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CHARACTERIZATIONS OF WEAKLY K-ANALYTIC AND

VAŠÁK SPACES USING PROJECTIONAL SKELETONS

AND USING SEPARABLE PRI

CLAUDIA CORREA, MAREK CÚTH, AND JACOPO SOMAGLIA

Abstract. We find characterizations of Vašák spaces and weakly K-
analytic spaces using the notions of separable projectional resolution
of the identity (SPRI) and of projectional skeleton. This in particu-
lar solves a problem suggested by M. Fabian and V. Montesinos. Our
method of proof also gives similar characterizations of WCG spaces and
their subspaces (some aspects of which were known, some are new).
Moreover we show that for countably many projectional skeletons on a
Banach space there exists a common subskeleton (Ps)s∈Γ, which is in
addition indexed by the ranges of the projections {Ps : s ∈ Γ}.

1. Introduction

Banach spaces with a projectional skeleton form quite a rich class of
Banach spaces (most importantly nonseparable ones), which shares some
structural properties with the separable ones. Examples of Banach spaces
admitting a projectional skeleton come from several areas of functional anal-
ysis such as preduals of Von Neumann algebras [3], preduals of JBW∗ -triples
[5], duals of Asplund spaces [22] and several examples of C(K) spaces [25].

One of the key aspects behind the definition of a projectional skeleton
is the possibility to build a projectional resolution of the identity (PRI)
on a Banach space, which is a family indexed by the density of the space
of bounded projections onto subspaces of smaller densities that enables us
to use effectively transfinite induction, see e.g. [16, Sections 6-7] for the
definition of PRI and applications. In 1968, D. Amir and J. Lindenstrauss [1]
proved that a PRI exists in every weakly compactly generated space (WCG).
Later there were found several superclasses of WCG spaces, for which a PRI
exists as well. Those include the following classes of Banach spaces (where
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inclusions are always strict, SWCG denotes the class of subspaces of WCG
spaces and WLD the class of weakly Lindelöf determined spaces)

WCG ⊂ SWCG ⊂ weakly K-analytic ⊂ Vašák ⊂WLD ⊂ Plichko.

A space for which the existence of a PRI is known, but is not Plichko is
C([0, κ]) for regular cardinals κ ≥ ω2, see [19]. We refer the reader e.g. to
monographs [12, 16, 17], where more may be found about the classes of
Banach spaces mentioned above. In 2009, W. Kubís [22] introduced the
notion of projectional skeletons. The class of Banach spaces that admit a
projectional skeleton is contained in the class of Banach spaces admitting
a PRI and it contains all Plichko spaces as well as the spaces C([0, κ]), for
any ordinal κ. Nowadays, it seems that the class of Banach spaces with
a projectional skeleton contains all the important classes of Banach spaces
admitting PRI, which enables us to provide a uniform treatment for several
known results proved previously for each subclass separately. Quite recently,
this feature was somehow precised in [21, Theorem 1.1], where it was proved
that spaces admitting a 1-projectional skeleton form a “P-class” (that is,
they admit PRI with certain additional property). Consequently, they admit
LUR renorming or a strong Markushevich basis, see [27] and [17, Theorem
5.1].

Recently, several authors found characterizations of some classes of Ba-
nach spaces in terms of projectional skeletons. Those include character-
izations of Plichko spaces, WLD spaces, Asplund spaces, WLD Asplund
spaces, WCG spaces and SWCG spaces, see [10, 15, 22]. From the classes
mentioned previously, characterizations of weakly K-analytic spaces and of
Vašák spaces in terms of projectional skeleton were not known and actually
those were proposed as a “challenge” in [15]. We accepted this challenge
and solved the problem, which might be considered as the main outcome of
our paper. Our characterization of weakly K-analytic Banach spaces is the
following (see Sections 2 and 4 for the relevant definitions).

Theorem A. Let X be a Banach space with κ := dens(X). Then the
following conditions are equivalent.

(i) X is weakly K-analytic.
(ii) There exist a projectional skeleton s = (Ps)s∈Γ on X and a family

of non-empty sets {At ⊂ BX : t ∈ ω<ω} satisfying the following
conditions
(a) the set A :=

⋃

σ∈ωω

⋂

i≥1Aσ|i is linearly dense in X and count-
ably supports X∗. Moreover A∅ = A and At ⊂ A, for every
t ∈ ω<ω;

(b) for every ε > 0, x∗ ∈ X∗ and σ ∈ ωω, there exists i ∈ ω such
that s is (Aσ|i, ε)-shrinking in x∗.

(iii) There exist a SPRI (Qα)α≤κ in X and a family of non-empty sets
{At ⊂ BX : t ∈ ω<ω} satisfying the following conditions
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(3a) the set A :=
⋃

σ∈ωω

⋂

i≥1Aσ|i is linearly dense in X and count-
ably supports X∗. Moreover A∅ = A and At ⊂ A, for every
t ∈ ω<ω;

(3b) for every x ∈ A it holds that {Qα(x) : α ≤ κ} ⊂ {0, x} and
min{α ≤ κ : Qαx = x} is not a limit ordinal;

(3c) for every ε > 0, x∗ ∈ X∗, and σ ∈ ωω there exists i ∈ ω such
that (Qα)α≤κ is (Aσ|i, ε)-shrinking in x∗.

It is worth mentioning that there is a rich theory concerning the class of
weakly K-analytic spaces, see e.g. [16, Section 4.4] and references therein.
From the more recent contributions we should mention the paper [2] where
the authors solved a long standing open problem by M. Talagrand by finding
an example of a weakly K-analytic space X which is not Fσδ in (X∗∗, w∗).
This particular result motivated even some very recent works, see e.g. [18].

The characterization of Vašák spaces is presented in Theorem 27. Note
that Vašák spaces are known also under the name weakly countably deter-
mined spaces. We refer the interested reader to [20] for more information
and recent contributions to the study of this class of spaces.

Our characterizations are inspired by the papers [13] and [15]. In [13],
characterizations of those classes were found but the notion of a skeleton
is not used and “shrinkingness” is replaced with a certain combinatorial
property. This probably inspired M. Fabian and V. Montesinos [15] to char-
acterize WCG and SWCG spaces using the notion of a projectional skeleton,
where the combinatorial condition from [13] was replaced by the notion of
“shrinkingness”. The hard part in the proof of the characterizations pre-
sented in [15] was to show that a certain property of a projectional skeleton
is inherited by the PRI that comes from this skeleton and then a transfinite
induction argument was used. However, when dealing with Vašák spaces
and weakly K-analytic spaces, this approach fails and we were forced to go
further. Namely, we proved that a certain property of a skeleton is actually
inherited also by the separable projectional resolution of the identity (SPRI)
that comes from this skeleton, which is essentially what is contained in the
proof of the implication (ii)⇒(iii) in Theorem A. As a consequence, we do
not only have a characterization using the notion of a projectional skeleton,
but also using SPRI, which seems to be of independent interest. Using the
developed techniques we were also able to provide similar characterizations
of WCG and SWCG spaces using the notion of SPRI, which is new as well.

We would like to stress out that condition (ii) from Theorem A is not that
much dependent on a particular projectional skeleton. This is witnessed by
the following consequence of Theorem 18, which seems to be of an indepen-
dent interest and it might be considered as one of the main outcomes of this
paper as well.

Theorem B. Let X be a Banach space and {sn : n ∈ ω} be a countable
family of projectional skeletons on X inducing the same set D ⊂ X∗. Then
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there exists a simple projectional skeleton on X which is isomorphic to a
subskeleton of sn, for every n ∈ ω.

Note that Theorem B implies that some properties of projectional skele-
tons are not dependent on the particular skeleton but rather on the set it
induces. A result of similar purpose was proved already in [21, Lemma 3.5],
but our Theorem B is stronger, easier for applications and it generalizes [11,
Theorem 4.1], as it shows that up to passing to a subskeleton, we may as-
sume that any projectional skeleton is simple, that is, indexed by the ranges
of the corresponding projections. We refer the reader to Remark 19 for some
more comments concerning the novelty of this result.

Let us now briefly describe the content of each section.
Section 2 contains basic notations and some preliminary results.
In Section 3 we deal with the construction of canonical projections in-

duced by projectional skeletons. To this aim, we use the method of suitable
models. The main outcome here is the proof of Theorem B. Some technical
constructions used in Section 4 are proved as well, those are concentrated
in Subsection 3.3.

In Section 4 we prove our main results, that is, our characterizations of
WCG, SWCG, weakly K-analytic and Vašák spaces using the notions of
projectional skeletons and SPRI. In Section 5 we suggest further directions
for potential research.

2. Notation and Preliminaries

We use standard notation in Banach space theory as can be found in
[14]. Let us recall the notion of a projectional skeleton on a Banach space.
Let (Γ,≤) be an up-directed partially ordered set. We say that a sequence
(sn)n∈ω of elements of Γ is increasing if sn ≤ sn+1, for every n ∈ ω. We
say that Γ is σ-complete if for every increasing sequence (sn)n∈ω in Γ there
exists supn sn in Γ. If Γ is σ-complete, then we say that a subset Γ′ of Γ
is σ-closed in Γ if for every increasing sequence (sn)n∈ω in Γ′, it holds that
supn sn ∈ Γ′; finally, given A ⊂ Γ we denote by Aσ the smallest σ-closed
subset of Γ containing A.

Definition 1. Let X be a Banach space. A projectional skeleton on X is a
family of bounded linear projections s = (Ps)s∈Γ indexed on a up-directed
and σ-complete set Γ satisfying:

(1) Ps[X] is separable, for every s ∈ Γ;
(2) if s ≤ t, then Ps = Ps ◦ Pt = Pt ◦ Ps;
(3) if (sn)n∈ω is an increasing sequence in Γ and s = supn∈ω sn, then

Ps[X] =
⋃

n∈ω Psn [X];
(4) X =

⋃

s∈Γ Ps[X].

We say that
⋃

s∈Γ P
∗
s [X

∗] is the set induced by s and denote it by D(s).

We introduce also the following definition, which we use further as well.
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Definition 2. LetX be a Banach space and let s = (Ps)s∈Γ be a projectional
skeleton on X.

• We say that s′ = (Ps)s∈Γ′ is a subskeleton of s if Γ′ is a σ-closed
subset of Γ and s′ is a projectional skeleton on X.

• We say that a projectional skeleton (Qλ)λ∈Λ on X is isomorphic to s

if there exists an order-isomorphism φ : Λ → Γ such that Qλ = Pφ(λ),
for every λ ∈ Λ.

Note that if s′ is a subskeleton of s, then D(s′) = D(s). Indeed, it is clear
thatD(s′) ⊂ D(s) and thus it follows from [8, Lemma 3.2] thatD(s′) = D(s).

It follows from [22, Proposition 9 and Lemma 10] that given a projectional
skeleton s = (Ps)s∈Γ on a Banach space X, up to passing to a subskeleton,
we can assume that there exists C ≥ 1 such that ‖Ps‖ ≤ C, for every s ∈ Γ
and the following stronger version of condition (3) holds:

(3’) If (sn)n∈ω is an increasing sequence in Γ and s = supn∈ω sn, then
limn→∞ Psn(x) = Ps(x), for every x ∈ X.

In next lemma we recall one aspect of the strong relationship between
projectional skeletons and norming subspaces. Given a Banach space X
and a real number C ≥ 1, a subset D of X∗ is said to be C-norming if for
every x ∈ X it holds that

‖x‖ ≤ C sup{|d(x)|/‖d‖ : d ∈ D \ {0}}.

Lemma 3. If s is a projectional skeleton on a Banach space X, then there
exists C ≥ 1 such that D(s) is a C-norming subspace of X∗.

Proof. See [21, Lemma 1.3]. �

In the statement of Theorem B, following [11], we use the notion of a
simple projectional skeleton. Let us recall it.

Definition 4. Let X be a Banach space and F be a family of closed sepa-
rable subspaces of X. We say F is rich if

(1) each closed separable subspace of X is contained in an element of F
and

(2) for every increasing sequence (Fn)n∈N in F , we have
⋃

n∈N Fn ∈ F .

A simple projectional skeleton is a family of projections (PF )F∈F on a Ba-
nach space X indexed by a rich family F ordered by inclusion such that

(1) for every F ∈ F we have PF (X) = F and
(2) if E ⊂ F in F , then PE = PE ◦ PF = PF ◦ PE .

In our main results we use the notion of SPRI and of shrinkingness. The
notion of SPRI is nowadays classical, see e.g. [16, Definition 6.2.6]. The
notion of shrinkingness as we introduce below is new and it is inspired by
related concepts of shrinkingness introduced in [15].

Definition 5. Let X be a nonseparable Banach space. We say that a fam-
ily of bounded linear projections (Qα)α∈[0,densX] is a separable projectional
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resolution of the identity (SPRI) in X, if Q0 = 0, QdensX = Id and for every
α ∈ [0,densX) the following holds

(1) (Qα+1 −Qα)[X] is separable,
(2) QαQβ = QβQα = Qβ for β ∈ [0, α], and
(3) x ∈ span{(Qα+1 −Qα)x : 0 ≤ α < densX} for every x ∈ X.

Let X be a Banach space and A ⊂ X be a non-empty bounded set. We
denote by ρA : X∗ ×X∗ → R the pseudo-metric on X∗ given by

ρA(x
∗, y∗) := sup

x∈A
|x∗(x)− y∗(x)|, (x∗, y∗) ∈ X∗ ×X∗.

Definition 6. Let X be a Banach space, Γ be a partially ordered set, s =
{Ps : s ∈ Γ} be a family of bounded projections on X and A be a bounded
subset of X. Given ε ≥ 0 and x∗ ∈ X∗, we say that s is (A, ε)-shrinking in
x∗ if for every increasing sequence (sn)n∈ω of elements of Γ such that s =
supn∈ω sn exists in Γ, it holds that lim supn∈ω ρA(P

∗
sn(x

∗), P ∗
s (x

∗)) ≤ ε‖x∗‖.
Given a bounded subset A of X, we define:

T (s,A) := {(ε,A, x∗) : ε ≥ 0, A ⊂ A, x∗ ∈ X∗ and s is (A, ε)-shrinking in x∗}.

Finally, we collect some notions related to the class of Plichko spaces.
Given a subsetA of a Banach space X and x∗ ∈ X∗, we say that A countably
supports x∗ if supptA(x

∗) := {x ∈ A : x∗(x) 6= 0} is countable and we say
that A countably supports a subset D of X∗ if A countably supports every
element of D. We recall that a Banach space is Plichko if there exists a C-
norming set D ⊂ X∗ and a linearly dense set A ⊂ X such that A countably
supports D. It is nowadays well-known that a Banach spaces admits a
commutative projectional skeleton if and only if it is a Plichko space, see
[22, Theorem 27] for a proof using suitable models and [21, Theorem 3.1]
for a proof not using suitable models.

3. Projections associated to suitable models

In this Section we try to convince the reader that the natural approach
when studying Banach spaces with a projectional skeleton is to use the
method of suitable models. The results which are needed in further Sections
are concentrated in the last subsection.

3.1. Preliminaries concerning suitable models. Here we settle the no-
tation and give some basic observations concerning suitable models. We
refer the interested reader to [7], where more details about this method may
be found (warning: in [7] only countable models were considered, while
here we consider suitable models which are not necessarily countable).

Let M be a fixed set and φ be a formula in the language of ZFC. Then
the relativization of φ to M is the formula φM which is obtained from φ by
replacing each quantifier of the form “∃x” by “∃x ∈M” and each quantifier
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of the form “∀x” by “∀x ∈ M”. If φ(x1, . . . , xn) is a formula with all free
variables shown, then φ is absolute for M if

∀a1, . . . , an ∈M (φM (a1, . . . , an) ↔ φ(a1, . . . , an)).

Definition 7. Let Φ be a finite list of formulas and X be any set. If M is a
set such that X ⊂M and every formula of Φ is absolute for M , then we say
that M is a suitable model for Φ containing X and we write M ≺ (Φ;X).

Note that the Reflexion Theorem [23, Theorem IV.7.4] ensures that given
a set X and a finite list of formulas Φ, there exists a set M such that
M ≺ (Φ;X). Actually, we have the following stronger result that follows
from [23, Theorem IV.7.8].

Theorem 8. Let Φ be a finite list of formulas and X be any set. Then there
exists a set R such that R ≺ (Φ;X), |R| ≤ max(ω, |X|)) and moreover, for
every countable set Z ⊂ R there exists M ⊂ R such that M ≺ (Φ; Z) and
M is countable.

The fact that a certain formula is absolute for M will always be used
exclusively in order to satisfy the assumption of the following lemma. Using
this lemma we can force the model M to contain all the needed objects
created (uniquely) from elements of M .

Lemma 9. Let φ(y, x1, . . . , xn) be a formula with all free variables shown
and let M be a set such that φ and ∃yφ(y, x1, . . . , xn) are absolute for M . If
a1, . . . , an ∈M are such that there exists a set u satisfying φ(u, a1, . . . , an),
then there exists a set v ∈ M satisfying φ(v, a1, . . . , an). Moreover, if there
exists a unique set u such that φ(u, a1, . . . , an), then u ∈M .

Proof. See [6, Lemma 5]. �

Convention 10. Whenever we say “for any suitable model M (the following
holds . . . )” we mean that “there exists a finite list of formulas Φ and a
countable set S such that for every M ≺ (Φ;S) (the following holds . . . )”.

Given a topological space X and a set M , we denote by XM the subset
X ∩M of X. If M is a set and 〈X, τ〉 is a topological space or 〈X, d〉 is a
metric space or 〈X,+, ·, ‖ · ‖〉 is a normed linear space, then we say that M
contains X if 〈X, τ〉 ∈M , 〈X, d〉 ∈M or 〈X,+, ·, ‖ · ‖〉 ∈M , respectively.

Given an up-directed and σ-complete partially ordered set (Γ,≤) and a
projectional skeleton s = (Ps)s∈Γ on a Banach space X, we say that a set
M contains s if {(Γ,≤), P} ⊂ M , where P : Γ → L(X,X) is the mapping
given by P (s) = Ps, for every s ∈ Γ.

Basic properties of suitable models were presented in [6, Lemma 7 and
Lemma 8]. In the next lemma we summarize further properties that will be
used in this work.

Lemma 11. For every suitable model M the following holds:

(1) If f : T → W is a homeomorphism between topological spaces and
f ∈M , then f [T ∩M ] =W ∩M .
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(2) Let X be a Banach space such that M contains X.
(i) The operator span which assigns to every subset of X its linear

hull belongs to M .
(ii) If A ⊂ X is linearly dense and A ∈ M , then span(A ∩M) =

XM .
(iii) If D is a linear subspace of X∗ andM contains D, then D ∩M

w∗
=

((D ∩M)⊥)
⊥.

Proof. Let S be the union of the countable sets from the statements of [6,
Lemma 7 and Lemma 8] and let Φ be the union of the finite lists of formulas
from the statements of [6, Lemma 7 and Lemma 8] enriched by the formulas
(and their subformulas) marked by (∗) in the proof below. Let M ≺ (Φ;S).

Let f : T → W be as in (1). Fixed w ∈ W ∩M , using [6, Lemma 7(2)],
Lemma 9 and the absoluteness of the following formula (and its subformulas)

∃t ∈ T : w = f(t), (∗)

we conclude that there exists t ∈ T ∩M such that w = f(t). This implies
thatW∩M ⊂ f [T ∩M ] and thusW ∩M ⊂ f [T ∩M ]. Note that [6, Lemma
8(3)] ensures that f−1 ∈ M . Thus it follows from the proved above that
T ∩M ⊂ f−1[W ∩M ], which implies that f [T ∩M ] ⊂W ∩M .

Now let X be a Banach space such that M contains X. Item (i) fol-
lows from Lemma 9 and the absoluteness of the following formula (and its
subformulas)

∃ span : P(X) → P(X) : (∀A ⊂ X : spanA is the minimal linear subspace

containing the set A). (∗)

In order to prove (ii), note that [6, Lemma 7(7)] ensures that XM is a closed
linear subspace of X and thus span(A∩M) ⊂ XM . On the other hand, for
every x ∈ X ∩M , using the fact that A is linearly dense in X, item (i),
Lemma 9 and the absoluteness of the following formula (and its subformulas)

∃S ⊂ A : (S is countable and x ∈ spanS), (∗)

we conclude that there exists a countable set S ⊂ A such that S ∈ M
and x ∈ spanS. It follows from [6, Lemma 7(4)] that S ⊂ M and thus we
obtain that x ∈ span(A ∩ M). This shows that X ∩ M ⊂ span(A ∩ M)
and therefore XM ⊂ span(A ∩M). Now let us prove (iii). Note that since
the linear operations of D belong to M , using the fact that Q ⊂ M and
[6, Lemma 7(2)], we conclude that D ∩M is a Q-linear subspace of X∗ and

therefore D ∩M
w∗

is a linear subspace of X∗. Therefore, we have that

((D ∩M)⊥)
⊥ = spanw

∗
(D ∩M) = D ∩M

w∗

. �

In the rest of the paper we will use several times arguments similar to
those presented in the proof of Lemma 11. To simplify the presentation,
we adopt the following terminology. Whenever we say that “it follows from
absoluteness that some object Ω is in M” or that “it follows from abso-
luteness that there exists an object Ω in M with a certain property”, we
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mean that the existence of such Ω in M can be established using Lemma 9
for an appropriate formula φ (which either uniquely defines Ω or states the
property that Ω should satisfy) and that the formulas φ and ∃Ωφ should be
added to the finite list of formulas that are absolute for M .

Next Lemma describes a very concrete construction of suitable models.
The reason for including it here is twofold. First, it shows that there is noth-
ing too abstract when working with suitable models and this terminology
just enables us to replace complicated inductive constructions by an abstract
notion. Second, it is a one of the key tools in the proof of Theorem 18. The
construction is more-or-less standard and described also in [11, Lemma 2.4]
(where it is formulated for countable models only), for the convenience of
the reader we provide a full proof below.

Lemma 12. Let Φ be a finite subformula closed list of formulas and R be a
set such that R ≺ (Φ; ∅). Then there is a mapping ψ : P(R) → P(R) (called
the Skolem function) satisfying the following

(1)

∀A ⊂ R : ψ(A) ≺ (Φ;A) and |ψ(A)| ≤ max(ω, |A|),

(2) The mapping ψ is monotone, i.e., ψ(A) ⊂ ψ(B) whenever A,B ∈
P(R) are such that A ⊂ B.

(3) The mapping ψ is idempotent, i.e., ψ ◦ ψ = ψ.
(4) For every F ⊂ P(R) such that {ψ(F ) : F ∈ F} is up-directed, we

have that ψ(
⋃

F) =
⋃

F∈F ψ(F ).
(5) Let J ⊂ R be an arbitrary set. Then, for every A ⊂ J and B ⊂ R,

we have that

ψ(A) ∩ J ⊂ ψ(B) ⇐⇒ ψ(A) ⊂ ψ(B).

(6) For every F ⊂ P(R), we have that

ψ
(

⋂

F∈F

ψ(F )
)

=
⋂

F∈F

ψ(F ).

Proof. Fix a well-ordering ⊳ on the set R and let ϕ1, . . . , ϕn be the formulas
from the list Φ. For every i ∈ {1, . . . , n}, denote by li the number of all
the free variables of the formula ϕi and consider the mapping Hi : R

li → R
defined as follows:

• if li = 0, then Rli = {∅} and Hi(∅) is the ⊳-least element of R.
• if li > 0 and (r1, . . . , rli) ∈ Rli is fixed, then:

- if there exists j ∈ {1, . . . , n} such that ϕi = ∃xϕj(x, y1, . . . , yli)
and there exists r ∈ R such that ϕj(r, r1, . . . , rli) holds, then
Hi(r1, . . . , rli) is the ⊳-least of such elements.

- in all the other cases, Hi(r1, . . . , rli) is the ⊳-least element of R.

Fixed A ∈ P(R), we define ψ(A) :=
⋃

k∈ω Ak, where (Ak)k∈ω is the increas-
ing sequence of subsets of R built by recursion such that A0 := A and

Ak+1 := Ak ∪
⋃

{Hi(a1, . . . , ali) : i = 1, . . . , n , (a1, . . . , ali) ∈ (Ak)
li},
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for every k ∈ ω. Note that it follows immediately from the definition of
the Skolem function ψ that |ψ(A)| ≤ max(ω, |A|) and that (2) and (3) hold.
Moreover using [7, Lemma 2.1] and the fact that every formula of Φ is
absolute for R, we conclude that ψ(A) ≺ (Φ;A), since clearly A ⊂ ψ(A).

Let F be as in (4). Then it follows from (2) that ψ(
⋃

F) ⊃
⋃

F∈F ψ(F ).
In order to prove the other inclusion, firstly we claim that ψ(

⋃

F∈F ψ(F )) =
⋃

F∈F ψ(F ). Indeed, let (Ak)k∈ω be the sequence used in the definition of
ψ(

⋃

F∈F ψ(F )) and let us show by induction that Ak =
⋃

F∈F ψ(F ), for
every k ∈ ω. It is clear that A0 =

⋃

F∈F ψ(F ). Now fix k ∈ ω and assume
that Ak =

⋃

F∈F ψ(F ). Note that fixed i ∈ {1, . . . , n} and a1, . . . , ali ∈
Ak =

⋃

F∈F ψ(F ), there exists F ∈ F such that a1, . . . , ali ∈ ψ(F ), since
{ψ(F ) : F ∈ F} is up-directed. This implies that Hi(a1, . . . , ali) ∈ ψ(F ) and
thus Ak+1 =

⋃

F∈F ψ(F ). Since ψ(
⋃

F∈F ψ(F )) =
⋃

k∈ω Ak, we conclude the
claim. Finally, since

⋃

F ⊂
⋃

F∈F ψ(F ), using (2) we obtain that ψ(
⋃

F) ⊂
ψ(

⋃

F∈F ψ(F )) =
⋃

F∈F ψ(F ).
Let J,A,B be as in (5). It is obvious that if ψ(A) ⊂ ψ(B), then ψ(A)∩J ⊂

ψ(B). Now suppose that ψ(A) ∩ J ⊂ ψ(B) and note that this implies that
A ⊂ ψ(B). Indeed, using the fact that A ⊂ ψ(A), we obtain that:

A = A ∩ J ⊂ ψ(A) ∩ J ⊂ ψ(B).

Therefore, using (2) and (3), we conclude that ψ(A) ⊂ ψ(B).
Finally, fix F ⊂ P(R) and let (Ak)k∈ω be the sequence used in the defini-

tion of ψ
(

⋂

F∈F ψ(F )
)

. By an inductive argument similar to the presented

in the proof of (4), we conclude that Ak =
⋂

F∈F ψ(F ), for every k ∈ ω.

This establishes (6), since ψ
(

⋂

F∈F ψ(F )
)

=
⋃

k∈ω Ak. �

The following proposition goes essentially back to the proof of [9, Theorem
15]. We record it here for further use in Subsection 3.3. As usual we denote
the density of a topological space X by densX.

Proposition 13. There exist a countable set S and a finite list of formu-
las Φ such that the following holds: Let X be a topological space which is
homeomorphic to a Banach space with κ := densX. Then there exists a
countable set S′ ⊃ S such that

∀M,N ≺ (Φ;S′) : M ∩ κ ⊂ N ∩ κ⇔ XM ⊂ XN .

Proof. Let S be the union of the countable sets from the statements of
Lemma 11 and [6, Lemma 7 and Lemma 8] and let Φ be the union of the
finite lists of formulas from the statements of Lemma 11 and [6, Lemma 7
and Lemma 8]. By the result of H. Toruńczyk [26], all infinite-dimensional
Banach spaces with the same density are topologically homeomorphic. Thus,
there exists a (not necessarily linear) homeomorphism f : ℓ2(κ) → X. Let
(ei)i∈κ be the canonical orthonormal basis of ℓ2(κ), e : κ → ℓ2(κ) be the
map given by e(i) := ei, for every i < κ and let S′ be a countable set that
contains X, ℓ2(κ) and such that S ∪ {f, e} ⊂ S′.
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Note that XM = f
[

span{ei : i ∈ κ ∩M}
]

, for every M ≺ (Φ;S′). Indeed,

it follows from Lemma 11(2)(ii) and [6, Lemma 7(2)] that ℓ2(κ) ∩M =
span

(

{ei : i ∈ κ} ∩M
)

. Thus using Lemma 11(1) and [6, Lemma 8(4)], we

conclude that XM = f
[

span{ei : i ∈ κ ∩M}
]

. Now fix M,N ≺ (Φ;S′). By
the above, it is easy to observe that M ∩ κ ⊂ N ∩ κ implies XM ⊂ XN . On
the other hand, if XM ⊂ XN and i ∈ M ∩ κ is given, then f(ei) ∈ XM ⊂
XN = f

[

span{ej : j ∈ N ∩ κ}
]

and so we have that i ∈ N ∩ κ, since f is a
homeomorphism and ei /∈ span{ej : j 6= i, j < κ}. �

3.2. Canonical projections in spaces with a projectional skeleton.

Next lemma is a key tool for the construction of projections in spaces with
a projectional skeleton. This is more-or-less known to the experts, see [22,
Lemma 4] and [4, Lemma 5.1], where proofs are essentially given for suitable
models which are countable. Since this is a crucial tool for us and we need it
for uncountable models as well, for the convenience of the reader we include
the full proof here.

Lemma 14. For every suitable model M the following holds: Let X be a
Banach space, C ≥ 1 and D ⊂ X∗ be a C-norming subspace such that M
contains X and D ∈M . Then

(i) XM ∩ (D ∩M)⊥ = {0},
(ii) XM + (D ∩M)⊥ is a closed subspace of X and the canonical linear

projection from XM ⊕ (D∩M)⊥ onto XM has norm less or equal to
C,

and the following conditions are equivalent

(1) XM + (D ∩M)⊥ = X,

(2) X ∩M separates the points of D ∩M
w∗

,
(3) there exists a unique projection PM : X → X with PM [X] = XM

and kerPM = (D ∩M)⊥,
(4) there exists a unique projection PM : X → X with PM [X] = XM

and d = d ◦ PM for every d ∈ D ∩M .

Moreover, for any projection P : X → X with P [X] = XM we have kerP =
(D ∩M)⊥ if and only if d = d ◦ P for every d ∈ D ∩M .

Proof. Let S be the union of the countable sets from the statements of
Lemma 11 and [6, Lemma 7] and let Φ be the union of the finite lists of
formulas from the statements of Lemma 11 and [6, Lemma 7], enriched by
the finitely many formulas used in the proof below. Let M ≺ (Φ;S) be such
that D ∈M and M contains X.

We claim that for every x ∈ XM and y ∈ (D ∩ M)⊥, it holds that
‖x‖ ≤ C‖x + y‖. Indeed, fix x ∈ X ∩ M , n ∈ N and a rational number
q > C. By Lemma 9 and the absoluteness of the following formula (and its
subformulas)

∃d ∈ D : ‖x‖ < q |d(x)|‖d‖ + 1
n
,
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there is d ∈ D∩M such that ‖x‖ < q |d(x)|‖d‖ + 1
n
. Thus for every y ∈ (D∩M)⊥

we have that

‖x‖ < q |d(x)|‖d‖ + 1
n
= q |d(x+y)|‖d‖ + 1

n
≤ q‖x+ y‖+ 1

n
.

Since n ∈ N and q ∈ (C,∞) ∩ Q were arbitrary, we obtain that ‖x‖ ≤
C‖x+ y‖, for every x ∈ X ∩M and y ∈ (D∩M)⊥, which implies the claim.
It is easy to see that (i) and (ii) follow from this claim.

(1)⇒(2): If (1) holds then for every x∗ ∈ D ∩M
w∗

with x∗ 6= 0, there exists
x ∈ XM and y ∈ (D ∩M)⊥ such that x∗(x + y) 6= 0. Note that Lemma

11(2)(iii) ensures that D ∩M
w∗

= ((D ∩M)⊥)
⊥. Therefore, we have that

x∗(x) = x∗(x + y) 6= 0, which implies that XM separates the points of

D ∩M
w∗

and thus (2) follows from the density of X ∩M in XM .

(2)⇒(1): If (2) holds, then we have

(XM + (D ∩M)⊥)
⊥ ⊂ (XM )⊥ ∩ ((D ∩M)⊥)

⊥ = (XM )⊥ ∩D ∩M
w∗

= {0},

so we obtain that XM + (D ∩M)⊥ ⊃ {0}⊥ = X and (1) holds.

The equivalence between (1) and (3) is obvious.

Finally, in order to conlude the proof, let us show that if P : X → X
is a projection with P [X] = XM , then kerP = (D ∩M)⊥, if and only if
d = d ◦ P , for every d ∈ D ∩M . It is easy to see that if kerP = (D ∩M)⊥,
then d = d ◦ P , for every d ∈ D ∩M and the converse follows from (i). �

It was shown in [22, Theorem 15] that a Banach space X admits a pro-
jectional skeleton if and only if there exist C ≥ 1 and a C-norming subspace
D of X∗ such that X = XM + (D ∩ M)⊥, for every countable suitable
model M . It follows from Proposition 15 that we do not need to assume
countability of the model and moreover Proposition 15 provides us a formula
for the canonical projection from Lemma 14, when D is a set induced by a
projectional skeleton.

Proposition 15. For every suitable model M , the following holds: Let X
be a Banach space and s = (Ps)s∈Γ be a projectional skeleton on X. If M
contains X and s, then Γ∩M is up-directed and the mapping PM : X → X
given by

PM (x) = lim
s∈Γ∩M

Ps(x), ∀x ∈ X

is a well-defined bounded projection such that PM [X] = XM and kerPM =
(D(s) ∩M)⊥.

Proof. Let S be the union of the countable sets from the statements of [6,
Lemma 7 and Lemma 8] and Lemma 14 and let Φ be the union of the
finite lists of formulas from the statements of [6, Lemma 7 and Lemma 8]
and Lemma 14 enriched by the finitely many formulas needed in the proof
below. Let M ≺ (Φ;S) containing X and s. Note that it follows from [6,
Lemma 8(1)] that Γ∩M is up-directed and so [22, Lemma 11] ensures that

PM is a well-defined bounded projection onX with PM [X] =
⋃

s∈Γ∩M Ps[X].



CHARACTERIZATIONS USING SKELETONS AND SPRI 13

First, we claim that PM [X] = XM . Indeed, given s ∈ Γ ∩ M , since
Ps[X] is separable, by the absoluteness of the following formula (and its
subformulas)

∃S ⊂ X : (S is countable and Ps[S] = Ps[X]),

we conclude that there exists a countable set S ∈M such that Ps[S] = Ps[X]
and using [6, Lemma 7 and 8] we have that S ⊂ M and Ps[S] ⊂ X ∩M ,
which implies that Ps[X] ⊂ XM and since s ∈ Γ ∩ M was arbitrary, we
obtain PM [X] ⊂ XM . On the other hand, fixed x ∈ X ∩M , it follows from
absoluteness that there exists s ∈ Γ ∩M such that x ∈ Ps[X] ⊂ PM [X];
hence, we also have that XM ⊂ PM [X]. This proves the claim.

Note that sinceM contains s, it follows from absoluteness that D(s) ∈M
and thus by Lemmas 3 and 14, in order to conclude that kerPM = (D(s) ∩
M)⊥, it suffices to show that d = d ◦ PM , for every d ∈ D(s) ∩M . Fixed
d ∈ D(s)∩M , it follows from absoluteness that there exists s ∈ Γ∩M such
that d = P ∗

s (d) = d ◦ Ps, which implies that d = d ◦ PM . �

We believe that the projections from Lemma 14 that were constructed
in Proposition 15 are the key ingredients to handle inductive arguments in
spaces with a projectional skeleton. Let us give it a name.

Definition 16. Let X be a Banach space, C ≥ 1 and D be a C-norming
subspace of X∗. Given a set M , we say that PM is the canonical projection
associated to M , X and D if it is the unique projection on X satisfying
PM [X] = XM and kerPM = (D ∩ M)⊥. We say that a set M admits
canonical projection associated to X and D if there exists the canonical
projection associated to M , X and D.

In Plichko spaces we may apply also the following lemma which we record
here for further use.

Lemma 17. Let X be a Banach space, s be a projectional skeleton on X
and A be a subset of X that countably supports D(s). Then there exist a
countable set S and a finite list of formulas Φ such that if M ≺ (Φ;S∪{A})
andM contains X and s, thenM admits canonical projection PM associated
to X and D(s) and it holds that PM (x) ∈ {0, x}, for every x ∈ A.

Proof. Let S be the union of the countable sets from the statements of
Proposition 15 and [6, Lemma 7] and let Φ be the union of the finite lists of
formulas from the statements of Proposition 15 and [6, Lemma 7] enriched
by the finitely many formulas used in the proof below. FixM ≺ (Φ;S∪{A})
such that M contains X and s and note that Proposition 15 ensures that
M admits canonical projection PM associated to X and D(s). It is clear
that A ∩M ⊂ PM [X]. Fixed x∗ ∈ D(s) ∩M , by absoluteness we have that
supptA(x

∗) ∈ M and thus it follows from the countability of supptA(x
∗)

and [6, Lemma 7(4)] that supptA(x
∗) ⊂ M . This implies that A \M ⊂

kerPM = (D(s) ∩M)⊥ and concludes the proof. �



14 C. CORREA, M. CÚTH, AND J. SOMAGLIA

3.3. Proof of Theorem B and other results used in further sections.

In this subsection we concentrate on the outcomes of Section 3 that will be
applied in Section 4. The first outcome is Theorem B. We formulate a
slightly more general result from which Theorem B immediately follows.

Theorem 18. Let X be a Banach space and {sn : n ∈ ω} be a countable
family of projectional skeletons on X inducing the same set D ⊂ X∗. Then
there exists a simple projectional skeleton on X which is isomorphic to a
subskeleton of sn, for every n ∈ ω.

Moreover, for every countable set S and every finite list of formulas Φ,
there exists a family M consisting of countable suitable models for Φ con-
taining S such that everyM ∈ M admits canonical projection PM associated
to X and D and if M is ordered by inclusion, then the following holds:

• F = {XM : M ∈ M} is a rich family and if we set PF := PM , when-
ever F = XM with M ∈ M, then (PF )F∈F is simple projectional
skeleton on X isomorphic to (PM )M∈M, via the order isomorphism
M ∋M 7→ XM ∈ F .

• (PM )M∈M is isomorphic to a subskeleton of sn, for every n ∈ ω.

Proof. Let κ = densX and d : κ → X be such that {d(i) : i < κ} is dense
in X. Fix a countable set S and a finite list of formulas Φ. Let Φ′ be a
finite subformula closed list of formulas that contains Φ and the union of
the lists of formulas from the statements of Proposition 15, Proposition 13
and [6, Lemma 7]. Let S′ be a countable set such that S ⊂ S′, S′ contains
X, d, sn, for every n ∈ ω and S′ contains the union of the countable sets
from the statements of Proposition 15, Proposition 13 and [6, Lemma 7].
By [23, Theorem IV.7.4], there exists a set R such that R ≺ (Φ′;S′∪κ). Let
ψ : P(R) → P(R) be the Skolem function given by Lemma 12. Consider
the following family of countable subsets of R

M := {ψ(A ∪ S′) : A ∈ [κ]≤ω}.

Note that for every M ∈ M it holds that M ≺ (Φ′;S′) and therefore it
follows from Proposition 15 that M admits canonical projection PM associ-
ated to X and D. In order to see that the mapping M ∋ M 7→ XM ∈ F
is an order-isomorphism, if M and F are ordered by inclusion, note that it
follows from Lemma 12(5) applied to J = κ∪S′ that for everyM,N ∈ M, it
holds that M ⊂ N if and only if M ∩κ ⊂ N ∩κ, which is by Proposition 13
equivalent to XM ⊂ XN .

Now let us show that F is a rich family. If Y ⊂ X is a separable
space, then there exists A ∈ [κ]≤ω such that Y ⊂ {d(i) : i ∈ A} and by

[6, Lemma 7(2)] we have that {d(i) : i ∈ A} ⊂ Xψ(A∪S′). Now let (Mn)n∈N
be an increasing sequence in M and set M∞ :=

⋃

n∈NMn. It follows
from Lemma 12(4) that M∞ belongs to M and it is easy to check that

XM∞ =
⋃

n∈NXMn . Thus, F is a rich family. Moreover, ifM,N ∈ M satisfy
XM ⊂ XN , then PM (X) = XM ⊂ XN = PN (X) and kerPM = (D∩M)⊥ ⊃
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(D ∩N)⊥ = kerPN , which implies that PM = PN ◦ PM = PM ◦ PN . There-
fore, we conclude that (PF )F∈F is a simple projectional skeleton on X that
is isomorphic to (PM )M∈M.

Finally, fix n ∈ N and let us show that (PM )M∈M is isomorphic to a
subskeleton of sn. Consider the mapping φ : M → Γn given by φ(M) =
sup(Γn ∩ M), where sn = (Pns )s∈Γn . Note that PM = Pn

φ(M), for every

M ∈ M. Indeed, since Γn ∩ M is countable and up-directed we find an
increasing sequence (sk)k∈ω from Γn ∩M with supk sk = s = φ(M). Then,
using that the sequence {sk : k ∈ ω} is cofinal in Γn ∩M , we obtain that
PM = P{sk : k∈ω} = Pφ(M) as claimed above. To see that φ is an order-
isomorphism onto its image, fix M,N ∈ M. If M ⊂ N , then it is clear
that φ(M) ≤ φ(N). On the other hand, if φ(M) ≤ φ(N), then XM =
Pφn(M)[X] ⊂ Pφn(N)[X] = XN and thus M ⊂ N . It remains to show that
φ[M] is a σ-closed subset of Γn. Let (Mk)k∈N be an increasing sequence in
M. As discussed previously we have that M∞ :=

⋃

n∈NMn ∈ M and it is
easy to see that φ(M∞) = supn∈N φ(Mn). �

Remark 19. As mentioned above, Theorem 18 is a generalization of [11,
Theorem 4.1]. Note however that in the proof of [11, Theorem 4.1] there
is a gap which was fixed only later. Namely, the authors used the fact
that any Banach space with a projectional skeleton has a Markushevich
basis, which was not known at the time and it was proved later in [21].
Our proof of Theorem 18 is different from the proof of [11, Theorem 4.1] -
the difference is that, inspired by the proof of [9, Theorem 4], instead of the
existence of Markushevich basis we use the deep result by H. Toruńczyk that
all infinite-dimensional Banach spaces of the same density are topologically
homeomorphic.

The following seems to be the crucial property of projectional skeletons
we need further in our inductive arguments.

Corollary 20. Let X be a Banach space, s be a projectional skeleton on X
and A be a subset of X that countably supports D(s). Then there exists a
projectional skeleton (Ps)s∈Γ on X that is isomorphic to a subskeleton of s
and such that Ps(x) ∈ {0, x}, for every x ∈ A and every s ∈ Γ.

Proof. This is a consequence of Lemma 17 and Theorem 18. �

Remark 21. Note that if there exist a projectional skeleton (Ps)s∈Γ on a
Banach space X and a linearly dense set A ⊂ X such that {Psx : s ∈ Γ} ⊂
{0, x} for every x ∈ A, then we easily obtain that PsPtx = PtPsx, for
every x ∈ A, which implies that the skeleton is commutative. Therefore, it
seems that our methods apply to subclasses of Plichko spaces (equivalently,
as mentioned in Section 2, spaces admitting a commutative projectional
skeleton).

In the following technical result, we construct a transfinite sequence of
projections using the method of suitable model. An alternative way of con-
structing this sequence would be to use the approach from [21, Section 2].
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One could deduce many other properties of the projections constructed in
the proof of Proposition 22, but we try to formulate only the ones which
will be used further.

Proposition 22. Let X be a Banach space with κ := densX, A ⊂ X be a
bounded set and let s = (Ps)s∈Γ be a projectional skeleton on X such that A
countably supports D(s) and Psx ∈ {0, x}, for every x ∈ A and every s ∈ Γ.
Then there exists a sequence of bounded projections p = (Pα)α≤κ satisfying
the following properties

(P1) P0 = 0 and Pκ = Id.
(P2) For every α < β, we have that Pα ◦ Pβ = Pβ ◦ Pα = Pα.
(P3) Let α ≤ κ, let η : [0, α) → κ be an increasing function and let ξ ≤ κ

be a limit ordinal with supβ<α η(β) = ξ. Then limβ<α Pη(β)(x) =
Pξ(x), for every x ∈ X.

(P4) For every α ∈ [0, κ), we have that dens(Pα[X]) < κ.
(P5) Pαx ∈ {0, x}, for every α ≤ κ and x ∈ A;
(P6) For every α < κ there exists a cofinal σ-closed subset Γα ⊂ (Γ ∩

Mα+1)σ such that the family sα = (Ps|(Pα+1−Pα)[X])s∈Γα is a projec-
tional skeleton on (Pα+1 − Pα)[X].

Moreover, (Pα+1 − Pα)[A] countably supports D(sα).
(P7) T (s,A) ⊂ T (p,A).

Proof. Let S be union of the countable sets from the statements of Proposi-
tion 15 and Lemma 17 and let Φ be the union of the finite lists of formulas
from the statements of Proposition 15 and Lemma 17 enriched by the finitely
many formulas used in the proof below. Let {dα : α < κ} be a dense set in
X. Using Theorem 8, we construct a transfinite sequence of suitable models
(Mα)α≤κ such that for every α ∈ [0, κ] we have

• |Mα| ≤ max(ω, |α|), Mα ≺ (Φ;S ∪ {A}) and Mα contains X and s,
• Mα+1 ⊃Mα ∪ {dα} whenever α 6= κ,
• Mα =

⋃

β<αMβ, if α is a limit ordinal (in order to see that an
increasing union of suitable models is a suitable model we use e.g.
[7, Lemma 2.1]).

Set P0 := 0 and for α ∈ (0, κ] we let Pα be the canonical projection associated
to Mα, X and D(s) given by Proposition 15, that is, it holds that Pα[X] =
XMα , kerPα = (D(s) ∩Mα)⊥ and

(1) Pαx = lim
s∈Γ∩Mα

Psx, x ∈ X,

where Γ∩Mα is an up-directed set. Since Mκ ⊃ {dα : α < κ}, we have that
Pκ[X] = X and thus (P1) holds. Note that (P2) follows immediately from
[21, Lemma 2.2], since the sequence (Γ ∩Mα)α≤κ is increasing. In order to
prove (P3), pick α, η as in (P3) and fix x ∈ X and ε > 0. Then there exists
s0 ∈ Γ∩Mξ such that for every s ≥ s0, s ∈Mξ∩Γ we have ‖Psx−Pξx‖ ≤ ε.
Since Mξ =

⋃

β<αMη(β), there exists β0 < α with s0 ∈ Mη(β0). Then for
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every β ∈ [β0, α) we have

‖Pη(β)(x)− Pξx‖ = lim
s∈Γ∩Mη(β),s≥s0

‖Ps(x)− Pξx‖ ≤ ε,

which implies that limβ<α Pη(β)(x) = PMξ
(x) and so (P3) holds. Clearly

(P4) follows from the fact that Pα[X] = XMα and |Mα| < κ for α < κ and
(P5) is a consequence of Lemma 17.

In order to prove (P6), fix α < κ. By [21, Proposition 2.3 (iii)], the family
(Ps|Pα+1[X])s∈(Γ∩Mα+1)σ is a projectional skeleton on Pα+1[X] with induced
set given by

Dα+1 :=
⋃

s∈(Γ∩Mα+1)σ

{P ∗
s x

∗|Pα+1[X] : x
∗ ∈ X∗}.

Observe that it follows from absoluteness that given d ∈ D(s) ∩Mα there
exists s ∈ Γ ∩Mα+1 such that d ∈ P ∗

sX
∗ and thus d|Pα+1[X] ∈ Dα+1. This

implies that the set

(Pα+1 − Pα)[X] = Pα+1[X] ∩ kerPα =
⋂

d∈D(s)∩Mα

ker d|Pα+1[X]

is σ(Pα+1[X],Dα+1)-closed and then the existence of Γα as in (P6) follows
from [21, Lemma 2.1]. The moreover part of (P6) follows from (P5), since
(Pα+1 − Pα)[A] ⊂ A∪ {0}.

Finally let us prove (P7). Let ε > 0, A ⊂ A and x∗ ∈ X∗ be such
that s is (A, ε)-shrinking for x∗, pick an increasing sequence (αk)k∈ω in
[0, κ) and put α = supk αk. In order to get a contradiction assume that
lim supk ρA(P

∗
αk
(x∗), P ∗

α(x
∗)) > ε‖x∗‖ in which case, up to passing to a sub-

sequence, we may assume that there is δ > 0 such that

ρA(P
∗
αk
(x∗), P ∗

α(x
∗)) > ε‖x∗‖+ δ, k ∈ ω.

Fixed k ∈ ω, by (P5) we have that

ρA(P
∗
αk
(x∗), P ∗

α(x
∗)) = sup

x∈A
|x∗(Pαk

(x))− x∗(Pα(x))|

= sup
x∈A

{

0 if Pαk
x = Pαx

|x∗(x)| if Pαk
x 6= Pαx,

which implies that there exists xk ∈ A such that |x∗(xk)| ≥ ε‖x∗‖ + δ.
Moreover, for the same xk ∈ A, it follows from (P2) that Pα(xk) = xk and
Pαk

(xk) = 0. Now, using that Psx ∈ {0, x}, for every s ∈ Γ and x ∈ A,
we may recursively construct two increasing sequences {sj}j∈ω ⊂ Mα ∩ Γ,
{kj}j∈ω ⊂ N satisfying the following properties

• s2j+1 ∈Mαkj
and Ps2j+1xkj = 0, for every j ∈ ω;

• s2j+2 ∈Mαkj+1
and Psixkj = xkj , for every j ∈ ω and i ≥ 2j + 2.

Indeed, in the initial step of the induction we put k0 = 1. If k0, . . . , kj are
defined, using (1) we find s2j+1 ∈ Mαkj

such that Ps2j+1xkj = Pαkj
xkj = 0

and we find s2j+2 ∈ Mα ∩ Γ =
⋃

k∈ωMαk
∩ Γ such that s2j+2 ≥ s2j+1 and
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Psixkj = Pαxkj = xkj , for every i ≥ 2j + 2. Finally, we pick kj+1 > kj such
that s2j+2 ∈Mαkj+1

, which finishes the inductive step.

If s := supj sj , then we have that Ps2j+1xkj = 0 and Psxkj = xkj for every
j ∈ ω. Therefore, for every j ∈ ω, we have that

ρA(P
∗
s2j+1

(x∗), P ∗
s (x

∗)) ≥ |x∗(xkj )| ≥ ε‖x∗‖+ δ.

But this contradicts the fact that s is (A, ε)-shrinking in x∗. Thus, (P7)
holds. �

4. Main results

This section contains the proofs of our main results. The main technical
parts are concentrated in Subsection 4.1 and the proofs of our characteriza-
tions are then presented in the remainder of the section.

4.1. Shrinkingness passes from projectional skeletons to SPRI. In
this first subsection we aim at proving Theorem 24, which enables us to pass
shrinking-like properties from projectional skeletons to SPRI.

Lemma 23. Let X be a Banach space with a projectional skeleton s and
κ := dens(X). Let A ⊂ X be a bounded set and let p = (Pα)α≤κ be a
sequence of bounded projections satisfying (P1), (P2), (P3), (P5) and (P7).
Assume that for every α < κ the space (Pα+1 − Pα)[X] is either separable
or it admits a SPRI Sα = (Qαβ)β≤µα , which satisfies:

(1) Qαβx ∈ {0, x}, for every x ∈ (Pα+1 − Pα)[A] and β ∈ [0, µα];

(2) for every x ∈ (Pα+1−Pα)[A], min{β ≤ µα : Qαβx = x} is not a limit
ordinal;

(3) for every (ε,A, x∗) ∈ T (s,A), we have that

(εα, Aα, x
∗
α) ∈ T (Sα,Aα),

where Aα := (Pα+1−Pα)[A], Aα := (Pα+1−Pα)[A], x
∗
α := x∗|(Pα+1−Pα)[X],

εα := ε ‖x
∗‖

‖x∗α‖
, if x∗α 6= 0 and εα := 0, if x∗α = 0.

Then the whole space X admits a SPRI S = (Qα)α≤κ such that

(4) Qαx ∈ {0, x}, for every x ∈ A and α ∈ [0, κ];
(5) for every x ∈ A, min{α ≤ κ : Qαx = x} is not a limit ordinal;
(6) T (s,A) ⊂ T (S,A).

Proof. We argue as in [16, Proposition 6.2.7]. Let α < κ. If (Pα+1 −Pα)[X]
is separable, then we put µα = ω, Qα0 ≡ 0, and Qαβ = Pα+1 − Pα, for all

0 < β < ω. If (Pα+1 − Pα)[X] is nonseparable, let (Qαβ)β≤µα be the SPRI
given by the hypothesis. We start by defining Q(κ,0) = Id,

Q(α,β) = Qαβ(Pα+1 − Pα) + Pα, 0 ≤ β < µα, 0 ≤ α < µ,

Λ = {(α, β) : β < µα, α < µ} ∪ {(µ, 0)}.

We endow Λ with the lexicographical order, i.e (α, β) ≤ (α′, β′) if and only
if α < α′ or α = α′ and β ≤ β′. With the same proof as the one presented
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in [16, Proposition 6.2.7], we conclude that S := (Q(α,β))(α,β)∈Λ is a SPRI
on X. Let us show S satisfies the additional properties (4), (5) and (6).

(4): Fix x ∈ A and α ∈ [0, κ). Note that by (P2) and (P5) we have that
(Pα+1 − Pα)x ∈ {0, x}. Thus, if µα = ω, then (4) follows. Otherwise,
if Pαx = 0, then since (Pα+1 − Pα)x ∈ (Pα+1 − Pα)[A], applying (1) we
obtain that Qαβ(Pα+1 − Pα)(x) ∈ {0, (Pα+1 − Pα)(x)} = {0, x}, therefore

Q(α,β)x ∈ {0, x}. On the other hand if Pαx = x, then Pα+1x = x as well
and so Q(α,β)x = Pαx = x. This proves (4).

(5): Fix x ∈ A. Note that if x = 0, then min{(α, β) ∈ Λ : Q(α,β)x = x} =
(0, 0). Now assume that x 6= 0 and let us consider the following cases:

• min{(α, β) ∈ Λ : Q(α,β)x = x} = (γ + 1, 0), for some γ < κ. Let
us first notice that x = Q(γ+1,0)x = Pγ+1x and 0 = Q(γ,0)x = Pγx.
Moreover for β < µγ we have that

0 = Q(γ,β)x = Qγβ((Pγ+1 − Pγ)(x)) + Pγ(x) = Qγβx.

If µγ = ω, then Qγ1x = (Pγ+1−Pγ)(x) = x, which is a contradiction.
Otherwise, since (Pγ+1 − Pγ)(x) = x and (Qγβ)β≤µγ is a SPRI on

(Pγ+1−Pγ)[X] satisfying (1), there exists β < µγ such that Qγβx = x,

which is a contradiction.
• min{(α, β) ∈ Λ : Q(α,β)x = x} = (γ, 0) for some γ ≤ κ limit ordinal.
Observing that x = Q(γ,0)x = Pγx, by (P3) and (P5) there exists
δ < γ such that Pδ+1x = x. Thus, x = Pδ+1x = Q(δ+1,0)x, which is
in contradiction with the minimality of (γ, 0).

Since the cases above were leading to a contradiction, it holds that min{(α, β) ∈
Λ : Q(α,β)x = x} = (γ, δ) for some γ < κ and 0 < δ < µγ . If µγ = ω, then
δ is successor, so (γ, δ) is successor. Assume that µγ > ω. If Pγx = x, then
Q(γ,0)x = x. But this contradicts the minimality of (γ, δ). So, by (P5) we
have that Pγx = 0 and since x = Q(γ,δ)x we cannot have Pγ+1x = 0 and

therefore, by (P5) we have Pγ+1x = x. Then x = Q(γ,δ)x = QγδPγ+1x =

Qγδx, therefore (2) ensures that δ is a successor ordinal and so (γ, δ) is a
successor ordinal. This establishes (5).

(6): Fix (ε,A, x∗) ∈ T (s,A) and let ((αk, βk))k∈ω be an increasing sequence
in Λ such that supk(αk, βk) = (α, β). Only three cases are possible.

Case 1: β 6= 0.

In this case αk is eventually constant and supk βk = β < µα. Thus we may
assume that αk = α, for every k ∈ ω. If µα = ω, then the result follows
easily. Now assume that µα > ω and note that fixed x ∈ A, we have that

|Q∗
(α,βk)

(x∗)(x)−Q∗
(α,β)(x

∗)(x)|

= |(Qαβk)
∗(x∗)((Pα+1 − Pα)(x)) − (Qαβ)

∗(x∗)((Pα+1 − Pα)(x))|

≤ ρAα((Q
α
βk
)∗(x∗α), (Q

α
β)

∗(x∗α)).
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Thus,

ρA(Q
∗
(α,βk)

(x∗), Q∗
(α,β)(x

∗)) ≤ ρAα((Q
α
βk
)∗(x∗α), (Q

α
β )

∗(x∗α))

and by (3) we get

lim sup
k

ρA(Q
∗
(α,βk)

(x∗), Q∗
(α,β)(x

∗)) ≤ εα‖x
∗
α‖ ≤ ε‖x∗‖.

Therefore we conclude that (ε,A, x∗) ∈ T (S,A).

Case 2: β = 0 and α is limit.

In this case α = supk αk. Fix x ∈ A and recall that Q(α,0) = Pα. It
follows from (P3) and (P5) that (Pαk+1 − Pαk

)(x) is eventually equal to
zero. Therefore we get

|Q∗
(αk ,βk)

(x∗)(x) −Q∗
(α,0)(x

∗)(x)|

= |(Qαk

βk
)∗(x∗)((Pαk+1 − Pαk

)(x)) + x∗(Pαk
x)− x∗(Pαx)|

= |x∗(Pαk
x)− x∗(Pαx)| ≤ ρA(P

∗
αk
(x∗), P ∗

α(x
∗)).

From which we get

ρA(Q
∗
(αk ,βk)

(x∗), Q∗
(α,β)(x

∗)) ≤ ρA((P
∗
αk
(x∗), P ∗

α(x
∗)).

Note that (P7) ensures that (ε,A, x∗) ∈ T (p,A) and thus we obtain that

lim sup
k

ρA(Q
∗
(αk ,βk)

(x∗), Q∗
(α,β)(x

∗)) ≤ ε‖x∗‖.

This shows that (ε,A, x∗) ∈ T (S,A).

Case 3: β = 0 and α = γ + 1, for some γ < κ.

In this case αk is eventually equal to γ and supk βk = µγ . So we may assume
that αk = γ, for every k ∈ ω. Fix x ∈ A and recall that Q(γ+1,0) = Pγ+1. If
µγ = ω, then we observe that Q(γ,βk) = Pγ+1 whenever βk 6= 0, so eventually

we have Q(αk ,βk) = Q(α,β). Now assume that µγ > ω. Using that Qγµγ is the
identity map on (Pγ+1 − Pγ)[X], we obtain

|Q∗
(γ,βk)

(x∗)(x)−Q∗
(γ+1,0)(x

∗)(x)|

= |(Qγβk)
∗(x∗)((Pγ+1 − Pγ)(x)) − x∗((Pγ+1 − Pγ)(x)))|

= |(Qγβk)
∗(x∗)((Pγ+1 − Pγ)(x)) − (Qγµγ )

∗(x∗)((Pγ+1 − Pγ)(x))|

≤ ρAγ ((Q
γ
βk
)∗(x∗γ), (Q

γ
µγ )

∗(x∗γ)).

Therefore

ρA(Q
∗
(αk ,βk)

(x∗), Q∗
(α,0)(x

∗)) ≤ ρAγ ((Q
γ
βk
)∗(x∗γ), (Q

γ
µγ
)∗(x∗γ))

and using (3), we obtain that lim supk ρA(Q
∗
(αk ,βk)

(x∗), Q∗
(α,0)(x

∗)) ≤ ε‖x∗‖.

This shows that (ε,A, x∗) ∈ T (S,A). �
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Theorem 24. Let X be a nonseparable Banach space with a projectional
skeleton s = (Ps)s∈Γ and κ := densX. If A is a bounded subset of X
countably supporting D(s), then X admits a SPRI S = (Qα)α≤κ satisfying
the following conditions

(a) For every x ∈ A and α ∈ [0, κ], Qαx ∈ {0, x};
(b) For every x ∈ A, min{α ≤ κ : Qαx = x} is not a limit ordinal;
(c) T (s,A) ⊂ T (S,A).

Proof. It follows from Corollary 20 and the fact that if s′ is a subskeleton
of s, then D(s′) = D(s) and T (s,A) ⊂ T (s′,A) that we may without loss
of generality assume that Psx ∈ {0, x} for every x ∈ A and s ∈ Γ. We will
prove the result by induction on κ ≥ ω1. Let p = (Pα)α≤κ be the sequence of
bounded projections satisfying (P1)-(P7) given by Proposition 22. If κ = ω1,
then using (P1), (P2), (P3) and (P4), we conclude that the family S := p is
a SPRI on X. Moreover, it follows from (P3), (P5) and (P7) that S satisfies
conditions (a), (b) and (c).

Assume now that κ > ω1 and that the result holds for every nonseparable
Banach space with density strictly smaller than κ. Let us verify that p

satisfies the assumptions of Lemma 23. Fix α ∈ κ and suppose that (Pα+1−
Pα)[X] is not separable. By (P6), there exists a σ-closed and cofinal subset
Γα of (Γ ∩Mα+1)σ such that sα := (Ps|(Pα+1−Pα)[X])s∈Γα is a projectional
skeleton on (Pα+1 − Pα)[X] and Aα := (Pα+1 − Pα)[A] countably supports
D(sα). Therefore it follows from (P4) and the induction hypothesis that
(Pα+1−Pα)[X] admits a SPRI Sα satisfying the appropriate versions of (a),
(b) and (c). It is clear that Sα satisfies conditions (1) and (2) from Lemma
23. In order to check that Sα satisfies condition (3) from Lemma 23, fix
(ε,A, x∗) ∈ T (s,A) and let (sn)n∈ω be an increasing sequence in Γα with
s = supn sn. Using that (P5) ensures that Aα ⊂ A ∪ {0}, we obtain that

lim sup
n

ρAα

(

(Psn |(Pα+1−Pα)[X])
∗(x∗α), (Ps|(Pα+1−Pα)[X])

∗(x∗α)
)

= lim sup
n

sup
x∈A

∣

∣

∣
P ∗
sn(x

∗((Pα+1 − Pα)x))− P ∗
s (x

∗(Pα+1 − Pαx))
∣

∣

∣

≤ lim sup
n

ρA(P
∗
sn
(x∗), P ∗

s (x
∗)) ≤ ε‖x∗‖,

which implies that (εα, Aα, x
∗
α) ∈ T (sα,Aα). Since the induction hypoth-

esis ensures that T (sα,Aα) ⊂ T (Sα,Aα), we conclude that (εα, Aα, x
∗
α) ∈

T (Sα,Aα). Thus Sα satisfies condition (3) from Lemma 23. Now the result
follows from Lemma 23. �

4.2. Weakly K-analytic Banach spaces. In what follows, we denote by
ω<ω the collection of functions defined on a natural number and taking
values in ω, i.e., ω<ω =

⋃

i∈ω ω
i.

Following [13], we say that a Banach space X is weakly K-analytic if there
exists a family {Kt : t ∈ ω<ω} of weak∗ compact subsets of X∗∗ such that
X =

⋃

σ∈ωω

⋂

i≥1Kσ|i. The key ingredients to establish the characterization
of weakly K-analytic Banach spaces given in Theorem A are Theorem 24
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and the characterization of weakly K-analyticity presented in [13, Theorem
4] that we recall below.

Lemma 25. For a Banach space X, the following conditions are equivalent

(i) X is weakly K-analytic;
(ii) there exist a set A ⊂ BX that is linearly dense in X and a family

{At : t ∈ ω<ω} of subsets of A such that A∅ = A =
⋃

σ∈ωω

⋂

i≥1Aσ|i
and for every ε > 0, x∗ ∈ X∗, σ ∈ ωω, there exists i ∈ ω such that

|{x ∈ Aσ|i : |x
∗(x)| > ε}| < ω.

Moreover, for A we can take any subset of BX that is linearly dense
in X and countably supports X∗.

Here as usual, given n, i ∈ ω and t ∈ ωi, we denote by nat the element of
ωi+1 given by nat(0) = n and if i ≥ 1, nat(j) = t(j−1), for every 1 ≤ j ≤ i.

Proof of Theorem A. (i)⇒ (ii) Since X is WLD, there exists a set A ⊂ BX
that is linearly dense in X and countably supports X∗. Thus, it follows
from Lemma 25 that there exists a family {At ⊂ A : t ∈ ω<ω} such that
A = A∅ =

⋃

σ∈ωω

⋂

i≥1Aσ|i and for every ε > 0, x∗ ∈ X∗ and σ ∈ ω<ω there
exists i ∈ ω such that

|{x ∈ Aσ|i : |x
∗(x)| > ε}| < ω.

Since X is Plichko, we have that X admits a projectional skeleton s =
(Ps)s∈Γ and thus it follows from Corollary 20 that we may assume without
loss of generality that Ps(x) ∈ {0, x}, for every x ∈ A and s ∈ Γ.
Now fix ε > 0, x∗ ∈ X∗ \ {0} and σ ∈ ωω. Let i ∈ ω be such that the set
Y := {x ∈ Aσ|i : |x

∗(x)| > ε‖x∗‖} is finite and let us show that s is (Aσ|i, ε)-
shrinking in x∗. Fix an increasing sequence (sk)k∈ω in Γ with s = supk∈ω sk
and note that

|P ∗
sk
(x∗)(x)−P ∗

s (x
∗)(x)| = |x∗(Pskx)−x

∗(Psx)| =

{

0 if Pskx = Psx,

|x∗(x)| if Pskx 6= Psx,

for every k ∈ ω and x ∈ A. Thus we have that

∀x ∈ Aσ|i \ Y : |P ∗
sk
(x∗)(x)− P ∗

s (x
∗)(x)| ≤ ε‖x∗‖. (I)

Moreover, since (P ∗
sk
(x∗))k∈ω converges to P ∗

s (x
∗) in the weak∗-topology of

X∗ and Y is finite, there exists k0 ∈ ω such that

∀k ≥ k0, ∀x ∈ Y : |P ∗
sk
(x∗)(x)− P ∗

s (x
∗)(x)| ≤ ε‖x∗‖. (II)

Therefore using (I) and (II), we conclude that lim supk ρAσ|i
(P ∗

sk
x∗, P ∗

s x
∗) ≤

ε‖x∗‖.
(ii) ⇒ (iii) If X is separable, then the result is trivial and in the case when
X is nonseparable, the result follows directly from Theorem 24.
(iii) ⇒ (i) For every α ∈ κ, set Rα := Qα+1−Qα and note that since Rα[X]
is separable and Rα[A] is linearly dense in Rα[X], there exists a countable
set {vαn : n ∈ ω} ⊂ Rα[A] \ {0} that is linearly dense in Rα[X].
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Consider the family {Bσ : σ ∈ ω<ω} defined as follows:

• Bnat := At ∩ {vαn : α ∈ κ} ⊂ BX , for every n ∈ ω and t ∈ ω<ω;
• B∅ :=

⋃

σ∈ωω

⋂

i≥1Bσ|i.

In order to conclude that X is weakly K-analytic, let us show that the subset
B :=

⋃

σ∈ωω

⋂

i≥1Bσ|i of BX and the family {Bσ : σ ∈ ω<ω} satisfy condition

(ii) of Lemma 25. Using that At ⊂ A, for every t ∈ ω<ω and that A∅ = A, it
is easy to see that Bnat ⊂ B, for every n ∈ ω and t ∈ ω<ω. In order to prove
that B is linearly dense in X, we claim that {vαn : α ∈ κ, n ∈ ω} ⊂ B. Indeed,
fixed α ∈ κ and n ∈ ω, it follows from (3b) that vαn ∈ A and thus there exists
σ ∈ ωω such that vαn ∈

⋂

i≥1Aσ|i, which implies that vαn ∈
⋂

i≥1Bσ′|i ⊂ B,

where σ′ ∈ ωω is defined as σ′(0) = n and σ′(i) = σ(i − 1), for every
i ≥ 1. This proves the claim and ensures that B is linearly dense in X,
since {vαn : α ∈ κ, n ∈ ω} is linearly dense in

⋃

α∈κRα[X] and
⋃

α∈κRα[X]
is linearly dense in X. Now fix ε > 0, x∗ ∈ X∗ \ {0} and σ ∈ ωω. By (3c),
there is i ∈ ω corresponding to the triple ε′ := ε

2‖x∗‖ > 0, x∗ ∈ X∗ and

τ ∈ ωω, where τ(j) = σ(j + 1), for j ∈ ω. We are going to verify that

|{x ∈ Bσ|i+1 : |x
∗(x)| > ε}| < ω.

Assume by contradiction that this is not the case. Then there exists a stictly
increasing sequence (αk)k∈ω in κ such that vαk

σ(0) ∈ Aτ |i and |x∗(vαk

σ(0))| > ε,

for every k ∈ ω. Set α = supk αk ≤ κ and note that it follows from the
fact that (Qα)α≤κ is (Aτ |i, ε

′)-shrinking in x∗ that there exists k ∈ ω such

that ρAτ |i
(Q∗

αk
(x∗), Q∗

α(x
∗)) < 2ε′‖x∗‖ = ε. In particular, it holds that

|Q∗
αk
(x∗)(vαk

σ(0))−Q
∗
α(x

∗)(vαk

σ(0))| < ε. Moreover using that (Qα)α≤κ is a SPRI

in X and vαk

σ(0) ∈ (Qαk+1 − Qαk
)[X], we conclude that Qαk

(vαk

σ(0)) = 0 and

Qα(v
αk

σ(0)) = vαk

σ(0) and thus we obtain that |x∗(vαk

σ(0))| < ε, which contradicts

the choice of vαk

σ(0). �

4.3. Vašák spaces. Following [13], we say that a Banach space X is Vašák
if there exists a family {Kn : n ∈ ω} of weak∗-compact subsets of X∗∗ such
that for every x ∈ X and x∗∗ ∈ X∗∗ \X, there exists n ∈ ω with x ∈ Kn

and x∗∗ /∈ Kn. The key tools to establish the characterization of Vašák
spaces given in Theorem 27 are Theorem 24 and the characterization of
Vašák spaces presented in [13, Theorem 3] that we recall below.

Lemma 26. For a Banach space X, the following conditions are equivalent

(i) X is Vašák;
(ii) there exist a set A ⊂ BX that is linearly dense in X and a family

{An : n ∈ ω} of subsets of A such that for every ε > 0, x∗ ∈ X∗ and
x ∈ A, there exists n ∈ ω such that

x ∈ An and |{x′ ∈ An : |x∗(x′)| > ε}| < ω.

Theorem 27. Let X be a Banach space with κ := dens(X). Then the
following conditions are equivalent.
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(i) X is Vašák.
(ii) There exist a projectional skeleton s = (Ps)s∈Γ on X and a fam-

ily {An ⊂ BX : n ∈ ω} of non-empty sets satisfying the following
conditions
(a) A :=

⋃

n∈ω An is linearly dense in X and countably supports
X∗;

(b) for every ε > 0 and x∗ ∈ X∗, there exists N ⊂ ω such that
A =

⋃

j∈N Aj and s is (Aj , ε)-shrinking in x∗, for every j ∈ N .

(iii) There exist a SPRI (Qα)α≤κ in X and a family {An ⊂ BX : n ∈ ω}
of non-empty sets satisfying the following conditions
(3a) A :=

⋃

n∈ω An is linearly dense in X and countably supports
X∗;

(3b) for every x ∈ A it holds that {Qα(x) : α ≤ κ} ⊂ {0, x} and
min{α ≤ κ : Qαx = x} is not a limit ordinal;

(3c) for every ε > 0 and x∗ ∈ X∗, there exists N ⊂ ω such that
A =

⋃

n∈N An and (Qα)α≤κ is (Aj , ε)-shrinking in x∗, for every
j ∈ N .

Proof. (i)⇒ (ii) Let A ⊂ BX and {An ⊂ A : n ∈ ω} be given by Lemma 26
and note that A countably supportsX∗. Since X is Plichko, we have that X
admits a projectional skeleton s = (Ps)s∈Γ and thus it follows from Corollary
20 that we may assume without loss of generality that Ps(x) ∈ {0, x}, for
every x ∈ A and s ∈ Γ.

Clearly condition (a) is satisfied. Now let us show that condition (b) also
holds. Fix ε > 0, x∗ ∈ X∗ \{0} and for each x ∈ A, pick n(x) ∈ ω such that

x ∈ An(x) and |{x′ ∈ An(x) : |x
∗(x′)| > ε‖x∗‖}| < ω.

Set N := {n(x) : x ∈ A}. It is clear that A =
⋃

j∈N Aj and fixed j ∈ N

the fact that s is (Aj , ε)-shrinking in x∗ is established with an argument
identical to the one presented in the proof of (i)⇒ (ii) in Theorem A.
(ii) ⇒ (iii) If X is separable, then the result is trivial and in the case when
X is nonseparable, the result follows directly from Theorem 24.
(iii) ⇒ (i) For every α ∈ κ, set Rα := Qα+1−Qα and note that since Rα[X]
is separable and Rα[A] is linearly dense in Rα[X], there exists a countable
set {vαn : n ∈ ω} ⊂ Rα[A] \ {0} that is linearly dense in Rα[X]. For each
n,m ∈ ω define Bn,m := Am ∩ {vαn : α ∈ κ} and set B :=

⋃

n,m∈ω Bn,m.
In order to conclude that X is a Vašák space, let us show that the set B

and the family {Bn,m : n,m ∈ ω} satisfy condition (ii) of Lemma 26. Using
that (3b) ensures that Rα[A] \ {0} ⊂ A, for every α ∈ κ, it is easy to see
that {vαn : n ∈ ω,α ∈ κ} ⊂ B, which implies that B is linearly dense in X.
Now fix ε > 0, x∗ ∈ X∗ \ {0} and x ∈ B. Let N ⊂ ω be the set given by
(3c) for ε′ := ε

2‖x∗‖ > 0 and x∗. Clearly, there exist α ∈ κ and n ∈ ω such

that x = vαn . Moreover, since B ⊂ A =
⋃

j∈N Aj , there exists j ∈ N such
that x ∈ Aj and thus we have that x ∈ Bn,j. In order to conclude the proof,
it remains to show that the set {x′ ∈ Bn,j : |x

∗(x′)| > ε} is finite. Assume
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by contradiction that this set is infinite. In this case, there exits a strictly
increasing sequence (αk)k∈ω in κ such that vαk

n ∈ Aj and |x∗(vαk
n )| > ε, for

every k ∈ ω. Since (Qα)α≤κ is (Aj , ε
′)-shrinking in x∗, arguing as in the

proof of (iii) ⇒ (i) in Theorem A, we achieve a contradiction and establish
our result. �

4.4. WCG spaces and their subspaces. Recall that a Banach space is
said to be weakly compactly generated (WCG) if it contains a linearly dense
and weakly compact subset. The key tools to establish the characterization
of WCG spaces given in Theorem 29 are Theorem 24 and the characteriza-
tion of WCG spaces presented in [13, Theorem 1] that we recall below.

Lemma 28. For a Banach space X, the following conditions are equivalent

(i) X is WCG;
(ii) there exists a set A ⊂ BX that is linearly dense in X and such that

for every ε > 0 and x∗ ∈ X∗ it holds that

|{x ∈ A : |x∗(x)| > ε}| < ω.

Theorem 29. Let X be a Banach space with κ := dens(X). Then the
following conditions are equivalent.

(i) X is WCG.
(ii) There exist a projectional skeleton s = (Ps)s∈Γ on X and a non-

empty set A ⊂ BX , satisfying the following conditions
(a) A is linearly dense in X and countably supports X∗;
(b) s is (A, 0)-shrinking in every element of X∗.

(iii) There exist a SPRI (Qα)α≤κ in X and a non-empty set A ⊂ BX ,
satisfying the following conditions
(3a) A is linearly dense in X and countably supports X∗;
(3b) for every x ∈ A it holds that {Qα(x) : α ≤ κ} ⊂ {0, x} and

min{α ≤ κ : Qαx = x} is not a limit ordinal;
(3c) (Qα)α≤κ is (A, 0)-shrinking in every element of X∗.

Proof. (i)⇒(ii) Let A be the set given by Lemma 28 and note that A count-
ably supports X∗. Since X is Plichko, we have that X admits a projectional
skeleton s = (Ps)s∈Γ and thus it follows from Corollary 20 that we may
assume without loss of generality that Ps(x) ∈ {0, x}, for every x ∈ A and
s ∈ Γ. Finally fixed x∗ ∈ X∗, the fact that s is (A, 0)-shrinking in x∗ can
be easily checked using that for every ε > 0, the set {x ∈ A : |x∗(x)| > ε} is
finite, similarly as argued in the proof of (i)⇒ (ii) in Theorem A.
(ii)⇒ (iii) If X is separable, then the result is trivial and in the case when
X is nonseparable, the result follows directly from Theorem 24.
(iii)⇒(i) For every α ∈ κ, set Rα := Qα+1 −Qα and note that since Rα[X]
is separable and Rα[A] is linearly dense in Rα[X], there exists a countable
set {vαn : n ≥ 1} ⊂ Rα[A] \ {0} that is linearly dense in Rα[X]. In order to

conclude that X is WCG, we will show that the set B :=
⋃

α<κ{
vαn
n

: n ≥ 1}
satisfies condition (ii) of Lemma 28. Note that B ⊂ BX , since it follows
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from condition (3b) that Rα[A] \ {0} ⊂ A. Moreover the linear density of
B in X follows from the fact that B is linearly dense in

⋃

α∈κRα[X] and
⋃

α∈κRα[X] is linearly dense in X. Now fix ε > 0, x∗ ∈ X∗ and let us show
that the set {x ∈ B : |x∗(x)| > ε} is finite. Assume by contradiction that
this is not the case. Note that if there are only finitely many α ∈ κ such that
{x ∈ B : |x∗(x)| > ε} ∩Rα[X] 6= ∅, we easily arrive to a contradiction, since

limn→∞
vαn
n

= 0, for every α ∈ κ. Otherwise, there exist a strictly increasing
sequence (αk)k∈ω in κ and a sequence of nonzero natural numbers (nk)k∈ω
such that

∀k ∈ ω :
∣

∣

∣
x∗

( v
αk
nk

nk

)

∣

∣

∣
> ε.

Since (Qα)α≤κ is (A, 0)-shrinking in x∗, arguing as in the proof of (iii) ⇒
(i) in Theorem A, we obtain that there exists k ∈ ω such that |x∗(vαk

nk
)| < ε,

since vαk
nk

∈ A. But this contradicts the choice of vαk
nk

and thus establishes
the result. �

It is worth mentioning that a subspace of a WCG space is not necessarily
WCG (see [24]). The key tools to establish the characterization of subspaces
of WCG spaces given in Theorem 31 are Theorem 24 and the characteriza-
tion of subspaces of WCG spaces presented in [13, Theorem 2] that we recall
below.

Lemma 30. For a Banach space X, the following conditions are equivalent

(i) X is a subspace of a WCG space;
(ii) there exists a set A ⊂ BX that is linearly dense in X and such that

for every ε > 0 there exists a decomposition A =
⋃

n∈ω A
ε
n satisfying

the following condition

∀n ∈ ω, ∀x∗ ∈ X∗ ⇒ |{x ∈ Aεn : |x∗(x)| > ε}| < ω.

Theorem 31. Let X be a Banach space with κ := dens(X). Then the
following conditions are equivalent.

(i) X is isometric to a subspace of a WCG space.
(ii) There exist a projectional skeleton s = (Ps)s∈Γ on X and a non-

empty set A ⊂ BX , satisfying the following conditions
(a) A is linearly dense in X and countably supports X∗;
(b) for every ε > 0, there exists a decomposition A =

⋃

n∈ω A
ε
n

such that s is (Aεn,
ε

‖x∗‖ )-shrinking in x∗, for every n ∈ ω and

x∗ ∈ X∗ \ {0}.
(iii) There exist a SPRI (Qα)α≤κ in X and a non-empty set A ⊂ BX ,

satisfying the following conditions
(3a) A is linearly dense in X and countably supports X∗;
(3b) for every x ∈ A it holds that {Qα(x) : α ≤ κ} ⊂ {0, x} and

min{α ≤ κ : Qαx = x} is not a limit ordinal;
(3c) for every ε > 0, there exists a decomposition A =

⋃

n∈ω A
ε
n such

that (Qα)α≤κ is (Aεn,
ε

‖x∗‖)-shrinking in x∗, for every n ∈ ω and

x∗ ∈ X∗ \ {0}.
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Proof. (i)⇒(ii) Let A be the set given by Lemma 30 and note that A count-
ably supports X∗. Since X is Plichko, we have that X admits a projectional
skeleton s = (Ps)s∈Γ and thus it follows from Corollary 20 that we may
assume without loss of generality that Ps(x) ∈ {0, x}, for every x ∈ A and
s ∈ Γ. Now fix ε > 0, and let A =

⋃

n∈ω A
ε
n be the decomposition given by

Lemma 30. The fact that s is (Aεn,
ε

‖x∗‖)-shrinking in x∗, for every n ∈ ω and

x∗ ∈ X∗ \{0} can be easily checked using that the set {x ∈ Aεn : |x∗(x)| > ε}
is finite, similarly as argued in the proof of (i)⇒ (ii) in Theorem A.
(ii)⇒ (iii) If X is separable, then the result is trivial and in the case when
X is nonseparable, the result follows directly from Theorem 24.
(iii)⇒(i) For every α ∈ κ, set Rα := Qα+1 −Qα and note that since Rα[X]
is separable and Rα[A] is linearly dense in Rα[X], there exists a countable
set {vαn : n ≥ 1} ⊂ Rα[A] \ {0} that is linearly dense in Rα[X]. In order
to conclude that X is a subspace of a WCG space, we will show that the
set B :=

⋃

α<κ{v
α
n : n ∈ ω} satisfies condition (ii) of Lemma 30. Note that

B ⊂ BX , since it follows from condition (3b) that Rα[A] \ {0} ⊂ A. More-
over the linear density of B in X follows from the fact that B is linearly
dense in

⋃

α∈κRα[X] and
⋃

α∈κRα[X] is linearly dense in X.

Now fix ε > 0, set ε′ := ε/2 and let A =
⋃

n∈ω A
ε′

n be the decomposition

given by (3c). For each n,m ∈ ω, define Bε
n,m := Aε

′

m ∩ {vαn : α ∈ κ} and
note that B =

⋃

n,m∈ω B
ε
n,m, since B ⊂ A. In order to conclude the proof, it

remains to show that fixed n,m ∈ ω and x∗ ∈ X∗ \ {0}, the set {x ∈ Bε
n,m :

|x∗(x)| > ε} is finite. Assume by contradiction that this set is infinite. In
this case, there exits a strictly increasing sequence (αk)k∈ω in κ such that

vαk
n ∈ Aε

′

m and |x∗(vαk
n )| > ε, for every k ∈ ω. Since (Qα)α≤κ is (Aε

′

m,
ε′

‖x∗‖ )-

shrinking in x∗, arguing as in the proof of (iii) ⇒ (i) in Theorem A, we
achieve a contradiction and establish our result. �

5. Open problems and remarks

As mentioned previously, we consider the relationship between SPRI and
projectional skeletons quite interesting. Observe that combining an induc-
tive argument with Proposition 22 and a result similar to [16, Proposition
6.2.7] (just replacing the assumption that the sequence of projections is a
PRI by the assumption that it satisfies conditions (P1), (P2), (P3), (P4)
and (P6)), one can easily construct a SPRI in any Banach space with a
projectional skeleton. We would like to understand better the properties of
the SPRI built from a given projectional skeleton. In particular, this could
be useful when dealing with questions proposed in [21, Section 6], where
the author already obtained many deep results concerning the connection
between projectional skeletons and PRI. As an example of a problem we
suggest the following.

Problem 32. Find a property (P ) of SPRI such that a Banach space X
has a projectional skeleton if and only if it admits a SPRI satisfying (P ).
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It is important to note that the methods used in the present paper depend
heavily on Corollary 20, that is, on the fact that we work with subclasses
of Plichko spaces. We observe that given a Plichko space X, it follows from
[21, Theorem 3.1] that X admits a projectional skeleton s = (Ps)s∈Γ and a
a Markushevich basis (xi, x

∗
i )i∈I such that {xi : i ∈ I} countably supports

D(s) and therefore Theorem 24 ensures that X admits a SPRI (Qα)α≤densX

such that Qα[{xi : i ∈ I}] ⊂ {xi : i ∈ I} ∪ {0}, for every α ≤ densX. In
this context, it is natural to propose Question 33, that seems to be related
to [21, Question 6.3].

Question 33. Let X be a Banach space with a projectional skeleton. Does
X admit a Markushevich basis (xi, x

∗
i )i∈I and a SPRI (Qα)α≤densX such

that Qα[{xi : i ∈ I}] ⊂ {xi : i ∈ I} ∪ {0}, for every α ≤ densX?

A final suggestion for further research is to characterize other subclasses
of Plichko spaces that were considered in [13]. For instance, we suggest the
following.

Problem 34. Characterize the class of Hilbert generated spaces using pro-
jectional skeletons and SPRI.
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