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Abstract. In this article we prove the global existence of weak solutions for a diffuse interface model in a

bounded domain (both in 2D and 3D) involving incompressible magnetic fluids with unmatched densities.
The model couples the incompressible Navier–Stokes equations, gradient flow of the magnetization vector

and the Cahn–Hilliard dynamics describing the partial mixing of two fluids. The density of the mixture

depends on an order parameter and the modelling (specifically the density dependence) is inspired from
Abels, Garcke and Grün 2011.
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1. Introduction

This article is devoted to the mathematical analysis of a system modeling the flow of two viscous
incompressible fluids with magnetic properties and unmatched densities undergoing partial mixing in a
bounded domain Ω ⊂ Rd, d = 2, 3. with the boundary ∂Ω of class C2. Let T > 0 and define the space
time cylinder as QT = Ω× (0, T ). Further let ΣT denote ∂Ω× (0, T ).
The mixing of the fluids is described by an order parameter φ : QT → R, which is the difference of the
volume fractions of the fluids involved and undergoes a smooth and rapid transition in an interfacial
region between the two fluids. We denote by v : QT → Rd the mean fluid velocity, by ρ = ρ(φ) : QT → R
the mean mass density, p : QT → R the pressure, M : QT → R3 the magnetization and µ : QT → R the
chemical potential. The system we consider reads as follows

∂t(ρv) + div(ρv ⊗ v)− div (2ν(φ)D(v)) + div(v ⊗ J) +∇p

= µ∇φ+
ξ(φ)

α2
((|M |2 − 1)M)∇M − div(ξ(φ)∇M)∇M in QT ,

div v = 0 in QT ,

∂tM + (v · ∇)M = div(ξ(φ)∇M)− ξ(φ)

α2
(|M |2 − 1)M in QT ,

∂tφ+ (v · ∇)φ = ∆µ in QT ,

µ = −η∆φ+ Ψ′(φ) + ξ′(φ)
|∇M |2

2
+
ξ′(φ)

4α2
(|M |2 − 1)2 in QT ,

v = 0, ∂nM = 0, ∂nφ = ∂nµ = 0 on ΣT ,
(v,M, φ)(·, 0) = (v0,M0, φ0) in Ω.

(1.1)
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‡Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 40, 97074 Würzburg, Germany
E-mail addresses: kalousek@math.cas.cz, sourav.mitra@mathematik.uni-wuerzburg.de,

anja.schloemerkemper@mathematik.uni-wuerzburg.de.

1



2 EXISTENCE OF WEAK SOLUTIONS TO A DIFFUSE INTERFACE MODEL FOR MAGNETIC FLUIDS

where J is a relative flux related to the diffusion of the components and is given by the following expression:

J = − ρ̃2 − ρ̃1

2
∇µ, (1.2)

with ρ̃i (i = 1, 2) denoting the specific density of the i−th fluid. In system (1.1), α and η are positive
constants, ν(φ) is the concentration dependent viscosity coefficient which is assumed to be non degenerate
and D(v) = 1

2

(
∇v + (∇v)>

)
denotes the symmetric part of the velocity gradient. The factor α penalizes

the saturation condition of the length of the magnetization vector |M | from 1 and η measures the thickness
of the region where the two fluids mix. The function ξ(φ) denotes the exchange parameter, which reflects
the tendency of the magnetization to align in one direction. We assume that ξ(·) is non degenerate, i.e.,
that it has a positive lower bound and further both ξ and ξ′ are bounded from above, cf. (1.6). The
homogeneous free energy density of the fluid mixture is denoted by Ψ(φ). We will consider a class of
singular free energies and our consideration (cf. (1.8)) will include the homogeneous free energy of the
form

Ψ(s) =
a

2
((1 + s) ln(1 + s) + (1− s) ln(1− s))− b

2
s2, (1.3)

where s ∈ [−1, 1] and a, b > 0, introduced in [16]. The logarithmic terms in (1.3) relate to the entropy of
the system. We note that the function Ψ in (1.3) is convex iff a > b and Ψ′ shows singular behavior at
s = ±1.
The present article is devoted to prove the existence of a global weak solution (i.e. without any restriction
on time and the size of the initial data) of the model (1.1). In Section 1.1 we will first introduce some
notations corresponding to the functional spaces, the Leray projector which will be essential to deal
with our incompressible bi-fluid model and then present our result on the global well posedness of the
system (1.1). In Section 1.2 we will comment on the strategies of the proof and related approaches.
After a discussion on the physical background of the system in Section 1.3, we devote Section 1.4 to
bibliographical notes.

1.1. Functional framework and main result.

1.1.1. Functional settings. The Lebesgue and Sobolev spaces are denoted by the notations Lp(Ω) and
W s,p(Ω) respectively. The standard notations Ck(Ω) and Ck,γ(Ω) (γ ∈ (0, 1]) are used to denote respec-
tively the spaces of k–times continuously differentiable functions and Hölder continuous functions. The
functional spaces with elements having compact support are denoted by using a subscript c. The hooked

arrow notations X ↪→ Y (X
C
↪→ Y ) are used to write the continuous (compact) embedding of a Banach

space X to a Banach space Y . The duality pairing between a Banach space X and its dual X ′ is written
as 〈·, ·〉 . The functional space Cw([0, T ];X) denotes a subspace of L∞(0, T ;X) containing functions f for
which the mapping t 7→ 〈φ, f(t)〉 is continuous on [0, T ] for each φ ∈ X ′. We set

L2
div(Ω) = {v ∈ C∞c (Ω) : div v = 0 in Ω}

‖·‖L2
, W 1,2

0,div(Ω) = {v ∈ C∞c (Ω) : div v = 0 in Ω}
‖·‖W1,2

,

W 2,2
n (Ω) = {u ∈W 2,2(Ω) : ∂nu = 0 on ∂Ω}, V (Ω) = W 1,2

0,div(Ω) ∩W 2,2(Ω).

From now onward we will use C to denote a generic positive constant which might vary from line to line.
For simplicity of notations we will always use · to denote both the scalar product of vectors and tensor
products.
Let us now introduce the Leray projector Pdiv : L2(Ω)→ L2

div(Ω) defined as

Pdiv(f) = f −∇p for f ∈ L2(Ω), where p ∈W 1,2(Ω) with

∫
Ω

p = 0 (1.4)
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solves the weak Neumann problem

(∇p,∇ϕ)Ω = (f,∇ϕ) for all ϕ ∈ C∞(Ω). (1.5)

1.1.2. Existence of weak solutions. In order to state the precise definition of a weak solution to (1.1) we
summarize the assumptions on the functions ξ, ν, Ψ and also make the dependence of the mean density
ρ(φ) on φ precise.

Assumption 1.1. The function ξ ∈ C1(R) satisfies

0 < c1 6 ξ 6 c2 on R, for some c1, c2 > 0,

ξ′ 6 c3 on R, for some c3 > 0.
(1.6)

The viscosity coefficient ν ∈ C1(R) satisfies

0 < ν1 6 ν 6 ν2 on R, for some ν1, ν2 > 0. (1.7)

The homogeneous free energy density Ψ ∈ C([−1, 1]) ∩ C2((−1, 1)) solves

lim
s→−1

Ψ′(s) = −∞, lim
s→1

Ψ′(s) =∞,

Ψ′′(s) > −κ, for some κ ∈ R.
(1.8)

The mean mass density ρ and the phase field φ are related via

ρ(φ) =
1

2
(ρ̃1 + ρ̃2) +

1

2
(ρ̃2 − ρ̃1)φ in QT , (1.9)

where ρ̃i > 0, i = 1, 2 are specific constant mass densities of the unmixed fluids.

Remark 1.2. The expression for ρ in (1.9) implies that

0 < min{ρ̃1, ρ̃2} 6 ρ(φ) 6 max{ρ̃1, ρ̃2} (1.10)

provided that |φ| 6 1.

Remark 1.3. Let ξ1, ξ2 > 0 be the exchange constants for the magnetic fluids undergoing partial mixing.
The function

ξ(φ) = (1−Hη(φ))ξ1 +Hη(φ)ξ2,

where η > 0 corresponds to the thickness of the interface and Hη(x) = 1

1+e
− x
η

is a regularized approxi-

mation of the Heaviside step function, provides an example of a non degenerate function ξ satisfying the
assumptions (1.6), cf. [33, 39, 47], in which such a regularized Heaviside function is used in a similar
contexts.

Next we define the notion of weak solution to the system (1.1).

Definition 1.4 (Definition of weak solutions). Let T > 0. For a given triplet

(v0,M0, φ0) ∈ L2
div(Ω)×W 1,2(Ω)×W 1,2(Ω) with |φ0| 6 1, (1.11)

we call the quadruple (v,M, φ, µ) possessing the regularity

v ∈ Cw([0, T ];L2
div(Ω)) ∩ L2(0, T ;W 1,2

0,div(Ω)),

M ∈ Cw([0, T ];W 1,2(Ω)) ∩ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;L
3
2 (Ω)),

φ ∈ Cw([0, T ];W 1,2(Ω)) ∩ C([0, T ];L2(Ω)) ∩ L2(0, T ;W 2,1(Ω)) with Ψ′(φ) ∈ L1(QT ),

µ ∈ L2(0, T ;W 1,2(Ω)),

(1.12)
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a weak solution to (1.1) if it satisfies∫
Ω

ρ(t)v(t) · ψ1(t)−
∫

Ω

ρ0v0 · ψ1(0) =

∫ t

0

∫
Ω

(
ρv · ∂tψ1 + (ρv ⊗ v + v ⊗ J) · ∇ψ1

− 2ν(φ)Dv · Dψ1 −∇µφ · ψ1 +

(
ξ(φ)

α2

(
(|M |2 − 1)M

)
∇M − div

(
ξ(φ)∇M

)
∇M

)
· ψ1

)
,∫

Ω

M(t) · ψ2(t)−
∫

Ω

M0 · ψ2(0) =

∫ t

0

∫
Ω

(
M · ∂tψ2 − (v · ∇)M · ψ2 − ξ(φ)∇M · ∇ψ2

− 1

α2

(
ξ(φ)(|M |2 − 1)M

)
· ψ2

)
,∫

Ω

φ(t)ψ3(t)−
∫

Ω

φ0ψ3(0) =

∫ t

0

∫
Ω

(φ∂tψ3 − (v · ∇)φψ3 −∇µ · ∇ψ3) ,

µ− ξ′(φ)
|∇M |2

2
− ξ′(φ)

4α2
(|M |2 − 1)2 = −η∆φ+ Ψ′(φ) a.e. in QT

(1.13)

for all t ∈ (0, T ), for all ψ1 ∈ C1
c ([0, T );V (Ω)), ψ2 ∈ C1

c ([0, T );W 1,2(Ω)) and all
ψ3 ∈ C1

c

(
[0, T );W 1,2(Ω)

)
. The initial data are attained in the form

lim
t→0+

(
‖v(t)− v0‖L2(Ω) + ‖M(t)−M0‖W 1,2(Ω) + ‖φ(t)− φ0‖W 1,2(Ω)

)
= 0. (1.14)

Now we present the central result of our article that concerns the global existence of a weak solutions
of the model (1.1).

Theorem 1.1. Let T > 0, Ω ⊂ Rd be a bounded domain of class C2 and let the initial datum (v0,M0, φ0)
satisfy (1.11). Then under Assumption 1.1 there exists a quadruple (v,M, φ, µ) which solves(1.1) in the
sense of Definition 1.4. Moreover there exists a p > 2 such that the triplet (M,φ,Ψ′(φ)) enjoys the
following improved regularity

M ∈ L2(0, T ;W 1,p(Ω)),

φ ∈ L2(0, T ;W 2, 2p
p+2 (Ω)),

Ψ′(φ) ∈ L2(0, T ;L
2p
p+2 (Ω)).

(1.15)

Further the following items hold:
(i) The obtained weak solution (v,M, φ, µ) of (1.1) satisfies the following energy inequality:

Etot(v(t),M(t), φ(t))+

∫ t

0

(
‖
√

2ν(φ)Dv‖2L2(Ω) + ‖∇µ‖2L2(Ω)

+

∥∥∥∥div(ξ(φ)∇M)− ξ(φ)

α2
M(|M |2 − 1)

∥∥∥∥2

L2(Ω)

)
6 Etot(v0,M0, φ0)

(1.16)

for all t ∈ (0, T ), where

Etot(v,M, φ) =
1

2

∫
Ω

ρ(φ)|v|2 +
1

2

∫
Ω

ξ(φ)|∇M |2 +
1

4α2

∫
Ω

ξ(φ)(|M |2 − 1)2

+
η

2

∫
Ω

|∇φ|2 +

∫
Ω

Ψ(φ)

(1.17)

with ρ(φ) being defined as in (1.9).
(ii) The magnetization M attains the homogeneous Neumann boundary condition in a weak sense, i.e.
for a.e. t ∈ (0, T ) the following holds

γn(ξ(φ)∇M) = 0 in (W
1
2 ,2(∂Ω))′, (1.18)
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where γn is the normal trace operator defined on L2(Ω) → (W
1
2 ,2(∂Ω))′ such that the following Stokes

formula holds for a.e. t ∈ (0, T ) :∫
Ω

div(ξ(φ)∇M) · ψ2 = −
∫

Ω

ξ(φ)∇M · ∇ψ2 + 〈γn(ξ(φ)∇M), γ0ψ2〉
(W

1
2
,2(∂Ω))′,W

1
2
,2(∂Ω)

(1.19)

for all ψ2 ∈W 1,2(Ω), where γ0 : W 1,2(Ω)→W
1
2 ,2(∂Ω) is the Dirichlet trace operator.

(iii) Moreover, if M0 ∈W 1,2(Ω) ∩ Lr(Ω), r > 6, then M ∈ L∞(0, T ;Lr(Ω)) and

‖M(t)‖Lr(Ω) 6 ‖M0‖Lr(Ω)e
δt for all t ∈ [0, T ] (1.20)

for some positive constant δ > 0. Additionally, if M0 ∈ L∞(Ω), then

‖M(t)‖L∞(Ω) 6 ‖M0‖L∞(Ω)e
δt for all t ∈ [0, T ]. (1.21)

We stress on the fact that the improved regularity (1.15), more precisely the unifrom bounds on the
suitable approximates of (M,φ,Ψ′(φ)) in the spaces mentioned in (1.15) play a key role in the passage
of limit and recovering the weak formulations (1.13) (more precisely (1.13)4).
To the best of our knowledge, [39, 47, 33] are the only articles in the literature studying diffuse interface
models for magnetic fluids. The article [39] develops a simplified model describing the behavior of
two-phase ferrofluid flows using phase field-techniques and present an energy-stable numerical scheme
for the same. The authors of [39] further analyse the stability and the convergence of the numerical
scheme developed and as a by-product they prove the existence of weak solutions of their model. In the
article [47] the authors propose a diffuse interface model and finite element approximation for two-phase
magnetohydrodynamic (MHD) flows with different viscosities and electric conductivities. Their model
involves the incompressible Navier-Stokes equations, the Maxwell equations of electromagnetism and the
Cahn-Hilliard equations. Unlike [39] and [47], in one of our previous articles [33], we studied a diffuse
interface magnetic fluid model where the magnetization vector M is modeled by a gradient flow dynamics.
As far as we know, our current article is the first mathematical study of a diffuse interface model for a
magnetic fluid with unmatched densities. We consider the model (1.1) where the mean mass density of
the mixture depends on the order parameter φ via the formula (1.9). We show that the mean density
ρ(φ) is always strictly positive and bounded. In order to do so we prove that the order parameter φ solves
the physically reasonable bound φ(x, t) ∈ [−1, 1] for a.e. (x, t) ∈ QT .
To this end it is important to use a singular potential Ψ(·), cf. (1.8), as a homogeneous free energy
density of the mixture. Often in the literature this singular free energy is approximated by a suitable
smooth free energy density. For instance, in [33], we considered a Ginzburg–Landau double-well potential
1
4η (|φ|2 − 1)2 instead of the singular potential Ψ(·). But using such a polynomial potential one can not

ensure that the order parameter φ stays in the physical reasonable interval [−1, 1] due to the lack of a
comparison principle for fourth order diffusion equation and hence in particular can not deal with the
model (1.1) comprising of fluids with unmatched densities.
Unlike the model considered in [47], in the present case (and also in the one considered in [33]) the
magnetization M enters into the Cahn-Hilliard dynamics. Due to the presence of |∇M |2 in the Cahn-
Hilliard part, cf. (1.1)5 we can not obtain L2(0, T ;W 2,2(Ω)) regularity of the order parameter φ and we
only recover φ ∈ L2(0, T ;W 2,q(Ω)) for some q > 1 by a bootstrap argument using L2(0, T ;W 1,p(Ω))
(p > 2) elliptic regularity for M.

1.2. Ideas of proof and related discussion. The proof of Theorem 1.1 is given in Section 3. It relies
on an unconditionally stable time discretization scheme designed in Section 2.2. Before going into the
analysis of a time discrete problem we first write the singular potential Ψ as a perturbation of a convex
function. This helps in reformulating the Cahn-Hilliard equation (1.1)5 as the subdifferential of a convex
potential and to use the monotone operator theory and regularity results for Cahn-Hilliard equation
developed in [10] and [1]. The reformulation is done in Section 2.1. Roughly speaking the content of
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Section 2.2 is to consider a sequence 0 = t0 < t1 < . . . < tk < tk+1 < . . ., k ∈ N0 of equidistant nodes and
next to construct a solution (vk+1,Mk+1, φk+1, µk+1) to a stationary problem (cf. (2.12)) at the point
tk+1 using (vk,Mk, φk) which corresponds to the solution at the time tk.
There is no common rule to write a time discretization of a nonlinear PDE model. It is generally done
in a way so that the discrete system admits an energy inequality which is in close proximity with the
formal energy balance of the original unsteady model. Here we follow a strategy devised in our previous

article [33] to suitably discretize the term
ξ(φ)

α2
(|M |2 − 1)M appearing in (1.1)3. In order to obtain

an energy type inequality for (2.12) one in particular tests
Mk+1 −Mk

h
(which is the discretization of

the time derivative ∂tM , with h = tk+1 − tk in the discrete magnetization equation (2.12)3) with an
approximation of (|M |2 − 1)M. Since the map M 7→ (|M |2 − 1)M is not monotone one can check that

(Mk+1 −Mk)
(
|Mk+1|2Mk+1 −Mk+1

)
�

1

4
(|Mk+1|2 − 1)2 − 1

4
(|Mk|2 − 1)2

and hence the discretization
ξ(φ)

α2
(|M |2 − 1)M ≈ ξ(φk)

α2
(|Mk+1|2Mk+1 − Mk+1) does not lead to an

unconditionally stable scheme. Following the convex splitting scheme used in our previous article [33] for
vector valued functions, which is itself inspired from the convex splitting used in [47] for scaler functions,

we use the approximation
ξ(φ)

α2
(|M |2− 1)M ≈ ξ(φk)

α2
(|Mk+1|2Mk+1−Mk), which along with Lemma 2.5

provides the desired estimate

(Mk+1 −Mk)
(
|Mk+1|2Mk+1 −Mk

)
>

1

4
(|Mk+1|2 − 1)2 − 1

4
(|Mk|2 − 1)2.

We then deal with the time discrete system (2.12) by considering it as a perturbation of a certain nonlinear
operator and solving the operator equation by employing a fixed point argument.
After the proof of an existence result for the discrete problem (2.12) in Section 2.2, we define piecewise
constant interpolants in Section 3 which approximate (v,M, φ, µ), the solution to (1.13). The weak
compactness of the interpolants are obtained from an energy type inequality and the strong compactness
properties result by using the classical Aubin-Lions lemma and some suitable interpolation estimates. At
this point a crucial observation is the obtainment of the strong convergence of {∇MN}N , where MN

approximates M . This convergence plays a key role to pass to the limit in the terms approximating

div(ξ(φ)∇M)∇M (cf. (1.1)1) and ξ′(φ)
|∇M |2

2
(cf. (1.1)5), as was presented in our previous article [33].

These arguments can be directly adapted to the current setting. We comment on this at the end of
Section 3.1.1.
To pass to the limit in the approximate of the nonlinear term Ψ̃′0(φ), where Ψ̃0(·) corresponds to the
convex part of Ψ(·) and is defined on entire R, cf. (2.2), one first needs to show an apriori estimate of the

same in L1(QT ) and next identify the weak limit for a non relabeled subsequence with Ψ̃′0(φ). For the
first part the idea roughly is to write the Cahn-Hilliard equation as

−η∆φN + Ψ̃′0(φN ) =lower order terms +
|∇MN |2

2
in Ω

∂nφ
N =0 on ∂Ω

(1.22)

and to use the elliptic structure to obtain a suitable uniform bound for φN and Ψ̃′0(φN ). In that direction
one needs to estimate the right hand side of (1.22)1 in Lq(Ω) with q > 1. The boundedness of Etot
(defined in (1.17)) alone does not provide this information and hence we exploit the dissipative part of
the energy and the equation solved by MN to obtain that

div (ξ(φN )∇MN ) ∈ L2(0, T ;L
3
2 (Ω)). (1.23)
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Next one would expect to recover an improved bound on {MN} from (1.23) but in view of the uniform
bound on {φN} in L∞(0, T ;W 1,2(Ω))) one can only use the fact that {ξ(φN )} is bounded in L∞(QT )
and nondegenerate. With this setup we can use [32], which deals with the regularity of weak solutions to
elliptic problems with nondegenerate, bounded and measurable coefficients, to obtain a uniform estimate
of MN in L2(0, T ;W 1,p(Ω)) for some p > 2, in fact p is slightly greater than two and tends to two as
the operator in (1.23) degenerates. At this moment one can recover a uniform estimate of |∇MN |2 in

L2(0, T ;L
2p
p+2 (Ω)) since ∇MN ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Lp(Ω)). This in turn allows us to use (1.22)

and to obtain a uniform bound of Ψ̃′0(φN ) in L2(0, T ;L
2p
p+2 (Ω)). The details of obtaining these uniform

bounds of MN and Ψ̃′0(φN ) can be found in Section 3.1.2. To identify the limit of a subsequence of

{Ψ̃′0(φN )} with Ψ̃′0(φ), we adapt the ideas related to the estimate of the measure of the set {|φ| = 1}
developed in [19] and [24].
After the recovery of the weak formulations (1.13) solved by (v,M, φ, µ) we prove that the obtained weak
solution attains the initial data in a strong sense (cf. (1.14)).
Items (ii) and (iii) of Theorem 1.1, which correspond to the obtainment of boundary condition for M in
a weak sense and some further regularity results of M in Lebesgue spaces, are proved in Section 3.4.

1.3. Physical background and comments on the derivation of the model. In this section we
comment on the physical background of the model (1.1). In [33] we already have derived a model for
diffuse interface magnetic fluids but with matched densities and a smooth double well potential for the
mixing energy. In the present article the density consideration of the mixture is inspired from [9]. To deal
with the density dependence it is important to consider a singular logarithmic potential for the mixing
energy which is also more physical than a smooth double well potential considered in [33].
We assume that the mean velocity satisfies the homogeneous Dirichlet boundary condition on ∂Ω. For
the derivation of a modified momentum balance equation solved by a solenoidal mean velocity field v and
mean density ρ(φ) (cf. (1.9)) we refer to [9, Section 2]. The obtained momentum balance equation with
a general stress tensor S is of the form:

ρ∂tv + ((ρv + J) · ∇) v = div S in QT , (1.24)

along with the incompressibility div v = 0 where J is the relative diffusion flux defined in (1.2). We assume
that the stress tensor S is the sum of the standard viscous Newtonian stress tensor 2ν(φ)D(v)−πI (where
I is the identity matrix and π being the mean pressure) and an extra contribution from the mixing energy
and a simplified micromagnetic energy.
In order to derive the dependence of S on φ, ∇φ, M and ∇M we start with the expression of Emix (the
mixing energy) and Emag (the micromagnetic energy). The mixing energy reads as follows

Emix =
η

2

∫
Ω

|∇φ|2 +

∫
Ω

Ψ(φ), (1.25)

where φ is the order parameter, η > 0 denotes the thickness of the interface where the two fluids mix and
Ψ(·) is the singular potential satisfying (1.8) (or one can in particular consider the expression (1.3)).
In the present article the magnetic energy contribution Emag is inspired from micromagnetics, for details
we refer to [20] and the references therein. We only consider the exchange energy contribution, which
reflects the tendency of the magnetization to orient in one direction. We further consider the dependence
of the micromagnetic energy on the order parameter φ which in turn allows us to study a system involving
fluids with different magnetic behavior. The simplified micromagnetic energy reads as follows

Emag =

∫
Ω

ξ(φ)
|∇M |2

2
+

1

4α2

∫
Ω

ξ(φ)(|M |2 − 1)2,

where α > 0 is a parameter. The first term in the expression of Emag is the exchange energy contri-
bution and the second one is a penalization term punishing the derivation of |M | from one (which is a
more physical constraint). The consideration of such a penalization term is standard in the literature,
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cf. [34, Section 1.2], [18] or [41]. The magnetic energy in our case is coupled with the order parameter
via a regular, bounded and non degenerate function ξ (we refer to (1.6) for the assumptions on ξ). In a
little different situation, for the modeling and numerical analysis of liquid crystals, one can find specific
expressions of degenerate functions ξ(·) in the articles [43] and [48]. For us it seems important to choose
a non degenerate function ξ which in turn plays a crucial role to obtain the strong compactness of ∇M.
Now exactly as in [48, Section 2.3] one can use the principle of virtual work to compute that the contri-
bution of Emix and Emag to the stress tensor S is given by

−∂Emag
∂∇M

�∇M − ∂Emix
∂∇φ

⊗∇φ = −ξ(φ)(∇M �∇M)− η(∇φ⊗∇φ)

where (∇M �∇M)ij =
∑3
k=1(∇iMk)(∇jMk) and (∇φ⊗∇φ)ij = ∇iφ∇jφ.

Hence altogether S has the following expression

S = 2ν(φ)D(v)− ξ(φ)(∇M �∇M)− η(∇φ⊗∇φ). (1.26)

The momentum balance (1.24) along with (1.26) reads as follows:

ρ∂tv + ((ρv + J) · ∇) v − div(2ν(φ)D(v)) +∇π = −div (ξ(φ)(∇M �∇M) + η(∇φ⊗∇φ)) in QT ,
(1.27)

with div v = 0 and v = 0 on ΣT .
Next we assume physically reasonable boundary conditions ∂nM = ∂nφ = ∂nµ = 0 on ΣT . The derivation
of the magnetization equation (1.1)3 is based on gradient flow dynamics. The obtainment of the Cahn-
Hilliard equations (1.1)4,5 relies on the generalized Fick’s law, i.e., the mass flux be proportional to the
gradient of the chemical potential (we refer to [16, 42] for details). The detailed derivation of (1.1)3,4,5

can be done by following the arguments presented in [33, p. 8], with modifications since here we use a
singular potential in the mixing energy.
In view of (1.1)4 one at once derives the following mass conservation

∂tρ+ div (ρv + J) = 0 in QT . (1.28)

In the spirit of [9], we explain here the dynamics behind (1.28). The equation (1.28) implies that the flux
of the density consists of two parts: ρv, describing the transport by the mean velocity, and a relative flux
J (cf. (1.2)) related to diffusion of the components. Hence for the unmatched density case, diffusion of
the components leads to the diffusion of the mass density.
The modification of the momentum balance (cf. (1.24) and (1.27)) by adding the relative diffusion flux J
was proposed in [9] to obtain a local dissipation inequality and global energy estimate for their model. It
serves the same purpose for our case and we recover the following formal energy balance for the system
(1.27)–(1.1)2,3,4,5,6,7 :

d

dt
Etot +

(
‖
√

2ν(φ)Dv‖2L2(Ω) + ‖∇µ‖2L2(Ω) +

∥∥∥∥div(ξ(φ)∇M)− ξ(φ)

α2
M(|M |2 − 1)

∥∥∥∥2

L2(Ω)

)
= 0,

where Etot is given by (1.17).
Finally in view of the mass balance (1.28), the incompressibility of v and identities

η div(∇φ⊗∇φ) = η∆φ∇φ+ η∇
(
|∇φ|2

2

)
,

div(ξ(φ)(∇M �∇M)) = div(ξ(φ)∇M)∇M + ξ(φ)∇
(
|∇M |2

2

)
,

(1.29)

one can rewrite (1.27) (we refer to [33, p. 8] for the use of the identities (1.29)) in the form (1.1)1, of
course with a modified pressure p. We emphasize that the term µ∇φ has better compactness properties
compared to div(∇φ⊗∇φ) and this will be exploited in the following analysis.
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1.4. Bibliographical remarks. Diffuse interface models without magnetization and comprising of flu-
ids with matched densities date back to the works [11, 29, 30, 44]. The article [29] provides a unified
framework for coupled Navier-Stokes and Cahn-Hilliard equations using the balance law for microforces
with a mechanical version of the second law of thermodynamics. The mathematical analysis of such a
model first appeared in [44], where the author deals with strong solutions and stability of stationary
solutions (as t → ∞) in the setting Ω = R2 assuming a smooth double well potential for the mixing
energy. For a detailed review of the subject we also refer to [11].
A detailed study is then performed in the article [14] where the author proves the existence of global
weak solution of the model both in dimension two and three in a channel with a smooth double well
potential for the mixing energy. The article [14] further proves that the model under consideration (with
non degenerate mobility) admits a strong solution which is global (in time) in dimension two and local
(in time) in dimension three. The case of degeneracy in the Cahn-Hilliard equation is also considered
in [14]. A more complete mathematical description (existence, uniqueness, regularity of solutions and
asymptotic behavior) of a similar model with the physically relevant logarithmic potential is discussed
in [2]. The article [2] proves the existence of strong solutions for an initial velocity v0 in interpolation

spaces between W 1,2
0 (Ω) and W 2,2(Ω)∩W 1,2

0 (Ω) and satisfying div v0 = 0 on Ω. Further the author shows
that any weak solution of the system becomes regular for large times and the order parameter converges
to a solution of the stationary Cahn–Hilliard system/a critical point of the mixing energy and the mean
velocity tends to zero. We would also like to quote the article [28] where the authors study the unique-
ness and regularity of weak and strong solutions of the model with the logarithmic potential. The article
proves the existence and uniqueness of a global strong solution in dimension two under the assumption
that the initial velocity v0 ∈W 1,2

0,div(Ω) and the local in time existence and uniqueness of strong solution

in dimension three. Unlike [2] and [28] we study the case where the fluids involved have different density
and they show magnetic behavior. The coupling of the magnetization with the Cahn-Hilliard dynamics
do not allow us to obtain sufficient regularity of the unknowns to prove the uniqueness of weak solutions
in dimension two.
In the literature there has been several approaches modeling diffuse interface systems (without magneti-
zation) where the density is not constant. The article [36] derived a quasi-incompressible diffuse interface
model where the velocity field is not divergence free. Analytical results for the model considered in [36]
first appeared in [3] and [4]. We also refer to [15] and [21] for other diffuse interface models involving
fluids with unmatched densities. For a slightly non homogeneous case, i.e., with the assumption that the
densities of the fluids undergoing partial mixing tend to be equal, [15] proved the global existence of a
weak solution and of a unique local strong solution (which is global in two dimension) for their model.
The non homogeneous magnetic fluid dynamics we consider in the present article is inspired from the
model introduced in [9]. The global existence of weak solutions for the model introduced in [9] can be
found in [6] (the case of non degenerate mobility) and [7] (the case of degenerate mobility). In a recent
article [27] the author proves the local in time existence of a strong solution in a bounded domain in
dimension two of the model introduced in [9]. The author also shows the global existence in the space
periodic set-up. Other variants of the Abels, Garcke and Grün model ([9]) can be found in [25], [22]
and [23]. The article [25] considers a general diffuse interface model for incompressible two-phase flows
with unmatched densities describing the evolution of free interfaces in contact with the solid boundary
whereas [22] and [23] deal with a non-local version of the model derived in [9]. For other analytical results
on varying density diffuse interface models we also refer the readers to [8], [17] (compressible fluids), [5]
(non Newtonian fluids), [31] (coupling between Allen-Cahn and Navier-Stokes) and [35] (non-isothermal
diffuse interface model).
Concerning the analysis of single phase magnetic fluids the readers can consult [12] (magnetization is mod-
eled by LLG dynamics), [41] (gradient flow of magnetization) and for various models involving diffuse
interface magnetic fluids with matched densities and smooth double well potential we refer to [39, 47, 33].
A crucial idea in our article is to recover the hidden L2(0, T ;W 1,p) (p > 2) regularity of MN , uniform
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with respect to N (where MN is the approximate of M defined in Section 3) by using the fact that

div(ξ(φN )∇MN ) is uniformly bounded in L2(0, T ;L
3
2 (Ω)) and ∂nM

N |∂Ω= 0. In view of the regularity of
φN we can only use that ξ(φN ) is bounded, measurable and non degenerate uniformly in N . To the best
of our knowledge for such an elliptic boundary value problem there are two classes of result. One deals
with the Hölder regularity (C0,γ(Ω)) of solutions and the second one proving W 1,p(Ω) (p > 2) regularity.
None of these results imply one another. For the first type of result we refer to [26] and [38] whereas for
the second we quote [32] and [37]. In the present article we have used in particular the result proved in
[32].

2. Existence of weak solutions to a time discrete model

In this section we prove the existence of weak solution to a time discrete problem corresponding to
system (1.1). In that direction we need some regularity results for the Cahn-Hilliard equations proved
in [1]. In order to access the regularity results from [1] one needs to reformulate the equation (1.1)5 by
using the subdifferential of a convex potential. This will be done in the next section and the arguments
are inspired from [6].

2.1. Reformulation of the problem using subdifferential of a convex potential. First we define

a potential Ψ̃ as follows:

Ψ̃ : R −→ R, Ψ̃(s) =

{
Ψ(s) if s ∈ [−1, 1],

+∞ else
(2.1)

where Ψ is introduced in (1.8). Since Ψ′′(s) > −κ, for some κ ∈ R, Ψ̃ is not necessarily convex. In order
to use the theory of subdifferentials we introduce a convex function

Ψ̃0(r) = Ψ̃(r) +
κ

2
r2 for r ∈ [−1, 1], Ψ̃0 ∈ C([−1, 1]) ∩ C2((−1, 1)). (2.2)

With this new function Ψ̃0, the equation (1.1)5 can be equivalently written as

µ+ κφ = Ψ̃′0(φ)− η∆φ+ ξ′(φ)
|∇M |2

2
+
ξ′(φ)

4α2
(|M |2 − 1)2 in QT . (2.3)

Inspired by [6], we define the energy Ẽ : L2(Ω) −→ R ∪ {+∞} with the domain

dom Ẽ = {φ ∈W 1,2(Ω) | − 1 6 φ 6 1 a.e.} (2.4)

as

Ẽ(φ) =


η

2

∫
Ω

|∇φ|2 +

∫
Ω

Ψ̃0(φ) for φ ∈ dom Ẽ,

+∞ else.

(2.5)

Proposition 2.1. [1, Theorem 3.12.8] Let Ẽ : L2(Ω) −→ R ∪ {+∞} be as defined in (2.4)–(2.5). Then

∂Ẽ(φ) = −η∆φ+ Ψ̃′0(φ) and

D(∂Ẽ) = {φ ∈W 2,2
n (Ω) | Ψ̃′0(φ) ∈ L2(Ω), Ψ̃′′0(φ)|∇φ|2 ∈ L1(Ω)} (2.6)

is the domain of definition of the subgradient ∂Ẽ. Moreover, there exists a positive constant C such that

‖φ‖2W 2,2(Ω) + ‖Ψ̃′0(φ)‖2L2(Ω) +

∫
Ω

Ψ̃′′0(φ(·))|∇φ(·)|2 6 C
(
‖∂Ẽ(φ)‖2L2(Ω) + ‖φ‖2L2(Ω) + 1

)
. (2.7)
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Further for every 1 < p 6 2, there exists a constant Cp > 0 such that

‖φ‖W 2,p(Ω) + ‖Ψ̃′0(φ)‖Lp(Ω) 6 Cp
(
‖∂Ẽ(φ)‖Lp(Ω) + ‖φ‖L2(Ω) + 1

)
. (2.8)

Remark 2.2. It follows from (1.8) and the definitions (2.1) and (2.2) that if φ ∈ D(∂Ẽ), then |φ| 6 1
a.e.

With the help of the subgradient ∂Ẽ the equation (2.3) can be written as

µ+ κφ = ∂Ẽ(φ) + ξ′(φ)
|∇M |2

2
+
ξ′(φ)

4α2
(|M |2 − 1)2 in QT . (2.9)

It is interesting to note that for φ ∈ dom Ẽ the free energy corresponding to the system (1.1) is related

to Ẽ(φ) via the following relation

Efree =
1

2

∫
Ω

ξ(φ)|∇M |2 +
1

4α2

∫
Ω

ξ(φ)(|M |2 − 1)2 + Ẽ(φ)− κ

2
‖φ‖2L2(Ω).

2.2. Analysis of a time discrete model. To begin with we define a suitable time discretization of the
model (1.1) keeping in mind the reformulation (2.3) (or (2.9)) of (1.1)5.
Let h > 0 be a constant,

vk ∈ L2
div(Ω), Mk ∈W 2,2

n (Ω), φk ∈ D(∂Ẽ) (2.10)

with D(∂Ẽ) as in (2.6) and
ρk = 1

2 (ρ̃1 + ρ̃2) + 1
2 (ρ̃2 − ρ̃1)φk (2.11)

be the information at time step tk, k ∈ N0. The quadruple (vk+1,Mk+1, φk+1, µk+1), solution at the time
step tk+1, is determined as a weak solution to the following system

ρk+1vk+1 − ρkvk
h

+ div(ρkvk+1 ⊗ vk+1) +∇pk+1 − µk+1∇φk + div(vk+1 ⊗ Jk+1)

−div(2ν(φk)Dvk+1)− ξ(φk)

α2
(|Mk+1|2Mk+1 −Mk)∇Mk+1 = −div(ξ(φk)∇Mk+1)∇Mk+1 in Ω

div vk+1 = 0 in Ω

Mk+1 −Mk

h
+ (vk+1 · ∇)Mk+1 = div(ξ(φk)∇Mk+1)− ξ(φk)

α2
(|Mk+1|2Mk+1 −Mk) in Ω

φk+1 − φk
h

+ (vk+1 · ∇)φk = ∆µk+1 in Ω

µk+1 + κ
φk+1 + φk

2
+ η∆φk+1 − Ψ̃′0(φk+1) = H0(φk+1, φk)

|∇Mk+1|2

2

+
1

4α2
H0(φk+1, φk)(|Mk+1|2 − 1)2 in Ω

vk+1 = 0, ∂nMk+1 = 0, ∂nφk+1 = ∂nµk+1 = 0 on ∂Ω
(2.12)

where

J = Jk+1 = − ρ̃2 − ρ̃1

2
∇µk+1, ρk+1 =

1

2
(ρ̃1 + ρ̃2) +

1

2
(ρ̃2 − ρ̃1)φk+1 (2.13)

and H0 : R× R→ R is defined as

H0(a, b) =


ξ(a)−ξ(b)
a−b if a 6= b,

ξ′(b) if a = b.

(2.14)
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Now let us introduce the notion of weak solution to the time discrete system (2.12). In the following

definition of weak solution, the term

∫
Ω

(div(vk+1 ⊗ Jk+1))ψ̃1 (originated from the fifth term of (2.12)1)

is replaced using the identity∫
Ω

(div(vk+1 ⊗ Jk+1))ψ̃1 =

∫
Ω

(
divJk+1 −

ρk+1 − ρk
h

− vk+1 · ∇ρk
)
vk+1

2
· ψ̃1 +

∫
Ω

(Jk+1 · ∇)vk+1 · ψ̃1

(2.15)
(we refer to (2.17)) and the derivation can be found in [6, Remark 4.1 (i)]. This reformulation helps
mainly to obtain later the discrete energy estimate (2.29).

Definition 2.3. [Weak solution to the problem (2.12)] Let (2.10)–(2.11) hold. The quadruple

(vk+1,Mk+1, φk+1, µk+1) ∈W 1,2
0,div(Ω)×W 2,2

n (Ω)×D(∂Ẽ)×W 2,2
n (Ω), (2.16)

is a weak solution to system (2.12) if the following identities are true∫
Ω

ρk+1vk+1 − ρkvk
h

· ψ̃1 +

∫
Ω

div(ρkvk+1 ⊗ vk+1) · ψ̃1

+

∫
Ω

(
divJk+1 −

ρk+1 − ρk
h

− vk+1 · ∇ρk
)
vk+1

2
· ψ̃1 +

∫
Ω

(Jk+1 · ∇)vk+1 · ψ̃1

−
∫

Ω

(
ξ(φk)

α2
(|Mk+1|2Mk+1 −Mk)∇Mk+1

)
· ψ̃1 +

∫
Ω

(div(ξ(φk)∇Mk+1)∇Mk+1) · ψ̃1

= −2

∫
Ω

ν(φk)Dvk+1 · Dψ̃1 −
∫

Ω

∇µk+1φk · ψ̃1

(2.17)

for all ψ̃1 ∈W 1,2
0,div(Ω),∫

Ω

Mk+1 −Mk

h
· ψ̃2 +

∫
Ω

(vk+1 · ∇)Mk+1 · ψ̃2

=

∫
Ω

(
div (ξ(φk)∇Mk+1)− ξ(φk)

α2
(|Mk+1|2Mk+1 −Mk)

)
· ψ̃2

(2.18)

for all ψ̃2 ∈ L2(Ω),

φk+1 − φk
h

+ (vk+1 · ∇)φk = ∆µk+1 (2.19)

a.e. in Ω and

µk+1 + κ
φk+1 + φk

2
−H0(φk+1, φk)

|∇Mk+1|2

2
− H0(φk+1, φk)

4α2
(|Mk+1|2 − 1)2

= −η∆φk+1 + Ψ̃′0(φk+1)

(2.20)

a.e. in Ω, where Jk+1 and ρk+1 are as defined in (2.13) and H0 is defines in (2.14).

In the next lemma we first prove an estimate of the L1 norm of Ψ̃
′

0(φk+1) assuming the existence of

a triplet (Mk+1, φk+1, µk+1) solving (2.20). Then using the obtained estimate of ‖Ψ̃′0(φk+1)‖L1(Ω) we

further prove an estimate of

∣∣∣∣∫
Ω

µk+1

∣∣∣∣ . This estimate will be specifically used in Section 3 to show (3.13).

We will also use a similar estimate while showing (2.66).
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Lemma 2.4. Let φ = φk+1 ∈ D(∂Ẽ) and µ = µk+1 ∈W 1,2(Ω) solve (2.20) with φk ∈W 2,2
n (Ω), |φk| 6 1

in Ω such that
1

|Ω|

∫
Ω

φk =
1

|Ω|

∫
Ω

φ ∈ (−1, 1),

and M = Mk+1 ∈W 2,2
n (Ω). Then there exists a constant C = C

(∫
Ω

φk

)
> 0, such that

‖Ψ̃′0(φ)‖L1(Ω) +

∣∣∣∣∫
Ω

µ

∣∣∣∣ 6 C (‖∇µ‖L2(Ω) + ‖∇φ‖2L2(Ω) + ‖M‖2W 1,2(Ω) + ‖M‖4W 1,2(Ω) + 1
)
. (2.21)

Proof. Without the magnetization vector M a similar result was shown in [6, Lemma 4.2]. We will
suitably adapt the line of arguments used in proving [6, Lemma 4.2] in our case.

We test (2.20) by (φ− φ), where φ =
1

|Ω|

∫
Ω

φ and obtain∫
Ω

µ(φ− φ) + κ

∫
Ω

φ+ φk
2

(φ− φ)−
∫

Ω

H0(φ, φk)
|∇M |2

2
(φ− φ)

−
∫

Ω

H0(φ, φk)

4α2
(|M |2 − 1)2(φ− φ) = η

∫
Ω

∇φ · ∇(φ− φ) +

∫
Ω

Ψ̃′0(φ)(φ− φ).
(2.22)

One observes that

∫
Ω

µ(φ − φ) =

∫
Ω

(µ − µ)φ, where µ =
1

|Ω|

∫
Ω

µ. Since φ ∈ (−1 + ε, 1 − ε) for some

ε > 0 (note that ε is independent of φ) and lim
φ→±1

Ψ̃′0(φ) = ±∞, one has the inequality

Ψ̃
′

0(φ)(φ− φ) > C1|Ψ̃′0(φ)| − C2, (2.23)

for constants C1 > 0 and C2. The inequality (2.23) can be proved by dividing [−1, 1] into three intervals

[−1,−1 + ε
2 ], [−1 + ε

2 , 1−
ε
2 ], [1− ε

2 , 1], arguing by the blow up behavior of Ψ̃′0 at the endpoints {−1, 1}
and the fact that Ψ̃′0 ∈ C([−1 + ε

2 , 1−
ε
2 ]). Hence integrating (2.23) in Ω, we have the estimate∫

Ω

Ψ̃′0(φ)(φ− φ) > C1

∫
Ω

|Ψ′0(φ)| − C3 (2.24)

for constants C1 > 0 and C3.
Further using (1.6)2 and the definition (2.14) of H0(·, ·) one has |H0(φk+1, φk)| 6 c3. Hence in view of
(2.22), (2.24) and the fact that |φ|, |φk| 6 1, we deduce∫

Ω

|Ψ̃′0| 6 C
(
‖µ− µ‖L2(Ω) + ‖∇M‖2L2(Ω) + ‖M‖4L4(Ω) + ‖∇φ‖2L2(Ω) + 1

)
6 C

(
‖∇µ‖L2(Ω) + ‖M‖2W 1,2(Ω) + ‖M‖4W 1,2(Ω) + ‖∇φ‖2L2(Ω) + 1

)
,

(2.25)

where we have used Poincaré’s inequality to obtain the final step.

Now we want to use the inequality (2.25) to obtain an estimate of

∣∣∣∣∫
Ω

µ

∣∣∣∣ . In that direction we integrate

(2.20) to obtain ∣∣∣∣∣∣
∫
Ω

µ

∣∣∣∣∣∣ 6 C
(∫

Ω

|Ψ̃′0|+ ‖M‖2W 1,2(Ω) + ‖M‖4W 1,2(Ω) + ‖∇φ‖2L2(Ω) + 1

)
. (2.26)

Next using (2.25) in (2.26) we furnish∣∣∣∣∣∣
∫
Ω

µ

∣∣∣∣∣∣ 6 C
(
‖∇µ‖L2(Ω) + ‖∇φ‖2L2(Ω) + ‖M‖2W 1,2(Ω) + ‖M‖4W 1,2(Ω) + 1

)
. (2.27)
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Combining (2.25) and (2.27) we conclude the proof of Lemma 2.4. �

Next we recall the following result from [33, Lemma 4.1], which will be used to obtain (2.29) (a discrete
analogue of energy dissipation) in Theorem 2.6.

Lemma 2.5. [33, Lemma 4.1] Let A,B ∈ R3. The following relation is true

1

4

(
|A|2 − 1

)2 − 1

4

(
|B|2 − 1

)2
+

1

4

(
|A|2 − |B|2

)2
+

1

2
|A · (A−B)|2 +

1

2
|A−B|2

6 (A−B) ·
(
|A|2A−B

)
. (2.28)

Now we state and prove the central result of this section which corresponds to the existence of weak
solution to the time discrete system (2.12).

Theorem 2.6. [Existence of weak solution to the problem (2.12)] Let Assumption 1.1, (2.10) and (2.11)
hold. Then there exists a quadruple (vk+1,Mk+1, φk+1, µk+1) which satisfies (2.16) and solves the iden-
tities (2.17)–(2.20). Moreover, the following discrete version of the energy estimate holds

Etot(vk+1,Mk+1, φk+1) + 2h

∫
Ω

ν(φk)|Dvk+1|2 + h

∫
Ω

|∇µk+1|2

+ h

∫
Ω

∣∣∣∣div(ξ(φk)∇Mk+1)− ξ(φk)

α2
(|Mk+1|2Mk+1 −Mk)

∣∣∣∣2 6 Etot(vk,Mk, φk),

(2.29)

where Etot(v,M, φ) is as defined in (1.17).

Proof. For simplicity in notations we will omit the subscript k+1 and we use the notation (v,M, φ, µ, J, ρ) =
(vk+1,Mk+1, φk+1, µk+1, Jk+1, ρk+1) in the rest of the proof. We will perform the proof in two steps (cf.
Section 2.3 and 2.4).

2.3. Any weak solution (v,M, φ, µ) of (2.12) in the sense of Definition 2.3 satisfies (2.29)–(1.17).
In the following computations we will need some identities in the spirit of [6]. We gather those identities
in the following and refer to the proof of [6, Lemma 4.3] for details.

(i)

∫
Ω

(
(div J)

v

2
+ (J · ∇) v

)
· v =

∫
Ω

div

(
J
|v|2

2

)
= 0,

(ii)

∫
Ω

(
div(ρkv ⊗ v)− (∇ρk · v)

v

2

)
· v = 0,

(iii) (ρv − ρkvk) · v =

(
ρ
|v|2

2
− ρk

|vk|2

2

)
+ (ρ− ρk)

|v|2

2
+ ρk

|v − vk|2

2
.

(2.30)

First we consider the test function ψ̃1 = v in (2.17) and use the identities (2.30) to render∫
Ω

ρ|v|2 − ρk|vk|2

2h
+

∫
Ω

ρk
|v − vk|2

2h
−
∫

Ω

(
ξ(φk)

α2
(|M |2M −Mk)∇M

)
· v

+

∫
Ω

(div(ξ(φk)∇M)∇M) · v = −2

∫
Ω

ν(φk)|Dv|2 −
∫

Ω

(v · ∇)µφk.

(2.31)
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Next choosing ψ̃2 = −div(ξ(φk)∇M) + ξ(φk)
α2 (|M |2M −Mk) in (2.18) we infer∫

Ω

(M −Mk)

h
·
(
−div(ξ(φk)∇M) +

ξ(φk)

α2
(|M |2M −Mk)

)
+

∫
Ω

(v · ∇)M ·
(
−div(ξ(φk)∇M) +

ξ(φk)

α2
(|M |2M −Mk)

)
+

∫
Ω

∣∣∣div(ξ(φk)∇M)− ξ(φk)

α2
(|M |2M −Mk)

∣∣∣2 = 0.

(2.32)

Multiplying (2.19) by µ and integrating over Ω one has∫
Ω

φ− φk
h

µ−
∫

Ω

(v · ∇)µφk = −
∫

Ω

|∇µ|2. (2.33)

Finally, multiplying (2.20) by −φ− φk
h

and integrating in Ω we have

−
∫

Ω

µ
φ− φk
h

− κ
∫

Ω

φ2 − φ2
k

2h
+

∫
Ω

H0(φ, φk)
|∇M |2

2

(φ− φk)

h
+

∫
Ω

H0(φ, φk)

4α2
(|M |2 − 1)2 (φ− φk)

h

= −η
∫

Ω

∇φ · ∇ (φ− φk)

h
−
∫

Ω

Ψ̃′0(φ)
(φ− φk)

h
.

(2.34)
Adding the expressions (2.31)–(2.34) and recalling (2.14), we have

1

2

∫
Ω

(ρ|v|2 − ρk|vk|2) +

∫
Ω

ρk
|v − vk|2

2
+ 2h

∫
Ω

ν(φk)|Dv|2 +

∫
Ω

(M −Mk) ·
(
−div(ξ(φk)∇M)

+
ξ(φk)

α2
(|M |2M −Mk)

)
+ h

∫
Ω

∣∣∣div(ξ(φk)∇M)− ξ(φk)

α2
(|M |2M −Mk)

∣∣∣2
+

1

2

∫
Ω

(
ξ(φ)− ξ(φk)

)
|∇M |2 +

1

4α2

∫
Ω

(
ξ(φ)− ξ(φk)

)
(|M |2 − 1)2 − κ

2

∫
Ω

(φ2 − φ2
k)

+ η

∫
Ω

∇φ · (∇φ−∇φk) +

∫
Ω

Ψ̃′0(φ)(φ− φk) + h

∫
Ω

|∇µ|2 = 0.

(2.35)

Integrating by parts the fourth term of (2.35), using

A · (A−B) =
|A|2

2
− |B|

2

2
+
|A−B|2

2
for all A, B ∈ Rm, m ∈ N, (2.36)

to expand ξ(φk)∇M · (∇M −∇Mk) and ∇φ · (∇φ−∇φk) respectively and using Lemma 2.5 on the term

(M −Mk) · ξ(φk)
α2 (|M |2M −Mk), we render

1

2

∫
Ω

(ρ|v|2 − ρk|vk|2) +

∫
Ω

ρk
|v − vk|2

2
+ 2h

∫
Ω

ν(φk)|Dv|2 +
1

2

∫
Ω

ξ(φ)|∇M |2

− 1

2

∫
Ω

ξ(φk)|∇Mk|2 +
1

2

∫
Ω

ξ(φk)|∇M −∇Mk|2 +
1

4α2

∫
Ω

ξ(φ)
(
|M |2 − 1

)2
− 1

4α2

∫
Ω

ξ(φk)
(
|Mk|2 − 1

)2
+

1

4α2

∫
Ω

ξ(φk)
(
|M |2 − |Mk|2

)2
+

1

2α2

∫
Ω

ξ(φk)|M · (M −Mk)|2 +
1

2α2

∫
Ω

ξ(φk)|M −Mk|2

+ h

∫
Ω

∣∣∣div(ξ(φk)∇M)− ξ(φk)

α2
(|M |2M −Mk)

∣∣∣2 +
η

2

∫
Ω

|∇φ|2 − η

2

∫
Ω

|∇φk|2

+
η

2

∫
Ω

|∇φ−∇φk|2 +

∫
Ω

(
Ψ̃0(φ)− Ψ̃0(φk)

)
− κ

2

∫
Ω

(φ2 − φ2
k) + h

∫
Ω

|∇µ|2 6 0,

(2.37)
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where we have used ∫
Ω

Ψ̃′0(φ)(φ− φk) >
∫

Ω

(
Ψ̃0(φ)− Ψ̃0(φk)

)
, (2.38)

which follows from the convexity of Ψ̃0. Dropping some positive terms from the left hand side of the
inequality (2.37) and recalling (2.2), we conclude the obtainment of the discrete energy estimate (2.29).

2.4. Proof of the existence of weak solutions to (2.12). We will apply the Leray-Schauder fixed
point principle to prove the existence of a weak solution to the discretized system (2.12). We start by
considering the following spaces

X = W 1,2
0,div(Ω)×W 2,2

n (Ω)×D(∂Ẽ)×W 2,2
n (Ω),

Y =
(
W 1,2

0,div(Ω)
)′ × L2(Ω)× L2(Ω)× L2(Ω),

(2.39)

with the norm defined as the sum of the individual components of the Cartesian products. We will write
(2.12) in operator notation and for that we introduce Nk,Fk : X → Y . For w = (v,M, φ, µ) ∈ X, the
operator Nk is defined as follows

Nk(w) =



Av

−div(ξ(φk)∇M) +
ξ(φk)

α2
(|M |2M −Mk) +

∫
Ω

M

∂Ẽ(φ) + φ

−∆µ+

∫
Ω

µ


, (2.40)

where A : W 1,2
0,div(Ω)→

(
W 1,2

0,div(Ω)
)′

is given for all v ∈W 1,2
0,div(Ω) by

〈Av, ψ̃1〉 = 2

∫
Ω

ν(φk)Dv · Dψ̃1 for all ψ̃1 ∈W 1,2
0,div(Ω).

For w = (v,M, φ, µ) ∈ X, the operator Fk is defined as

Fk(w) =



−ρv − ρkvk
h

− div(ρkv ⊗ v)−∇µφk +
ξ(φk)

α2
(|M |2M −Mk)∇M − div(ξ(φk)∇M)∇M

−1

2

(
div J − ρ− ρk

h
− v · ∇ρk

)
v − (J · ∇) v

−M −Mk

h
− (v · ∇)M +

∫
Ω

M

µ+ κ
(φ+ φk)

2
−H0(φ, φk)

|∇M |2

2
− H0(φ, φk)

4α2
(|M |2 − 1)2 + φ

−φ− φk
h

− (v · ∇)φk +

∫
Ω

µ



.

(2.41)
One observes that w = wk+1(= (vk+1,Mk+1, φk+1, µk+1) ∈ X) is a weak solution to the time discrete
problem (2.12) iff the following holds

Nk(w) = Fk(w) in Y.

To prove the existence of a solution to this operator equation we next show some properties of the
operators Nk and Fk.
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2.4.1. Invertibility and continuity of the inverse of Nk between suitable spaces. Let us consider the oper-

ator Nk component wise. It is well known that A : W 1,2
0,div(Ω)→

(
W 1,2

0,div(Ω)
)′

is bounded and invertible,

and A−1 :
(
W 1,2

0,div(Ω)
)′ −→ W 1,2

0,div(Ω) is bounded and continuous. For a proof one can adapt the argu-
ments we are going to use to prove similar issues for the second component of Nk. We choose to present
a detailed argument for the second component since it is more involved than the first one.
We remark that the second component of Nk defines a bounded operator from W 2,2

n (Ω) −→ L2(Ω). As a
first step towards proving that the second component of Nk admits of a bounded and continuous inverse
from L2(Ω) to W 2,2

n (Ω), we first claim that the operator

Bk(M) = −divN (ξ(φk)∇M) +
ξ(φk)

α2
(|M |2M −Mk) +

∫
Ω

M : W 1,2(Ω) −→ (W 1,2(Ω))′, (2.42)

where divN is interpreted in the following weak sense

〈−divN Φ, ψ2〉 =

∫
Ω

Φ · ∇ψ2 for all ψ2 ∈W 1,2(Ω) and Φ ∈ L2(Ω),

is invertible and B−1
k : (W 1,2(Ω))′ −→ W 1,2(Ω) is bounded and continuous. In order to show this, we

consider an arbitrary couple M1, M2 ∈W 1,2(Ω). Then we compute the following duality product

〈Bk(M1)− Bk(M2),M1 −M2〉

=

∫
Ω

ξ(φk)|∇(M1 −M2)|2 +

∫
Ω

ξ(φk)

α2

(
|M1|2M1 − |M2|2M2

)
· (M1 −M2) +

(∫
Ω

M1 −M2

)2

= I1 + I2 + I3.

(2.43)

One observes I1 > c1‖∇(M1 − M2)‖2L2(Ω) since ξ is non degenerate (cf. (1.6)). The monotonicity of

α 7→ |α|2α implies I2 > 0. Employing the lower bound on ξ again we infer I1 + I3 > c‖M1 −M2‖2W 1,2(Ω).

Hence

〈Bk(M1)− Bk(M2),M1 −M2〉 > c‖M1 −M2‖2W 1,2(Ω),

implying Bk : W 1,2(Ω) −→ (W 1,2(Ω))′ is strongly monotone.
Since W 1,2(Ω) ↪→ L6(Ω), one justifies the boundedness of Bk : W 1,2(Ω) −→ (W 1,2(Ω))′. Now using the
Lebesgue dominated convergence theorem one checks that Bk is radially continuous on W 1,2(Ω), i.e., for

each pair M, M̃ ∈ W 1,2(Ω) the function t ∈ R 7→ 〈Bk(M + tM̃), M̃〉 is continuous. It is not hard to
check that 〈Bk(M),M〉 > c‖M‖2W 1,2(Ω)− ck, for any M ∈W 1,2(Ω) with ck depending on Mk. The latter

inequality implies that Bk is coercive on W 1,2(Ω), i.e.,

lim
‖M‖W1,2(Ω)→∞

〈Bk(M),M〉
‖M‖W 1,2(Ω)

=∞.

Using [40, Theorem 2.14] we obtain the existence of the inverse operator B−1
k : (W 1,2(Ω))′ → W 1,2(Ω)

that is bounded and Lipschitz continuous.
We now claim that

B−1
k : L2(Ω) −→W 2,2

n (Ω) is bounded and continuous. (2.44)

The proof of this claim can be performed by using a boot-strap argument and using the regularity results
for the following set of equations

∆M =
1

ξ(φk)

(
F − ξ′(φk)∇M∇φk +

ξ(φk)

α2

(
|M |2M −Mk

))
in Ω,

∂nM =0 on ∂Ω,

for any F ∈ L2(Ω), where we apply the fact that B−1
k : (W 1,2(Ω))′ →W 1,2(Ω) is bounded and continuous.

We refer the readers to [33, Section 4.2.1, p 14-15] for a concrete proof. This proves our claim that the
second component of Nk has a bounded and continuous inverse from W 2,2

n (Ω) and L2(Ω).



18 EXISTENCE OF WEAK SOLUTIONS TO A DIFFUSE INTERFACE MODEL FOR MAGNETIC FLUIDS

Next we consider the third component of Nk. Recalling the definition of Ẽ from (2.4)–(2.5), it can be
justified in view of Proposition 2.1 that

∂Ẽ + I : D(∂Ẽ) −→ L2(Ω) is invertible with bounded inverse (2.45)

(D(∂Ẽ) is identified with a subspace of W 2,2
n (Ω) as in (2.6)), where I : D(∂Ẽ) −→ L2(Ω) is the inclusion

map. Moreover, we can follow arguments from [6, p. 466-467] to show that the inverse operator

(∂Ẽ + I)−1 : L2(Ω) −→W 2−s,2
n (Ω) is continuous for any s ∈ (0, 1

4 ). (2.46)

From now on we fix s = 1
8 for definiteness.

Finally let us consider the last component of Nk. From standard elliptic theory, the operator

−∆(·) +

∫
Ω

· : W 2,2
n (Ω) −→ L2(Ω)

is bounded invertible with bounded and continuous inverse.
In summary we have shown that

the map Nk : X −→ Y is bounded, invertible, the inverse is bounded (2.47)

and the inverse map is continuous from Y to X̃, where

X̃ = W 1,2
0,div(Ω)×W 2,2

n (Ω)×W
15
8 ,2
n (Ω)×W 2,2

n (Ω). (2.48)

Next we show that Fk : X̃ −→ Y is continuous and compact.

2.4.2. The operator Fk : X̃ −→ Y is continuous and compact. For the operator Fk = (F1
k ,F2

k ,F3
k ,F4

k ),
we will verify the continuity and compactness component wise.

Let us start with F1
k : X̃ −→ (W 1,2

0,div(Ω))′. In this direction we will collect estimates of terms appearing

in the expression of F1
k . The following estimates are obtained by using Hölder’s inequality and standard

Sobolev embeddings.

‖ρv‖
L

3
2 (Ω)

6 C‖v‖W 1,2(Ω)

(
‖φ‖L2(Ω) + 1

)
,

‖div(ρkv ⊗ v)‖
L

3
2 (Ω)

6 Ck‖v‖2W 1,2(Ω),

‖∇µφk‖
L

3
2 (Ω)

6 Ck‖µ‖W 2,2(Ω),

‖ξ(φk)(|M |2M −Mk)∇M‖
L

3
2 (Ω)

6 Ck
(
‖M‖4W 2,2(Ω) + ‖M‖W 2,2(Ω)

)
,

‖div(ξ(φk)∇M)∇M‖
L

3
2 (Ω)

6 Ck‖M‖2W 2,2(Ω),

‖ (divJ) v‖
L

3
2 (Ω)

6 C‖v‖W 1,2(Ω)‖µ‖W 2,2(Ω),

‖ (J · ∇) v‖
L

3
2 (Ω)

6 C‖v‖W 1,2(Ω)‖µ‖W 2,2(Ω),

‖(v · ∇ρk)v‖
L

3
2 (Ω)

6 Ck‖v‖2W 1,2(Ω).

(2.49)

Hence the estimates above prove the boundedness of F1
k from X̃ to L

3
2 (Ω). One can use similar estimates

to show that F1
k is continuous from X̃ to L

3
2 (Ω). Next the compact embedding L

3
2 (Ω) −→ (W 1,2

0,div(Ω))′

furnishes the continuity and compactness of F1
k : X̃ −→ (W 1,2

0,div(Ω))′.

Now we prove that F2
k : X̃ −→ L2(Ω) is continuous and compact. One first observes

‖(v · ∇)M‖
W 1, 3

2 (Ω)
6 C‖v‖W 1,2(Ω)‖M‖W 2,2(Ω) (2.50)

as in [33, p. 16]. The continuity of F2
k : X̃ −→W 1, 32 (Ω) relies on a similar estimate and can be concluded

without any difficulty. Further in view of the compactness of the embedding of W 1, 32 (Ω) to L2(Ω) the
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asserted continuity and compactness follows.

Next we show that F3
k : X̃ −→ L2(Ω) is continuous and compact. For the proof we take a different route

than the ones used for F ik, i ∈ {1, 2}. First we introduce

Ỹ = L2(Ω)×W 15
8 ,2(Ω)×W 7

4 ,2(Ω)×W 15
8 ,2(Ω).

One observes that the embedding X̃ −→ Ỹ is compact (since in dimension three the embeddingWm+k,2 ↪→
Wm,2 is compact for any 0 < k < 3

2 ). We study the boundedness and continuity of the operator

G : Ỹ −→ L2(Ω) that is defined as in the third component of (2.41). Once we verify its boundedness and

continuity we immediately conclude that F3
k : X̃ −→ L2(Ω) is bounded, continuous and compact as the

composition of the embedding X̃ −→ Ỹ and G. In order to conclude the boundedness of G, we collect
the following estimates:

‖H0(φ, φk)|∇M |2‖L2(Ω) 6 Ck‖M‖2
W

15
8
,2(Ω)

,

‖H0(φ, φk)(|M |2 − 1)2‖L2(Ω) 6 Ck

(
‖M‖4

W
15
8
,2(Ω)

+ 1

)
.

(2.51)

Indeed, since ξ(·) ∈ C1(R), one infers ‖H0(φ, φk)‖L∞(Ω) 6 Ck by using the mean value theorem and

the upper bound of ξ′(·) (cf. assumption (1.6)). Further the fact that ∇M is bounded in W
7
8 ,2(Ω) and

the continuous embedding W
7
8 ,2(Ω) ↪→ L4(Ω) proves (2.51)1. Whereas (2.51)2 is a consequence of the

continuous embedding W
15
8 ,2(Ω) ↪→ L∞(Ω). The boundedness and continuity of the linear terms in the

expression of F3
k are trivially concluded.

In the spirit of the boundedness estimates (2.51), the continuity of the nonlinear terms in F3
k , i.e.

1

2
H0(φ, φk)|∇M |2 and

1

4α2
H0(φ, φk)(|M |2−1)2, can be proved by the arguments as in [33, p. 16] adjusted

to the current set-up. Hence we have proved that F3
k : X̃ −→ L2(Ω) is continuous and compact.

Next we consider F4
k . In the spirit of (2.50) we derive the following estimate

‖(v · ∇)φk‖
W 1, 3

2 (Ω)
6 Ck‖v‖W ,2(Ω), (2.52)

which verifies the boundedness of F4
k : X̃ −→W 1, 32 (Ω). By (2.52) the continuity of F4

k : X̃ −→W 1, 32 (Ω)

can be concluded in a straight forward manner. Next using the compact embedding W 1, 32 (Ω) ↪→ L2(Ω),

one at once renders that F4
k : X̃ −→ L2(Ω) is continuous and compact.

In view of the arguments above we finally have proved that Fk : X̃ −→ Y is continuous and compact.

2.4.3. The fixed point argument. We now show the existence of a w ∈ X (we recall the definition of X
from (2.39)1) satisfying

Nk(w) = Fk(w) in Y. (2.53)

For that purpose it is sufficient to prove the existence of a fixed point of the operator Fk ◦ N−1
k on Y ,

i.e., the existence of z ∈ Y satisfying

z = (Fk ◦ N−1
k )z in Y, (2.54)

since the invertibility of the operator Nk : X → Y implies the obtainment of w ∈ X satisfying (2.53) by
using w = N−1

k (z).
In order to show the existence of a fixed point of the operator equation (2.54) we apply the Leray-Schauder
fixed point theorem [26, Theorem 10.3] to the continuous and compact operator Fk ◦N−1

k : Y −→ Y. To
this end we verify that:

There exists r > 0 such that if z ∈ Y solves z = λ(Fk ◦ N−1
k )z with λ ∈ [0, 1],

then it holds ‖z‖Y 6 r.
(2.55)
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Let z ∈ Y satisfy z = λ(Fk ◦ N−1
k )z in Y with some λ ∈ [0, 1]. Then

w = (v,M, φ, µ) = N−1
k z,

solves

Nk(w)− λFk(w) = 0 in Y. (2.56)

Let us first prove that

‖w‖X̃ 6 Ck, (2.57)

with Ck independent of λ ∈ [0, 1]. Then we will bootstrap the regularity to have

‖w‖X 6 Ck, (2.58)

with Ck independent of λ ∈ [0, 1], from which (2.55) follows due to the boundedness of Nk : X −→ Y ,
cf. (2.47). One recalls the definitions of Nk and Fk from (2.40) and (2.41), tests the first component of

(2.56) by v, the second component by −div(ξ(φk)∇M) + ξ(φk)
α2 (|M |2M −Mk), the third component by

φ−φk
h and the fourth component by µ. The application of (2.36), Lemma 2.5 and identities (2.30) (similar

arguments leading to (2.37) from (2.35)) yield the following after dropping some positive terms from the
left hand side (similar to the obtainment of (2.29) from (2.37))

λ

h

(
1

2

∫
Ω

ρ|v|2 − 1

2

∫
Ω

ρk|vk|2
)

+ 2

∫
Ω

ν(φk)|Dv|2 +
λ

h

(
1

2

∫
Ω

ξ(φ)|∇M |2 − 1

2

∫
Ω

ξ(φk)|∇Mk|2
)

+
λ

h

(
1

4α2

∫
Ω

ξ(φ)
(
|M |2 − 1

)2 − 1

4α2

∫
Ω

ξ(φk)
(
|Mk|2 − 1

)2)
+

∫
Ω

∣∣∣∣div(ξ(φk)∇M)− ξ(φk)

α2
(|M |2M −Mk)

∣∣∣∣2 +
1

h

(
η

2

∫
Ω

|∇φ|2 − η

2

∫
Ω

|∇φk|2
)

+
1

h

∫
Ω

(
Ψ̃0(φ)− Ψ̃0(φk)

)
− λ 1

h

∫
Ω

κ
(φ2 − φ2

k)

2
+

∫
Ω

|∇µ|2 + (1− λ)

(∫
Ω

µ

)2

+
(1− λ)

h

∫
Ω

(
φ2

2
− φ2

k

2

)
+ (1− λ)

∫
Ω

M

∫
Ω

(
−div(ξ(φk)∇M) +

ξ(φk)

α2
(|M |2M −Mk)

)
6 0.

(2.59)

Once again we recall that in obtaining the above inequality one expands ξ(φk)∇M · (∇M −∇Mk) and

∇φ · (∇φ−∇φk) by using (2.36) and uses Lemma 2.5 to expand the term (M−Mk) · ξ(φk)
α2 (|M |2M−Mk).

In order to obtain the inequality (2.59) we also have used (2.38). When 0 6 λ < 1, we use Young’s and
Hölder’s inequality to estimate the term appearing in the last line of (2.59) to infer:∣∣∣∣(1− λ)

∫
Ω

M

∫
Ω

(
−div(ξ(φk)∇M) +

ξ(φk)

α2
(|M |2M −Mk)

)∣∣∣∣
6 (1− λ)ε|Ω|

∫
Ω

∣∣∣∣div(ξ(φk)∇M)− ξ(φk)

α2
(|M |2M −Mk)

∣∣∣∣2 + c
1− λ
ε

(∫
Ω

M

)2 (2.60)

for some positive parameter ε > 0.
Since |1 − λ| 6 1, for small enough choice of the parameter ε > 0, the first term on the right hand side
(2.60) can be absorbed in the fifth summand appearing on the left hand side of (2.59). We will now
estimate the second term on the right hand side of (2.60). In that direction we follow the arguments used
to show [33, p. 18, (4.32)] to obtain∫

Ω

|∇M |2 +

∫
Ω

|M |4 + (1− λ)

(∫
Ω

M

)2

6 Ck, (2.61)
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where Ck > 0 is independent of λ > 0.
For a small enough choice of the parameter ε > 0, using (2.61) and (2.60) in (2.59) we obtain in particular

2h

∫
Ω

ν(φk)|Dv|2 +
h

2

∫
Ω

∣∣∣∣div(ξ(φk)∇M)− ξ(φk)

α2
(|M |2M −Mk)

∣∣∣∣2 +
η

2

∫
Ω

|∇φ|2

+

∫
Ω

Ψ̃0(φ) + h

∫
Ω

|∇µ|2 + h(1− λ)

(∫
Ω

µ

)2

− λ
∫

Ω

κ
φ2

2

6
∫

Ω

ρk|vk|2

2
+

1

2

∫
Ω

φ2
k +

η

2

∫
Ω

|∇φk|2 +

∫
Ω

|κ|φ
2
k

2
+

∫
Ω

Ψ̃0(φk) +
1

2

∫
Ω

ξ(φk)|∇Mk|2

+
1

4α2

∫
Ω

ξ(φk)
(
|Mk|2 − 1

)2
+ Ck 6 Ck.

(2.62)

Indeed, we obtain (2.62) from (2.59) by using the positive lower bound on ρ from (1.10), which follows

since w = (v,M, φ, µ) = N−1
k z ∈ X, cf. (2.47), implying φ ∈ D(∂Ẽ) and hence φ ∈ [−1, 1] a.e. The fact

that φ ∈ [−1, 1] a.e. and λ ∈ [0, 1] alongside Ψ̃0 ∈ C([−1, 1]) allows us to obtain∣∣∣∣∫
Ω

Ψ̃0(φ)

∣∣∣∣ 6 C and

∣∣∣∣∫
Ω

κ
φ2

2

∣∣∣∣ 6 C,
for some positive constant C and hence the term

∫
Ω

Ψ̃0(φ) and −λ
∫

Ω

κ
φ2

2
can be dropped from the left

hand side of (2.62). Hence

2h

∫
Ω

ν(φk)|Dv|2 +
h

2

∫
Ω

∣∣∣∣div(ξ(φk)∇M)− ξ(φk)

α2
(|M |2M −Mk)

∣∣∣∣2 +
η

2

∫
Ω

|∇φ|2

+ h

∫
Ω

|∇µ|2 + h(1− λ)

(∫
Ω

µ

)2

6 Ck.

(2.63)

One uses (2.63), (1.7), Korn’s and Poincaré’s inequality and the fact that φ ∈ [−1, 1] a.e. to render
‖v‖W 1,2(Ω) + ‖φ‖W 1,2(Ω) 6 Ck. We conclude ‖M‖W 1,2(Ω) 6 Ck independently of λ from (2.61). The
second term of (2.63)1 provides∥∥∥∥div(ξ(φk)∇M)− ξ(φk)

α2
(|M |2M −Mk)

∥∥∥∥
L2(Ω)

6 Ck. (2.64)

One can now use elliptic regularity results and a bootstrap argument (exactly as the one used to prove
the claim (2.44), cf. [33, Section 4.2.1, p. 14–15]) to furnish that ‖M‖W 2,2(Ω) 6 Ck from (2.64).
Next one obtains ‖∇µ‖L2(Ω) 6 Ck from (2.63). In view of Poincaré’s inequality it is sufficient to show∣∣∣∣∫

Ω

µ

∣∣∣∣ 6 Ck, (2.65)

in order to prove ‖µ‖W 1,2(Ω) 6 Ck. For λ ∈ [0, 1
2 ), (2.65) follows from the estimate of the last term which

appears in the left hand side of (2.63). For λ ∈ [ 1
2 , 1] we follow similar arguments used to show (2.21).

Hence (2.65) holds independently of the values of λ ∈ [0, 1] and as a consequence ‖µ‖W 1,2(Ω) 6 Ck follows.
So far we have obtained the following

‖v‖W 1,2(Ω) + ‖M‖W 2,2(Ω) + ‖φ‖W 1,2(Ω) + ‖µ‖W 1,2(Ω) 6 Ck. (2.66)

Further one recalls that µ solves the following equation

−∆µ+

∫
Ω

µ = −λφ− φk
h

− λ(v · ∇)φk + λ

∫
Ω

µ in Ω,

∂nµ = 0 in ∂Ω.
(2.67)
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In view of the fact that λ ∈ [0, 1] and the estimate (2.66) we observe that the right hand side of (2.67)1

can be estimated in L2(Ω) and hence by standard elliptic regularity theory

‖µ‖W 2,2(Ω) 6 Ck.

Further, from the identity

∂Ẽ(φ) + φ = λφ+ λµ+ λκ
φ+ φk

2
− λH0(φ, φk)

|∇M |2

2
− λH0(φ, φk)

4α2

(
|M |2 − 1

)2 (2.68)

and (2.66) one has

‖∂Ẽ(φ) + φ‖L2(Ω) 6 Ck. (2.69)

Inequality (2.69) along with the estimate of φ from (2.66) imply that ‖∂Ẽ(φ)‖L2(Ω) 6 Ck. Next in view
of the inequality (2.7) one in particular concludes that

‖φ‖
W

15
8
,2(Ω)

6 Ck

and hence altogether we have

‖w‖X̃ + ‖∂Ẽ(φ)‖L2(Ω) = ‖(v,M, φ, µ)‖X̃ + ‖∂Ẽ(φ)‖L2(Ω) 6 Ck. (2.70)

Once again using (2.7) and (2.70) one at once concludes (2.58) and consequently proves (2.55). Finally
the fact that Nk : X → Y has a bounded inverse yields the existence of a fixed point to the operator
equation (2.53). This finishes the proof of Theorem 2.6. �

3. Proof of Theorem 1.1

Let T > 0 be fixed. Let 0 = t0 < t1 < . . . < tk < . . ., k ∈ N0 be a strictly increasing sequence
such that for each k ∈ N0 tk+1 − tk = h where h = 1

N for N ∈ N fixed. Applying Theorem 2.6
successively, we construct a sequence {(vk+1,Mk+1, φk+1, µk+1)}, k ∈ N0 of solutions to problem (2.12)
assuming (vk,Mk, φk) ∈ L2

div(Ω) ×W 2,2
n (Ω) ×W 2,2

n (Ω) with −1 6 φk 6 1. Obviously, the assumption
(M0, φ0) ∈ W 1,2(Ω) ×W 1,2(Ω) excludes the possibility of application of Theorem 2.6 directly. Instead,
we consider sequences {MN

0 } ⊂W 2,2
n (Ω), {φN0 } ⊂W 2,2

n (Ω) with |φN0 | 6 1 such that

MN
0 →M0 in W 1,2(Ω),

φN0 → φ0 in W 1,2(Ω)
(3.1)

as N → ∞. Such an approximating sequence {φN0 } can be constructed by solving a heat equation with
initial data φ0, setting φN0 as the solution to the heat equation at t = 1

N and using parabolic regularity.
The details of this construction can be found in [6, Section 5.1, p. 471]. Similar arguments apply in
constructing {MN

0 }. Adapting the notation from [33] we introduce two types of interpolants related to
the unknowns. At first we fix N ∈ N. The piecewise constant interpolants of (v,M, φ) are defined on
[−h,∞) and the one of µ on [0,∞) via

vN (t) = v0, M
N (t) = MN

0 , φ
N (t) = φN0 for t ∈ [−h, 0) (3.2)

and

fN (t) = fk for t ∈ [(k − 1)h, kh), (3.3)

where fN stands for the interpolants vN , MN , φN , µN and fk represents the corresponding vk, Mk, φk
and µk, k ∈ N. We note that

ρN = 1
2 (ρ̃1 + ρ̃2) + 1

2 (ρ̃2 − ρ̃1)φN . (3.4)

Next, a piecewise affine interpolant f̃N is defined as

f̃N (t) =
(k + 1)h− t

h
fN (t− h) +

t− kh
h

fN (t) for t ∈ [kh, (k + 1)h), k ∈ N0. (3.5)
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For our purposes it is sufficient to consider only the piecewise affine interpolants {ρ̃vN}, {M̃N} and

{φ̃N}, where the convention (ρv)N = ρNvN is used. We also introduce the notation for the shift and the
difference quotient in time of a function f as follows

fh(t) =f(t− h),

∂−t,hf(t) =
1

h
(f − fh)(t).

As immediate consequences of the latter definition and (3.5) one gets

∂tf̃
N (t) = ∂−t,hf

N (t) for all t ∈ [kh, (k + 1)h), k ∈ N0,

‖f̃N‖Lp(0,τ ;X) 6 ‖fN‖Lp(0,τ ;X) + ‖fNh ‖Lp(0,τ ;X) for any p ∈ [1,∞] and τ > 0.
(3.6)

We will next state identities that are satisfied by interpolants. Let τ ∈ (0,∞) is chosen arbitrarily. We
find kτ ∈ N0 such that τ ∈ [kτh, (kτ + 1)h). Further, we fix an arbitrary ψ1 ∈ L2(0,∞;V (Ω)), set

ψ̃1 =
∫ b
kh
ψ1 in (2.17), where

b =

{
(k + 1)h k < kτ ,

τ k = kτ ,

and sum the resulting expressions over k ∈ {0, 1, . . . , kτ} to obtain∫ τ

0

(∫
Ω

∂−t,h(ρNvN ) · ψ1 −
∫

Ω

(ρNh v
N ⊗ vN ) · ∇ψ1 −

∫
Ω

(vN ⊗ JN ) · ∇ψ1

−
∫

Ω

(
ξ(φNh )

α2
(|MN |2MN −MN

h )∇MN

)
· ψ1 +

∫
Ω

(
div
(
ξ(φNh )∇MN

)
∇MN

)
· ψ1

)
=

∫ τ

0

(
−2

∫
Ω

ν(φNh )DvN · Dψ1 −
∫

Ω

∇µNφNh · ψ1

) (3.7)

for all τ ∈ (0,∞) and ψ1 ∈ L2(0,∞;V (Ω)), where JN = − ρ̃2 − ρ̃1

2
∇µN . In obtaining (3.7) from (2.17),

we once again use identity (2.15). Similarly, we get∫ τ

0

(∫
Ω

∂−t,hM
N · ψ2 +

∫
Ω

(vN · ∇)MN · ψ2

)
=

∫ τ

0

∫
Ω

(
div(ξ(φNh )∇MN )− ξ(φNh )

α2
(|MN |2MN −MN

h )

)
· ψ2,

(3.8)

for all τ ∈ (0,∞) and ψ2 ∈ L2(0,∞;W 1,2(Ω)). Moreover, by obvious manipulations we deduce from
(2.19) that ∫ τ

0

(∫
Ω

∂−t,hφ
Nψ3 +

∫
Ω

(vN · ∇)φNh ψ3

)
= −

∫ τ

0

∫
Ω

∇µN · ∇ψ3 (3.9)

for all τ ∈ (0,∞) and ψ3 ∈ L2(0,∞;W 1,2(Ω)) and from (2.20) it follows that∫ τ

0

∫
Ω

(
µN + κ

φN + φNh
2

−H0(φN , φNh )
|∇MN |2

2
− H0(φN , φNh )

4α2
(|MN |2 − 1)2

)
ψ4

=

∫ τ

0

∫
Ω

(
−η∆φN + Ψ̃′0(φN )

)
ψ4

(3.10)

for all τ ∈ (0,∞) and ψ4 ∈ L∞(0, τ ;L∞(Ω)).

3.1. Compactness of sequences of interpolants. The goal of this section is to collect all the necessary
convergences of (sub)sequences of interpolants allowing for the passage h→ 0 (equivalently N → ∞) in
order to show the existence of a weak solution to the original problem.
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3.1.1. Uniform bounds on sequences of interpolants and compactness. In order to obtain the uniform
bounds we begin with the energy inequality for the interpolants vN , MN , φN and µN . Summing in
(2.29) over k ∈ N0 we obtain

Etot(v
N (t),MN (t), φN (t)) + 2

∫ t

0

∫
Ω

ν(φNh )|DvN |2 +

∫ t

0

∫
Ω

|∇µN |2

+

∫ t

0

∫
Ω

∣∣∣∣div(ξ(φNh )∇MN )− ξ(φNh )

α2
(|MN |2MN −MN

h )

∣∣∣∣2
6 Etot(v0,M

N
0 , φ

N
0 ) 6 C (Etot(v0,M0, φ0) + 1)

(3.11)

first for each t ∈ hN0, where the inequality in the final line of (3.11) follows from (3.1). As all interpolants
involved in the latter inequality are constant on intervals of the form [kh, (k + 1)h), one concludes that
(3.11) holds for all t ∈ [0,∞). Therefore recalling the definition of Etot in (1.17) and using (1.10) we
conclude from (3.11) that in particular

{vN} is bounded in L∞(0, T + 1;L2(Ω)) ∩ L2(0, T + 1;W 1,2(Ω)),

{vN} is bounded in L
10
3 (QT+1),

{MN} is bounded in L∞(0, T + 1;W 1,2(Ω)),
{φN} is bounded in L∞(0, T + 1;W 1,2(Ω)),
{∇µN} is bounded in L2(QT+1),

{div(ξ(φNh )∇MN )− ξ(φNh )
α2 (|MN |2MN −MN

h )} is bounded in L2(0, T + 1;L2(Ω)),

|φN | 6 1 a.e. in QT .

(3.12)

The bound (3.12)1 is obtained by using (1.7) and Korn inequality. All the sequences in (3.12)1-(3.12)6

in the respective norms are bounded by C(Etot(v0,M0, φ0) + 1)
1
2 as a consequence of (3.11). Since

φk+1 ∈ D(∂Ẽ) for all k ∈ N0, we have |φk+1| 6 1; one uses the fact that |φN0 | 6 1 and the definition
of the interpolants (3.2)–(3.3) to conclude (3.12)7. Let us note that (3.12)2 is a consequence of bounds
(3.12)1, the embedding W 1,2(Ω) ↪→ L6(Ω) and the following interpolation

[L∞(0, T + 1;L2(Ω)), L2(0, T + 1;L6(Ω))]θ= 3
5

= L
10
3 (QT+1).

The boundedness (3.12)3 follows by (3.11), assumption (1.6) and the bound of
{
ξ(φNh )
α2 (|MN |2 − 1)2

}
in

L∞(0, T + 1;L1(Ω)). Applying (2.21) we have∫ T+1

0

∣∣∣∣∫
Ω

µN
∣∣∣∣ 6 G(T + 1)

for a monotone function G : (0,∞)→ (0,∞). Combining the latter bound with (3.12)5 we get

{µN} is bounded in L2(0, T + 1;W 1,2(Ω)). (3.13)

Moreover, by the definition of a time shifted function we get

{vNh } is bounded in L∞(0, T + 1;L2(Ω)),

{MN
h } is bounded in L∞(0, T + 1;W 1,2(Ω)),

{φNh } is bounded in L∞(0, T + 1;W 1,2(Ω)).

(3.14)

All the sequences in (3.14) in the respective norms are bounded by C(Etot(v0,M0, φ0)+1)
1
2 . We conclude

directly from the definition of the interpolants that

{φN}, {φNh }, {φ̃N} ⊂ [−1, 1]. (3.15)

Taking into account the definition of ρN (as defined in (3.4)) and ρNh it follows that

{ρN}, {ρNh } are bounded in L∞(0, T + 1;W 1,2(Ω)) and L∞(QT+1). (3.16)
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As a consequence of bounds (3.12)1,2,3,4 and (3.13) one has up to subsequences that are not explicitly
relabeled

vN ⇀ v in L2(0, T ;W 1,2(Ω)),

vN ⇀∗ v in L∞(0, T ;L2(Ω)),

vN ⇀ v in L
10
3 (QT ),

MN ⇀∗ M in L∞(0, T ;W 1,2(Ω)),

φN ⇀∗ φ in L∞(0, T ;W 1,2(Ω)),

µN ⇀ µ in L2(0, T ;W 1,2(Ω)).

(3.17)

Next we will collect some strong convergence results of the interpolants. Some of these results are already
proved in [33]. First following the arguments from [33, (5.31), (5.32) and (5.33)] we obtain

φN , φNh , φ̃
N → φ in L2(0, T ;L4(Ω)). (3.18)

By [33, (5.39) and (5.40)] we have

MN →M in L8(0, T ;L4(Ω)), MN
h →M in L2(QT ). (3.19)

Moreover, the convergence

div(ξ(φNh )∇MN )− ξ(φNh )

α2
(|MN |2MN −MN

h ) ⇀ div(ξ(φ)∇M)− ξ(φ)

α2
(|M |2M −M) in L2(QT ) (3.20)

follows by [33, (5.58)]. Combining (3.15) with (3.18) we get up to a nonrelabeled subsequence

φN → φ in Lp(QT ) for all p ∈ [1,∞) and a.e. in QT . (3.21)

To prove this claim one uses the strong convergence of φN from (3.18), boundedness from (3.15) and the
following inequalities

‖φN − φ‖pLp(QT ) 6 C
∫ T

0

‖φN − φ‖(1−
4
p )p

L∞(Ω) ‖φ
N − φ‖4L4(Ω)

6 C
∫ T

0

‖φN − φ‖(1−
4
p )p

L∞(Ω) ‖φ
N − φ‖2L∞(Ω)‖φ

N − φ‖2L4(Ω)

6 C‖φN − φ‖2+(1− 4
p )p

L∞(QT ) ‖φ
N − φ‖2L2(0,T ;L4(Ω))

for p ∈ [4,∞) and ‖ · ‖Lp(Ω) 6 C‖ · ‖L4(Ω) for any p ∈ [1, 4). Taking into account the definition of ρN (we

refer to (3.4)) and ρNh we obtain

ρN , ρNh → ρ in Lp(QT ) for all p ∈ [1,∞) and a.e. in QT . (3.22)

We now focus on the proof of the compactness of interpolants for the velocity with respect to the topology
of a suitable function space. This proof is not straightforward as no uniform bound is available on a se-
quence of time derivatives of piecewise affine interpolants for the velocity. We investigate the convergence

of {ρ̃vN}. From (3.7) it follows in particular that∫ T

0

〈∂−t,h(ρNvN ), ψ1〉

=

∫ T

0

∫
Ω

(
ρNh v

N ⊗ vN + vN ⊗ JN
)
· ∇ψ1 − 2ν(φNh )DvN · Dψ1

+

((
ξ(φNh )

α2
(|MN |2MN −MN

h )− div(ξ(φNh )∇MN )

)
∇MN −∇µNφNh

)
· ψ1

(3.23)

for all ψ1 ∈ L8(0,∞;V (Ω)). We note that
{
ρNh v

N ⊗ vN
}

is bounded in L2(0, T ;L
3
2 (Ω)) and {vN ⊗ JN}

is bounded in L
8
7 (0, T ;L

4
3 (Ω)). The explanation of achieving these bounds can be found in [6, p. 474].
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Further one easily shows that {∇µNφNh } is bounded in L2(QT ) by using that {φNh } is bounded in L∞(QT )
and {µN} is bounded in L2(0, T ;W 1,2(Ω)). Using (1.7) and (3.12)1, ν(φNh )DvN is bounded in L2(QT ).
Moreover, by (3.12)3,6 we have the bound on{(

ξ(φNh )
α2 (|MN |2MN −MN

h )− div(ξ(φNh )∇MN )
)
∇MN

}
in L2(0, T ;L1(Ω)). Since ∂tρ̃v

N
= ∂−t,h(ρNvN ),

one uses (3.23) and the fact that the Leray projector Pdiv commutes with the time derivative to infer
that {

∂tPdiv

(
ρ̃v
N
)}

is bounded in L
8
7 (0, T ; (V (Ω))′). (3.24)

Taking into account the uniform bound on
{
Pdiv

(
ρ̃v
N
)}

in L∞(0, T ;L2(Ω)), which follows from the

continuity of Pdiv, (3.12)1 and (3.16), the Aubin-Lions lemma gives the compactness of
{
Pdiv

(
ρ̃v
N
)}

with respect to the strong topology of L2(0, T ; (W 1,2
0,div(Ω))′). Moreover, in view of (3.17)1 and the almost

everywhere convergence (3.22) we can follow line by line the arguments presented in [46, p. 90-91, (3.95)]
to conclude that

Pdiv

(
ρ̃v
N
)
⇀ Pdiv(ρv) in L2(0, T ;L2

div(Ω)). (3.25)

Consequently, for a nonrelabeled subsequence we obtain

Pdiv

(
ρ̃v
N
)
→ Pdiv(ρv) in L2(0, T ; (W 1,2

0,div(Ω))′). (3.26)

Since

Pdiv

(
ρ̃v
N

(t)
)
− Pdiv

(
ρN (t)vN (t)

)
= (t− (k + 1)h)∂tPdiv

(
ρ̃v
N
)

(t) for all t ∈ [kh, (k + 1)h), k ∈ N0

and |t− (k + 1)h| 6 h we infer using (3.24) that

Pdiv

(
ρ̃v
N
)
− Pdiv

(
ρNvN

)
→ 0 in L

8
7 (0, T ; (V (Ω))′). (3.27)

Next we consider the following combination of interpolation and duality

(W 1,2
0,div(Ω))′ =

(
(L2

div(Ω), V (Ω)) 1
2 ,2

)′
=
(
L2

div(Ω), (V (Ω))′
)

1
2 ,2

,

where the first equality is a special case of [1, (5.2.17)] and the second one follows by [13, Theorem 3.7.1].
Employing the inequality that corresponds to the latter interpolation we obtain∥∥∥Pdiv(ρ̃v

N
)− Pdiv(ρNvN )

∥∥∥
L2(0,T ;(W 1,2

0,div(Ω))′)

6 C
∥∥∥Pdiv(ρ̃v

N
)− Pdiv(ρNvN )

∥∥∥ 1
2

L∞(0,T ;L2
div(Ω))

∥∥∥Pdiv(ρ̃v
N

)− Pdiv(ρNvN )
∥∥∥ 1

2

L1(0,T ;(V (Ω))′)
.

Combining the latter inequality with the bound on
(
Pdiv(ρ̃v

N
)− Pdiv(ρNvN )

)
in L∞(0, T ;L2(Ω)) and

the convergence (3.27) we furnish that

Pdiv(ρ̃v
N

)− Pdiv(ρNvN )→ 0 in L2(0, T ; ((W 1,2
0,div(Ω))′). (3.28)

The convergences (3.26) and (3.28) together furnish that

Pdiv(ρNvN )→ Pdiv(ρv) in L2(0, T ; (W 1,2
0,div(Ω))′). (3.29)

Next, by (3.22) and (3.17)3 we conclude (ρN )
1
2 vN ⇀ ρ

1
2 v in L2(QT ). Furthermore, combining (3.29) and

(3.17)1 it follows that∫ T

0

∫
Ω

ρN |vN |2 =

∫ T

0

〈Pdiv(ρNvN ), vN 〉(W 1,2
0,div(Ω))′,W 1,2

0,div(Ω)

→
∫ T

0

〈Pdiv(ρv), v〉(W 1,2
0,div(Ω))′,W 1,2

0,div(Ω) =

∫ T

0

∫
Ω

ρ|v|2
(3.30)
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implying ‖(ρN )
1
2 vN‖L2(QT ) → ‖ρ

1
2 v‖L2(QT ). Hence passing to a nonrelabeled subsequence one has

(ρN )
1
2 vN → ρ

1
2 v in L2(QT ) and a.e. in QT . (3.31)

Moreover, (3.22) and the existence of a positive lower bound on {ρN}, obtained by a similar argument as

in Remark 1.2, imply (ρN )−
1
2 → ρ−

1
2 a.e. in QT . As (3.12)2 ensures the equiintegrability of the sequence

{|vN |q}, q ∈ [1, 10
3 ) we conclude by the Vitali convergence theorem

vN = (ρN )−
1
2 (ρN )

1
2 vN → v in Lq(QT ), q ∈ [1, 10

3 ). (3.32)

In particular the strong convergence vN → v in L2(QT ) (as a consequence of (3.32)), the boundedness
of (vN − v) in L2(0, T ;L6(Ω)) and the following interpolation inequality

‖vN − v‖L2(0,T ;L4(Ω)) 6 C‖vN − v‖
3
4

L2(0,T ;L6(Ω))‖v
N − v‖

1
4

L2(QT )

provides

vN → v in L2(0, T ;L4(Ω)). (3.33)

The last important convergence is

MN →M in L2(0, T ;W 1,2(Ω)). (3.34)

The convergence (3.34) is crucial in order to pass to the limit in the term containing |∇MN |2 in (3.10)
and the term comprising of ∇MN in the momentum equation (3.7). The proof of (3.34) relies on the
monotone structure of div(ξ(φNh )∇MN ) and can be done by following the arguments used to show [33,
(5.41), Section 5.1.2]. In order to do so, the strong convergence of MN to M in L8(0, T ;L4(Ω)) and vN

to v in L2(0, T ;L4(Ω)) are used. Since these convergences are available in the present scenario (we refer
to (3.19) and (3.33)), we face no particular difficulty to follow line by line the proof of [33, (5.41), Section
5.1.2].

3.1.2. Some uniform estimates on MN and φN . In this section we will obtain further uniform estimates
that involve the integrability of ∇MN w.r.t. spatial variables for an exponent greater than 2, the in-

tegrability of the second gradient of φN and of Ψ̃′0(φN ) w.r.t. spatial variables for an exponent greater
than 1 depending only on the energy estimate (3.11) for the interpolants. These improved estimates will
aid in recovering the weak formulation of Cahn-Hilliard equations. In that direction we will make use of
an abstract elliptic regularity result from [32]. The central result of this section is Lemma 3.2 which will
be proved by using the following result.

Lemma 3.1. Let Ω be a bounded domain of class C1 in Rd, d > 2. Let ξ̃ : Ω → R+ be a bounded,
measurable function satisfying

0 < c1 6 ξ̃(·) 6 c2 on Ω, for some c1, c2 > 0. (3.35)

Then there is p > 2 such that a solution M = (M1,M2,M3) ∈ W 1,2(Ω) of the following elliptic problem
with homogeneous Neumann boundary condition

div(ξ̃∇M) =g in Ω,

∂nM =0 on ∂Ω,
(3.36)

where g ∈ Ls(Ω) with s > 2d
d+2 satisfies

‖M‖W 1,p(Ω) 6 C
(
‖g‖Ls(Ω) + ‖M‖W 1,2(Ω)

)
. (3.37)

The constant C depends on d, c1 and c2 and the domain Ω.
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Proof. The result stated in Lemma 3.1 is a special case of the more general result in [32, Remark 13].
For the convenience of the readers we present the proof. First, we rewrite (3.36) component wise in the
form

−
d∑
i=1

∂i(ξ̃∂iMk) +Mk =− gk +Mk in Ω,

∂nMk =0 on ∂Ω,

(3.38)

for k ∈ {1, 2, 3}. The operator A : W 1,2(Ω) → (W 1,2(Ω))
′

appearing in the weak form of the latter
problem is defined as

〈Au,w〉 =

∫
Ω

aij∂iu∂jw + uw for u,w ∈W 1,2(Ω)

with the matrix (aij)i,j∈{1,..,d} given by

aij(x) =

{
ξ̃(x) when i = j,
0 when i 6= j.

Taking into account (3.35) we infer aij(·) ∈ L∞(Ω) and the ellipticity condition

d∑
i,j=1

aij(x)θiθj > c1|θ|2 for any θ = (θ1, . . . , θd) ∈ Rd.

In order to apply [32, Theorem 1], we note that as Ω is of class C1, assumptions of [32, Theorem 1] are
fulfilled, cf. [32, Remark 1 and 7]. Hence we conclude the existence of some p > 2 such that the operator

A maps W 1,p(Ω) onto (W 1,p(Ω))
′
. The upper bound on p can be found in [32, Theorem 1], from which

one also infers the inequality

‖A−1f‖W 1,p(Ω) 6 c‖f‖(W 1,p(Ω))′ (3.39)

due to the linearity of A−1. We notice that the constant c depends on Ω and constants from (3.35).
In order to conclude (3.37), we employ (3.39) with f being the right hand side of (3.38)1 and use the

embedding Ls(Ω) ↪→ (W 1,2(Ω))′ for s > 2d
(d+2) and (W 1,2(Ω))

′
to (W 1,p(Ω))

′
for p > 2. �

Lemma 3.2. Let (vN ,MN , φN , µN ) be the interpolants defined by (3.2)–(3.3), satisfying (3.7)–(3.10)
and the energy estimate (3.11). Then MN satisfies

‖MN‖L2(0,T ;W 1,p(Ω)) 6 CE
+
tot(v0,M0, φ0)

3
2 , (3.40)

where E+
tot(v0,M0, φ0) = (Etot(v0,M0, φ0) + 1) , for some p > 2 and the positive constant C might depend

on α, c1, c2, c3 , cf. (1.6), Sobolev embedding constants and the domain Ω.

Further φN and Ψ̃′0(φN ) satisfy

‖φN‖L2(0,T ;W 2,q(Ω)) + ‖Ψ̃′0(φN )‖L2(0,T ;Lq(Ω)) 6 CE
+
tot(v0,M0, φ0)3. (3.41)

where 1 < q = 2p
p+2 < 2 and the positive constant C in (3.41) depends on α, c1, c2, c3, Sobolev embedding

constants and the domain Ω.

Proof. In order to prove (3.40) we consider (3.8) for a.e. t ∈ (0, T ) as the elliptic problem

div(ξ(φNh )∇MN ) =∂−t,hM
N + (vN · ∇)MN +

ξ(φNh )

α2
(|MN |2MN −MN

h ) in Ω,

∂nM
N =0 on ∂Ω,

(3.42)
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which is possible since, in view of (3.12), all the terms involved in (3.42) are defined a.e. We focus on
the estimate of the right hand side in (3.42)1. Using the Hölder inequality, the Sobolev embedding and
(3.12) we get

‖(vN · ∇)MN‖
L2(0,T ;L

3
2 (Ω))

6 ‖vN‖L2(0,T ;L6(Ω))‖∇MN‖L∞(0,T ;L2(Ω))

6 C‖vN‖L2(0,T ;W 1,2(Ω))‖∇MN‖L∞(0,T ;L2(Ω)) 6 CE
+
tot(v0,M0, φ0).

(3.43)

Since L2(0, T ;W 1,2(Ω)) is dense in L2(0, T ;L3(Ω)), one can choose test functions ψ2 ∈ L2(0, T ;L3(Ω))
in (3.8) and use (3.12)1,6 to compute the following

‖∂−t,hM
N‖

L2(0,T ;L
3
2 (Ω))

= sup
{ψ2∈L2(0,T ;L3(Ω)) | ‖ψ2‖L2(0,T ;L3(Ω))61}

∫ T

0

∫
Ω

∂−t,hM
Nψ2

6 C

(
‖vN‖L2(0,T ;W 1,2(Ω))‖∇MN‖L∞(0,T ;L2(Ω))

+
∥∥∥div(ξ(φNh )∇MN )− ξ(φNh )

α2 (|MN |2MN −MN
h )
∥∥∥
L2(QT )

)
6 C

(
E+
tot(v0,M0, φ0) + E+

tot(v0,M0, φ0)
1
2

)
.

(3.44)

Moreover, using bounds on ξ in (1.6), the Hölder inequality, the Sobolev embedding and the definition
of MN

h we arrive at∥∥∥∥ξ(φNh )

α2
(|MN |2MN −MN

h )

∥∥∥∥
L2(0,T ;L

3
2 (Ω))

6C

(
‖MN‖3

L6(0,T ;L
9
2 (Ω))

+ ‖MN
h ‖L2(0,T ;L

3
2 (Ω))

)
6C

(
‖MN‖3L∞(0,T ;W 1,2(Ω)) + ‖MN

h ‖L∞(0,T ;W 1,2(Ω))

)
6C

(
E+
tot(v0,M0, φ0)

3
2 + E+

tot(v0,M0, φ0)
1
2

)
.

(3.45)

Applying Lemma 3.1 with s = 3
2 to (3.42) we obtain

‖MN‖W 1,p(Ω) 6C

(
‖∂−t,hM

N‖
L

3
2 (Ω)

+ ‖(vN · ∇)MN‖
L

3
2 (Ω)

+

∥∥∥∥ξ(φNh )

α2
(|MN |2MN −MN

h )

∥∥∥∥
L

3
2 (Ω)

+ ‖MN‖W 1,2(Ω)

)
a.e. in (0, T ) with p > 2 and the constant C independent of the time variable. We combine the latter
inequality with (3.43), (3.44), (3.45) and the Young inequality to conclude (3.40).

To show (3.41), we will use (3.10). Using (3.12)4, (3.13) and (3.14)3 one can bound the first two terms

appearing in the left hand side of (3.10) in L2(0, T ;L6(Ω)) by a constant multiple of Etot(v0,M
N
0 , φ

N
0 )

1
2 .

Further since ‖H0(φN , φNh )‖L∞(QT ) 6 c3 and by (3.12)3 along with (3.40), one has

1
2

∥∥H0(φN , φNh )|∇MN |2
∥∥
L2(0,T ;L

2p
p+2 (Ω))

6 C‖∇MN‖L2(0,T ;Lp(Ω))‖∇MN‖L∞(0,T ;L2(Ω)) 6 CE
+
tot(v0,M0, φ0),

(3.46)

and

1
4α2

∥∥H0(φN , φNh )(|MN |2 − 1)2
∥∥
L2(0,T ;L

2p
p+2 (Ω))

6 C
∥∥∥MN‖3L∞(0,T ;L6(Ω))‖M

N‖L2(0,T ;Lp(Ω)) + 1
)

6 C
(
E+
tot(v0,M0, φ0)

3
2E+

tot(v0,M0, φ0)
3
2 + 1

)
6 CE+

tot(v0,M0, φ0)3.
(3.47)
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In both of (3.46) and (3.47) the positive constant C might depend on α, c1, c2, c3, Sobolev embedding
constants and |Ω|. From the discussion above (in particular the inequalities (3.46) and (3.47)) one infers
from (3.10)

−η∆φN + Ψ̃′0(φN ) =f(MN , φN , φNh , µ
N ) in Ω,

∂nφ
N =0 on ∂Ω

(3.48)

a.e. in (0, T ) with ∥∥f(MN , φN , φNh , µ
N )
∥∥
L2(0,T ;L

2p
p+2 (Ω))

6 CE+
tot(v0,M0, φ0)3,

where C might depend on α, c1, c2, c3, Sobolev embedding constants and the domain Ω.
Finally, applying the inequality (2.8) from Proposition 2.1 to (3.48) and the Young inequality again we
obtain (3.41). �

3.1.3. Additional convergences of {MN}, {φN}, {Ψ′(φN )}. In view of estimate (3.40), we immediately
obtain that for some p > 2 we have up to a nonrelabeled subsequence

MN ⇀M in L2(0, T ;W 1,p(Ω)),

where M comes from (3.17). This concludes (1.15)1. Similarly, by (3.41) we have up to a nonrelabeled
subsequence

φN ⇀ φ in L2(0, T ;W 2, 2p
p+2 (Ω)), (3.49)

proving (1.15)2. The next task is to show that up to a nonrelabeled subsequence

Ψ̃′0(φN ) ⇀ Ψ̃′0(φ) in L2(0, T ;L
2p
p+2 (Ω)), (3.50)

from which (1.15)3 follows. We observe that the estimate of Ψ̃′0(φN ) in (3.41) implies that

Ψ̃′0(φN ) ⇀ ζ in L2(0, T ;L
2p
p+2 (Ω)).

Hence we have to identify ζ. Let us begin with showing that

Ψ̃′0(φN )→ Ψ̃′0(φ) a.e. in QT . (3.51)

To this end we adopt arguments devised in the context of the Cahn–Hillard equations with a logarithmic
free energy, see [19, p. 1510], and developed for the case of the Navier–Stokes–Cahn–Hilliard system with
a singular potential, see [24, p. 285]. We define for arbitrary but fixed δ ∈ (0, 1) the quantity aδ =

min
{

Ψ̃′0(1− δ),−Ψ̃′0(−1 + δ)
}

. Then we have aδ 6 |Ψ̃′0(s)| for 1 > |s| > 1 − δ as Ψ̃′0 is nondecreasing.

Hence we obtain

aδ
∣∣{(t, x) ∈ QT : 1 > |φN (t, x)| > 1− δ

}∣∣ 6 ∫
QT

|Ψ̃′0(φN )| 6 c

by (3.41) and Hölder’s inequality. Combining the pointwise convergence φN → φ from (3.21) and the
Fatou Lemma with the latter inequality we conclude

|{(t, x) ∈ QT : 1 > |φ(t, x)| > 1− δ}| 6 lim inf
N→∞

∣∣{(t, x) ∈ QT : 1 > |φN (t, x)| > 1− δ
}∣∣ 6 ca−1

δ (3.52)

for any δ ∈ (0, 1). Taking into account assumption (1.8)1 it follows that aδ → ∞ as δ → 0+. Hence the
limit passage δ → 0+ in (3.52) yields

|{(t, x) ∈ QT : |φ(t, x)| = 1}| = 0,

in other words |φ| < 1 a.e. in QT . This bound, the pointwise convergence φN → φ from (3.21) and the

assumed regularity Ψ̃′0 ∈ C1((−1, 1)), cf. Assumption 1.1, imply (3.51). Having (3.51) and the bound on

{Ψ̃′0(φN )} from (3.41) at hand we apply the Vitali convergence theorem to conclude that Ψ̃′0(φN )→ Ψ̃′0(φ)

in L1(QT ). Hence we have ζ = Ψ̃′0(φ) and (3.50) is proved.
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The convergence (3.50) along with the fact that φ ∈ [−1, 1] and (2.1)-(2.2) in particular imply that

Ψ′(φ) ∈ L2(0, T ;L
2p
p+2 (Ω)).

3.1.4. The energy inequality for the weak solution. This section is devoted to the proof of the fact that
the quadruple (v,M, φ, µ) obtained as limits of interpolants (we refer to (3.17)) satisfies (1.16) for all
t ∈ (0, T ), where Etot is as defined in (1.17). To this end we take into account (3.17), (3.18), (3.19),
(3.22), (3.33) and (3.34) and select subsequences that will not be relabeled such that for a.e. t ∈ (0, T )

ρN (t)→ ρ(t) in L2(Ω),

vN (t)→ v(t) in L4(Ω),

∇MN (t)→ ∇M(t) in L2(Ω),

MN (t)→M(t) in L4(Ω),

∇φN (t) ⇀ ∇φ(t) in L2(Ω),

φN (t)→ φ(t) in L2(Ω) and a.e. in Ω.

(3.53)

We want to show that for a.e. t ∈ (0, T )

Etot(v(t),M(t), φ(t)) 6 lim inf
N→∞

Etot(v
N (t),MN (t), φN (t)). (3.54)

We argue as in [33, Section 5.2, p. 28–29] and focus only on the terms from Etot(v
N (t),MN (t), φN (t))

that are not treated in [33]. We fix t ∈ (0, T ), in which convergences from (3.53) are available. By
(3.53)1,2 we get

lim
N→∞

1

2

∫
Ω

ρN (t)|vN (t)|2 =
1

2

∫
Ω

ρ(t)|v(t)|2.

Since Ψ̃0 ∈ C([−1, 1]), we obtain by using (3.53)6 and dominated convergence theorem

lim
N→∞

∫
Ω

Ψ̃(φN (t)) = lim
N→∞

∫
Ω

(
Ψ̃0(φN (t))− κ

2
(φN (t))2

)
=

∫
Ω

(
Ψ̃0(φ(t))− κ

2
(φ(t))2

)
=

∫
Ω

Ψ̃(φ(t)).

The remaining details for the proof of (3.54) can be found in [33, Section 5.2, p. 28–29]. Applying
the convergences from (3.1) we conclude Etot(v0,M

N
0 , φ

N
0 ) → Etot(v0,M0, φ0) in a straightforward way.

Hence to conclude (1.16) it suffices to combine (3.54), the fact that√
2ν(φNh )D(vN ) ⇀

√
2ν(φ)D(v) in L2(QT ),

which can be proved as in [33, eq. (5.57)], the weak lower semicontinuity of norms with (3.17)6 and
(3.20).

3.1.5. Continuity with respect to time of v,M, φ. This section aims to show that some of the limit func-
tions obtained in previous sections are continuous w.r.t. time variable in a certain sense. Namely, we
show

ρv ∈Cw([0, T ];L2(Ω)),

v ∈Cw([0, T ];L2(Ω)),

M ∈Cw([0, T ];W 1,2(Ω)),

M ∈C([0, T ];L2(Ω)),

φ ∈Cw([0, T ];W 1,2(Ω)),

φ ∈C([0, T ];L2(Ω)).

(3.55)
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First, for the proof of (3.55)3,4,5,6 we refer to [33, Section 5.3, p. 29]. Let us next prove (3.55)1. As
ρ ∈ L∞(QT ) and v ∈ L∞(0, T ;L2(Ω)), we have

ρv ∈ L∞(0, T ;L2(Ω)). (3.56)

Next in view of (3.24) one has up to a nonrelabeled subsequence

∂tPdiv(ρ̃v
N

) ⇀ ∂tPdiv(ρv) in L
8
7 (0, T ; (V (Ω))′)

(where the identification of the limit follows from (3.25)). Then the fact that ∂tPdiv(ρv) ∈ L 8
7 (0, T ; (V (Ω))′)

implies Pdiv(ρv) ∈ C([0, T ]; (V (Ω))′). This along with (3.56) renders

Pdiv(ρv) ∈ Cw([0, T ];L2
div(Ω)) (3.57)

by using [45, Ch. III, Lemma 1.4].
Next using the definition (1.4)–(1.5) of the Leray projector Pdiv we write

ρv = Pdiv(ρv) +∇p, (3.58)

where p(t) ∈W 1,2(Ω),

∫
Ω

p(t) = 0 and p(t) solves the weak Neumann problem (1.5). Now one can follow

the arguments used in [6, Section 5.2, p. 475–476] to show that ∇p ∈ Cw([0, T ];L2(Ω)). This along with
(3.57) furnishes the proof of (3.55)1.
Finally, we wish to show (3.55)2. By definition one needs to prove v(·, tn) ⇀ v(·, t) in L2(Ω) for any
sequence {tn} ⊂ [0, T ] such that tn → t. In view of the non-degeneracy of ρ, one first infers from (3.58)

v(·, t) =
1

ρ(·, t)
Pdiv(ρv)(·, t) +

1

ρ(·, t)
∇p(·, t),

(with this definition one also defines v in a set of measure zero, so that v is defined everywhere in [0, T ])
uses (3.55)1, ∇p ∈ Cw([0, T ];L2(Ω)) and the fact that ρ ∈ C([0, T ];L2(Ω)) (which follows from (3.55)6) to
show that v(·, tn) ⇀ v(·, t) in L1(Ω). Finally, since v(·, tn) is uniformly bounded in L2(Ω), one concludes
that v(·, tn) ⇀ v(·, t) in L2(Ω) and thereby finishing the proof of (3.55)2.

3.2. Recovering the weak formulations. In this section we verify that the quadruple (v,M, φ, µ)
satisfies the formulation of the problem in the sense of Definition 1.4 by performing the limit passage N →
∞ in (3.7)–(3.10). We start with the momentum equation. We consider a fixed ψ1 ∈ C1

c ([0, T );V (Ω)) in

(3.7). Since ρ̃v
N

is bounded in L∞(0, T ;L2(Ω)), which follows from (3.12)1 and (3.16), we have

Pdiv(ρ̃v
N

(t)) ⇀ Pdiv(ρv(t)) in L2(Ω) for a.e. t ∈ (0, T ), (3.59)

where the weak limit in (3.59) is identified by using (3.25). Fixing τ ∈ (0, T ) such that (3.59) holds we

take into consideration that ∂−t,hρ
NvN = ∂tρ̃v

N
by (3.6)1 and integrate by parts with respect to time in

(3.7) to obtain∫
Ω

ρ̃v
N

(τ)ψ1(τ)−
∫

Ω

ρ̃v
N

(0)ψ1(0) +

∫ τ

0

(∫
Ω

−ρ̃vN · ∂tψ1 −
∫

Ω

(ρNh v
N ⊗ vN ) · ∇ψ1 −

∫
Ω

vN ⊗ JN · ∇ψ1

+

∫
Ω

(
div(ξ(φNh )∇MN )− ξ(φNh )

α2
(|MN |2MN −MN

h )

)
∇MN · ψ1

)
=

∫ τ

0

(
−2

∫
Ω

ν(φNh )DvN · Dψ1 −
∫

Ω

∇µNφNh · ψ1

)
.

Thanks to (3.59) and the definition (1.4)–(1.5) of the Leray projector, we pass to the limit in the first

term on the left hand side of the latter identity. By the definition of ρ̃v
N

(0) we have, employing also
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(3.1)2,

ρ̃v
N

(0) = ρN (−h)vN (−h) = 1
2

(
ρ̃1 + ρ̃2 + (ρ̃2 − ρ̃1)φN0

)
v0

→ 1
2 (ρ̃1 + ρ̃2 + (ρ̃2 − ρ̃1)φ0) v0 = ρ0v0 in L1(Ω),

which allows us to perform the passage in the second term. To pass to the limit in the third term we
use (3.25) and the definition (1.4)–(1.5) of the Leray projector. We perform the limit passage in the

fourth term with the help of (3.22) and (3.32). We recall that JN = − ρ̃2 − ρ̃1

2
∇µN . Hence combining

the convergences (3.17)6 and (3.32) ensures the limit passage in the fifth term. For the limit passage in
the last term on the left hand side we use (3.20) and (3.34). The limit passage on the right hand side is
ensured by

ν(φNh )D(vN ) ⇀ ν(φ)D(v) in L2(QT ),

whose proof can be found in [33, eq. (5.56)] and (3.17)6 combined with (3.18). We arrive at∫
Ω

ρv(τ)ψ1(τ)−
∫

Ω

ρv(0)ψ1(0) +

∫ τ

0

(∫
Ω

−ρv · ∂tψ1 −
∫

Ω

(ρv ⊗ v) · ∇ψ1 −
∫

Ω

v ⊗ J · ∇ψ1

+

∫
Ω

(
div(ξ(φ)∇M)− ξ(φ)

α2
(|M |2M −M)

)
∇M · ψ1

)
=

∫ τ

0

(
−2

∫
Ω

ν(φ)Dv · Dψ1 −
∫

Ω

∇µφ · ψ1

)
.

(3.60)

Next we consider t ∈ (0, T ) and a sequence {τk}, s.t. τk → t and the latter identity holds for τ = τk.
Employing (3.55)1 and the fact that all terms under the integration sign over the time interval are
integrable with respect to time we conclude (1.13)1 by the limit passage k →∞.

We note that the validity of identities (1.13)2,3 (by the limit passage in (3.8) and (3.9)) can be proved
by following line by line the arguments used to show [33, (2.4)2 and (2.4)3] in [33, Section 5.4, p. 31]. In
order to verify that (1.13)4 is fulfilled, we pass to the limit N →∞ in (3.10). In view of the convergences
(3.17)6, (3.18), (3.34) and (3.19) we conclude

µN +
κ

2
(φN + φNh )−H0(φN , φNh )

|∇MN |2

2
− H0(φN , φNh )

4α2
(|MN |2 − 1)2

⇀ µ+ κφ− ξ′(φ)
|∇M |2

2
− ξ′(φ)

4α2
(|M |2 − 1)2 in L1(QT ).

Indeed, the passage to the limit in the first two terms is straightforward and the L1 weak convergence
of the remaining two terms is explained in detail in [33, Section 5.4, p. 32]. For the limit passage in the
terms on the right hand side of (3.10) we use the convergence

−η∆φN + Ψ̃′0(φN ) ⇀ −η∆φ+ Ψ̃′0(φ) in L1(QT ),

which follows by (3.49) and (3.50). Thus we arrive at∫ T

0

∫
Ω

(
µ+ κφ− ξ′(φ)

|∇M |2

2
− ξ′(φ)

4α2
(|M |2 − 1)2

)
ψ4 =

∫ T

0

∫
Ω

(
−η∆φ+ Ψ̃′0(φ)

)
ψ4

for all ψ4 ∈ L∞(0, T ;L∞(Ω)). Hence it follows that identity (1.13)4 is fulfilled.
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3.3. The attainment of initial data v0,M0, φ0. In this section, we prove (1.14) with the help of (1.13),
which we proved in the previous section. First we show the following identities

v(0) =v0 a.e. in Ω,

M(0) =M0 a.e. in Ω,

φ(0) =φ0 a.e. in Ω.

(3.61)

Setting ψ3(t, x) = θ(t)ϑ(x) in (1.13)3, where θ ∈ C1
c ([0, T )) with θ(0) > 0 and ϑ ∈ C∞c (Ω) are arbitrary

but fixed, we obtain using (3.55)5∫
Ω

φ0θ(0)ϑ = lim
t→0+

∫
Ω

φ(t)θ(t)ϑ =

∫
Ω

φ(0)θ(0)ϑ,

which implies (3.61)3. Setting ψ1(t, x) = θ(t)ω(x) in (1.13)1, where θ ∈ C1
c ([0, T )) with θ(0) > 0 and

ω ∈ V (Ω) are arbitrary but fixed, yields∫
Ω

ρ0v0 · θ(0)ω = lim
t→0+

∫
Ω

ρ(t)v(t) · θ(t)ω =

∫
Ω

ρ(0)v(0) · θ(0)ω,

where the second equality follows by (3.55)1 and (3.61)3 implies ρ(0) = ρ0. Setting in the latter identity
ω = v0 − v(0), which is allowed due to the density of V (Ω) in L2

div(Ω), implies (3.61)1. We note that the
fact that ρ0 has a positive lower bound was also used. Finally, we repeat the above arguments to justify
(3.61)2.

With the help of (3.55) we will show that the energy inequality (1.16) holds for all t ∈ [0, T ]. We start
by considering an arbitrary t ∈ [0, T ] and a sequence {tk} such that tk > t, tk → t as k →∞ and

ρ(tk)v(tk) ⇀ ρ(t)v(t) in L2(Ω),

v(tk) ⇀ v(t) in L2(Ω),

M(tk) ⇀M(t) in W 1,2(Ω),

M(tk)→M(t) in L2(Ω),

φ(tk) ⇀ φ(t) in W 1,2(Ω),

φ(tk)→ φ(t) in L2(Ω) and a.e. in Ω,

ρ(tk)→ ρ(t) in L2(Ω) and a.e. in Ω

(3.62)

and (1.16) holds for each tk. The convergence (3.62)7 follows from (3.62)6 by using the definition (1.9)
of ρ. The existence of such a sequence {tk} is ensured by (3.55). Because of the convexity of | · |2 (i.e. the
inequality |A|2 − |B|2 > 2B · (A − B), for all A,B ∈ Rm, m > 1) and convergences (3.62)1,2,7 it follows
that

lim inf
k→∞

1

2

∫
Ω

ρ(tk)|v(tk)|2 > lim inf
k→∞

∫
Ω

(
1

2
ρ(tk)|v(t)|2 + ρ(tk)v(t) · (v(tk)− v(t))

)
=

1

2

∫
Ω

ρ(t)|v(t)|2.
(3.63)

For the passage to the limit k →∞ in both terms we have used that ρ(tk)v(t)→ ρ(t)v(t) in L2(Ω) (which
follows by using Lebesgue’s dominated convergence theorem and the fact that ρ is bounded) and also
(3.62)2 in the second term. Due to the weak lower semicontinutiy of convex functionals, the fact that

Ψ̃ ∈ C([−1, 1]) and (3.62)5,6, we obtain

lim inf
k→∞

∫
Ω

(η
2
|∇φ(tk)|2 + Ψ̃(φ(tk))

)
>
∫

Ω

(η
2
|∇φ(t)|2 + Ψ̃(φ(t)

)
. (3.64)
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Moreover, we obtain

lim inf
k→∞

∫
Ω

(
ξ(φ(tk))|∇M(tk)|2 +

ξ(φ(tk))

α2
(|M(tk)|2 − 1)2

)
>
∫

Ω

(
ξ(φ(t))|∇M(t)|2 +

ξ(φ(t))

α2
(|M(t)|2 − 1)2

)
,

(3.65)

by arguing as in [33, (5.77)]. Altogether, (3.63), (3.64), (3.65) and the absolute continuity of the map

t 7→
∫ t

0

(
‖
√

2νDv‖2L2(Ω) + ‖∇µ‖2L2(Ω) +

∥∥∥∥div(ξ(φ)∇M)− ξ(φ)

α2
M(|M |2 − 1)

∥∥∥∥2

L2(Ω)

)
imply that (1.16) holds for all t ∈ [0, T ]. Hence in particular it follows that

lim sup
t→0+

Etot(v(t),M(t), φ(t)) 6 Etot(v0,M0, φ0). (3.66)

Employing again (3.55) along with (3.61) (similarly as we have obtained (3.63)–(3.65)) we deduce

lim inf
t→0+

Etot(v(t),M(t), φ(t)) > Etot(v(0),M(0), φ(0)) = Etot(v0,M0, φ0),

which along with (3.66) infers

lim
t→0+

Etot(v(t),M(t), φ(t)) = Etot(v0,M0, φ0). (3.67)

Taking into account the definition of Etot, employing the inequalities |A|2−|B|2 > 2B ·(A−B)+2|A−B|2
(which follows from the strong convexity of | · |2) and |A|4− |B|4 > 4|B|2B · (A−B) (which follows from
the convexity of | · |4) for all A,B ∈ Rm, one obtains the following for each t ∈ (0, T )

Etot(v(t),M(t), φ(t))− Etot(v0,M0, φ0)

>
1

2

∫
Ω

(ρ(t)− ρ0)|v0|2 +

∫
Ω

ρ(t)v0 · (v(t)− v0) +

∫
Ω

ρ(t)|v(t)− v0|2 +

∫
Ω

(ξ(φ(t))− ξ(φ0)) |∇M0|2

+

∫
Ω

2ξ(φ(t))∇M0 · (∇M(t)−∇M0) + 2

∫
Ω

ξ(φ(t))|∇M(t)−∇M0|2

+
1

4α2

∫
Ω

(ξ(φ(t))− ξ(φ0)) |M0|4 +
1

α2

∫
Ω

ξ(φ(t))|M0|2M0 · (M(t)−M0)

− 1

2α2

∫
Ω

(
ξ(φ(t))|M(t)|2 − ξ(φ0)|M0|2

)
+

1

4α2

∫
Ω

(ξ(φ(t))− ξ(φ0))

+ η

∫
Ω

∇φ0 · (∇φ(t)−∇φ0) + η

∫
Ω

|∇φ(t)−∇φ0|2 +

∫
Ω

(
Ψ̃0(φ)− Ψ̃0(φ0)

)
− κ

2

∫
Ω

(
φ2(t)− φ2

0

)
=

14∑
m=1

Im(t).

(3.68)

Now we show (1.14) by taking the limsup t→ 0+ on both sides of the inequality (3.68). We consider an

arbitrary sequence {tk} such that tk → 0+ as k → ∞. The sequence {tk} has a subsequence {tk′} such
that the following holds

φ(tk
′
)→ φ0, a.e. in Ω as k′ →∞ (3.69)

by (3.55)6 and (3.61)3. Accordingly, we have

ρ(tk
′
)→ ρ0, a.e. in Ω as k′ →∞ (3.70)

by (1.9). For the proof of

lim
k′→∞

Im(tk
′
) = 0 for m = 4, 5, 7, 8, 9, 10, 11 (3.71)
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we refer to [33, (5.82)-(5.85)]. Next we deal with I1, I2, I13 and I14. Convergence (3.70) and the fact
that ρ is a bounded function imply

lim
k′→∞

I1(tk
′
) = 0 (3.72)

by the Lebesgue dominated convergence theorem. Moreover, we have that ρ(tk
′
)v0 → ρ0v0 in L2(Ω),

which along with (3.55)2 and (3.61)1 yields

lim
k′→∞

I2(tk
′
) = 0. (3.73)

Since Ψ̃0 ∈ C([−1, 1]), the following

lim
k′→∞

I13(tk
′
) = 0 (3.74)

is obtained as an immediate consequence of (3.69) and the Lebesgue dominated convergence theorem.
Finally, by (3.55)6 and (3.61)3 we obtain

lim
k′→∞

I14(tk
′
) = 0. (3.75)

Hence

lim sup
k′→∞

(
ρ‖v(tk

′
)− v0‖2L2(Ω) + c1‖∇M(tk

′
)−∇M0‖2L2(Ω) + η‖∇φ(tk

′
)−∇φ0‖2L2(Ω)

)
6 0 (3.76)

follows from (3.68) by (3.71)–(3.75) provided that we apply (1.6)2 and take into consideration that there
is a positive lower bound on ρ, which we denote by ρ.
The inequality (3.76) along with (3.55)4,6 infer

lim
k′→∞

(
‖v(tk

′
)− v0‖L2(Ω) + ‖M(tk

′
)−M0‖W 1,2(Ω) + ‖φ(tk

′
)− φ0‖W 1,2(Ω)

)
= 0. (3.77)

Since {tk} is an arbitrary sequence possessing a subsequence satisfying (3.77), one concludes the proof of
(1.14).

3.4. Attainment of the boundary condition and some regularity results for M in Lebesgue
spaces. In this section we discuss the proofs of the items (ii) and (iii) of Theorem 1.1. For the proof
of the item (ii) we refer the readers to [33, Section 6.1]. The item (iii) was formally commented in
[33, Section 6.2] but one needs to suitably regularize the magnetization equation to make the arguments
concrete. Here we provide the details for the proof of item (iii).
In the direction of proving item (iii) of Theorem 1.1, we first show that for given v and φ in the functional
settings (1.12)1,3−(1.15)2 there is a unique M satisfying (1.12)2−(1.15)1 and solving the weak formulation

(1.13)2 of the magnetization equation. Since ∂tM ∈ L2(0, T ;L
3
2 (Ω)), equation (1.13)2 can be rewritten

as: ∫ t

0

∫
Ω

(
∂tM + (v · ∇)M

)
·ψ2 = −

∫ t

0

∫
Ω

ξ(φ)∇M · ∇ψ2 −
∫ t

0

∫
Ω

1

α2

(
ξ(φ)(|M |2 − 1)M

)
· ψ2 (3.78)

for t ∈ (0, T ) and ψ2 ∈ C1
c (0, T ;W 1,2(Ω)) or equivalently∫

Ω

∂tM · ψ2 +

∫
Ω

(v · ∇)M · ψ2 = −
∫

Ω

ξ(φ)∇M · ∇ψ2 −
∫

Ω

1

α2

(
ξ(φ)(|M |2 − 1)M

)
· ψ2 (3.79)

for a.e. t ∈ (0, T ) and ψ2 ∈W 1,2(Ω).
Let M1 and M2 belong to (1.12)2−(1.15)1 and solve (3.78) with v and φ in the framework (1.12)1,3−
(1.15)2. One can now take the difference of the equations solved by M1 and M2 and consider (M1 −M2)
as a test function, which is possible since C1

c (0, T ;W 1,2(Ω)) is dense in L2(0, T ;W 1,2(Ω)). Consequently
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using the incompressibility of v and the inequality
(
|M1|2M1−|M2|2M2

)
· (M1−M2) > 0 (since the map

α 7→ |α|2α is monotone) one furnishes

1

2
‖(M1 −M2)(t)‖2L2(Ω) 6 C

∫ t

0

‖M1 −M2‖2L2(Ω),

for a.e. t ∈ (0, T ). Hence by the Grönwall inequality one at once renders that M1 = M2 a.e. in QT .
Now we plan to use test functions of the form |M |r−2M with r > 2 in (3.79). But due to the lack of
regularity (particularly one needs for a.e. t ∈ (0, T ), M ∈ Lr−1(Ω) for arbitrary r > 2) this does not
qualify as a test function. Instead we consider a regularized magnetization equation, i.e. we first take a
sequence {φm}m in L2(0, T ;C∞(Ω)) such that

φm → φ in L2(QT )

(such a sequence can easily be constructed by a suitable argument involving cut-off and convolution by
mollifiers). Now let Mm be the weak solution to (3.78) or (3.79) corresponding to φm with boundary
condition ∂nM

m |ΣT = 0 and initial condition Mm(·, 0) = M0 ∈ W 1,2(Ω). Our idea is to consider
|Mm|r−2Mm as a test function in the equation solved by (φm,Mm) thereby proving an uniform estimate
of Mm in Lr(Ω) and next pass m→∞ to construct a weak solution M corresponding to φ for (3.78) or
equivalently (3.79) which also solves the desired Lr(Ω) estimate. Of course, because of the uniqueness of
the solution of the magnetization equation corresponding to the fixed pair (v, φ) and the initial data M0,
which we have already proved, this process will give the same M solving (1.13)2.
With the help of a time discretization scheme one can prove the existence of a weak solution Mm ∈
L∞(0, T ;W 1,2(Ω)) ∩W 1,2(0, T ;L

3
2 (Ω)) of (3.78) or equivalently (3.79) corresponding to a vector field v

(satisfying (1.12)1) and φm. Moreover we notice that, in a strong form, this Mm solves

∆Mm =
1

ξ(φm)

(
∂tM

m + (v · ∇)Mm − ξ′(φm)∇Mm · ∇φm +
ξ(φm)

α2

(
|Mm|2 − 1

)
Mm

)
in Ω,

∂nM
m =0 on ∂Ω.

(3.80)

In view of the fact that Mm ∈ L∞(0, T ;W 1,2(Ω)) ∩ W 1,2(0, T ;L
3
2 (Ω)) the right hand of (3.80)1 can

be estimated in L2(0, T ;L
3
2 (Ω)) and hence by standard elliptic regularity Mm ∈ L2(0, T ;W 2, 32 (Ω)) ↪→

L2(0, T ;Lr(Ω)) for any 0 < r <∞. Hence for a.e. t ∈ (0, T ), |Mm|r−1Mm(t), r > 2 can be used as a test
function in (3.79). Consequently

1

r
∂t‖Mm‖rLr(Ω) +

∫
Ω

(v · ∇)Mm|Mm|r−2Mm +

∫
Ω

ξ(φm)(r − 1)|Mm|r−2|∇Mm|2

+
1

α2

∫
Ω

ξ(φm)|Mm|r+2 − 1

α2

∫
Ω

ξ(φm)|Mm|r = 0.
(3.81)

Once again integrating by parts the second term and using that div v = 0 on Ω one concludes from (3.81)
that:

∂t‖Mm‖rLr(Ω) 6
c2r

α2
‖Mm‖rLr(Ω), (3.82)

where c2 > 0 is the constant appearing in the assumption (1.6). Now if one assumes M0 ∈ W 1,2(Ω) ∩
Lr(Ω), r > 6, using Gronwall’s inequality one has the following from (3.82):

‖Mm(t)‖Lr(Ω) 6 ‖M0‖Lr(Ω)e
c2
α2 t for all t ∈ [0, T ]. (3.83)

Additionally if M0 ∈ L∞(Ω), one can take the limit r →∞ in (3.83) to conclude that:

‖Mm(t)‖L∞(Ω) 6 ‖M0‖L∞(Ω)e
c2
α2 t for all t ∈ [0, T ]. (3.84)

Now we let m→∞ in the equation solved by (φm,Mm), i.e. (3.78) with (φ,M) replaced by (φm,Mm).
The limit passage in the equation is obtained in a standard way (roughly it consists in showing the weak
compactness of Mm in L2(0, T ;W 1,2(Ω)) and next using Aubin-Lions to achieve the strong compactness
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in L2(0, T ;L4(Ω))). Finally in view of the estimates (3.83) and (3.84), which are independent of m, one
concludes (1.20) and (1.21).

3.5. Summary of the proof of Theorem 1.1. For the sake of the readers we summarize the proof of
Theorem 1.1 with exact references to the sections.

• For the obtainment of the regularities (1.12) with the exception of M ∈ W 1,2(0, T ;L
3
2 (Ω)),

φ ∈ L2(0, T ;W 2,1(Ω)) and Ψ′(φ) ∈ L1(QT ), we refer the readers to (3.17) and (3.55). One can

obtain the W 1,2(0, T ;L
3
2 (Ω)) regularity of M simply by estimating ∂tM ∈ L2(0, T ;L

3
2 (Ω)) by

using (1.1)3 and the available regularities for v and M. More precisely (v·∇)M can be estimated in

L2(0, T ;L
3
2 (Ω)) as in (3.43) and the boundedness of div(ξ(φ)∇M)− ξ(φ)

α2 (|M |2− 1)M in L2(QT )
follows from (1.16). The additional p−regularities (1.15) of M, φ and Ψ′(φ) can be found in
Section 3.1.3 and they are of course stronger than φ ∈ L2(0, T ;W 2,1(Ω)) and Ψ′(φ) ∈ L1(QT )
(stated as a part of (1.12)).
• The weak formulation (1.13) solved by (v,M, φ, µ) is proved in Section 3.2.
• The energy estimate (1.16) is obtained in Section 3.1.4.
• The attainment of the initial data in the sense of (1.14) is obtained in Section 3.3.
• The items (ii) and (iii) of Theorem 1.1 corresponding to the attainment of boundary condition

for M and some regularity in Lebesgue spaces are proved in Section 3.4.

In view of the above items we finally conclude the proof of Theorem 1.1. �
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