enabling us thereby to obtain the result in the required generality.

Theorem A is proved in Section 3, along with a side theorem which gives another char-
acterization of (1). Key ingredients of the proofs are collected in Section 2.

2. Background discretization results

In this section we shall establish the background discretization material that will be
needed in the proof of the main result. We first fix notation and conventions used in
this paper. We denote by LHS(∗) and RHS(∗) the left-hand side and right-hand side
of the inequality numbered by ∗, respectively. We adhere to the usual convention that
1
∞ = 0 · ∞ = ∞

∞ = 0
0

= 0. We denote by M+(c, d) the set of all nonnegative measurable
functions on (c, d). By increasing we mean strictly increasing. Finally, the small letters
i and k are always integers, which are reserved for indices. In particular, when we write
N ≤ k ≤ M , in which N and M can be −∞ and ∞, respectively, we mean k ∈ Z,
N ≤ k ≤M . This convention is accordingly modified for similar inequalities and the index
i in the obvious way.

Definition 1. Let N ∈ Z ∪ {−∞}, M ∈ Z ∪ {+∞}, N < M , and {ak}Mk=N be a sequence
of positive numbers. We say that {ak}Mk=N is strongly increasing if

inf

{
ak+1

ak
, N ≤ k < M

}
> 1.

Our approach is based on a fine discretization of the inequality in question. Before we
start doing that, we need some new information of a general kind from the discrete world.
The following lemma is contained in the manuscript [18], where it is also proved. However,
since the manuscript is not publicly available yet, we include its proof here for the reader’s
convenience.
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Lemma 2. Let s > 0, M ∈ Z∪{+∞}. Assume that {ak}Mk=−∞ and {bk}Mk=−∞ are sequences
of nonnegative numbers such that {bk}Mk=−∞ is nondecreasing. Then

M∑
k=−∞

ak

( M∑
i=k

ai

)s
bk ≈

M∑
k=−∞

(bk − bk−1)
( M∑

i=k

ai

)s+1

+

( M∑
k=−∞

ak

)s+1

lim
k→−∞

bk, (5)

in which the multiplicative constants depend only on s.

Proof. First, assume that limk→−∞ bk > 0. Thanks to this assumption, we have that

lim
N→−∞

( M∑
k=N

ak

)s+1

bN =

( M∑
k=−∞

ak

)s+1

lim
k→−∞

bk,

whether the series converges or diverges. Let N ∈ Z, N < M . By virtue of Abel’s lemma,
we have that

M∑
k=N

ckbk =
M∑

k=N+1

(bk − bk−1)
M∑
i=k

ci +

( M∑
k=N

ck

)
bN (6)

for every sequence {ck}Mk=N of nonnegative numbers. Set ck = ak
(∑M

i=k ai
)s

for k ∈ Z,
N ≤ k ≤M . Applying power rules (cf. e.g. [2, Lemma 1 and Lemma 1’]), we get

M∑
k=N

ak

( M∑
i=k

ai

)s
bk =

M∑
k=N+1

(bk − bk−1)
M∑
i=k

ai
( M∑
j=i

aj
)s

+

( M∑
k=N

ak
( M∑
i=k

ai
)s)

bN

≈
M∑

k=N+1

(bk − bk−1)
( M∑

i=k

ai

)s+1

+

( M∑
k=N

ak

)s+1

bN ,

in which the multiplicative constants depend only on s. By letting N go to −∞, we obtain
(5).

Second, assume that limk→−∞ bk = 0. It follows that bk =
∑k

i=−∞(bi − bi−1) for every
k ∈ Z, k ≤M . Therefore, we have that

M∑
k=−∞

ckbk =
M∑

k=−∞

(bk − bk−1)
M∑
i=k

ci

for every sequence {ck}Mk=−∞ of nonnegative numbers. By taking ck = ak
(∑M

i=k ai
)s

for
k ∈ Z, k ≤M , and using the power rules as above, we obtain (5). �

The proof of the following lemma can be found in [20, Proposition 2.1] and [17, Lem-
mas 3.2 - 3.4].

Lemma 3. Let N ∈ Z ∪ {−∞}, M ∈ Z ∪ {+∞}, N < M , β > 0, and let {ak}Mk=N and
{%k}Mk=N be sequences of positive numbers. If {%k}Mk=N is nondecreasing, then

sup
N≤k≤M

%k sup
k≤i≤M

ai = sup
N≤k≤M

%kak. (7)
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If {%k}Mk=N is strongly increasing, then

M∑
k=N

%k

( M∑
i=k

ai

)β
≈

M∑
k=N

%ka
β
k , (8)

M∑
k=N

%k sup
k≤i≤M

ai ≈
M∑
k=N

%kak, (9)

and

sup
N≤k≤M

%k

( M∑
i=k

ai

)β
≈ sup

N≤k≤M
%ka

β
k . (10)

Moreover, the multiplicative constants depend only on inf
{%k+1

%k
, N ≤ k < M

}
and β.

We should note that in [17], (7) is formulated when {%k}Mk=N is a strongly increasing
sequence (andN = −∞); however, the result is a consequence of the interchanging suprema
and holds true even when {%k}Mk=N is just nondecreasing.

Definition 4. Let G be a positive continuous increasing function on (a, b) such that
limt→a+ G(t) = 0. Define

M = inf{k ∈ Z : G(t) ≤ 2k for every t ∈ (a, b)}

(if the set is empty, then M = ∞). An increasing sequence {xk}Mk=−∞ ⊂ (a, b] such that

(a, b) ⊂
⋃M
k=−∞[xk−1, xk] is said to be the discretizing sequence of G if it satisfies G(xk) = 2k

for every k < M .

We note that if limt→b− G(t) <∞, then M <∞ and xM = b, while, if limt→b− G(t) =∞,
then M = ∞ and limk→∞ xk = b. Furthermore, if M < ∞, then 2M−1 ≤ G(t) ≤ 2M for
every t ∈ [xM−1, b). Note that the discretizing sequence (as defined above) is unique, and
so the definite article is justified. Finally, the Darboux property of continuous functions
implies that the discretizing sequence exists for every G as above.

For a locally integrable nonnegative function w on [a, b), we will use the notation

W (t) =

∫ t

a

w(s) ds, t ∈ [a, b].

Note that the discretizing sequence for W exists when w is such a function.
Recall that if M =∞, then M − 1 is interpreted as ∞.

Lemma 5. Let α ≥ 0. Assume that w is a weight on (a, b), {xk}Mk=−∞ is the discretizing
sequence of W and h is a nonnegative nonincreasing function on (a, b). Then∫ b

a

W (t)αw(t)h(t) dt ≈
M−1∑
k=−∞

2k(α+1)h(xk) (11)

holds, in which the equivalence constants depend only on α.
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Proof. The monotonicity of h and properties of the discretizing sequence {xk}Mk=−∞ give∫ b

a

h(t)W (t)αw(t) dt =
M−1∑
k=−∞

∫ xk+1

xk

h(t)W (t)αw(t) dt

.
M−1∑
k=−∞

h(xk)

∫ xk+1

xk

d
[
W (t)α+1

]
≈

M−1∑
k=−∞

2k(α+1)h(xk),

and, conversely, ∫ b

a

h(t)W (t)αw(t) dt ≥
M−1∑
k=−∞

∫ xk

xk−1

h(t)W (t)αw(t) dt

&
M−1∑
k=−∞

h(xk)

∫ xk

xk−1

d
[
W (t)α+1

]
≈

M−1∑
k=−∞

2k(α+1)h(xk).

Therefore, the statement follows. �

Having established necessary background material, we can now take the first step towards
an effective discretization of the inequality (1).

Proposition 6. Let 0 < p ≤ 1, 0 < q, r <∞ and let u, v, w be weights on (a, b). Assume
that {xk}Mk=−∞ is the discretizing sequence of W . Then there exists a positive constant C
such that the inequality (1) holds for all nonnegative measurable f on (a, b) if and only if
there exist positive constants C ′ and C ′′ such that( M−1∑

k=−∞

2k
(∫ xk+1

xk

(∫ t

xk

fp(s)v(s) ds

) q
p

u(t) dt

) r
q
) 1

r

≤ C ′
M−1∑
k=−∞

∫ xk+1

xk

f(t) dt (12)

and ( M−1∑
k=−∞

2k
(∫ xk

a

fp(t)v(t) dt

) r
p
(∫ b

xk

u(t) dt

) r
q
) 1

r

≤ C ′′
M−1∑
k=−∞

∫ xk+1

xk

f(t) dt (13)

for all nonnegative measurable functions f on (a, b). Moreover, the best constants C, C ′

and C ′′ in (1), (12) and (13), respectively, satisfy C ≈ C ′ + C ′′.

Proof. Applying (11) with α = 0 and then using (8), we obtain

LHS(1) ≈
( M−1∑
k=−∞

2k
(∫ xk+1

xk

(∫ t

a

fpv

) q
p

u(t) dt

) r
q
) 1

r
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≈
( M−1∑
k=−∞

2k
(∫ xk+1

xk

(∫ t

xk

fpv

) q
p

u(t) dt

) r
q
) 1

r

+

( M−1∑
k=−∞

2k
(∫ xk

a

fpv

) r
p
(∫ xk+1

xk

u

) r
q
) 1

r

≈
( M−1∑
k=−∞

2k
(∫ xk+1

xk

(∫ t

xk

fpv

) q
p

u(t) dt

) r
q
) 1

r

+

( M−1∑
k=−∞

2k
(∫ xk

a

fpv

) r
p
(∫ b

xk

u

) r
q
) 1

r

.

In the last equivalence we have used the fact that either
∫ xM−1

a
fpv = 0, where xM−1 is

to be interpreted as b if M = ∞, or there is N ∈ Z ∪ {−∞}, N ≤ M − 1, such that∫ xk
a
fpv = 0 for every k < N and

{
2k
(∫ xk

a
fpv

) r
p
}M−1
k=N

is a strongly increasing sequence

(unless N = M − 1 <∞, which is a trivial case). The assertion follows. �

The next step is based on saturation of Hardy inequalities and embeddings of weighted
Lebesgue spaces on the intervals determined by a discretizing sequence.

Proposition 7. Let 0 < p ≤ 1, 0 < q, r <∞ and let u, v, w be weights on (a, b). Assume
that {xk}Mk=−∞ is the discretizing sequence of W . For every k ∈ Z, k ≤M , we denote

Ak := sup
g∈M+(xk−1,xk)

(∫ xk
xk−1

g(t)pv(t) dt

) 1
p

∫ xk
xk−1

g(t) dt
(14)

and

Bk := sup
h∈M+(xk−1,xk)

(∫ xk
xk−1

(∫ t
xk−1

h(s)pv(s) ds

) q
p

u(t) dt

) 1
q

∫ xk
xk−1

h(t) dt
. (15)

Then there exists a positive constant C such that the inequality (1) holds for all nonnegative
measurable functions f on (a, b) if and only if there exist positive constants C ′, C ′′ such
that the inequalities ( M−1∑

k=−∞

2karkB
r
k+1

) 1
r

≤ C ′
M−1∑
k=−∞

ak (16)

and ( M−1∑
k=−∞

2k
(∫ b

xk

u(t) dt

) r
q
( k∑
j=−∞

apjA
p
j

) r
p
) 1

r

≤ C ′′
M−1∑
k=−∞

ak (17)
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hold for every sequence {ak}M−1k=−∞ of nonnegative numbers. Moreover, the best constants
C, C ′ and C ′′ in (1), (16) and (17), respectively, satisfy C ≈ C ′ + C ′′.

Proof. Assume that (12) holds. By (15), there exist nonnegative measurable functions hk,
k ≤M − 1, on (a, b) such that supphk ⊂ [xk, xk+1],

∫ xk+1

xk
hk = 1, and(∫ xk+1

xk

(∫ t

xk

hpkv

) q
p

u(t) dt

) 1
q

& Bk+1.

Thus, given {am}M−1m=−∞ and inserting f =
∑M−1

m=−∞ amhm into (12), we get (16). Conversely,

(12) follows at once from (16) on setting ak =
∫ xk+1

xk
f for k ∈ (−∞,M − 1).

Similarly, by (14), there exist nonnegative measurable functions gk, k ≤M − 1, on (a, b)
such that supp gk ⊂ [xk−1, xk],

∫ xk
xk−1

gk = 1, and(∫ xk

xk−1

gpkv

) 1
p

& Ak.

Thus, given {am}M−1m=−∞ and inserting f =
∑M−1

m=−∞ amgm into (13), (17) follows. Conversely,

inserting ak =
∫ xk
xk−1

f in (17) gives (13).

The assertion now directly follows from Proposition 6. �

3. Proofs

We begin this section with a theorem of auxiliary nature, albeit interesting on its own,
which yields a discrete characterization of the inequality in question. We will then use it
as the last step towards the proof of Theorem A.

Theorem 8. Let 0 < p ≤ 1, 0 < q, r < ∞ and let u, v, w be weights on (a, b). Let
{xk}Mk=−∞ be the discretizing sequence of W . Then there exists a constant C > 0 such that
the inequality (1) holds for all nonnegative measurable functions f on (a, b) if and only if
one of the following conditions is satisfied:

(i) 1 ≤ r, 1 ≤ q,

A∗1 := sup
k≤M−1

2
k
r ess sup
t∈(xk,xk+1)

(∫ xk+1

t

u(s) ds

) 1
q

Vp(xk, t) <∞

and

B∗1 := sup
k≤M−1

(M−1∑
i=k

2i
(∫ b

xi

u(t) dt

) r
q
) 1

r

Vp(a, xk) <∞,

(ii) 1 ≤ r, q < 1, B∗1 <∞ and

A∗2 := sup
k≤M−1

2
k
r

(∫ xk+1

xk

(∫ xk+1

t

u(s) ds

) q
1−q

u(t)Vp(xk, t)
q

1−q dt

) 1−q
q

<∞,
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(iii) r < 1, 1 ≤ q,

A∗3 :=

( M−1∑
k=−∞

2
k

1−r ess sup
t∈(xk,xk+1)

(∫ xk+1

t

u(s) ds

) r
q(1−r)

Vp(xk, t)
r

1−r

) 1−r
r

<∞,

and

B∗2 :=

( M−1∑
k=−∞

2k
(∫ b

xk

u(t) dt

) r
q
(M−1∑

i=k

2i
(∫ b

xi

u(t) dt

) r
q
) r

1−r

Vp(a, xk)
r

1−r

) 1−r
r

<∞,

(iv) r < 1, q < 1, B∗2 <∞ and

A∗4 :=

( M−1∑
k=−∞

2
k

1−r

(∫ xk+1

xk

(∫ xk+1

t

u(s) ds

) q
1−q

u(t)Vp(xk, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

<∞.

Moreover, the best constant C in the inequality (1) satisfies

C ≈


A∗1 +B∗1 in the case (i),

A∗2 +B∗1 in the case (ii),

A∗3 +B∗2 in the case (iii),

A∗4 +B∗2 in the case (iv).

Proof. It follows from Proposition 7 that the best constant C in (1) satisfies C ≈ C ′+C ′′,
where C ′ and C ′′ are the best constants in (16) and (17). Next, we obtain an appropriate
characterization of C ′ by combining a discrete version of the Landau resonance theorem
(cf. e.g. [17, Proposition 4.1]) with the classical Hardy inequality. Finally, an appropriate
two-sided estimate of C ′′ can be obtained by combining the known characterization of a
discrete Hardy inequality (cf. e.g. [1, Theorem 1] or [21, Theorem 9.2])) with the classical
duality expression of the norm in a weighted Lebesgue space. �

Proof of Theorem A. First of all, note that the optimal constant C in (1) is equal to ∞
if there is t0 ∈ (a, b) such that W (t0) = ∞, and so is RHS(4); hence the theorem is
trivially true in this pathological case. Therefore, we may assume that W (t) < ∞ for
every t ∈ (a, b). Let {xk}Mk=−∞, where M ∈ Z ∪ {∞}, be the discretizing sequence of W .

(i) Let p ≤ 1 ≤ r, 1 ≤ q. We have from Theorem 8(i) that C ≈ A∗1 +B∗1 . Define

Ã1 := sup
k≤M−1

2
k
r ess sup
t∈(xk,b)

(∫ b

t

u

) 1
q

Vp(a, t).

We will first show that A∗1 +B∗1 ≈ Ã1 +B∗1 . Since obviously A∗1 ≤ Ã1, it is enough to prove
that Ã1 . A∗1 +B∗1 . Using (7), we obtain

Ã1 = sup
k≤M−1

2
k
r sup
k≤i≤M−1

ess sup
t∈(xi,xi+1)

(∫ b

t

u

) 1
q

Vp(a, t) = sup
k≤M−1

2
k
r ess sup
t∈(xk,xk+1)

(∫ b

t

u

) 1
q

Vp(a, t)
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≈ sup
k≤M−1

2
k
r ess sup
t∈(xk,xk+1)

(∫ xk+1

t

u

) 1
q

Vp(a, t) + sup
k≤M−2

2
k
r

(∫ b

xk+1

u

) 1
q

Vp(a, xk+1).

Since

Vp(a, t) ≈ Vp(a, xk) + Vp(xk, t) for every t ∈ (xk, xk+1), (18)

we in fact have

Ã1 ≈ A∗1 + sup
k≤M−1

2
k
r

(∫ xk+1

xk

u

) 1
q

Vp(a, xk) + sup
k≤M−2

2
k
r

(∫ b

xk+1

u

) 1
q

Vp(a, xk+1)

. A∗1 + sup
k≤M−1

2
k
r

(∫ b

xk

u

) 1
q

Vp(a, xk) ≤ A∗1 +B∗1 ,

establishing the claim.
Next, we will show that C1 + C2 ≈ Ã1 +B∗1 . Observe first that,

C1 = sup
k≤M−1

sup
t∈(xk,xk+1)

(∫ t

a

w

) 1
r

ess sup
s∈(t,b)

(∫ b

s

u

) 1
q

Vp(a, s) ≈ Ã1.

On the other hand, fixing k ∈ Z, k < M , we have that

M−1∑
i=k

2i
(∫ b

xi

u

) r
q

= 2k
(∫ b

xk

u

) r
q

+
M−1∑
i=k+1

2i
(∫ b

xi

u

) r
q

≈ 2k
(∫ b

xk

u

) r
q

+
M−1∑
i=k+1

(∫ xi

xi−1

w

)(∫ b

xi

u

) r
q

≤ 2k
(∫ b

xk

u

) r
q

+

∫ b

xk

w(t)

(∫ b

t

u

) r
q

dt (19)

with equivalence constants independent of k. Hence, in view of (19), we have

B∗1 . sup
k≤M−1

(∫ b

xk

w(t)

(∫ b

t

u

) r
q

dt

) 1
r

Vp(a, xk) + sup
k≤M−1

2
k
r

(∫ b

xk

u

) r
q

Vp(a, xk)

≤ sup
k≤M−1

ess sup
t∈(xk,xk+1)

(∫ b

t

w(s)

(∫ b

s

u

) r
q

ds

) 1
r

Vp(a, t) + Ã1

≈ C2 + C1. (20)

Thus, we have Ã1 +B∗1 . C1 + C2.
Conversely,∫ b

xk

w(t)

(∫ b

t

u

) r
q

dt =
M−1∑
i=k

∫ xi+1

xi

w(t)

(∫ b

t

u

) r
q

dt .
M−1∑
i=k

2i
(∫ b

xi

u

) r
q

. (21)
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Consequently,

C2 ≈ sup
k≤M−1

ess sup
t∈(xk,xk+1)

(∫ xk+1

t

w(s)

(∫ b

s

u

) r
q

ds

) 1
r

Vp(a, t)

+ sup
k≤M−2

(∫ b

xk+1

w(t)

(∫ b

t

u

) r
q

dt

) 1
r

Vp(a, xk+1).

Hence, in view of (21), (7) and the fact that {xk}Mk=−∞ is the discretizing sequence for W ,
we obtain

C2 . sup
k≤M−1

2
k
r ess sup
t∈(xk,xk+1)

(∫ b

t

u

) 1
q

Vp(a, t)

+ sup
k≤M−2

( M−1∑
i=k+1

2i
(∫ b

xi

u

) r
q
) 1

r

Vp(a, xk+1)

. Ã1 +B∗1 . (22)

Consequently, we arrive at C ≈ C1 + C2.
(ii) Let p ≤ 1 ≤ r, q < 1. Using Theorem 8(ii), we have that C ≈ A∗2 +B∗1 . Let us show

that A∗2 +B∗1 ≈ Ã2 +B∗1 , where

Ã2 := sup
k≤M−1

2
k
r

(∫ b

xk

(∫ b

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

.

It is easy to see that A∗2 . Ã2. On the other hand, using (10), we have

Ã2 = sup
k≤M−1

2
k
r

(M−1∑
i=k

∫ xi+1

xi

(∫ b

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

≈ sup
k≤M−1

2
k
r

(∫ xk+1

xk

(∫ b

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

.

Furthermore, for each k ≤M − 1, we have that(∫ xk+1

xk

(∫ b

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

.

(∫ xk+1

xk

(∫ b

t

u

) 1
1−q

d
[
Vp(a, t)

q
1−q
]) 1−q

q

+ lim
t→xk+

(∫ b

t

u

) 1
q

Vp(a, t). (23)

Indeed, by integrating by parts, it is clear that (23) holds for each k ∈ Z, k < M − 1,
whether M = ∞ or M < ∞. The remaining case when M < ∞ and k = M − 1 requires
more explanation. We may assume that max{A∗2, B∗1} <∞; consequently(∫ b

xM−1

(∫ b

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

<∞.
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Thus, for each x ∈ (xM−1, b),

Vp(a, x)

(∫ b

x

u

) 1
q

.

(∫ b

x

(∫ b

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

holds, whence we conclude that

lim
x→b−

Vp(a, x)

(∫ b

x

u

) 1
q

= 0.

Hence, (23) holds. Additionally, observe that

lim
t→xk+

(∫ b

t

u

) 1
q

Vp(a, t) ≤ ess sup
t∈(xk,xk+1)

(∫ b

t

u

) 1
q

Vp(a, t). (24)

Then, in view of (23) and (24),

Ã2 . sup
k≤M−1

2
k
r

(∫ xk+1

xk

(∫ b

t

u

) 1
1−q

d
[
Vp(a, t)

q
1−q
]) 1−q

q

+ sup
k≤M−1

2
k
r ess sup
t∈(xk,xk+1)

(∫ b

t

u

) 1
q

Vp(a, t)

. sup
k≤M−1

2
k
r

(∫ xk+1

xk

(∫ xk+1

t

u

) 1
1−q

d
[
Vp(a, t)

q
1−q
]) 1−q

q

+ sup
k≤M−1

2
k
r ess sup
t∈(xk,xk+1)

(∫ xk+1

t

u

) 1
q

Vp(a, t)

+ sup
k≤M−2

2
k
r

(∫ b

xk+1

u

) 1
q

Vp(a, xk+1)

=: Ã2,1 + Ã2,2 + Ã2,3.

We shall now establish appropriate upper estimates for Ã2,1, Ã2,2 and Ã2,3. Note that, (18)
yields that

sup
k≤M−1

2
k
r

(∫ xk+1

xk

(∫ xk+1

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

≈ A∗2 + sup
k≤M−1

2
k
r

(∫ xk+1

xk

u

) 1
q

Vp(a, xk)

≤ A∗2 +B∗1 .

(25)

Since integration by parts gives

Ã2,1 . sup
k≤M−1

2
k
r

(∫ xk+1

xk

(∫ xk+1

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

,
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it follows that Ã2,1 . A∗2 +B∗1 . Furthermore, note that

ess sup
t∈(x,y)

(∫ y

t

u

) 1
q

Vp(a, t) ≈ ess sup
t∈(x,y)

(∫ y

t

(∫ y

s

u

) q
1−q

u(s) ds

) 1−q
q

Vp(a, t)

≤
(∫ y

x

(∫ y

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

. (26)

Thus, applying (26) and (25), we obtain that

Ã2,2 . sup
k≤M−1

2
k
r

(∫ xk+1

xk

(∫ xk+1

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

. A∗2 +B∗1 .

Finally, it is clear that Ã2,3 . B∗1 . Combining these estimates we arrive at C ≈ Ã2 +B∗1 .

Next, we will prove that Ã2+B∗1 ≈ C2+C3. We have from (20) that B∗1 . C2. Moreover,

C3 = sup
k≤M−1

sup
t∈(xk,xk+1)

(∫ t

a

w

) 1
r
(∫ b

t

(∫ b

s

u

) q
1−q

u(s)Vp(a, s)
q

1−q ds

) 1−q
q

≈ Ã2

Therefore, the proof will be complete once we show that C2 . Ã2 +B∗1 .
Applying (26), we plainly have that Ã1 . Ã2. Finally, using (22), we obtain C2 .

Ã1 +B∗1 . Ã2 +B∗1 . Hence the proof is complete in this case.
(iii) Let p ≤ 1, r < 1, 1 ≤ q, then we have from Theorem 8(iii) that C ≈ A∗3 +B∗2 . First,

we will show that C ≈ Ã3 +B∗2 , where

Ã3 :=

( M−1∑
k=−∞

2
k

1−r ess sup
t∈(xk,b)

(∫ b

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

.

It is clear that A∗3 ≤ Ã3. Moreover, (9) together with (18) yield

Ã3 =

( M−1∑
k=−∞

2
k

1−r sup
k≤i≤M−1

ess sup
t∈(xi,xi+1)

(∫ b

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

≈
( M−1∑
k=−∞

2
k

1−r ess sup
t∈(xk,xk+1)

(∫ b

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

≈
( M−1∑
k=−∞

2
k

1−r ess sup
t∈(xk,xk+1)

(∫ xk+1

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

+

( M−2∑
k=−∞

2
k

1−r

(∫ b

xk+1

u

) r
q(1−r)

Vp(a, xk+1)
r

1−r

) 1−r
r

. A∗3 +

( M−1∑
k=−∞

2
k

1−r

(∫ b

xk

u

) r
q(1−r)

Vp(a, xk)
r

1−r

) 1−r
r

≤ A∗3 +B∗2 .
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Next, we will show that Ã3 + B∗2 ≈ C4 + C5. We will find equivalent formulations for

B∗2 . Using (5) for ak = 2k
(∫ b

xk
u

) r
q

, bk = Vp(a, xk)
r

1−r and s = r
1−r , we get

B∗2 ≈
( M−1∑
k=−∞

(M−1∑
i=k

2i
(∫ b

xi

u

) r
q
) 1

1−r [
Vp(a, xk)

r
1−r − Vp(a, xk−1)

r
1−r

]) 1−r
r

+

( M−1∑
i=−∞

2i
(∫ b

xi

u

) r
q
) 1

r

lim
k→−∞

Vp(a, xk).

Applying (19) and (11) with α = 0, we have that

B∗2 .

( M−1∑
k=−∞

(∫ b

xk

w(t)

(∫ b

t

u

) r
q

dt

) 1
1−r [

Vp(a, xk)
r

1−r − Vp(a, xk−1)
r

1−r

]) 1−r
r

+

( M−1∑
k=−∞

2
k

1−r

(∫ b

xk

u

) r
q(1−r)

Vp(a, xk)
r

1−r

) 1−r
r

+

(∫ b

a

w(t)

(∫ b

t

u

) r
q

dt

) 1
r

lim
k→−∞

Vp(a, xk)

.

( M−1∑
k=−∞

∫ b

xk

(∫ b

t

w(s)

(∫ b

s

u

) r
q

ds

) r
1−r

w(t)

(∫ b

t

u

) r
q

dt

×
[
Vp(a, xk)

r
1−r − Vp(a, xk−1)

r
1−r

]) 1−r
r

+

( M−1∑
k=−∞

2
k

1−r ess sup
t∈(xk,xk+1)

(∫ b

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

+

(∫ b

a

(∫ b

t

w(s)

(∫ b

s

u

) r
q

ds

) r
1−r

w(t)

(∫ b

t

u

) r
q

dt

) 1−r
r

lim
k→−∞

Vp(a, xk).

Now, plugging bk = Vp(a, xk)
r

1−r and

ck =

∫ xk+1

xk

(∫ b

t

w(s)

(∫ b

s

u

) r
q

ds

) r
1−r

w(t)

(∫ b

t

u

) r
q

dt

into (6), we obtain

B∗2 .

( M−1∑
k=−∞

∫ xk+1

xk

(∫ b

t

w(s)

(∫ b

s

u

) r
q

ds

) r
1−r

w(t)

(∫ b

t

u

) r
q

dt Vp(a, xk)
r

1−r

) 1−r
r

+

( M−1∑
k=−∞

2
k

1−r ess sup
t∈(xk,xk+1)

(∫ b

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r
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≤
( M−1∑
k=−∞

∫ xk+1

xk

(∫ b

t

w(s)

(∫ b

s

u

) r
q

ds

) r
1−r

w(t)

(∫ b

t

u

) r
q

Vp(a, t)
r

1−r dt

) 1−r
r

+ Ã3

≈ C5 + C4. (27)

In the last equivalence we use Ã3 ≈ C4, which easily follows from (11) with α = r
1−r .

Hence, we have Ã3 +B∗2 . C4 + C5.
Conversely, integration by parts gives

C5 =

( M−1∑
k=−∞

∫ xk+1

xk

(∫ b

t

w(s)

(∫ b

s

u

) r
q

ds

) r
1−r

w(t)

(∫ b

t

u

) r
q

Vp(a, t)
r

1−r dt

) 1−r
r

.

( M−1∑
k=−∞

Vp(a, xk)
r

1−r

[(∫ b

xk

w(t)

(∫ b

t

u

) r
q

dt

) 1
1−r

−
(∫ b

xk+1

w(t)

(∫ b

t

u

) r
q

dt

) 1
1−r
]) 1−r

r

+

( M−1∑
k=−∞

∫ xk+1

xk

(∫ b

t

w(s)

(∫ b

s

u

) r
q

ds

) 1
1−r

d
[
Vp(a, t)

r
1−r

]) 1−r
r

≈ B∗2 +

( M−1∑
k=−∞

∫ xk+1

xk

(∫ xk+1

t

w(s)

(∫ b

s

u

) r
q

ds

) 1
1−r

d
[
Vp(a, t)

r
1−r

]) 1−r
r

+

( M−2∑
k=−∞

(∫ b

xk+1

w(t)

(∫ b

t

u

) r
q

dt

) 1
1−r
∫ xk+1

xk

d
[
Vp(a, t)

r
1−r

]) 1−r
r

. B∗2 +

( M−1∑
k=−∞

∫ xk+1

xk

(∫ xk+1

t

w(s)

(∫ b

s

u

) r
q

ds

) 1
1−r

d
[
Vp(a, t)

r
1−r

]) 1−r
r

.

By integrating by parts again, we obtain that

C5 . B∗2 +

( M−1∑
k=−∞

∫ xk+1

xk

(∫ xk+1

t

w(s)

(∫ b

s

u

) r
q

ds

) r
1−r

w(t)

(∫ b

t

u

) r
q

Vp(a, t)
r

1−r dt

) 1−r
r

≤ B∗2 +

( M−1∑
k=−∞

∫ xk+1

xk

(∫ xk+1

t

w

) r
1−r

w(t)

(∫ b

t

u

) r
q(1−r)

Vp(a, t)
r

1−r dt

) 1−r
r

≤ B∗2 +

( M−1∑
k=−∞

∫ xk+1

xk

(∫ xk+1

t

w

) r
1−r

w(t)

(
ess sup
s∈(t,b)

(∫ b

s

u

) r
q(1−r)

Vp(a, s)
r

1−r

)
dt

) 1−r
r

. B∗2 + Ã3. (28)

Consequently, we arrive at Ã3 +B∗2 . C4 + C5 . Ã3 +B∗2 .
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(iv) Let p ≤ 1, r < 1, q < 1. We know from Theorem 8(iv) that C ≈ A∗4 +B∗2 . First we
will prove that A∗4 +B∗2 ≈ Ã4 +B∗2 , where

Ã4 :=

( M−1∑
k=−∞

2
k

1−r

(∫ b

xk

(∫ b

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

.

It is clear that A∗4 ≤ Ã4. On the other hand, since max{A∗4, B∗2} < ∞ implies that
max{A∗2, B∗1} <∞, by using the same argument we applied in case (ii), (23) holds. Then,
(8) combined with (23) and (24) yields that

Ã4 =

( M−1∑
k=−∞

2
k

1−r

(M−1∑
i=k

∫ xi+1

xi

(∫ b

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

≈
( M−1∑
k=−∞

2
k

1−r

(∫ xk+1

xk

(∫ b

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

.

( M−1∑
k=−∞

2
k

1−r

(∫ xk+1

xk

(∫ b

t

u

) 1
1−q

d
[
Vp(a, t)

q
1−q
]) r(1−q)

q(1−r)
) 1−r

r

+

( M−1∑
k=−∞

2
k

1−r ess sup
t∈(xk,xk+1)

(∫ b

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

.

( M−1∑
k=−∞

2
k

1−r

(∫ xk+1

xk

(∫ xk+1

t

u

) 1
1−q

d
[
Vp(a, t)

q
1−q
]) r(1−q)

q(1−r)
) 1−r

r

+

( M−1∑
k=−∞

2
k

1−r ess sup
t∈(xk,xk+1)

(∫ xk+1

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

+

( M−2∑
k=−∞

2
k

1−r

(∫ b

xk+1

u

) r
q(1−r)

Vp(a, xk+1)
r

1−r

) 1−r
r

.

Integration by parts gives

Ã4 .

( M−1∑
k=−∞

2
k

1−r

(∫ xk+1

xk

(∫ xk+1

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

+

( M−1∑
k=−∞

2
k

1−r ess sup
t∈(xk,xk+1)

(∫ xk+1

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

+

( M−2∑
k=−∞

2
k

1−r

(∫ b

xk+1

u

) r
q(1−r)

Vp(a, xk+1)
r

1−r

) 1−r
r

=: Ã4,1 + Ã4,2 + Ã4,3.
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It is easy to see that Ã4,3 . B∗2 . On the other hand, observe that (26) yields Ã4,2 . Ã4,1.
Moreover, using (18), we have

Ã4,1 . A∗4 +

( M−1∑
k=−∞

2
k

1−r

(∫ xk+1

xk

u

) r
q(1−r)

Vp(a, xk)
r

1−r

) 1−r
r

. A∗4 +B∗2 .

Thus, we arrive at Ã4 . A∗4 +B∗2 .
We proceed by proving Ã4 + B∗2 ≈ C5 + C4. It is clear by using (11) with α = r

1−r that

Ã4 ≈ C6. On the other hand, using (26), we conclude that C4 . C6 and Ã3 . Ã4. Thus,
taking (27) into consideration, we have Ã3 + B∗2 . Ã4 + B∗2 . C5 + C4 . C5 + C6. It
remains to prove that C5 . Ã4 +B∗2 . We have already proved in (28) that C5 . Ã3 +B∗2 .
Combining these estimates we arrive at Ã4 + B∗2 . C5 + C6 . Ã4 + B∗2 , and the proof is
complete.

�
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Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic

Email address: pick@karlin.mff.cuni.cz
URL: 0000-0002-3584-1454



WEIGHTED INEQUALITIES FOR A SUPERPOSITION OF OPERATORS 21
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