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THE TWO-WEIGHT HARDY INEQUALITY: A NEW ELEMENTARY

AND UNIVERSAL PROOF

AMIRAN GOGATISHVILI AND LUBOŠ PICK

Abstract. We give a new proof of the known criteria for the inequality(∫ ∞
0

(∫ t

0

f

)q
w(t) dt

) 1
q

≤ C

(∫ ∞
0

fpv

) 1
p

.

The innovation is in the elementary nature of the proof and its versatility.

1. Introduction

Consider the two-weight Hardy inequality

(1.1)

(∫ ∞
0

(∫ t

0
f

)q
w(t) dt

) 1
q

≤ C
(∫ ∞

0
fpv

) 1
p

,

in which C is a positive constant independent of a nonnegative measurable function f on
(0,∞), v and w are fixed nonnegative measurable functions on (0,∞) (weights), p ∈ [1,∞),
and q ∈ (0,∞). The requirement p ∈ [1,∞) is reasonable since for p ∈ (0, 1) there are
functions in weighted Lp which are not locally integrable.

The problem of characterizing pairs of weights for which (1.1) is true has a long and rich
history and it would be impossible to mention here every contribution. For p = q > 1,
v = 1, w(t) = t−q and C = p′, it is just the boundedness of the integral averaging operator
on Lp(0,∞), a result almost one century old, which appears in classical Hardy’s papers in
1920’s, see [5]. The beginning of investigation of a general weighted case goes back to 1950’s,
and it starts with the paper by Kac and Krein [6] in which a characterization for p = q = 2
and v = 1 can be found. In 1950’s and 1960’s, plenty of partial results were obtained by
Beesack, see e.g. [1]. In late 1960’s and in 1970’s, a boom in the so-called convex case (p ≤ q,
named after the convexity of t 7→ t

q
p ) was seen. For p = q, a characterization was obtained by

Tomaselli [15], Talenti [14] and Muckenhoupt [9]. It was extended to p ≤ q by Bradley [4], the
same result is also stated without proof in [7]. Many authors referred further to an untitled
and unpublished manuscript by Artola, and in [10], a paper by D.W. Boyd and J.A. Erdős
was quoted, which most likely was never published. In any case, (1.1) holds if and only if

sup
t∈(0,∞)

(∫ ∞
t

w

) 1
q
(∫ t

0
v1−p′

) 1
p′

<∞ for 1 < p ≤ q
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and

sup
t∈(0,∞)

(∫ ∞
t

w

) 1
q

ess sup
s∈(0,t)

1

v(s)
<∞ for 1 = p ≤ q.

Here and throughout, if p ∈ (0,∞], then p′ denotes the conjugate exponent defined by 1
p+ 1

p′ =

1. Observe that 1 and ∞ are conjugate exponents and that p′ is negative when p ∈ (0, 1).
The non-convex case (p > q) turned out to be more difficult to handle, and it had to wait

till 1980’s and 1990’s for appropriate treatment. The first characterization, for 1 ≤ q < p <
∞, was obtained by Maz’ya and Rozin, see [8], who proved that a necessary and sufficient
condition is ∫ ∞

0

(∫ ∞
t

w

) r
q
(∫ t

0
v1−p′

) r
q′

v(t)1−p′ dt <∞,

where r = pq
p−q . A universal characterization, sheltering both the convex and the non-convex

cases and involving more general norms was obtained by Sawyer [11], but the condition in the
non-convex case is expressed in terms of a discretized condition. While discretization tech-
niques proved later to be of colossal theoretical importance, conditions expressed in terms of
discretizing sequences are difficult to verify. Later, Sinnamon [12] characterized the inequality
for 0 < q < 1 < p <∞. The criterion turns out to be the same as that of Maz’ya and Rozin
but the proof, based on Halperin’s level function, is very different. The case 0 < q < p = 1
was treated by Sinnamon and Stepanov [13], who moreover observed that, unless p = 1,
Sinnamon’s and Mazya-Rozin’s results can be proved in a unified manner. The case p = 1,
however, still required separate treatment. In [3], restriction of (1.1) to the cone of non-
increasing functions is studied, together with its discrete version. Some ideas developed there
are useful also for the unrestricted case.

In this note we present a short, uniform and elementary proof, in which

• all cases are covered,
• p > 1 is not separated from p = 1,
• only Fubini’s theorem, Hölder’s inequality, Minkowski’s integral inequality and Hardy’s

lemma are used.

2. The theorem and its proof

Theorem 2.1. Let v, w be weights on (0,∞), p ∈ [1,∞) and q ∈ (0,∞). For t ∈ (0,∞),
denote

V (t) =


(∫ t

0 v
1−p′

) 1
p′

if p ∈ (1,∞),

ess sups∈(0,t)
1
v(s) if p = 1,

and

W (t) =

∫ ∞
t

w.

Then there exists a positive constant C such that (1.1) holds for every nonnegative measurable
function f on (0,∞) if and only if A <∞, where

A =

 sup
t∈(0,∞)

V (t)W (t)
1
q if p ≤ q,∫∞

0 W
p
p−q dV

pq
p−q if p > q,
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in which the latter integral should be understood in the Lebesgue–Stieltjes sense with respect

to the (monotone) function V
pq
p−q .

Proof. Sufficiency. Fix ε ∈ (0, 1). We claim that, for every nonnegative measurable function
f on (0,∞), one has

(2.1)

∫ t

0
f .

(∫ t

0
fpV εpv

) 1
p

V (t)1−ε for t > 0.

(We write . when the expression to the left of it is majorized by a constant times that on
the right.) To show (2.1), fix t ∈ (0,∞). If p ∈ (1,∞), then, by Hölder’s inequality,

∫ t

0
f =

∫ t

0
fV εv

1
pV −εv

− 1
p ≤

(∫ t

0
fpV εpv

) 1
p
(∫ t

0
V −εp

′
v1−p′

) 1
p′

.

By a change of variables, we obtain∫ t

0
V −εp

′
v1−p′ =

∫ t

0

(∫ s

0
v1−p′

)−ε
v1−p′ ds =

1

1− ε

(∫ s

0
v1−p′

)1−ε
=

1

1− ε
V (t)(1−ε)p′ ,

hence ∫ t

0
f .

(∫ t

0
fpV εpv

) 1
p

V (t)1−ε,

and (2.1) follows. If p = 1, then we get (2.1) from∫ t

0
f =

∫ t

0
fv−εvv−1+ε ≤

(∫ t

0
fV εv

)
V (t)1−ε.

Let p ≤ q. Then A <∞ implies V .W−
1
q . Using this and (2.1), we get

∫ t

0
f .

(∫ t

0
fpW

− εp
q v

) 1
p

W (t)
ε−1
q for t > 0.

Raising to q and integrating with respect to w(t) dt, we obtain

∫ ∞
0

(∫ t

0
f

)q
w(t) dt .

∫ ∞
0

(∫ t

0
f(s)pW (s)

− εp
q v(s) ds

) q
p

W (t)ε−1w(t) dt.

Next we apply Minkowski’s integral inequality (note that q
p ≥ 1 and all the expressions in the

play are nonnegative) in the form

∫ ∞
0

(∫ ∞
0

F (s, t) dµ1(s)

) q
p

dµ2(t) ≤

(∫ ∞
0

(∫ ∞
0

F (s, t)
q
p dµ2(t)

) p
q

dµ1(s)

) q
p

,
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in which F (s, t) = χ(0,t)(s)f(s)p, χ denotes the characteristic function, dµ1(s) = W (s)
− εp
q v(s)ds

and dµ2(t) = W (t)ε−1w(t) dt. We thus obtain∫ ∞
0

(∫ t

0
f(s)pW (s)

− εp
q v(s) ds

) q
p

W (t)ε−1w(t) dt

≤

(∫ ∞
0

f(s)pW (s)
− εp
q v(s)

(∫ ∞
s

W (t)ε−1w(t) dt

) p
q

ds

) q
p

≈
(∫ ∞

0
fpv

) q
p

.

(We write ≈ when both . and & apply.) Altogether, we arrive at∫ ∞
0

(∫ t

0
f

)q
w(t) dt .

(∫ ∞
0

fpv

) q
p

,

and (1.1) follows.
Let p > q. Fix α ∈ (0,∞). We shall use the symbol V (∞) for limt→∞ V (t) (this limit

always exists, either finite or infinite, owing to the monotonicity of V ). By (2.1),∫ ∞
0

(∫ t

0
f

)q
w(t) dt .

∫ ∞
0

(∫ t

0
fpV εpv

) q
p

V (t)−αqV (t)(1−ε+α)qw(t) dt

.
∫ ∞

0

(∫ t

0
fpV εpv

) q
p (
V (t)−αp − V (∞)−αp

) q
p V (t)(1−ε+α)qw(t) dt

+

∫ ∞
0

(∫ t

0
fpV εpv

) q
p

V (t)(1−ε+α)qw(t) dt · V (∞)−αq = I + II.

If V (∞) =∞, one has II = 0. Since

V (t)(1−ε+α)q ≈
∫ t

0
V

(1−ε+α)q− pq
p−q d(V

pq
p−q ) for t > 0

and

V (t)−αp − V (∞)−αp =

∫ ∞
t

d(−V −αp) for t > 0,

monotonicity and Fubini’s theorem yield

I .
∫ ∞

0

(∫ ∞
t

(∫ s

0
fpV εpv

)
d(−V −αp)(s)

) q
p
(∫ t

0
V

(1−ε+α)q− pq
p−q dV

pq
p−q

)
w(t) dt

.
∫ ∞

0

(∫ t

0

(∫ ∞
s

(∫ τ

0
fpV εpv

)
d(−V −αp)(τ)

) q
p

V (s)
(1−ε+α)q− pq

p−q dV
pq
p−q (s)

)
w(t) dt

=

∫ ∞
0

(∫ ∞
s

(∫ τ

0
fpV εpv

)
d(−V −αp)(τ)

) q
p

V (s)
(1−ε+α)q− pq

p−qW (s)dV
pq
p−q (s).
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Thus, owing to A <∞, Hölder’s inequality, and Fubini’s theorem,

I .

(∫ ∞
0

W
p
p−q dV

pq
p−q

) p−q
p
(∫ ∞

0

(∫ ∞
s

(∫ τ

0
fpV εpv

)
d(−V −αp)(τ)

)
V (s)

(1−ε+α)p− p2

p−q dV
pq
p−q (s)

) q
p

.

(∫ ∞
0

(∫ τ

0
fpV εpv

)(∫ τ

0
V

(1−ε+α)p− p2

p−q dV
pq
p−q

)
d(−V −αp)(τ)

) q
p

≈
(∫ ∞

0

(∫ τ

0
fpV εpv

)
V (τ)(α−ε)pd(−V −αp)(τ)

) q
p

=

(∫ ∞
0

f(y)pV (y)εpv(y)

∫ ∞
y

V (α−ε)pd(−V −αp)dy
) q
p

≈
(∫ ∞

0
fpv

) q
p

.

If V (∞) <∞, we have

II ≤
∫ ∞

0

(∫ t

0
fpv

) q
p

V (t)(1+α)qw(t)dt · V (∞)−αq ≤
(∫ ∞

0
fpv

) q
p
(∫ ∞

0
V (1+α)qw

)
V (∞)−αq.

Owing to A <∞, Fubini’s theorem, and Hölder’s inequality, we get∫ ∞
0
V (1+α)qw ≈

∫ ∞
0

(∫ t

0
V αq+q−p′v1−p′

)
w(t) dt =

∫ ∞
0

V αq+q−p′v1−p′W

.

(∫ ∞
0

V αp−p′v1−p′
) q
p
(∫ ∞

0
W (t)

p
p−q dV

pq
p−q

) p−q
p

. V (∞)αq,

establishing II .
(∫∞

0 fpv
) q
p . This shows sufficiency.

Necessity. Let p ≤ q and assume that (1.1) holds. Fix t ∈ (0,∞). Then∫ ∞
0

(∫ s

0
f

)q
w(s) ds ≥

∫ ∞
t

(∫ s

0
f

)q
w(s) ds ≥W (t)

(∫ t

0
f

)q
.

Therefore, (1.1) yields

(2.2) C ≥W (t)
1
q sup
f≥0

∫ t
0 f(∫∞

0 fpv
) 1
p

.

We claim that

(2.3) sup
f≥0

∫ t
0 f(∫∞

0 fpv
) 1
p

= V (t).

Indeed, if p > 1, then we have, by Hölder’s inequality,∫ t

0
f =

∫ t

0
fv

1
p v
− 1
p ≤

(∫ t

0
fpv

) 1
p
(∫ t

0
v
− p
′
p

) 1
p′

≤
(∫ ∞

0
fpv

) 1
p

V (t)

for every measurable f ≥ 0. On the other hand, this inequality is saturated by the choice
f = v1−p′χ(0,t), since fpv = f , and, consequently,∫ t

0
f =

(∫ t

0
fpv

) 1
p
(∫ t

0
fpv

) 1
p′

=

(∫ ∞
0

fpv

) 1
p

V (t).
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If p = 1, then we, once again, obtain∫ t

0
f =

∫ t

0
fvv−1 ≤ V (t)

∫ t

0
fv ≤ V (t)

∫ ∞
0

fv

for every measurable f ≥ 0. In order to saturate this inequality, fix any λ < V (t). Then there
exists a set E ⊂ (0, t) of positive measure such that 1

v ≥ λ on E. Set f = χE
v . Then∫ t

0
f =

∫
E

1

v
≥ λ|E| = λ

∫ ∞
0

fv.

On letting λ→ V (t)−, we get ∫ t

0
f ≥ V (t)

∫ ∞
0

fv.

In any case, (2.3) follows. Since t was arbitrary, plugging (2.3) into (2.2) yields

C ≥ sup
t∈(0,∞)

W (t)
1
q sup
f≥0

∫ t
0 f(∫∞

0 fpv
) 1
p

= sup
t∈(0,∞)

W (t)
1
q V (t),

establishing A <∞.

Let p > q and p > 1, denote r = pq
p−q and B =

∫∞
0 V rW

r
pw. Let θ ∈ ( rp′ ,∞) and set

f(t) =

(∫ ∞
t

W
r
pwV r−θp′

) 1
p

V (t)(θ−1)(p′−1)v(t)1−p′ for t > 0.

By Fubini’s theorem,∫ ∞
0

fpv =

∫ ∞
0

(∫ ∞
t

W
r
pwV r−θp′

)
V (t)(θ−1)p′v(t)1−p′dt

=

∫ ∞
0

W (s)
r
pw(s)V (s)r−θp

′
(∫ s

0
V (θ−1)p′v1−p′

)
ds ≈ B.

On the other hand, by monotonicity,∫ ∞
0

(∫ t

0
f

)q
w(t)dt ≥

∫ ∞
0

(∫ t

0
V (θ−1)(p′−1)v1−p′

)q (∫ ∞
t

W
r
pwV r−θp′

) q
p

w(t)dt

≥
∫ ∞

0

(∫ t

0
V

(θ−1)(p′−1)+ r
p
− θp

′
p v1−p′

)q (∫ ∞
t

W
r
pw

) q
p

w(t)dt ≈ B.

Altogether, (1.1) implies B
1
q . B

1
p . Using a standard approximation argument, we obtain

B
1
r <∞, hence B <∞. Since A ≈ B owing to integration by parts, we get A <∞.
Finally, let p = 1 and p > q. Fix some σ > 1 and define

Ek = {t ∈ (0,∞) : σk < V (t) ≤ σk+1} for k ∈ Z.

Set A = {k ∈ Z : Ek 6= ∅}. Then (0,∞) =
⋃
k∈AEk, in which the union is disjoint and

each Ek is a nondegenerate interval (which could be either open or closed at each end) with
endpoints ak and bk, ak < bk. For every k ∈ A, we find δk > 0 so that ak + δk < bk and

(2.4)

∫ bk

ak

W
q

1−qw ≤ σ
∫ bk

ak+δk

W
q

1−qw,
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which is clearly possible, and then we define the set

Gk =

{
t ∈ (ak, ak + δk) :

1

v(t)
> σk

}
.

Since V is non-decreasing and left-continuous, |Gk| > 0 for every k ∈ A. Set h =
∑

k∈A
χGk
|Gk| .

Then, for every k ∈ A, one has

(2.5)

∫ ak+δk

0
hv−1V

q
1−q ≥

∫ ak+δk

ak

hv−1V
q

1−q =
1

|Gk|

∫
Gk

V
q

1−q v−1 ≥ σ
k

1−q .

Fix t ∈ (0,∞). Then there is a uniquely defined k ∈ A such that t ∈ (ak, bk]. Consequently,∫ t

0
hV

q
1−q ≤

∑
j∈A, j≤k

1

|Gj |

∫
Gj

V
q

1−q ≤
k∑

j=−∞
σ
q(j+1)
1−q =

σ
q(k+2)
1−q

σ
q

1−q − 1
.

On the other hand, ∫ t

0
dV

q
1−q ≥

∫ ak

0
dV

q
1−q = V (ak)

q
1−q ≥ σ

qk
1−q .

The last two estimates yield

(2.6)

∫ t

0
hV

q
1−q .

∫ t

0
dV

q
1−q for t > 0.

Since W
1

1−q is non-increasing, we can apply Hardy’s lemma (whose version for Lebesgue
integrals can be found in [2, Chapter 2, Proposition 3.6] - note that the proof presented there
works verbatim for Lebesgue–Stieltjes integrals) to (2.6) and get

(2.7)

∫ ∞
0

hV
q

1−qW
1

1−q .
∫ ∞

0
W

1
1−q dV

q
1−q .

Finally, using subsequently integration by parts, decomposition of (0,∞) into
⋃
k∈AEk, the

definition of Ek, the fact that each Ek is an interval with endpoints ak, bk, (2.4), (2.5),

monotonicity of functions given by integrals, (1.1) applied to p = 1 and f = hv−1V
q

1−qW
1

1−q ,
and (2.7), we get∫ ∞

0
W

1
1−q dV

q
1−q ≤ 2

∫ ∞
0

V
q

1−qW
q

1−qw = 2
∑
k∈A

∫
Ek

V
q

1−qW
q

1−qw .
∑
k∈A

σ
(k+1)q
1−q

∫
Ek

W
q

1−qw

.
∑
k∈A

σ
(k+1)q
1−q

∫ bk

ak+δk

W
q

1−qw .
∑
k∈A

(∫ ak+δk

0
hv−1V

q
1−q

)q ∫ bk

ak+δk

W
q

1−qw

.
∑
k∈A

∫ bk

ak+δk

(∫ t

0
hv−1V

q
1−q

)q
W (t)

q
1−qw(t) dt .

∫ ∞
0

(∫ t

0
hv−1V

q
1−qW

1
1−q

)q
w(t) dt

.

(∫ ∞
0

hV
q

1−qW
1

1−q

)q
.

(∫ ∞
0

W
1

1−q dV
q

1−q

)q
,

in which the multiplicative constants depend only on C and q. This establishes, via a standard
approximation argument, that A1−q <∞, which in turn yields A <∞. The proof is complete.

�
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Library. Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition.
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