INSTITUTE OF MATHEMATICS

The two－weight Hardy inequality： A new elementary and universal proof

Amiran Gogatishvili
Luboš Pick

ACADEMY OF

士

THE

Preprint No．65－2021
PRAHA 2021

THE TWO-WEIGHT HARDY INEQUALITY: A NEW ELEMENTARY AND UNIVERSAL PROOF

AMIRAN GOGATISHVILI AND LUBOŠ PICK

Abstract. We give a new proof of the known criteria for the inequality

$$
\left(\int_{0}^{\infty}\left(\int_{0}^{t} f\right)^{q} w(t) d t\right)^{\frac{1}{q}} \leq C\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{1}{p}}
$$

The innovation is in the elementary nature of the proof and its versatility.

1. Introduction

Consider the two-weight Hardy inequality

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left(\int_{0}^{t} f\right)^{q} w(t) d t\right)^{\frac{1}{q}} \leq C\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{1}{p}} \tag{1.1}
\end{equation*}
$$

in which C is a positive constant independent of a nonnegative measurable function f on $(0, \infty), v$ and w are fixed nonnegative measurable functions on ($0, \infty$) (weights), $p \in[1, \infty$), and $q \in(0, \infty)$. The requirement $p \in[1, \infty)$ is reasonable since for $p \in(0,1)$ there are functions in weighted L^{p} which are not locally integrable.

The problem of characterizing pairs of weights for which (1.1) is true has a long and rich history and it would be impossible to mention here every contribution. For $p=q>1$, $v=1, w(t)=t^{-q}$ and $C=p^{\prime}$, it is just the boundedness of the integral averaging operator on $L^{p}(0, \infty)$, a result almost one century old, which appears in classical Hardy's papers in 1920's, see [5]. The beginning of investigation of a general weighted case goes back to 1950 's, and it starts with the paper by Kac and Krein [6] in which a characterization for $p=q=2$ and $v=1$ can be found. In 1950's and 1960's, plenty of partial results were obtained by Beesack, see e.g. [1]. In late 1960's and in 1970's, a boom in the so-called convex case ($p \leq q$, named after the convexity of $t \mapsto t^{\frac{q}{p}}$) was seen. For $p=q$, a characterization was obtained by Tomaselli [15], Talenti [14] and Muckenhoupt [9]. It was extended to $p \leq q$ by Bradley [4], the same result is also stated without proof in [7]. Many authors referred further to an untitled and unpublished manuscript by Artola, and in [10], a paper by D.W. Boyd and J.A. Erdős was quoted, which most likely was never published. In any case, (1.1) holds if and only if

$$
\sup _{t \in(0, \infty)}\left(\int_{t}^{\infty} w\right)^{\frac{1}{q}}\left(\int_{0}^{t} v^{1-p^{\prime}}\right)^{\frac{1}{p^{\prime}}}<\infty \quad \text { for } 1<p \leq q
$$

[^0]and
$$
\sup _{t \in(0, \infty)}\left(\int_{t}^{\infty} w\right)^{\frac{1}{q}} \underset{s \in(0, t)}{\operatorname{ess} \sup } \frac{1}{v(s)}<\infty \quad \text { for } 1=p \leq q
$$

Here and throughout, if $p \in(0, \infty]$, then p^{\prime} denotes the conjugate exponent defined by $\frac{1}{p}+\frac{1}{p^{\prime}}=$ 1. Observe that 1 and ∞ are conjugate exponents and that p^{\prime} is negative when $p \in(0,1)$.

The non-convex case $(p>q)$ turned out to be more difficult to handle, and it had to wait till 1980's and 1990's for appropriate treatment. The first characterization, for $1 \leq q<p<$ ∞, was obtained by Maz'ya and Rozin, see [8], who proved that a necessary and sufficient condition is

$$
\int_{0}^{\infty}\left(\int_{t}^{\infty} w\right)^{\frac{r}{q}}\left(\int_{0}^{t} v^{1-p^{\prime}}\right)^{\frac{r}{q^{\prime}}} v(t)^{1-p^{\prime}} d t<\infty
$$

where $r=\frac{p q}{p-q}$. A universal characterization, sheltering both the convex and the non-convex cases and involving more general norms was obtained by Sawyer [11], but the condition in the non-convex case is expressed in terms of a discretized condition. While discretization techniques proved later to be of colossal theoretical importance, conditions expressed in terms of discretizing sequences are difficult to verify. Later, Sinnamon [12] characterized the inequality for $0<q<1<p<\infty$. The criterion turns out to be the same as that of Maz'ya and Rozin but the proof, based on Halperin's level function, is very different. The case $0<q<p=1$ was treated by Sinnamon and Stepanov [13], who moreover observed that, unless $p=1$, Sinnamon's and Mazya-Rozin's results can be proved in a unified manner. The case $p=1$, however, still required separate treatment. In [3], restriction of (1.1) to the cone of nonincreasing functions is studied, together with its discrete version. Some ideas developed there are useful also for the unrestricted case.

In this note we present a short, uniform and elementary proof, in which

- all cases are covered,
- $p>1$ is not separated from $p=1$,
- only Fubini's theorem, Hölder's inequality, Minkowski's integral inequality and Hardy's lemma are used.

2. The theorem and its proof

Theorem 2.1. Let v, w be weights on $(0, \infty), p \in[1, \infty)$ and $q \in(0, \infty)$. For $t \in(0, \infty)$, denote

$$
V(t)= \begin{cases}\left(\int_{0}^{t} v^{1-p^{\prime}}\right)^{\frac{1}{p^{\prime}}} & \text { if } p \in(1, \infty), \\ \operatorname{ess} \sup _{s \in(0, t) \frac{1}{v(s)}} & \text { if } p=1,\end{cases}
$$

and

$$
W(t)=\int_{t}^{\infty} w .
$$

Then there exists a positive constant C such that (1.1) holds for every nonnegative measurable function f on $(0, \infty)$ if and only if $A<\infty$, where

$$
A= \begin{cases}\sup _{t \in(0, \infty)} V(t) W(t)^{\frac{1}{q}} & \text { if } p \leq q \\ \int_{0}^{\infty} W^{\frac{p}{p-q}} d V^{\frac{p q}{p-q}} & \text { if } p>q\end{cases}
$$

in which the latter integral should be understood in the Lebesgue-Stieltjes sense with respect to the (monotone) function $V^{\frac{p q}{p-q}}$.

Proof. Sufficiency. Fix $\varepsilon \in(0,1)$. We claim that, for every nonnegative measurable function f on $(0, \infty)$, one has

$$
\begin{equation*}
\int_{0}^{t} f \lesssim\left(\int_{0}^{t} f^{p} V^{\varepsilon p} v\right)^{\frac{1}{p}} V(t)^{1-\varepsilon} \quad \text { for } t>0 \tag{2.1}
\end{equation*}
$$

(We write \lesssim when the expression to the left of it is majorized by a constant times that on the right.) To show (2.1), fix $t \in(0, \infty)$. If $p \in(1, \infty)$, then, by Hölder's inequality,

$$
\int_{0}^{t} f=\int_{0}^{t} f V^{\varepsilon} v^{\frac{1}{p}} V^{-\varepsilon} v^{-\frac{1}{p}} \leq\left(\int_{0}^{t} f^{p} V^{\varepsilon p} v\right)^{\frac{1}{p}}\left(\int_{0}^{t} V^{-\varepsilon p^{\prime}} v^{1-p^{\prime}}\right)^{\frac{1}{p^{\prime}}}
$$

By a change of variables, we obtain

$$
\int_{0}^{t} V^{-\varepsilon p^{\prime}} v^{1-p^{\prime}}=\int_{0}^{t}\left(\int_{0}^{s} v^{1-p^{\prime}}\right)^{-\varepsilon} v^{1-p^{\prime}} d s=\frac{1}{1-\varepsilon}\left(\int_{0}^{s} v^{1-p^{\prime}}\right)^{1-\varepsilon}=\frac{1}{1-\varepsilon} V(t)^{(1-\varepsilon) p^{\prime}}
$$

hence

$$
\int_{0}^{t} f \lesssim\left(\int_{0}^{t} f^{p} V^{\varepsilon p} v\right)^{\frac{1}{p}} V(t)^{1-\varepsilon}
$$

and (2.1) follows. If $p=1$, then we get (2.1) from

$$
\int_{0}^{t} f=\int_{0}^{t} f v^{-\varepsilon} v v^{-1+\varepsilon} \leq\left(\int_{0}^{t} f V^{\varepsilon} v\right) V(t)^{1-\varepsilon}
$$

Let $p \leq q$. Then $A<\infty$ implies $V \lesssim W^{-\frac{1}{q}}$. Using this and (2.1), we get

$$
\int_{0}^{t} f \lesssim\left(\int_{0}^{t} f^{p} W^{-\frac{\varepsilon p}{q}} v\right)^{\frac{1}{p}} W(t)^{\frac{\varepsilon-1}{q}} \quad \text { for } t>0
$$

Raising to q and integrating with respect to $w(t) d t$, we obtain

$$
\int_{0}^{\infty}\left(\int_{0}^{t} f\right)^{q} w(t) d t \lesssim \int_{0}^{\infty}\left(\int_{0}^{t} f(s)^{p} W(s)^{-\frac{\varepsilon p}{q}} v(s) d s\right)^{\frac{q}{p}} W(t)^{\varepsilon-1} w(t) d t
$$

Next we apply Minkowski's integral inequality (note that $\frac{q}{p} \geq 1$ and all the expressions in the play are nonnegative) in the form

$$
\int_{0}^{\infty}\left(\int_{0}^{\infty} F(s, t) d \mu_{1}(s)\right)^{\frac{q}{p}} d \mu_{2}(t) \leq\left(\int_{0}^{\infty}\left(\int_{0}^{\infty} F(s, t)^{\frac{q}{p}} d \mu_{2}(t)\right)^{\frac{p}{q}} d \mu_{1}(s)\right)^{\frac{q}{p}}
$$

in which $F(s, t)=\chi_{(0, t)}(s) f(s)^{p}, \chi$ denotes the characteristic function, $d \mu_{1}(s)=W(s)^{-\frac{\varepsilon p}{q}} v(s) d s$ and $d \mu_{2}(t)=W(t)^{\varepsilon-1} w(t) d t$. We thus obtain

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\int_{0}^{t} f(s)^{p} W(s)^{-\frac{\varepsilon p}{q}} v(s) d s\right)^{\frac{q}{p}} W(t)^{\varepsilon-1} w(t) d t \\
& \leq\left(\int_{0}^{\infty} f(s)^{p} W(s)^{-\frac{\varepsilon p}{q}} v(s)\left(\int_{s}^{\infty} W(t)^{\varepsilon-1} w(t) d t\right)^{\frac{p}{q}} d s\right)^{\frac{q}{p}} \\
& \approx\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{q}{p}}
\end{aligned}
$$

(We write \approx when both \lesssim and \gtrsim apply.) Altogether, we arrive at

$$
\int_{0}^{\infty}\left(\int_{0}^{t} f\right)^{q} w(t) d t \lesssim\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{q}{p}}
$$

and (1.1) follows.
Let $p>q$. Fix $\alpha \in(0, \infty)$. We shall use the symbol $V(\infty)$ for $\lim _{t \rightarrow \infty} V(t)$ (this limit always exists, either finite or infinite, owing to the monotonicity of V). By (2.1),

$$
\begin{aligned}
\int_{0}^{\infty} & \left(\int_{0}^{t} f\right)^{q} w(t) d t \lesssim \int_{0}^{\infty}\left(\int_{0}^{t} f^{p} V^{\varepsilon p} v\right)^{\frac{q}{p}} V(t)^{-\alpha q} V(t)^{(1-\varepsilon+\alpha) q} w(t) d t \\
& \lesssim \int_{0}^{\infty}\left(\int_{0}^{t} f^{p} V^{\varepsilon p} v\right)^{\frac{q}{p}}\left(V(t)^{-\alpha p}-V(\infty)^{-\alpha p}\right)^{\frac{q}{p}} V(t)^{(1-\varepsilon+\alpha) q} w(t) d t \\
& +\int_{0}^{\infty}\left(\int_{0}^{t} f^{p} V^{\varepsilon p} v\right)^{\frac{q}{p}} V(t)^{(1-\varepsilon+\alpha) q} w(t) d t \cdot V(\infty)^{-\alpha q}=I+I I
\end{aligned}
$$

If $V(\infty)=\infty$, one has $I I=0$. Since

$$
V(t)^{(1-\varepsilon+\alpha) q} \approx \int_{0}^{t} V^{(1-\varepsilon+\alpha) q-\frac{p q}{p-q}} d\left(V^{\frac{p q}{p-q}}\right) \quad \text { for } t>0
$$

and

$$
V(t)^{-\alpha p}-V(\infty)^{-\alpha p}=\int_{t}^{\infty} d\left(-V^{-\alpha p}\right) \quad \text { for } t>0
$$

monotonicity and Fubini's theorem yield

$$
\begin{aligned}
I & \lesssim \int_{0}^{\infty}\left(\int_{t}^{\infty}\left(\int_{0}^{s} f^{p} V^{\varepsilon p} v\right) d\left(-V^{-\alpha p}\right)(s)\right)^{\frac{q}{p}}\left(\int_{0}^{t} V^{(1-\varepsilon+\alpha) q-\frac{p q}{p-q}} d V^{\frac{p q}{p-q}}\right) w(t) d t \\
& \lesssim \int_{0}^{\infty}\left(\int_{0}^{t}\left(\int_{s}^{\infty}\left(\int_{0}^{\tau} f^{p} V^{\varepsilon p} v\right) d\left(-V^{-\alpha p}\right)(\tau)\right)^{\frac{q}{p}} V(s)^{(1-\varepsilon+\alpha) q-\frac{p q}{p-q}} d V^{\frac{p q}{p-q}}(s)\right) w(t) d t \\
& =\int_{0}^{\infty}\left(\int_{s}^{\infty}\left(\int_{0}^{\tau} f^{p} V^{\varepsilon p} v\right) d\left(-V^{-\alpha p}\right)(\tau)\right)^{\frac{q}{p}} V(s)^{(1-\varepsilon+\alpha) q-\frac{p q}{p-q}} W(s) d V^{\frac{p q}{p-q}}(s)
\end{aligned}
$$

Thus, owing to $A<\infty$, Hölder's inequality, and Fubini's theorem,

$$
\begin{aligned}
I & \lesssim\left(\int_{0}^{\infty} W^{\frac{p}{p-q}} d V^{\frac{p q}{p-q}}\right)^{\frac{p-q}{p}}\left(\int_{0}^{\infty}\left(\int_{s}^{\infty}\left(\int_{0}^{\tau} f^{p} V^{\varepsilon p} v\right) d\left(-V^{-\alpha p}\right)(\tau)\right) V(s)^{(1-\varepsilon+\alpha) p-\frac{p^{2}}{p-q}} d V^{\frac{p q}{p-q}}(s)\right)^{\frac{q}{p}} \\
& \lesssim\left(\int_{0}^{\infty}\left(\int_{0}^{\tau} f^{p} V^{\varepsilon p} v\right)\left(\int_{0}^{\tau} V^{(1-\varepsilon+\alpha) p-\frac{p^{2}}{p-q}} d V^{\frac{p q}{p-q}}\right) d\left(-V^{-\alpha p}\right)(\tau)\right)^{\frac{q}{p}} \\
& \approx\left(\int_{0}^{\infty}\left(\int_{0}^{\tau} f^{p} V^{\varepsilon p} v\right) V(\tau)^{(\alpha-\varepsilon) p} d\left(-V^{-\alpha p}\right)(\tau)\right)^{\frac{q}{p}} \\
& =\left(\int_{0}^{\infty} f(y)^{p} V(y)^{\varepsilon p} v(y) \int_{y}^{\infty} V^{(\alpha-\varepsilon) p} d\left(-V^{-\alpha p}\right) d y\right)^{\frac{q}{p}} \approx\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{q}{p}} .
\end{aligned}
$$

If $V(\infty)<\infty$, we have

$$
I I \leq \int_{0}^{\infty}\left(\int_{0}^{t} f^{p} v\right)^{\frac{q}{p}} V(t)^{(1+\alpha) q} w(t) d t \cdot V(\infty)^{-\alpha q} \leq\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{q}{p}}\left(\int_{0}^{\infty} V^{(1+\alpha) q} w\right) V(\infty)^{-\alpha q} .
$$

Owing to $A<\infty$, Fubini's theorem, and Hölder's inequality, we get

$$
\begin{gathered}
\int_{0}^{\infty} V^{(1+\alpha) q} w \approx \int_{0}^{\infty}\left(\int_{0}^{t} V^{\alpha q+q-p^{\prime}} v^{1-p^{\prime}}\right) w(t) d t=\int_{0}^{\infty} V^{\alpha q+q-p^{\prime}} v^{1-p^{\prime}} W \\
\quad \lesssim\left(\int_{0}^{\infty} V^{\alpha p-p^{\prime}} v^{1-p^{\prime}}\right)^{\frac{q}{p}}\left(\int_{0}^{\infty} W(t)^{\frac{p}{p-q}} d V^{\frac{p q}{p-q}}\right)^{\frac{p-q}{p}} \lesssim V(\infty)^{\alpha q}
\end{gathered}
$$

establishing $I I \lesssim\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{q}{p}}$. This shows sufficiency.
Necessity. Let $p \leq q$ and assume that (1.1) holds. Fix $t \in(0, \infty)$. Then

$$
\int_{0}^{\infty}\left(\int_{0}^{s} f\right)^{q} w(s) d s \geq \int_{t}^{\infty}\left(\int_{0}^{s} f\right)^{q} w(s) d s \geq W(t)\left(\int_{0}^{t} f\right)^{q} .
$$

Therefore, (1.1) yields

$$
\begin{equation*}
C \geq W(t)^{\frac{1}{q}} \sup _{f \geq 0} \frac{\int_{0}^{t} f}{\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{1}{p}}} . \tag{2.2}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\sup _{f \geq 0} \frac{\int_{0}^{t} f}{\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{1}{p}}}=V(t) \tag{2.3}
\end{equation*}
$$

Indeed, if $p>1$, then we have, by Hölder's inequality,

$$
\int_{0}^{t} f=\int_{0}^{t} f v^{\frac{1}{p}} v^{-\frac{1}{p}} \leq\left(\int_{0}^{t} f^{p} v\right)^{\frac{1}{p}}\left(\int_{0}^{t} v^{-\frac{p^{\prime}}{p}}\right)^{\frac{1}{p^{\prime}}} \leq\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{1}{p}} V(t)
$$

for every measurable $f \geq 0$. On the other hand, this inequality is saturated by the choice $f=v^{1-p^{\prime}} \chi_{(0, t)}$, since $f^{p} v=f$, and, consequently,

$$
\int_{0}^{t} f=\left(\int_{0}^{t} f^{p} v\right)^{\frac{1}{p}}\left(\int_{0}^{t} f^{p} v\right)^{\frac{1}{p^{\prime}}}=\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{1}{p}} V(t)
$$

If $p=1$, then we, once again, obtain

$$
\int_{0}^{t} f=\int_{0}^{t} f v v^{-1} \leq V(t) \int_{0}^{t} f v \leq V(t) \int_{0}^{\infty} f v
$$

for every measurable $f \geq 0$. In order to saturate this inequality, fix any $\lambda<V(t)$. Then there exists a set $E \subset(0, t)$ of positive measure such that $\frac{1}{v} \geq \lambda$ on E. Set $f=\frac{\chi_{E}}{v}$. Then

$$
\int_{0}^{t} f=\int_{E} \frac{1}{v} \geq \lambda|E|=\lambda \int_{0}^{\infty} f v
$$

On letting $\lambda \rightarrow V(t)_{-}$, we get

$$
\int_{0}^{t} f \geq V(t) \int_{0}^{\infty} f v
$$

In any case, (2.3) follows. Since t was arbitrary, plugging (2.3) into (2.2) yields

$$
C \geq \sup _{t \in(0, \infty)} W(t)^{\frac{1}{q}} \sup _{f \geq 0} \frac{\int_{0}^{t} f}{\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{1}{p}}}=\sup _{t \in(0, \infty)} W(t)^{\frac{1}{q}} V(t)
$$

establishing $A<\infty$.
Let $p>q$ and $p>1$, denote $r=\frac{p q}{p-q}$ and $B=\int_{0}^{\infty} V^{r} W^{\frac{r}{p}} w$. Let $\theta \in\left(\frac{r}{p^{\prime}}, \infty\right)$ and set

$$
f(t)=\left(\int_{t}^{\infty} W^{\frac{r}{p}} w V^{r-\theta p^{\prime}}\right)^{\frac{1}{p}} V(t)^{(\theta-1)\left(p^{\prime}-1\right)} v(t)^{1-p^{\prime}} \quad \text { for } t>0
$$

By Fubini's theorem,

$$
\begin{aligned}
& \int_{0}^{\infty} f^{p} v=\int_{0}^{\infty}\left(\int_{t}^{\infty} W^{\frac{r}{p}} w V^{r-\theta p^{\prime}}\right) V(t)^{(\theta-1) p^{\prime}} v(t)^{1-p^{\prime}} d t \\
& =\int_{0}^{\infty} W(s)^{\frac{r}{p}} w(s) V(s)^{r-\theta p^{\prime}}\left(\int_{0}^{s} V^{(\theta-1) p^{\prime}} v^{1-p^{\prime}}\right) d s \approx B
\end{aligned}
$$

On the other hand, by monotonicity,

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\int_{0}^{t} f\right)^{q} w(t) d t \geq \int_{0}^{\infty}\left(\int_{0}^{t} V^{(\theta-1)\left(p^{\prime}-1\right)} v^{1-p^{\prime}}\right)^{q}\left(\int_{t}^{\infty} W^{\frac{r}{p}} w V^{r-\theta p^{\prime}}\right)^{\frac{q}{p}} w(t) d t \\
& \geq \int_{0}^{\infty}\left(\int_{0}^{t} V^{(\theta-1)\left(p^{\prime}-1\right)+\frac{r}{p}-\frac{\theta p^{\prime}}{p}} v^{1-p^{\prime}}\right)^{q}\left(\int_{t}^{\infty} W^{\frac{r}{p}} w\right)^{\frac{q}{p}} w(t) d t \approx B
\end{aligned}
$$

Altogether, (1.1) implies $B^{\frac{1}{q}} \lesssim B^{\frac{1}{p}}$. Using a standard approximation argument, we obtain $B^{\frac{1}{r}}<\infty$, hence $B<\infty$. Since $A \approx B$ owing to integration by parts, we get $A<\infty$.

Finally, let $p=1$ and $p>q$. Fix some $\sigma>1$ and define

$$
E_{k}=\left\{t \in(0, \infty): \sigma^{k}<V(t) \leq \sigma^{k+1}\right\} \quad \text { for } k \in \mathbb{Z}
$$

Set $\mathbb{A}=\left\{k \in \mathbb{Z}: E_{k} \neq \emptyset\right\}$. Then $(0, \infty)=\bigcup_{k \in \mathbb{A}} E_{k}$, in which the union is disjoint and each E_{k} is a nondegenerate interval (which could be either open or closed at each end) with endpoints a_{k} and $b_{k}, a_{k}<b_{k}$. For every $k \in \mathbb{A}$, we find $\delta_{k}>0$ so that $a_{k}+\delta_{k}<b_{k}$ and

$$
\begin{equation*}
\int_{a_{k}}^{b_{k}} W^{\frac{q}{1-q}} w \leq \sigma \int_{a_{k}+\delta_{k}}^{b_{k}} W^{\frac{q}{1-q}} w \tag{2.4}
\end{equation*}
$$

which is clearly possible, and then we define the set

$$
G_{k}=\left\{t \in\left(a_{k}, a_{k}+\delta_{k}\right): \frac{1}{v(t)}>\sigma^{k}\right\} .
$$

Since V is non-decreasing and left-continuous, $\left|G_{k}\right|>0$ for every $k \in \mathbb{A}$. Set $h=\sum_{k \in \mathbb{A}} \frac{\chi G_{k}}{\mid G_{k}}$. Then, for every $k \in \mathbb{A}$, one has

$$
\begin{equation*}
\int_{0}^{a_{k}+\delta_{k}} h v^{-1} V^{\frac{q}{1-q}} \geq \int_{a_{k}}^{a_{k}+\delta_{k}} h v^{-1} V^{\frac{q}{1-q}}=\frac{1}{\left|G_{k}\right|} \int_{G_{k}} V^{\frac{q}{1-q}} v^{-1} \geq \sigma^{\frac{k}{1-q}} \tag{2.5}
\end{equation*}
$$

Fix $t \in(0, \infty)$. Then there is a uniquely defined $k \in \mathbb{A}$ such that $t \in\left(a_{k}, b_{k}\right]$. Consequently,

$$
\int_{0}^{t} h V^{\frac{q}{1-q}} \leq \sum_{j \in \mathbb{A}, j \leq k} \frac{1}{\left|G_{j}\right|} \int_{G_{j}} V^{\frac{q}{1-q}} \leq \sum_{j=-\infty}^{k} \sigma^{\frac{q(j+1)}{1-q}}=\frac{\sigma^{\frac{q(k+2)}{1-q}}}{\sigma^{\frac{q}{1-q}}-1}
$$

On the other hand,

$$
\int_{0}^{t} d V^{\frac{q}{1-q}} \geq \int_{0}^{a_{k}} d V^{\frac{q}{1-q}}=V\left(a_{k}\right)^{\frac{q}{1-q}} \geq \sigma^{\frac{q k}{1-q}}
$$

The last two estimates yield

$$
\begin{equation*}
\int_{0}^{t} h V^{\frac{q}{1-q}} \lesssim \int_{0}^{t} d V^{\frac{q}{1-q}} \text { for } t>0 \tag{2.6}
\end{equation*}
$$

Since $W^{\frac{1}{1-q}}$ is non-increasing, we can apply Hardy's lemma (whose version for Lebesgue integrals can be found in [2, Chapter 2, Proposition 3.6] - note that the proof presented there works verbatim for Lebesgue-Stieltjes integrals) to (2.6) and get

$$
\begin{equation*}
\int_{0}^{\infty} h V^{\frac{q}{1-q}} W^{\frac{1}{1-q}} \lesssim \int_{0}^{\infty} W^{\frac{1}{1-q}} d V^{\frac{q}{1-q}} \tag{2.7}
\end{equation*}
$$

Finally, using subsequently integration by parts, decomposition of $(0, \infty)$ into $\bigcup_{k \in \mathbb{A}} E_{k}$, the definition of E_{k}, the fact that each E_{k} is an interval with endpoints a_{k}, b_{k}, (2.4), (2.5), monotonicity of functions given by integrals, (1.1) applied to $p=1$ and $f=h v^{-1} V^{\frac{q}{1-q}} W^{\frac{1}{1-q}}$, and (2.7), we get

$$
\begin{aligned}
& \int_{0}^{\infty} W^{\frac{1}{1-q}} d V^{\frac{q}{1-q}} \leq 2 \int_{0}^{\infty} V^{\frac{q}{1-q}} W^{\frac{q}{1-q}} w=2 \sum_{k \in \mathbb{A}} \int_{E_{k}} V^{\frac{q}{1-q}} W^{\frac{q}{1-q}} w \lesssim \sum_{k \in \mathbb{A}} \sigma^{\frac{(k+1) q}{1-q}} \int_{E_{k}} W^{\frac{q}{1-q}} w \\
& \lesssim \sum_{k \in \mathbb{A}} \sigma^{\frac{(k+1) q}{1-q}} \int_{a_{k}+\delta_{k}}^{b_{k}} W^{\frac{q}{1-q}} w \lesssim \sum_{k \in \mathbb{A}}\left(\int_{0}^{a_{k}+\delta_{k}} h v^{-1} V^{\frac{q}{1-q}}\right)^{q} \int_{a_{k}+\delta_{k}}^{b_{k}} W^{\frac{q}{1-q}} w \\
& \lesssim \sum_{k \in \mathbb{A}} \int_{a_{k}+\delta_{k}}^{b_{k}}\left(\int_{0}^{t} h v^{-1} V^{\frac{q}{1-q}}\right)^{q} W(t)^{\frac{q}{1-q}} w(t) d t \lesssim \int_{0}^{\infty}\left(\int_{0}^{t} h v^{-1} V^{\frac{q}{1-q}} W^{\frac{1}{1-q}}\right)^{q} w(t) d t \\
& \lesssim\left(\int_{0}^{\infty} h V^{\frac{q}{1-q}} W^{\frac{1}{1-q}}\right)^{q} \lesssim\left(\int_{0}^{\infty} W^{\frac{1}{1-q}} d V^{\frac{q}{1-q}}\right)^{q},
\end{aligned}
$$

in which the multiplicative constants depend only on C and q. This establishes, via a standard approximation argument, that $A^{1-q}<\infty$, which in turn yields $A<\infty$. The proof is complete.

Acknowledgment. We would like to thank the referees for their critical reading of the paper and for valuable comments and suggestions.

References

[1] P. R. Beesack. Hardy's inequality and its extensions. Pacific J. Math., 11:39-61, 1961.
[2] C. Bennett and R. Sharpley. Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1988.
[3] G. Bennett and K.-G. Grosse-Erdmann. Weighted Hardy inequalities for decreasing sequences and functions. Math. Ann., 334(3):489-531, 2006.
[4] J. S. Bradley. Hardy inequalities with mixed norms. Canad. Math. Bull., 21(4):405-408, 1978.
[5] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition.
[6] I. S. Kac and M. G. Krĕn. Criteria for the discreteness of the spectrum of a singular string. Izv. Vysš. Učebn. Zaved. Matematika, 1958(2 (3)):136-153, 1958.
[7] V. M. Kokilašvili. On Hardy's inequalities in weighted spaces. Soobshch. Akad. Nauk Gruzin. SSR, 96(1):37-40, 1979.
[8] V. Maz'ya. Sobolev spaces with applications to elliptic partial differential equations, volume 342 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, augmented edition, 2011.
[9] B. Muckenhoupt. Hardy's inequality with weights. Studia Math., 44:31-38, 1972.
[10] S. D. Riemenschneider. Compactness of a class of Volterra operators. Tohoku Math. J. (2), 26:385-387, 1974.
[11] E. Sawyer. Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator. Trans. Amer. Math. Soc., 281(1):329-337, 1984.
[12] G. Sinnamon. Weighted Hardy and Opial-type inequalities. J. Math. Anal. Appl., 160(2):434-445, 1991.
[13] G. Sinnamon and V. D. Stepanov. The weighted Hardy inequality: new proofs and the case $p=1$. J. London Math. Soc. (2), 54(1):89-101, 1996.
[14] G. Talenti. Osservazioni sopra una classe di disuguaglianze. Rend. Sem. Mat. Fis. Milano, 39:171-185, 1969.
[15] G. Tomaselli. A class of inequalities. Boll. Un. Mat. Ital. (4), 2:622-631, 1969.
Email address, A. Gogatishvili: gogatish@math.cas.cz
ORCiD: 0000-0003-3459-0355
Email address, L. Pick: pick@karlin.mff.cuni.cz
ORCiD: 0000-0002-3584-1454
Amiran Gogatishvili, Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic
L. N. Gumilyov Eurasian National University, 5 Munaytpasov St., 010008 Nur-Sultan, KazaKHSTAN
luboš Pick, Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic

[^0]: Date: September 28, 2021.
 2010 Mathematics Subject Classification. 26D10.
 Key words and phrases. Two-weight Hardy inequality, universal and elementary proof.
 This research was supported by the grant P201-18-00580S of the Czech Science Foundation. The research of A. Gogatishvili was also supported by Czech Academy of Sciences RVO: 67985840.

